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Abstract. We discuss certain ternary relations, called plain, and show that each of them induces a connectedness

on its underlying set. This connectedness allows for definitions of concepts of simple closed and Jordan curves.

We introduce a particular plain ternary relation on the digital plane Z2 and, as the main result, we prove a digital

analogue of the Jordan curve theorem for the connectedness induced by this relation. It follows that the ternary

relation introduced may be used as a convenient structure on the digital plane for the study of the geometric

properties of digital images that are related to boundaries because boundaries of objects in digital images are

represented by digital Jordan curves. An advantage of this structure over the Khalimsky topology is that it

allows Jordan curves to turn at the acute angle π
4

at some points.

1 Introduction

Digital topology is a theory that was founded for the study

of geometric and topological properties of digital images.

The classical, graph theoretic approach to digital topology

is based on using the 4-adjacency and 8-adjacency graphs

for structuring Z2 (cf. [6] and [7]). Unfortunately, neither

4-adjacency nor 8-adjacency itself allows for an analogue

of the Jordan curve theorem (cf. [4]) so that a combina-

tion of the two adjacency graphs has to be used. To elim-

inate this deficiency, a new, purely topological approach

to the problem was proposed in [2] which utilizes a con-

venient topology for structuring the digital plane, namely

the Khalimsky topology. The convenience of the Khalim-

sky topology for structuring the digital plane was shown

in [2] by proving an analogue of the Jordan curve theo-

rem for the topology (recall that the classical Jordan curve

theorem states that a simple closed curve in the Euclidean

plane separates this plane into exactly two connected com-

ponents). The topological approach was then developed by

many authors - see, e.g., [3]-[5] and [9].

Since the Khalimsky topological space is an Alexan-

droff T0-space, it corresponds to a partial order on Z2, the

so-called specialization order. The connectedness in the

Khalimsky space then coincides with the connectedness in

the underlying (simple) graph of the specialization order.

Thus, when studying the connectedness of digital images,

this graph, rather than the Khalimsky topology itself, may

be used for structuring the digital plane. A disadvantage

of this approach is that Jordan curves in the (specializa-

tion order of the) Khalimsky topology may never turn at

the acute angle π
4
. It would, therefore, be useful to find

some new, more convenient structures on Z2 that would

allow Jordan curves to turn, at some points, to form the

acute angle π
4
. In the present note, to obtain such a conve-
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nient structure, we replace the specialization order of the

Khalimsky topology, hence a binary relation on Z2, with

a ternary relation on Z2. We will define a connectedness

provided by this ternary relation and will prove a digital

Jordan curve theorem for this connectedness thus showing

that the ternary relation provides a convenient structure on

the digital plane for the study of digital images.

2 Preliminaries

For every point (x, y) ∈ Z2, we denote by A4(x, y) and

A8(x, y) the sets of all points that are 4-adjacent and 8-

adjacent to (x, y), respectively. Thus, A4(x, y) = {(x +
i, y + j); i, j ∈ {−1, 0, 1}, i j = 0, i + j � 0} and

A8(x, y) = A4(x, y)∪{(x+ i, y+ j); i, j ∈ {−1, 1}}. The sim-

ple graphs (Z2, A4) and (Z2, A8) are called the 4-adjacency
graph and 8-adjacency graph, respectively (for the basic

graph-theoretic concepts used see [1]).

In digital image processing, the 4-adjacency and 8-

adjacency graphs are the most frequently used structures

on the digital plane. But, since the late 1980’s, another

structure on Z2 has been used too, namely the Khalimsky

topology [2]. The specialization order of the Khalimsky

topology (see Introduction) is the binary relation ≤ on Z2

given as follows:

For any (x, y), (z, t) ∈ Z2, (x, y) ≤ (z, t) if and only if

• (x, y) = (z, t) or

• x, y are even and (z, t) ∈ A8(x, y) or

• x is even, y is odd, z = x + i where i ∈ {−1, 1}, and t = y
or

• x is odd, y is even, z = x, and t = y+ i where i ∈ {−1, 1}.
A portion of the specialization order ≤ of the Khalimsky

topology is demonstrated in Figure 1 by a directed graph

with the vertex set Z2 where an oriented edge from a point

p to a point q means that p ≤ q.

© The Authors,  published  by EDP Sciences.  This  is  an  open  access  article  distributed  under  the  terms  of  the Creative Commons Attribution
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Figure 1. A portion of the specialization order of the Khalimsky

topology.

Recall that, given a directed graph (i.e., a set with a

binary relation), its underlying (undirected) simple graph

is obtained by just ignoring the direction of the edges. A

circle in a simple graph is said to be a simple closed curve

if, with each of its vertices, it contains precisely two ver-

tices adjacent to it. A simple closed curve J in a simple

graph with the vertex set V is called a Jordan curve if it

separates the set V into precisely two components, i.e., if

the induced subgraph V − J has exactly two components.

The famous Jordan curve theorem proved for the Khal-

imsky topology in [2] may be formulated as follows:

Theorem 1 In the underlying graph of the specialization
order of the Khalimsky topology, every simple closed curve
with at least four points is a Jordan curve.

It is readily verified that a simple closed curve (and

thus also a Jordan curve) in the underlying graph of the

specialization order of the Khalimsky topology may never

turn at the acute angle π
4
. It could therefore be useful to

replace the specialization order of the Khalimsky topol-

ogy with some more convenient structure (relation on Z2)

that would allow Jordan curves to turn at the acute angle
π
4

at some points. And this is what we will do in the next

section.

3 Plain ternary relations and induced
connectedness

Recall that, given a positive in integer n and a set X, an n-
ary relation on X is a subset R ⊆ Xn. Thus, the elements of

R are finite sequences (ordered n-touples) (x0, x1, ..., xn) =

(xi| i < n) consisting of elements of X (for the basic prop-

erties of n-ary relations see [8]). In the sequel, we will

restrict our considerations to n = 3, i.e., to ternary rela-

tions.

Definition 1 A ternary relation R on a set X is said to be

plain if, for any f , g ∈ R, f � g implies card( f ∩ g) ≤ 1.

Definition 2 Let R be a plain ternary relation on a set X
and n a nonnegative integer. A sequence C = (ci| i ≤ n)

of elements of X is called an R-walk if the following two

conditions are satisfied:

I. For every positive integer i < n, there exists

(x0, x1, x2) ∈ R such that

{ci, ci+1} = {x0, x1} or {ci, ci+1} = {x1, x2},
II. Every (a0, a1, a2) ∈ R satisfies the following two

conditions:

(i) if there exists i ∈ {0, 1, ..., n − 1} such that ci =

a1 and ci+1 = a2, then i > 0 and ci−1 = a0,

(ii) f there exists i ∈ {1, 2, ..., n} such that ci−1 = a2

and ci = a1, then i < n and ci+1 = a0.

An R-walk (ci| i ≤ n) with the property that n ≥ 2 and

ci = c j ⇔ {i, j} = {0, n} is said to be an R-circle.

Observe that, if (x0, x1, ..., xn) is an R-walk, then

(xn, xn−1, ..., x0) is an R-walk, too (so that R-walks are

closed under reversion) and, if (xi| i ≤ m) and (yi| i ≤ p)

are R-walks with xm = y0, then, putting zi = xi for all

i ≤ m and zi = yi−m for all i with m ≤ i ≤ m + p, we get

an R-walk (zi| i ≤ m+ p) (so that R-walks are closed under

composition).

Given a plain ternary relation R on a set X, a subset

Y ⊆ X is said to be R-connected if, for every pair a, b ∈ Y ,

there is an R-walk (ci| i ≤ n) such that c0 = a, cn = b
and ci ∈ Y for all i ∈ {0, 1, ..., n}. A maximal (with respect

to set inclusion) R-connected subset of X is called an R-

component of X.

Definition 3 Let R be a plain ternary relation on a set X. A

nonempty, finite and R-connected subset J of X is said to

be an R-simple closed curve if every element (a0, a1, a2) ∈
R with {a0, a1} ⊆ J satisfies a2 ∈ J and every z ∈ J fulfills

one of the following two conditions:

(1) There are exactly two elements (a0, a1, a2) ∈ R sat-

isfying both {a0, a1, a2} ⊆ J and z ∈ {a0, a2} and

there is no element (b0, b1, b2) ∈ R satisfying both

{b0, b1, b2} ⊆ J and z = b1.

(2) There is exactly one element (b0, b1, b2) ∈ R satisfy-

ing both {b0, b1, b2} ⊆ J and z = b1 and there is no

element (a0, a1, a2) ∈ R satisfying both {a0, a1, a2} ⊆
J and z ∈ {a0, a2}.

Clearly, every R-simple closed curve is an R-circle.

Definition 4 Let R be a plain ternary relation on a set X.

An R-simple closed curve J is called an R-Jordan curve if

the subset X−J ⊆ X consists (i.e., is the union) of precisely

two R-components.

From now on, R will denote the plain ternary relation

on Z2 given as follows: For every ((xi, yi)| i < 3) such that

(xi, yi) ∈ Z2 for every i < 3, ((xi, yi)| i < 3) ∈ R if and only

if one of the following eight conditions is satisfied:

(1) x0 = x1 = x2 and there is k ∈ Z such that yi = 4k + i
for all i < 3,

(2) x0 = x1 = x2 and there is k ∈ Z such that yi = 4k − i
for all i < 3,

2

  
 

  
DOI: 10.1051/, 01012 (2017) 70901012ITM Web of Conferences 9

AMCSE 2016

itmconf/201



� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

�
�
���

�
�

���

�
�
���

�
�

���

�
�
��


�
�
��


�
�
��


�
�
��


�
�
��	

�
�
��	

�
�
��	

�
�
��	

�
�
���

�
�

���

�
�
���

�
�

���

0 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Figure 2. A portion of the relation R.
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Figure 3. R-Jordan curves.

(3) y0 = y1 = y2 and there is k ∈ Z such that xi = 4k + i
for all i < 3,

(4) y0 = y1 = y2 and there is k ∈ Z such that xi = 4k − i
for all i < 3,

(5) there is k ∈ Z such that xi = 4k + i for all i < 3 and

there is l ∈ Z such that yi = 4l + i for all i < 3,

(6) there is k ∈ Z such that xi = 4k + i for all i < 3 and

there is l ∈ Z such that yi = 4l − i for all i < 3,

(7) there is k ∈ Z such that xi = 4k − i for all i < 3 and

there is l ∈ Z such that yi = 4l + i for all i < 3,

(8) there is k ∈ Z such that xi = 4k − i for all i < 3 and

there is l ∈ Z such that yi = 4l − i for all i < 3.

A portion of R is demonstrated in Figure 2. The or-

dered triples belonging to R are represented by arrows ori-

ented from first to last terms.

Theorem 2 Every circle in the graph demonstrated in
Figure 3 that does not turn at any point (4k + 2, 4l + 2),
k, l ∈ Z, is an R-Jordan curve.

Proof. Clearly, every circle in the graph demonstrated

in Fig. 3 that does not turn at any point (4k + 2, 4l + 2),

k, l ∈ Z, is an R-simple closed curve. Let z = (x, y) ∈
Z

2 be a point such that x = 4k + p and y = 4l + q for

some k, l, p, q ∈ Z with pq = ±1. Then we define the

fundamental triangle T(z) to be the fifteen-point subset of

Z
2 given as follows:

T (z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(r, s) ∈ Z2; 4k ≤ r ≤ 4k + 14, 4l ≤ s ≤ 4l + 4k + 4 − r}
if x = 4k + 1 and y = 4l + 1 for some k, l ∈ Z,
{(r, s) ∈ Z2; 4k ≤ r ≤ 4k + 4, 4l ≤ s ≤ 4l + r − 4k}
if x = 4k + 3 and y = 4l + 1 for some k, l ∈ Z,
{(r, s) ∈ Z2; 4k ≤ r ≤ 4l, 4l + 4k + 4 − r ≤ s ≤ 4l + 4}
if x = 4k + 3 and y = 4l + 3 for some k, l ∈ Z,
{(r, s) ∈ Z2; 4k ≤ r ≤ 4k + 4, 4l + r − 4k ≤ s ≤ 4l + 4}
if x = 4k + 1 and y = 4l + 3 for some k, l ∈ Z.

Graphically, every fundamental triangle T (z) consists

of fifteen points and forms a rectangular triangle obtained

from a 4 × 4-square by dividing it by a diagonal. More

precisely, each of the two diagonals divides the square

into just two fundamental triangles having a common hy-

potenuse coinciding with the diagonal. In every funda-

mental triangle T (z), the point z is one of the three inside

points of the triangle. The (four types of) fundamental tri-

angles are demonstrated in the following figure:
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� � � � �

� � � � �
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�

0 1 2 3 4

1

2

3

4

z1

z2z3

z4

T (z1)

T (z2)T (z3)

T (z4)

Given a fundamental triangle, we speak about its sides

- it is clear from the above picture which sets are under-

stood to be the sides (note that each side consists of five

points and that two different fundamental triangles may

have at most one side in common).

Now, one can easily see that:

(1) Every fundamental triangle is R-connected (so that

the union of two fundamental triangles having a

common side is connected).

(2) If we subtract from a fundamental triangle some of

its sides, then the resulting set is still R-connected.

(3) If S 1, S 2 are fundamental triangles having a com-

mon side D, then the set (S 1∪S 2)−M is R-connected

whenever M is the union of some sides of S 1 or S 2

different from D.

(4) Every R-connected subset of Z2 with at most two

points is a subset of a fundamental triangle.
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We will show that the following is also true:

(5) For every circle C in the graph demonstrated in Fig.

3 that does not turn at any point (4k + 2, 4l + 2),

k, l ∈ Z, there are sequences SF ,SI of fundamental

triangles, SF finite and SI infinite, such that, when-

ever S ∈ {SF ,SI}, the following two conditions are

satisfied:

(a) Each member of S, excluding the first one, has a

common side with at least one of its predecessors.

(b) C is the union of those sides of fundamental tri-

angles in S that are not shared by two different fun-

damental triangles from S.

Put C1 = C and let S 1
1 be an arbitrary fundamental

triangle with S 1
1 ∩ C1 � ∅. For every k ∈ Z, 1 ≤ k,

if S 1
1, S

1
2, ..., S

1
k are defined, let S 1

k+1
be a fundamental

triangle with the following properties: S 1
k+1

∩ C1 � ∅,

S 1
k+1

has a side in common with S 1
k which is not a subset

of C1 and S 1
k+1
� S 1

i for all i, 1 ≤ i ≤ k. Clearly, there

will always be a (smallest) number k ≥ 1 for which no

such fundamental triangle S 1
k+1

exists. Denoting by k1

this number, we have defined a sequence (S 1
1, S

1
2, ..., S

1
k1

)

of fundamental triangles. Let C2 be the union of those

sides of fundamental triangles in (S 1
1, S

1
2, ..., S

1
k1

) that

are disjoint from C1 and not shared by two different

fundamental triangles in (S 1
1, S

1
2, ..., S

1
k1

). If C2 � ∅,

we construct a sequence (S 2
1, S

2
2, ..., S

2
k2

) of fundamen-

tal triangles in an analogous way to (S 1
1
, S 1

2
, ..., S 1

k1
)

by taking C2 instead of C1 (and obtaining k2 anal-

ogously to k1). Repeating this construction, we get

sequences (S 3
1
, S 3

2
, ..., S 3

k3
), (S 4

1, S
4
2, ..., S

1
k4

), etc. We put

S = (S 1
1, S

1
2, ..., S

1
k1
, S 2

1, S
2
2, ..., S

2
k2
, S 3

1
, S 3

2
, ..., S 3

k3
, ...)

if Ci � ∅ for all i ≥ 1 and S =

(S 1
1, S

1
2, ..., S

1
k1
, S 2

1, S
2
2, ..., S

2
k2
, ..., S l

1
, S l

2
, ..., S l

kl
) if Ci � ∅

for all i with 1 ≤ i ≤ l and Ci = ∅ for i = l + 1.

Further, let S ′
1 = T (z) be a fundamental triangle such

that z � S whenever S is a member of S. Having defined

S ′
1, let S′ = (S ′

1, S
′
2, ...) be a sequence of fundamental tri-

angles defined analogously to S (by taking S ′
1 instead of

S 1
1). Then one of the sequences S, S′ is finite and the other

is infinite. Indeed, S is finite (infinite) if and only if its first

member equals such a fundamental triangle T (z) for which

z = (k, l) ∈ Z2 has the property that the cardinality of the

set {(x, l) ∈ Z2; x > k} ∩C is odd (even). The same is true

for S′. If we put {SF ,SI} = {S,S′} where SF is finite and

SI is infinite, then the conditions (a) and (b) are clearly

satisfied.

Given a circle C in the graph demonstrated in Fig. 3

that does not turn at any point (4k + 2, 4l + 2), k, l ∈ Z, let

S F and S I denote the union of all members of SF and SI ,

respectively. Then S F ∪ S I = Z
2 and S F ∩ S I = C. Let S∗F

and S∗I be the sequences obtained from SF and SI by sub-

tracting C from each member of SF and SI , respectively.

Let S ∗
F and S ∗

I denote the union of all members of S∗F and

S∗I , respectively. Then S ∗
F and S ∗

I are connected by (1), (2)

and (3) and it is clear that S ∗
F = S F − C and S ∗

I = S I − C.

So, S ∗
F and S ∗

I are the two components of Z2 − C by (4)

(S F −C is called the inside component and S I −C is called

the outside component). The proof is complete.

The circles in the graph demonstrated in Fig. 3 that

do not turn at any point (4k + 2, 4l + 2), k, l ∈ Z, which

are R-Jordan curves by the previous Theorem, provide a

rich enough variety of circles to be used for representing

borders of objects in digital images. The advantage of the

circles over the Jordan curves in the Khalimsky topology

is that they may turn at at acute angle π
4

at some points.

Example 1 Consider the following (digital picture of a)

triangle:

� � � � � � � � �

� �

� �

� �

�

(0,0)=A B C D=(8,0)

E =(4,4)

While the triangle ADE is a R-Jordan curve, it is not a

Jordan curve in the (underlying graph of the specialization

order of) Khalimsky topology. For this triangle to be a

Jordan curve in the Khalimsky topology, we have to delete

the points A,B,C and D. But this will lead to a considerable

deformation of the triangle.

4 Conclusions

We have shown that every plain ternary relation induces

connectedness on its underlying set. This connectedness

was used to define concepts of simple closed and Jordan

curves in the underlying set of a given plain ternary rela-

tion. We then introduced and discussed a particular plain

ternary relation on the digital plane Z2 and showed that the

connectedness induced by this relation allows for a digi-

tal analogue of the Jordan curve theorem. Thus, we have

shown that the ternary relation introduced provides a con-

venient structure on the digital plane for the study of dig-

ital images. An advantage of this structure over the Khal-

imsky topology is that it allows the Jordan curves to turn

at the acute angle π
4

at some points. Since Jordan curves

represent borders of objects in digital images, the structure

on Z2 provided by the ternary relation introduced may be

used in digital image processing for solving problems re-

lated to boundaries such as pattern recognition, boundary

detection, contour filling, data compression, etc.

This work was supported by The Ministry of Education, Youth

and Sports of the Czech Republic from the National Programme

of Sustainability (NPU II) project "IT4Innovations excellence in

science - LQ1602".
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