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ABSTRACT 

The present thesis deals with membrane structures, focusing on the description of both the 

inherent physical necessitates which has to be dealt and the algorithms used when developing 

the FEM software. After introducing physical basis of the individual design and analysis steps, 

the specific issues associated with these calculation procedures as well as the particular solution 

processes are described. 

The first chapter deals with the form finding analysis, which is inherently associated with 

designing tensile structures. The equilibrium shape is derived from the requirement for the 

resulting prestress, given boundary conditions and applied external load. However, this process 

is also generally dealing with a complex task of searching for the equilibrium itself. Therefore, 

necessary stabilization techniques are an inherent part of the calculation procedures. The 

selected methods as well as the proposed technique specialized for the calculation of conical 

membranes are presented. In addition to the given thesis scope, the proposal of an algorithm 

for dealing with optimizing the shapes of arches and shells is described. 

In the chapter about the structural analysis, the main focus is given to the phenomenon of 

membranes wrinkling. This sudden loss of stability, when the compression occurs, strongly 

affects the structural response. The proposed algorithm is presented, which is modularly 

applicable to both the elastic and inelastic materials as described in detail. 

The chapter dealing with the cutting pattern generation process presents the proposal of the 

selected combination of two existing solution methods. This algorithms sequence focuses on 

reaching the optimum combination of the calculation speed, generality and precision. 

The individual chapters are complemented by presenting of the examples analyzed by using the 

described algorithms, which demonstrate the individual physical or implementation issues and 

the associated solution procedures. 
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ABSTRAKT 

Předkládaná práce se zabývá problematikou navrhování membránových konstrukcí, a to 

především s ohledem na vývoj potřebných výpočetních nástrojů v rámci MKP programů. Po 

uvedení základních fyzikálních požadavků jednotlivých kroků při navrhování těchto konstrukcí 

budou dále prezentovány vybrané či navržené algoritmy. 

Kapitola form finding se zabývá analýzou tvaru membránových konstrukcí. Rovnovážný tvar 

je odvozen od požadavku na výsledné předpětí, specifikované okrajové podmínky a aplikované 

zatížení. Obecně se ale tento proces zabývá i samotným hledáním rovnovážné soustavy sil v 

prostoru. V důsledku této skutečnosti jsou součástí popisované analýzy také vhodné stabilizační 

metody. V této kapitole budou prezentovány jak zvolené postupy, tak i navržená stabilizační 

technika specializovaná na hledání tvarů kuželových membrán. Dále je také popsán navržený 

algoritmus pro řešení úloh optimalizujících tvary ohybově tuhých konstrukcí, které jsou spjaty 

s hledáním labilních rovnovážných konfigurací. 

Kapitola structural analysis je zaměřená především na fenomén vrásnění membrán. Tato náhlá 

ztráta stability silně ovlivňuje statickou i dynamickou odezvu membránových konstrukcí. 

V rámci této kapitoly je představena a verifikována navržená výpočetní metoda, modulárně 

aplikovatelná na lineární, nelineárně elastické i plastické materiály používané pro uvedené 

konstrukce. 

Kapitola cutting pattern generation se zabývá výpočtem střihových vzorů, nezbytných pro 

výrobní proces membránových konstrukcí. Pro tento proces je v rámci předkládané práce 

navržena kombinace dvou různých metod. Zvolená posloupnost algoritmů cílí na optimalizaci 

poměru rychlosti, obecnosti a přesnosti výpočtu. 

Zmíněné kapitoly jsou doplněny jednotlivými příklady, analyzovanými pomocí popisovaných 

algoritmů, které demonstrují konkrétní fyzikální problémy či nezbytné implementační procesy. 
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1 INTRODUCTION 

The membrane structures are fascinating from many points of view. From an architectural 

aspect, they are light, beautiful and non-conventional. From civil engineer’s point of view, 

membrane structures have the ability to overcome large spans and are really uncommon in their 

design and fabrication processes, both of them influenced by special requirements associated 

with these structures. From a point of view of a developer of computer FEM software, these 

structures represent a great challenge, as it is necessary to cope with their large nonlinearities 

in structural analysis, and develop special tools for form finding and cutting pattern generation. 

More than anywhere else, the cooperation of all these professions can be observed as the shapes 

of tensile structures are driven by the will of nature and its physical laws more than by the will 

of a man. 

 

Fig. 1 Iconic Structure Tanzbrunnen Designed by Frei Otto, Cologne, Germany [I, II] 

 

Fig. 2 Roof of Denver International Airport, USA [III] 

Even though the tensile structures are one of the oldest types of structures, serving mostly in 

the past for covering both the permanent and temporary living places and for shading, their 

renaissance has started in the second half of the 20th century. The growth in their usage in 
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modern architecture and civil engineering, with respect to their size and variety, was strongly 

affected by the development in the field of available materials, the advent of computers, and 

the development in the field of computational mechanics of structures. Nowadays, these 

structures are able to take impressive shapes and to overcome large spans, so they are used for 

roofing of public spaces (Fig. 1), stadiums, stations, airports (Fig. 2) etc. 

1.1 OUTLINE OF THE THESIS 
This thesis is structured into the following chapters, covering the topics from the general 

theoretical introduction, following with the chapters focused on the particular membrane 

constructions design steps up to the chapter that presents a usage of described algorithms in 

practice. 

Continuum Mechanics 

This chapter includes a brief introduction into the essential principles of the continuum 

mechanics, which are the basis for further work. The Lagrangian continuum is described and 

the important quantities are depicted, namely the deformation gradient, different strain and 

stress measures. The principle of the virtual work and linearization of this general principle is 

further described and used in the following chapters. 

Finite Element Procedure 

The chapter is focused on the continuum discretization, the description of the basics of finite 

elements and the system of equations assemblage process in static and dynamic analyses, based 

on the usage of finite elements. The possible solution procedures used for the calculation of 

static and dynamic response are introduced. 

Form Finding 

The membrane structures are made of the material that only acts in tension and, as 

a consequence of this fact, the structural response of them is derived from their tension and 

curvature. For those structures, the statement 'Form follows force' is completely true, therefore 

the requirement of the forces is the main designing parameter. In contrast with conventional 

civil engineering design procedures, where the shape of the structure is predefined and the 

internal forces are calculated, the forces are predefined here and the shape is searched for. This 

implies that the structural analysis must be preceded by the form finding analysis to obtain the 

initial equilibrium position of the structure. The algorithms for this process as well as the 

proposals of two special stabilization techniques are presented. The numerical examples 

demonstrate solving of the individual physical or implementation issues. 

Structural Analysis 

The structural analysis, starting from this initial equilibrium position, is characterized by strong 

nonlinearities in both, the geometrical and the material response. The material lacks the bending 

stiffness as well as the compressive strength since the stability loss occurs due to local buckling 

immediately even at low compression stress, and exhibit itself as wrinkling of the membrane. 
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The proposed algorithm for dealing with this phenomenon as well as the examples verifying 

this method are presented. 

Cutting Pattern Generation 

The other characteristic designing step is the generation of cutting patterns, which is crucial for 

the manufacturing process. The double-curved shapes of the membrane structures need to be 

decomposed into pieces, for which the planar approximations are calculated in order to obtain 

the patterns that can be cut out, assembled and joined together for the subsequent assembly 

process. In this chapter the proposed algorithms sequence is presented and further contributed 

by numerical examples. 

Use in Practice 

This chapter presents an interesting customer example calculated by using the described and 

further implemented algorithms. 

1.2 OBJECTIVES OF THE THESIS 
Here, the thesis objectives are listed, covering the research work performed. 

Form Finding 

The objective of this part of the thesis is the description of a general form finding algorithm 

suitable for the implementation. Furthermore, the aim is also the proposal of an advanced 

stabilization technique for dealing with conical membranes, which needs special treatment of 

prestress in the regions of high or low points. In addition to the scope of this thesis, the 

stabilization technique dealing with the optimization of beams and shell shapes is also proposed 

and introduced. 

Structural Analysis 

The aim of this part of the thesis is to deal with the wrinkling phenomenon. Thus, the proposal 

of a suitable algorithm usable for elastic and inelastic materials is required here. The proposed 

method should be verified by suitable examples. 

Cutting Pattern Generation 

The objective of this part of the thesis is the investigation of existing algorithms for the cutting 

pattern generation and the consequent proposal of a suitable procedure for the implementation. 

Thus, the combined procedure composed of two different algorithms is proposed as an optimal 

solution technique. 

The chapters focused on the mentioned objectives are further complemented with the numerical 

examples calculated by using the FEA solver by the FEM consulting company [IV], 

incorporated into the RFEM software by the Dlubal Software company [III]. Thus, the 

dissertation presents the theoretical research as well as the proposals of suitable or new 

algorithms, which were used for the development of the tools for designing and analysing 

tensile structures in the RFEM software. However, the codes are not a subject of the thesis but 

they are a property of these private companies. 
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2 CONTINUUM MECHANICS 

2.1 ESSENTIAL QUANTITIES OF CONTINUUM MECHANICS 
This section gives the essential formulas for definition of the variational formulation of the 

principle of the virtual work. For tensile structures, the Lagrangian continuum description is 

assumed with the consideration of large displacements, large rotations and also with large 

strains in general. 

In the very start, the basic assumptions, quantities and measures for geometrically nonlinear 

analysis are introduced. 

 

Fig. 3 Original (Material) and Actual (Spatial) Configuration of Body 

The particle of the body at time 0 is described by the position vector 𝑥𝑖
 

 
0 , when undergoing the 

deformation 𝑢𝑖
 

 
𝑡  the particle position 𝑥𝑖

 
 
𝑡  is described as follows (Fig. 3): 

𝑥𝑖
 

 
𝑡 = 𝑥𝑖

 
 
0 + 𝑢𝑖

 
 
𝑡  (2.1) 

Thus, the relation of different configurations in the original and the actual positions is described 

by the deformation gradient tensor. The matrix notation 

𝐅0
t =

[
 
 
 
 
 
 
𝜕 𝑥1
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0
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0

𝜕 𝑥2
 

 
𝑡

𝜕 𝑥3
 

 
0

𝜕 𝑥3
 

 
𝑡

𝜕 𝑥1
 

 
0

𝜕 𝑥3
 

 
𝑡

𝜕 𝑥2
 

 
0

𝜕 𝑥3
 

 
𝑡

𝜕 𝑥3
 

 
0 ]

 
 
 
 
 
 

 (2.2) 

and the index notation 

𝐹𝑖𝑗0
𝑡 =

𝜕 𝑥𝑖
 

 
𝑡

𝜕 𝑥𝑗
 

 
0

= 𝑥𝑖,𝑗
 

0
𝑡  (2.3) 
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This tensor describes the straining and the rigid body rotation of material fibres. This is 

a fundamental quantity of continuum mechanics, used for the definition and relation of different 

measures and quantities used later. 

 

Fig. 4 Polar Decomposition 

The deformation gradient 𝐅0
t  can be decomposed into two parts (Fig. 4), capturing the straining 

𝐔0
t  first and then the rigid body rotation 𝐑0

t , or capturing the rigid body rotation 𝐑0
t  first and 

then the straining 𝐕0
t . This process is called polar decomposition. 

𝐅0
t = 𝐑0

t  𝐔0
t = 𝐕0

t  𝐑0
t  (2.4) 

The rotation tensor 𝐑0
t  is orthogonal and the straining tensors 𝐔0

t  and 𝐕0
t  are symmetric. 

With the use of the deformation gradient, the right and left Cauchy-Green deformation tensors 

can be defined: 

𝐂0
t = 𝐅T0

t  𝐅0
t = ( 𝐔T0

t  𝐑T0
t )( 𝐑0

t  𝐔0
t ) = ( 𝐔0

t )2 (2.5) 

𝐁0
t = 𝐅0

t  𝐅T0
t = ( 𝐕0

t  𝐑0
t )( 𝐑T0

t  𝐕T0
t ) = ( 𝐕0

t )2 (2.6) 

Both of these tensors are only related to the stretch tensors 𝐔0
t  or 𝐕0

t , which are symmetric, and 

therefore, both of the Cauchy-Green deformation tensors are also symmetric and invariant 

under the rigid body rotation. These tensors will be further used for the definition of the strain 

measures in the reference and current configurations. 

As described later, for the variational formulation of the principle of the virtual work, we are 

dealing with the equilibrium in the unknown configuration. Since we cannot integrate the virtual 

work over the body with unknown configuration, this equation will be modified and linearized 

afterwards. For further calculation, different strain and stress measures will be used. Particularly 

two strain measures, the Green-Lagrange and the Euler-Almansi strain tensors, as well as two 

conjugated stress measures, the Second Piola-Kirchhoff and Cauchy stress tensors, will be 

described. 



ESSENTIAL QUANTITIES OF CONTINUUM MECHANICS 

 

7 

 

The Green-Lagrange strain tensor is related to the chosen reference configuration. 

Considering the figure above (Fig. 3), the strain caused by the body deformation from the 

original configuration at time 0 to the actual configuration at time 𝑡 can be expressed in the 

matrix notation as 

𝐄0
t =

1

2
( 𝐅T0
t  𝐅0

t − 𝐈) =
1

2
( 𝐂0
t − 𝐈) (2.7) 

and in the index notation as 

𝐸𝑖𝑗0
𝑡 =

1

2
(
𝜕 𝑢𝑖

 
 
𝑡

𝜕 𝑥𝑗
 

 
0

+
𝜕 𝑢𝑗

 
 
𝑡

𝜕 𝑥𝑖
 

 
0

+
𝜕 𝑢𝑘

 
 
𝑡

𝜕 𝑥𝑖
 

 
0

 
𝜕 𝑢𝑘

 
 
𝑡

𝜕 𝑥𝑗
 

 
0
) =

1

2
( 𝑢𝑖,𝑗0
𝑡 + 𝑢𝑗,𝑖0

𝑡 + 𝑢𝑘,𝑖0
𝑡  𝑢𝑘,𝑗0

𝑡 ) (2.8) 

The Green-Lagrange strain tensor is symmetric and for rigid body motion, it is equal to zero. 

Note: The upper left index denotes the deformed configuration of the body in time 𝑡 and the 

bottom left index denotes the required/chosen reference configuration to which the strain is 

related. 

The Euler-Almansi strain tensor is related to the actual configuration. Referring to (Fig. 3), 

the strain can be expressed in the matrix notation as 

𝐞t
t = 𝐞 

t =
1

2
(𝐈 − 𝐅−T0

t  𝐅−𝟏0
t ) =

1

2
(𝐈 − 𝐁−𝟏) (2.9) 

and in the index notation as 

𝑒𝑖𝑗𝑡
𝑡 = 𝑒𝑖𝑗 

𝑡 =
1

2
(
𝜕 𝑢𝑖

 
 
𝑡

𝜕 𝑥𝑗
 

 
𝑡

+
𝜕 𝑢𝑗

 
 
𝑡

𝜕 𝑥𝑖
 

 
𝑡

+
𝜕 𝑢𝑘

 
 
𝑡

𝜕 𝑥𝑖
 

 
𝑡
 
𝜕 𝑢𝑘

 
 
𝑡

𝜕 𝑥𝑗
 

 
𝑡
) =

1

2
( 𝑢𝑖,𝑗𝑡
𝑡 + 𝑢𝑗,𝑖𝑡

𝑡 + 𝑢𝑘,𝑖𝑡
𝑡  𝑢𝑘,𝑗𝑡

𝑡 ) (2.10) 

Note: Since the strain is related to the actual configuration, the upper and the bottom left index 

are the same. Therefore, the bottom left index is redundant and will not be written further. 

If the deformations are so small that the nonlinear (second-order) terms of the Green-Lagrange 

or the Euler-Almansi strain tensor can be neglected, the linear part of these tensors identifies 

them as an Infinitesimal strain tensor, which is equal to the linear deformation tensor. The 

Infinitesimal strain tensor in the original configuration in the matrix notation can be written as 

𝛆0
t =

1

2
( 𝐅0
t + 𝐅T0

t ) − 𝐈 (2.11) 

and in the index notation as 

𝜀𝑖𝑗0
𝑡 =

1

2
(
𝜕 𝑢𝑖

 
 
𝑡

𝜕 𝑥𝑗
 

 
0

+
𝜕 𝑢𝑗

 
 
𝑡

𝜕 𝑥𝑖
 

 
0
) =

1

2
( 𝑢𝑖,𝑗0
𝑡 + 𝑢𝑗,𝑖0

𝑡 ) (2.12) 

The Infinitesimal strain tensor in the actual configuration in the matrix notation can be written 

as 

𝛆t
t = 𝛆 

t = 𝐈 −
1

2
( 𝐅−10
t + 𝐅−T0

t ) (2.13) 
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and in the index notation as 

𝜀𝑖𝑗𝑡
𝑡 = 𝜀𝑖𝑗 

𝑡 =
1

2
(
𝜕 𝑢𝑖

 
 
𝑡

𝜕 𝑥𝑗
 

 
𝑡

+
𝜕 𝑢𝑗

 
 
𝑡

𝜕 𝑥𝑖
 

 
𝑡
) =

1

2
( 𝑢𝑖,𝑗𝑡
𝑡 + 𝑢𝑗,𝑖𝑡

𝑡 ) (2.14) 

 

Fig. 5 Second Piola-Kirchhoff and Cauchy Stresses 

Assuming the force d 𝐓 
t  acting on the area d A 

t  of the body in the actual configuration, the 

Cauchy formula defines the relation 

d 𝐓 
t = 𝛔T 

t  𝐧 
t  d A 

t  (2.15) 

where 𝛔 
t  is the Cauchy stress tensor and 𝐧 

t  is the normal vector to the area d A 
t . 

The analogical relation defines the force d 𝐓 
0  acting on the area d A 

0  of the body in the original 

configuration 

d 𝐓 
0 = 𝐒T0

t  𝐧 
0  d A 

0  (2.16) 

where 𝐒0
t  is known as the Second Piola-Kirchhoff stress tensor and 𝐧 

0  is the normal vector to 

the area d A 
0 . 

Considering the kinematic relationship, known as the Nanson’s formula, and the formula for 

transformation between forces d 𝐓 
0  and d 𝐓 

t  

𝐧 
t  d A 

t =
ρ 
0

ρ t
 𝐅−T0
t  𝐧 

0  d A 
0  (2.17) 

d 𝐓 
0 = 𝐅−10

t  d 𝐓 
t  (2.18) 

the relationship between the Cauchy stress and the Second Piola-Kirchhoff stress tensors is 

defined by the following equations in the matrix notation 

𝛔 
t =

ρ 
t

ρ 0
 𝐅0
t  𝐒0

t  𝐅T0
t =

1

det( 𝐅0
t ) 
 𝐅0
t  𝐒0

t  𝐅T0
t  (2.19) 

𝐒0
t =

ρ 
0

ρ t
 𝐅−10
t  𝛔 

t  𝐅−T0
t = det( 𝐅0

t ) 𝐅−10
t  𝛔 

t  𝐅−T0
t  (2.20) 
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and in the index notation 

𝜎 
𝑡
𝑚𝑛 =

𝜌 
𝑡

𝜌 0
 𝑥0
𝑡
𝑚,𝑖 𝑥0

𝑡
𝑛,𝑗
  𝑆0

𝑡
𝑖𝑗 =

1

𝑑𝑒𝑡( 𝐹0
𝑡 ) 

 𝑥0
𝑡
𝑚,𝑖 𝑥0

𝑡
𝑛,𝑗
  𝑆0

𝑡
𝑖𝑗 (2.21) 

𝑆0
𝑡
𝑖𝑗 =

𝜌 
0

𝜌 𝑡
 𝑥0
𝑡
𝑖,𝑚
−1  𝑥0

𝑡
𝑗,𝑛
−1 𝜎𝑚𝑛 

𝑡 = 𝑑𝑒𝑡( 𝐹0
𝑡 ) 𝑥0

𝑡
𝑖,𝑚
−1  𝑥0

𝑡
𝑗,𝑛
−1 𝜎𝑚𝑛 

𝑡  (2.22) 

The first formula can be called as a ‘pull-back’ and the second one as a ’push-forward’ 

operation. 

The above defined quantities will be further used in the following chapters and subchapters of 

this work. For many cases, there could be other different strain and stress measures defined, as 

described in [1, 3]. 

Based on the measures above, the virtual work of the internal forces in the body at time 𝑡 can 

be described in different configurations, here in the actual (spatial) or the original (material) 

configuration as 

𝛿𝑊𝑖𝑛𝑡 = ∫ 𝜎 
𝑡
𝑖𝑗  𝛿 𝜀 

𝑡
𝑖𝑗  𝑑𝑉 
𝑡

 

𝑉 𝑡

= ∫ 𝑆0
𝑡
𝑖𝑗 𝛿 𝐸0

𝑡
𝑖𝑗  𝑑𝑉 
0

 

𝑉 0

 (2.23) 

and the virtual work of the external forces is described as 

𝛿𝑊𝑒𝑥𝑡 = ∫ 𝑓 
𝑡
𝑖
𝑉  𝛿𝑢𝑖  𝑑𝑉 

𝑡

 

𝑉 𝑡

+ ∫ 𝑓 
𝑡
𝑖
𝑆 𝛿𝑢𝑖

𝑆 𝑑𝑆 
𝑡

 

𝑆 𝑡

+∑ 𝐹 
𝑡
𝑖
  𝛿𝑢𝑖

𝑛

= ∫ 𝑓0
𝑡
𝑖
𝑉 𝛿𝑢𝑖  𝑑𝑉 

0

 

𝑉 0

+ ∫ 𝑓0
𝑡
𝑖
𝑆 𝛿𝑢𝑖

𝑆 𝑑𝑆 
0

 

𝑆 0

+∑ 𝐹0
𝑡
𝑖
  𝛿𝑢𝑖

𝑛

 

(2.24) 

where 𝑉 
𝑡 , 𝑉 

0 and 𝑆 
𝑡 , 𝑆 

0  are the volume and the surface in the original and actual configurations, 

𝑓 
𝑡
𝑖
𝑉 , 𝑓0

𝑡
𝑖
𝑉, 𝑓 

𝑡
𝑖
𝑆, 𝑓0

𝑡
𝑖
𝑆, 𝐹 

𝑡
𝑖
  and 𝐹0

𝑡
𝑖
  are the volume, surface and nodal external forces respectively, 

𝛿𝑢𝑖 and 𝛿𝑢𝑖
𝑆 are the nodal displacement variations of the body and the body surface. 

 

Fig. 6 Deformation of Body and Application of Deformation Variation 

For the body in equilibrium, the variation of the overall virtual work disappears, as described 

by the formula

𝛿𝑊 = 𝛿𝑊𝑖𝑛𝑡 − 𝛿𝑊𝑒𝑥𝑡 = 0 (2.25) 
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2.2 LINEARIZATION OF GENERAL PRINCIPLE OF VIRTUAL WORK 
As described above, we assume for tensile structures that the body is subjected to large 

displacements, large rotations as well as large strains in general. In the following figure (Fig. 

7), the original (time 0), the actual (time 𝑡) and the new (time 𝑡 + ∆𝑡) configurations are 

depicted. 

 

Fig. 7 Original, Actual and New Configurations of Body 

The virtual work of the internal and external forces related to the new configuration (time 𝑡 +

∆𝑡) is described by 

𝛿𝑊𝑖𝑛𝑡 = ∫ 𝜎 
𝑡+∆𝑡

𝑖𝑗  𝛿 𝜀 
𝑡+∆𝑡

𝑖𝑗  𝑑𝑉 
𝑡+∆𝑡

 

𝑉 𝑡+∆𝑡

 (2.26) 

𝛿𝑊𝑒𝑥𝑡 = ∫ 𝑓 
𝑡+∆𝑡

𝑖
𝑉  𝛿𝑢𝑖 𝑑𝑉 

𝑡+∆𝑡

 

𝑉 𝑡+∆𝑡

+ ∫ 𝑓 
𝑡+∆𝑡

𝑖
𝑆 𝛿𝑢𝑖

𝑆 𝑑𝑆 
𝑡+∆𝑡

 

𝑆 𝑡+∆𝑡

+∑ 𝐹 
𝑡+∆𝑡

𝑖
  𝛿𝑢𝑖

𝑛

= ℛ 
𝑡+∆𝑡  

(2.27) 

Based on the equilibrium equation of the principle of the virtual work for the new configuration 

𝛿𝑊𝑖𝑛𝑡 = 𝛿𝑊𝑒𝑥𝑡 (2.28) 

∫ 𝜎 
𝑡+∆𝑡

𝑖𝑗  𝛿 𝜀 
𝑡+∆𝑡

𝑖𝑗  𝑑𝑉 
𝑡+∆𝑡

 

𝑉 𝑡+∆𝑡

= ℛ 
𝑡+∆𝑡  (2.29) 

Based on the fact that the new configuration (time 𝑡 + ∆𝑡) is not known, the direct integration 

of the Cauchy stress tensor and the variation of the Infinitesimal strain tensor over the unknown 

volume of the body cannot be performed directly. The equilibrium equation needs to be 

rewritten by using another stress and strain measures, specifically the Second Piola-Kirchhoff 

stress and the Green-Lagrange strain tensors, which are related to the known configurations. 

There are two practical choices for the reference configuration, the original one in time 0 and 

the actual one in time 𝑡. The procedure using the original configurationis known as a Total 
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Lagrangian formulation, the procedure considering the actual configuration is called an 

Updated Lagrangian formulation. In the following, the Updated Lagrangian formulation will 

be followed and used for rewriting and further linearization of the principle of the virtual work.

∫ 𝑆𝑡
𝑡+∆𝑡

𝑖𝑗 𝛿 𝐸𝑡
𝑡+∆𝑡

𝑖𝑗 𝑑𝑉 
𝑡

 

𝑉 𝑡

= ℛ 
𝑡+∆𝑡  (2.30) 

This equation is physically totally equivalent to the previous one. The decomposition of the 

unknown Second Piola-Kirchhoff stress and the Green-Lagrange strain tensors will be 

performed in order to separate the known values in time 𝑡 and the unknown increments. 

𝑆𝑡
𝑡+∆𝑡

𝑖𝑗 = 𝑆𝑡
𝑡
𝑖𝑗 + 𝑆𝑡

 
𝑖𝑗 = 𝜎 

𝑡
𝑖𝑗 + 𝑆𝑡

 
𝑖𝑗 (2.31) 

𝐸𝑡
𝑡+∆𝑡

𝑖𝑗 = 𝐸𝑡
𝑡
𝑖𝑗 + 𝐸𝑡

 
𝑖𝑗 = 𝐸𝑡

 
𝑖𝑗 (2.32) 

The increment of the Green-Lagrange strain tensor 

𝐸𝑡
 
𝑖𝑗 =

1

2
( 𝑢𝑖,𝑗𝑡
 + 𝑢𝑗,𝑖𝑡

 + 𝑢𝑘,𝑖𝑡
  𝑢𝑘,𝑗𝑡

 ) (2.33) 

can be decomposed into its linear (Infinitesimal) and nonlinear parts in terms of the 

displacement vector 𝑢𝑖 

𝜀𝑡
 
𝑖𝑗 =

1

2
( 𝑢𝑖,𝑗𝑡
 + 𝑢𝑗,𝑖𝑡

 ) (2.34) 

𝜂𝑡
 
𝑖𝑗 =

1

2
𝑢𝑘,𝑖𝑡
  𝑢𝑘,𝑗𝑡

  (2.35) 

Therefore, the following holds 

𝐸𝑡
 
𝑖𝑗 = 𝜀𝑡

 
𝑖𝑗 + 𝜂𝑡

 
𝑖𝑗 (2.36) 

𝛿 𝐸𝑡
 
𝑖𝑗 = 𝛿 𝜀𝑡

 
𝑖𝑗 + 𝛿 𝜂𝑡

 
𝑖𝑗 (2.37) 

Using the formulas above, the equation of the principle of the virtual work can be rewritten 

∫ 𝑆𝑡
 
𝑖𝑗 𝛿 𝜀𝑡

 
𝑖𝑗 𝑑𝑉 
𝑡

 

𝑉 𝑡

+ ∫ 𝑆𝑡
 
𝑖𝑗  𝛿 𝜂𝑡

 
𝑖𝑗  𝑑𝑉 
𝑡

 

𝑉 𝑡

+ ∫ 𝜎 
𝑡
𝑖𝑗 𝛿 𝜀𝑡

 
𝑖𝑗 𝑑𝑉 
𝑡

 

𝑉 𝑡

+ ∫ 𝜎 
𝑡
𝑖𝑗 𝛿 𝜂𝑡

 
𝑖𝑗  𝑑𝑉 
𝑡

 

𝑉 𝑡

= ℛ 
𝑡+∆𝑡  

(2.38) 

with no approximation introduced till now. 

Since the equation of the principle of the virtual work is generally a complicated nonlinear 

function of the unknown displacement increment, the linearization is performed by neglecting 

the higher-order terms in 𝑢𝑖, so an approximate equation is obtained. 

The term 𝜎 
𝑡
𝑖𝑗 describes a known value of the actual Cauchy stress in the body. With the given 

variation 𝛿𝑢𝑖, the variation of the linear term 𝛿 𝜀𝑡
 
𝑖𝑗 is also known, however the variation of the 

term 𝛿 𝜂𝑡
 
𝑖𝑗  is linearly dependent on 𝑢𝑖 . The Second Piola-Kirchhoff stress increment 𝑆𝑡

 
𝑖𝑗  is 
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generally a nonlinear function of the Green-Lagrange strain 𝐸𝑡
 
𝑖𝑗. Using the Taylor series, the 

stress increment 𝑆𝑡
 
𝑖𝑗 can be rewritten 

𝑆𝑡
 
𝑖𝑗 =

𝜕 𝑆 
𝑡
𝑖𝑗

𝜕 𝐸 𝑡 𝑟𝑠
 𝐸𝑡
 
𝑟𝑠 +⋯ ≐

𝜕 𝑆 
𝑡
𝑖𝑗

𝜕 𝐸 𝑡 𝑟𝑠
 ( 𝜀𝑡
 
𝑟𝑠 + 𝜂𝑡

 
𝑟𝑠) ≐ 𝐶𝑡

 
𝑖𝑗𝑟𝑠 𝜀𝑡

 
𝑟𝑠 (2.39) 

while neglecting the higher-order terms of the Taylor series and the second-order part of the 

Green-Lagrange strain tensor 𝜂𝑡
 
𝑟𝑠. The linearized stress increment 𝑆𝑡

 
𝑖𝑗 is thus obtained and the 

linearization the whole equation of the principle of the virtual work can be written as follows: 

∫ 𝐶𝑡
 
𝑖𝑗𝑟𝑠 𝜀𝑡

 
𝑟𝑠 𝛿 𝜀𝑡

 
𝑖𝑗  𝑑𝑉 
𝑡

 

𝑉 𝑡

+ ∫ 𝜎 
𝑡
𝑖𝑗 𝛿 𝜂𝑡

 
𝑖𝑗  𝑑𝑉 
𝑡

 

𝑉 𝑡

= ℛ 
𝑡+∆𝑡 − ∫ 𝜎 

𝑡
𝑖𝑗  𝛿 𝜀𝑡

 
𝑖𝑗  𝑑𝑉 
𝑡

 

𝑉 𝑡

 (2.40) 

or in the matrix notation 

∫ 𝐂t
  𝛆t

  δ 𝛆t
  dV 
t

 

V t

+ ∫ 𝛔 
t  δ 𝛈t

  dV 
t

 

V t

= 𝓡 
t+∆t − ∫ 𝛔 

t  δ 𝛆t
  dV 
t

 

V t

 (2.41) 

The integral with the linearized term of the stress increment 𝑆𝑡
 
𝑖𝑗  and the variation of 𝛿 𝜂𝑡

 
𝑖𝑗 

(linearly dependent in 𝑢𝑖) had to be neglected. The linearly dependent terms remain on the left 

side, the known values are given to the right side. The term ℛ 
𝑡+∆𝑡  is the already described 

virtual work of external forces at time 𝑡 + ∆𝑡, the integral on the right hand side is the virtual 

work of the element internal stresses at time 𝑡 and the difference of these terms is known as an 

out-of-balance virtual work term. As a consequence of linearization, the approximative 

deformation ∆𝑢 is obtained 

𝑢 
𝑡+∆𝑡

𝑖 ≐ 𝑢 
𝑡
𝑖 + ∆𝑢𝑖 (2.42) 

This leads to the iteration scheme 

𝑢𝑖
(𝑘)

 
𝑡+∆𝑡 = 𝑢𝑖

(𝑘−1)
 

𝑡+∆𝑡 + ∆𝑢𝑖
(𝑘)

 (2.43) 

Assuming the load is deformation dependent 

ℛ 
𝑡+∆𝑡 = ∫ 𝑓𝑖

𝑉
 

𝑡+∆𝑡  𝛿𝑢𝑖 𝑑𝑉 
𝑡+∆𝑡

 

𝑉 𝑡+∆𝑡

+ ∫ 𝑓𝑖
𝑆

 
𝑡+∆𝑡  𝛿𝑢𝑖

𝑆 𝑑𝑆 
𝑡+∆𝑡

 

𝑆 𝑡+∆𝑡

+∑ 𝐹 
𝑡+∆𝑡

𝑖
  𝛿𝑢𝑖

𝑛

≐ ∫ 𝑓𝑖
𝑉(𝑘−1)

 
𝑡+∆𝑡  𝛿𝑢𝑖  𝑑𝑉(𝑘−1) 

𝑡+∆𝑡

 

𝑉(𝑘−1) 
𝑡+∆𝑡

+ ∫ 𝑓𝑖
𝑆(𝑘−1)

 
𝑡+∆𝑡  𝛿𝑢𝑖

𝑆 𝑑𝑆(𝑘−1) 
𝑡+∆𝑡

 

𝑆(𝑘−1) 
𝑡+∆𝑡

+∑ 𝐹𝑖
(𝑘−1)

 
𝑡+∆𝑡

 
 𝛿𝑢𝑖

𝑛

= ℛ(𝑘−1)
 

𝑡+∆𝑡  

(2.44) 

the linearized equation of the principle of the virtual work can be rewritten into the following 

form of the Newton iteration scheme 
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∫ 𝐶𝑖𝑗𝑟𝑠
(𝑘−1)

𝑡+∆𝑡
  ∆ 𝜀𝑟𝑠

(𝑘)
𝑡+∆𝑡

  𝛿 𝜀𝑖𝑗
(𝑘−1)

𝑡+∆𝑡
  𝑑𝑉(𝑘−1) 

𝑡+∆𝑡

 

𝑉(𝑘−1) 
𝑡+∆𝑡

+ ∫ 𝜎𝑖𝑗
(𝑘−1)

 
𝑡+∆𝑡  𝛿∆ 𝜂𝑖𝑗

(𝑘)
𝑡+∆𝑡

  𝑑𝑉(𝑘−1) 
𝑡+∆𝑡

 

𝑉(𝑘−1) 
𝑡+∆𝑡

= ℛ(𝑘−1)
 

𝑡+∆𝑡 − ∫ 𝜎𝑖𝑗
(𝑘−1)

 
𝑡+∆𝑡  𝛿 𝜀𝑖𝑗

(𝑘−1)
𝑡+∆𝑡

  𝑑𝑉(𝑘−1) 
𝑡+∆𝑡

 

𝑉(𝑘−1) 
𝑡+∆𝑡

 

(2.45) 

where 

𝑢𝑖
(0)

 
𝑡+∆𝑡 = 𝑢𝑖

 
 
𝑡  (2.46) 

𝜎𝑖𝑗
(0)

 
𝑡+∆𝑡 = 𝜎𝑖𝑗

 
 
𝑡  (2.47) 

𝜀𝑖𝑗
(0)

 
𝑡+∆𝑡 = 𝜀𝑖𝑗

 
 
𝑡  (2.48) 

The term 𝑡 and ∆𝑡 are the generalized load or/and time state and increment, the counter 𝑘 

denotes the iteration number. If the dynamic analysis is to be performed, the virtual work of 

inertia forces is assumed in the equilibrium equation described above 

ℐ(𝑘) 
𝑡+∆𝑡 = ∫ 𝜌 

𝑡+∆𝑡  𝑢̈ 
𝑡+∆𝑡

𝑖
(𝑘)
 𝛿𝑢𝑖  𝑑𝑉 

𝑡+∆𝑡

 

𝑉 𝑡+∆𝑡

= ∫ 𝜌 
0  𝑢̈ 

𝑡+∆𝑡
𝑖
(𝑘)
 𝛿𝑢𝑖  𝑑𝑉 

0

 

𝑉 0

 (2.49) 
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3 FINITE ELEMENT PROCEDURE 

The previous chapter Continuum Mechanics focused on the brief description of the physical 

basis of the mathematical modeling of structures. This chapter deals with the continuum 

discretization in space, or in time, of the previously depicted formulas in order to obtain the 

finite number of the equilibrium equations, which are to be solved. 

3.1 CONTINUUM DISCRETIZATION 
The objective of this process is to replace the continuum by finite elements (FE) (Fig. 8) and to 

evaluate the equilibrium in the finite number of nodes, depending on the required accuracy, 

thus on the fineness of the mesh. 

  

Fig. 8 Continuum Discretization by Finite Elements (Triangular FE) 

The variation of the linearized general equation of the virtual work for continuum (2.41) 

∫ 𝐂t
  𝛆t

  δ 𝛆t
  dV 
t

 

V t

+ ∫ 𝛔 
t  δ 𝛈t

  dV 
t

 

V t

= 𝓡 
t+∆t − ∫ 𝛔 

t  δ 𝛆t
  dV 
t

 

V t

  

is therefore modified to the form, where the variation is expressed by the summation the virtual 

work variation for the individual elements 

∑ ∫ 𝐂kt
  𝛆kt

  δ 𝛆kt
  dVk 

t

 

Vk 
t

m

k

+∑ ∫ 𝛔k 
t  δ 𝛈kt

  dVk 
t

 

Vk 
t

m

k

= ℛ 
t+∆t −∑ ∫ 𝛔k 

t  δ 𝛆kt
  dVk 

t

 

Vk 
t

m

k

 (3.1) 

Where 𝑘 and 𝑚 are the FE number and the total amount of FE respectively. 

The evaluation of the element contributions, thus the formation of the required matrices and 

vectors, is an important phase of the whole analysis solution. There can be different FE 

formulations identified, specifically the generalized coordinate and isoparametric finite 

elements. The usage of the isoparametric elements is more common and usually more efficient, 
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although it can be sometime of interest to follow the generalized coordinate choice, especially 

in the case of beam elements. 

The following subchapter includes a short introduction of the basic principle of the 

isoparametric elements and presents rewriting of the individual contributions (3.1). 

3.2 ISOPARAMETRIC FINITE ELEMENTS 
“The principal idea of the isoparametric finite element formulation is to achieve the 

relationship between the element displacements at any point and the element nodal point 

displacements directly through the use of interpolation functions (also called shape functions).” 

[1]. 

𝑥𝑖 =∑ℎ𝑙  𝑥̂𝑖
𝑙

𝑛

𝑙

 (3.2) 

𝑢𝑖 =∑ℎ𝑙  𝑢̂𝑖
𝑙

𝑛

𝑙

 (3.3) 

and in the matrix form 

𝐱 = 𝐇 𝐱̂ (3.4) 

𝐮 = 𝐇 𝐮̂ (3.5) 

𝐱̂T = [𝑥1
1    𝑥2

1    𝑥3
1    𝑥1

2    𝑥2
2    𝑥3

2     ⋯    𝑥1
𝑛    𝑥2

𝑛    𝑥3
𝑛] (3.6) 

𝐮̂T = [𝑢1
1    𝑢2

1    𝑢3
1    𝑢1

2    𝑢2
2    𝑢3

2     ⋯    𝑢1
𝑛    𝑢2

𝑛    𝑢3
𝑛] (3.7) 

where 𝑥𝑖 or 𝐱 and 𝑢𝑖 or 𝐮 are the positions and displacements at any node respectively, 𝑥̂𝑖
𝑙 or 𝐱̂ 

and 𝑢̂𝑖
𝑙  or 𝐮̂  are the position and displacement of the element nodes, ℎ𝑙  and 𝐇  are the 

displacement interpolation functions and the displacement interpolation matrix, 𝑙 and 𝑛 are the 

node number and the number of element nodes. 

All the finite element matrices 𝐊L, 𝐊NL, 𝐌, 𝐂, internal forces 𝐅 contributions, surface and body 

load effects 𝐑 are calculated by using these interpolation functions, precisely said using the 

displacement interpolation matrix 𝐇, the linear 𝐁𝐋 and the nonlinear 𝐁𝐍𝐋 strain interpolation 

matrices, which are derived and assembled on the basis of the elements shape functions. 

The isoparametric elements can be formulated as continuum or structural elements. Whereas 

for the continuum elements, the displacements are interpolated in terms of the nodal point 

displacements, for structural elements, the displacements are interpolated in terms of the 

midsurface displacements and rotations. 

The general procedure is described on a 2D isoparametric continuum element, where two 

broadly used of them are shown in the following figure (Fig. 9). The global 𝑥𝑖 and the local 𝑥̅𝑖 

Cartesian systems are depicted, where the local Cartesian system is defined in such a way that 

the local 𝑥̅3 axis coincide with the element normal direction 𝑛.
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Fig. 9 2D Continuum Isoparametric Elements in Global 𝑥𝑖 and Local 𝑥̅𝑖 Cartesian System 

For derivation of the following quantities, the Updated Lagrangian formulation is assumed. 

Further, the planar (local) axial system of the element is used, therefore the transformation 

between the global 𝐮̂ and the local 𝐮̂̅ nodal displacement is introduced by the transformation 

matrix 𝐓 

𝐮̂t
 = 𝐓 𝐮̂̅t

  (3.8) 

𝐮̂̅t
 = 𝐓T 𝐮̂t

  (3.9) 

𝐮̂̅t
 T = [ 𝑢̅1

1
𝑡
     𝑢̅2

1
𝑡
     𝑢̅3

1
𝑡
     𝑢̅1

2
𝑡
     𝑢̅2

2
𝑡
     𝑢̅3

2
𝑡
     ⋯    𝑢̅1

𝑛
𝑡
     𝑢̅2

𝑛
𝑡
     𝑢̅3

𝑛
𝑡
 ] (3.10) 

𝐓t
 = [ 

𝐓l

𝟎
⋮
𝟎

    

𝟎
𝐓l

⋮
𝟎

    

⋮
⋮
⋮
⋮

    

𝟎
𝟎
⋮
𝐓l

 ] (3.11) 

𝐓t
 l = [ 

𝑐𝑜𝑠(𝑥1𝑥̅1)
𝑐𝑜𝑠(𝑥2𝑥̅1)
𝑐𝑜𝑠(𝑥3𝑥̅1)

    

𝑐𝑜𝑠(𝑥1𝑥̅2)
𝑐𝑜𝑠(𝑥2𝑥̅2)
𝑐𝑜𝑠(𝑥3𝑥̅2)

    

𝑐𝑜𝑠(𝑥1𝑥̅3)
𝑐𝑜𝑠(𝑥2𝑥̅3)
𝑐𝑜𝑠(𝑥3𝑥̅3)

 ] (3.12) 

𝟎 = [ 
0
0
0
    
0
0
0
    
0
0
0
 ] (3.13) 

The displacement interpolation matrix is defined by putting together the displacement 

interpolation functions 

𝐇̅ = [ 
ℎ1
0
0
    
0
ℎ1
0
    
0
0
ℎ1

    
ℎ2
0
0
    
0
ℎ2
0
    
0
0
ℎ2

    
⋯
⋯    

ℎ𝑛
0
0
    
0
ℎ𝑛
0
    
0
0
ℎ𝑛

 ] (3.14) 

Furthermore, the Green-Lagrange incremental strain tensor is expressed in the local coordinate 

system by using the formulas depicted in (2.33), (2.34) and (2.35) 

𝐄̅t
 
11 = 𝛆̅t

 
11 + 𝛈̅t

 
11 = 𝑢̅𝑡

 
1,1 +

1

2
(( 𝑢̅𝑡

 
1,1)

2
+ ( 𝑢̅𝑡

 
2,1)

2
+ ( 𝑢̅𝑡

 
3,1)

2
) (3.15) 

𝐄̅t
 
22 = 𝛆̅t

 
22 + 𝛈̅t

 
22 = 𝑢̅𝑡

 
2,2 +

1

2
(( 𝑢̅𝑡

 
1,2)

2
+ ( 𝑢̅𝑡

 
2,2)

2
+ ( 𝑢̅𝑡

 
3,2)

2
) (3.16) 
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𝐄̅t
 
12 = 𝛆̅t

 
12 + 𝛈̅t

 
12 =

1

2
( 𝑢̅𝑡
 
1,2 + 𝑢̅𝑡

 
2,1) +

1

2
( 𝑢̅𝑡
 
1,1 𝑢̅𝑡

 
1,2 + 𝑢̅𝑡

 
2,1 𝑢̅𝑡

 
2,2 + 𝑢̅𝑡

 
3,1 𝑢̅𝑡

 
3,2) (3.17) 

To express the linear part of the Green-Lagrange incremental strain tensor, the linear strain 

interpolation matrix is derived by taking the partial derivatives of the shape functions 

𝐁̅t
 
L = [

ℎ𝑡
 
1,1

0
ℎ𝑡
 
1,2

    

0
ℎ𝑡
 
1,2

ℎ𝑡
 
1,1

    
0
0
0
    
ℎ𝑡
 
2,1

0
ℎ𝑡
 
2,2

    

0
ℎ𝑡
 
2,2

ℎ𝑡
 
2,1

    
0
0
0
    ⋯    

ℎ𝑡
 
𝑛,1

0
ℎ𝑡
 
𝑛,2

    

0
ℎ𝑡
 
𝑛,2

ℎ𝑡
 
𝑛,1

    
0
0
0
    ] (3.18) 

𝛆̅t
 = [ 𝛆̅t

 
11    𝛆̅t

 
22    2 𝛆̅t

 
12] = 𝐁̅t

 
L 𝐮̂̅t
  (3.19) 

where 

ℎ𝑡
 
𝑙,𝑖 =

𝜕ℎ𝑙
𝜕 𝑥 𝑡 𝑖

 (3.20) 

By using the introduced formulas, the first integral of the equation (3.1) can be rewritten in 

terms of the nodal displacement vector 

∫ 𝐂kt
  𝛆kt

  δ 𝛆kt
  dVk 

t

 

Vk 
t

= δ 𝐮̂̅t
 
k
T  ∫ 𝐁̅t

 
Lk
T  𝐂kt

  𝐁̅t
 
Lk dVk 

t

 

Vk 
t

 𝐮̂̅kt
 = δ 𝐮̂t

 
k
T 𝐓t
 
k
T 𝐊̅Lkt
  𝐓t

 
k
  𝐮̂kt
 

= δ 𝐮̂t
 
k
T 𝐊Lkt
  𝐮̂kt

  

(3.21) 

where 𝐊̅Lkt
  and  𝐊Lkt

  are the linear (denoted by the index 𝐿) stiffness matrixes of the element 

𝑘 in time 𝑡 in the local and global Cartesian coordinate system respectively. 

To consider the nonlinear part of the Green-Lagrange incremental strain tensor, the nonlinear 

strain interpolation matrix is derived as follows: 

𝐁̅t
 
NL =

[
 
 
 
 
 
ℎ𝑡
 
1,1

ℎ𝑡
 
1,2

0
0
0
0

    

0
0
ℎ𝑡
 
1,1

ℎ𝑡
 
1,2

0
0

    

0
0
0
0
ℎ𝑡
 
1,1

ℎ𝑡
 
1,2

    

ℎ𝑡
 
2,1

ℎ𝑡
 
2,2

0
0
0
0

    

0
0
ℎ𝑡
 
2,1

ℎ𝑡
 
2,2

0
0

    

0
0
0
0
ℎ𝑡
 
2,1

ℎ𝑡
 
2,2

    ⋯    

ℎ𝑡
 
𝑛,1

ℎ𝑡
 
𝑛,2

0
0
0
0

    

0
0
ℎ𝑡
 
𝑛,1

ℎ𝑡
 
𝑛,2

0
0

    

0
0
0
0
ℎ𝑡
 
𝑛,1

ℎ𝑡
 
𝑛,2]
 
 
 
 
 

 (3.22) 

where 

𝐁̅t
 
NL 𝐮̂̅t

 = [ 𝑢̅𝑡
 
1,1    𝑢̅𝑡

 
1,2    𝑢̅𝑡

 
2,1    𝑢̅𝑡

 
2,2    𝑢̅𝑡

 
3,1    𝑢̅𝑡

 
3,2]

T
 (3.23) 

For the integration of the virtual work caused by the nonlinear strain increment, the Cauchy 

stress matrix has to be modified to the following form: 
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𝛔̅ 
t =

[
 
 
 
 
 
𝜎 
𝑡
11

𝜎 
𝑡
12

0
0
0
0

    

𝜎 
𝑡
12

𝜎 
𝑡
22

0
0
0
0

    

0
0
𝜎 
𝑡
11

𝜎 
𝑡
12

0
0

    

0
0
𝜎 
𝑡
12

𝜎 
𝑡
22

0
0

    

0
0
0
0
𝜎 
𝑡
11

𝜎 
𝑡
12

    

0
0
0
0
𝜎 
𝑡
12

𝜎 
𝑡
22

 

]
 
 
 
 
 

 (3.24) 

By using the introduced formulas, the second integral of the equation (3.1) can be rewritten in 

terms of the nodal displacements vector 

∫ 𝛔k 
t  δ 𝛈kt

  dVk 
t

 

Vk 
t

= δ 𝐮̂̅t
 
k
T ∫ 𝐁̅t

 
NLk
T  𝛔̅ 

t
k 𝐁̅t
 
NLk dVk 

t

 

Vk 
t

 𝐮̂̅kt
 = δ 𝐮̂t

 
k
T 𝐓t
 
k
T 𝐊̅NLkt
  𝐓t

 
k
  𝐮̂kt
 

= δ 𝐮̂t
 
k
T 𝐊NLkt
  𝐮̂kt

  

(3.25) 

where 𝐊̅NLkt
  and 𝐊NLkt

  are the nonlinear (denoted by the index 𝑁𝐿) stiffness matrices of the 

element 𝑘 in time 𝑡 in the local and global Cartesian coordinate system respectively. 

The virtual work integral of the known actual internal stresses, written in the Voight notation 

of Cauchy stress tensor, is expressed as 

𝛔⃗⃗̅  
t = [

𝜎 
𝑡
11

𝜎 
𝑡
22

𝜎 
𝑡
12

] (3.26) 

∫ 𝛔k 
t  δ 𝛆kt

  dVk 
t

 

Vk 
t

= δ 𝐮̂̅t
 
k
T  ∫ 𝐁̅t

 
Lk 𝛔⃗⃗̅  

t
k dVk 
t

 

Vk 
t

= δ 𝐮̂t
 
k
T 𝐓t
 
k
T 𝐅̅ 
t = δ 𝐮̂t

 
k
T 𝐅 
t
k (3.27) 

The surface, body and inertia forces can also be rewritten as 

∫ 𝐟k
V

t
t+Δt  δ 𝐮kt

  dVk 
t

 

Vk 
t

= δ 𝐮̂̅t
 
k
T  ∫ 𝐇̅k 𝐟k̅

V
t

t+Δt  dVk 
t

 

Vk 
t

= δ 𝐮̂t
 
k
T 𝐓t
 
k
T 𝐑̅k

V
t

t+Δt = δ 𝐮̂t
 
k
T 𝐑k

V
t

t+Δt  (3.28) 

∫ 𝐟k
S

t
t+Δt  δ 𝐮kt

  dSk 
t

 

Sk 
t

= δ 𝐮̂̅t
 
k
T  ∫ 𝐇̅k

S 𝐟k̅
S

t
t+Δt  dSk 

t

 

Sk 
t

= δ 𝐮̂t
 
k
T 𝐓t
 
k
T 𝐑̅k

S
t

t+Δt = δ 𝐮̂t
 
k
T 𝐑k

S
t

t+Δt  (3.29) 

∫ ρkt
  𝐮̈k 

t+Δt  δ 𝐮kt
  dVk 

t

 

Vk 
t

= δ 𝐮̂̅t
 
k
T  ∫ ρkt

  𝐇̅k
T 𝐇̅k

  dVk 
t

 

Vk 
t

 𝐮̂̅̈k 
t+Δt

= δ 𝐮̂t
 
k
T 𝐓t
 
k
T 𝐌̅t
 

k 𝐓t
 
k
  𝐮̂̈k 
t+Δt = δ 𝐮̂t

 
k
T 𝐌t
 

k 𝐮̂̈k 
t+Δt = δ 𝐮̂t

 
k
T 𝐌k 𝐮̂̈k 

t+Δt  

(3.30) 

where 𝐅 
t V and 𝐅 

t S are the vectors of nodal contributions for the body and surface forces and 

𝐌t
  is the mass matrix. In the consequence of the mass preservation assumption, the mass matrix 

does not change and holds the identity 𝐌t
 = 𝐌 = 𝐌t0

  and therefore, this matrix does not need 

to be recalculated during the analysis. 
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3.3 DISCRETIZATION OF EQUATION OF VIRTUAL WORK 
Using the equations derived in Chapter 3.2, the formula (3.1) can be rewritten into the following 

form:

∑δ 𝐮̂t
 
k
T 𝐊Lkt
  𝐮̂kt

 

m

k

+∑δ 𝐮̂t
 
k
T 𝐊NLkt
  𝐮̂kt

 

m

k

=∑δ 𝐮̂t
 
k
T ( 𝐑k

V
t

t+Δt + 𝐑k
S

t
t+Δt ) +∑δ 𝐮̂t

 
p
T ( 𝐑p

N
t

t+Δt )

q

p

m

k

 −∑δ 𝐮̂t
 
k
T 𝐅 
t
k

m

k

 

(3.31) 

With the localization procedure, the elements contributions can be assembled into the form of 

global matrices and vectors 

δ 𝐮̂t
 T 𝐊Lt

  𝐮̂t
 + δ 𝐮̂t

 T 𝐊NLt
  𝐮̂t

 = δ 𝐮̂t
 T ( 𝐑t

t+Δt V + 𝐑t
t+Δt S + 𝐑t

t+Δt N)  − δ 𝐮̂t
 T 𝐅 

t  (3.32) 

δ 𝐮̂t
 T 𝐊Lt

  𝐮̂t
 + δ 𝐮̂t

 T 𝐊NLt
  𝐮̂t

 = δ 𝐮̂t
 T 𝐑t

t+Δt  − δ 𝐮̂t
 T 𝐅 

t  (3.33) 

As the consequence that the variation δ 𝐮̂t
 T can be arbitrary, the identity matrix is chosen and 

the equation above takes the form 

( 𝐊Lt
 + 𝐊NLt

 ) 𝐮̂t
 = 𝐑t

t+Δt  − 𝐅 
t  (3.34) 

𝐊t
  𝐮̂t

 = 𝐑t
t+Δt  − 𝐅 

t  (3.35) 

For the case of dynamic analysis, the equation is extended of the inertia and the damping effect 

∑𝐌k 𝐮̂̈k 
t+Δt

m

k

= 𝐌 𝐮̂̈ 
t+Δt  (3.36) 

∑ 𝐂t
 
k 𝐮̂̇k 
t+Δt

m

k

= 𝐂t
  𝐮̂̇ 

t+Δt  (3.37) 

In the following sections of this thesis, the global nodal deformations 𝐮̂t
  will be further written 

without the hat 𝐮t
  as the subsequent chapters consider the case of discretized equations, so the 

distinction between the continuum and discretized deformations is not needed. 

𝐊t
  𝐮t

 = 𝐑t
t+Δt  − 𝐅 

t  (3.38) 

or 

𝐌 𝐮̈ 
t+Δt + 𝐂t

  𝐮̇ 
t+Δt + 𝐊t

  𝐮t
 = 𝐑t

t+Δt  − 𝐅 
t  (3.39) 

There are three basic requirements that has to be satisfied at the end of each load, or time, 

increment 

- Equilibrium 

- Compatibility (compatible mesh layout and satisfaction of the boundary conditions) 

- Stress-strain low 
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3.4 SOLUTION OF NONLINEAR EQUILIBRIUM EQUATIONS IN STATIC ANALYSIS 
To achieve the equilibrium solution in the nonlinear static analysis, the most crucial requirement 

is the zero ‘right-hand side’, thus the zero (in the context of the convergence criteria) 

unbalanced forces vector 

Δ𝐑 = 𝐑t
t+Δt  − 𝐅 

t  (3.40) 

assuming the iterations in each load increment 

Δ𝐑(k−1) = 𝐑 
t+Δt (k−1) − 𝐅(k−1) 

t+Δt  (3.41) 

where 𝑡 and 𝛥𝑡 denote the load level and the increment respectively, 𝑘 is the iteration counter 

and 𝐑 
t+Δt (k−1) is the vector of the applied deformation dependent loads (if no deformation 

dependent load is present, the vector takes the form 𝐑 
t+Δt , which does not change during the 

particular load level). 

 

Fig. 10 Full Newton-Raphson Method and Modified Newton-Raphson Method [1] 

For solution of the nonlinear equations in the static analysis (3.38), there are many iterative 

methods and the most common one is the Newton-Raphson iteration scheme and its 

modifications (Fig. 10). 

𝐊(k−1)t+Δt
  Δ𝐮k = Δ𝐑(k−1) (3.42) 

𝐊τ
  Δ𝐮k = Δ𝐑(k−1) (3.43) 

𝐊0
  Δ𝐮k = Δ𝐑(k−1) (3.44) 

where Δ𝐮k denotes the deformation increment in the iteration 𝑘. The converged deformation 

increment 𝐮t
  of the time step 𝑡 + 𝛥𝑡 and the total deformation of the structure are subsequently 

calculated 

𝐮t
 =∑Δ𝐮i

𝑘

𝑖=1

 (3.45) 
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𝐮 
t+Δt = 𝐮 

t + 𝐮t
 = 𝐮 

t +∑Δ𝐮i
𝑘

𝑖=1

 (3.46) 

Note: Even though the modifications of the Newton-Raphson method are effective in many 

cases, the observations during the development proved the full Newton-Raphson method is 

suitable for tensile structures. The stiffness changes are considerable and it is not efficient to 

keep the fixed stiffness, and it even does not usually lead to the convergence

3.5 SOLUTION OF NONLINEAR EQUILIBRIUM EQUATIONS IN DYNAMIC 

ANALYSIS 
For the solution of the dynamic response of tensile structures, the direct integration methods 

are assumed. The methods are divided into two main groups, namely Implicit Methods and 

Explicit Methods. In the group of the implicit methods, the Newmark method is broadly used, 

further the Houbolt method, Wilson method, Bathe method, etc. can be identified and used. In 

the group of the explicit methods, the Central difference method is well-known and usually 

used. In the following, the implicit Newmark method and the explicit Central difference method 

are described. 

The main difference between these two methods is the time when the solution of the nonlinear 

equilibrium equations is considered. While the implicit methods are assuming the equilibrium 

in time 𝑡 + 𝛥𝑡 to solve the deformation increment in the same time (3.39), the explicit methods 

are assuming the equilibrium in time 𝑡 to solve the deformation increment in  time 𝑡 + 𝛥𝑡. 

𝐌 𝐮̈ 
t+Δt + 𝐂t

  𝐮̇ 
t+Δt + 𝐊t

  𝐮t
 = 𝐑t

t+Δt  − 𝐅 
t     

𝐌 𝐮̈ 
t + 𝐂t

  𝐮̇ 
t + 𝐅 

t = 𝐑t
t   (3.47) 

Both well-known methods, one from each group, are briefly introduced bellow. 

3.5.1 Newmark Method 

This method uses the following formulas for the calculation of velocity and deformation in time 

𝑡 + 𝛥𝑡 [4]. 

𝐮̇ 
t+Δt = 𝐮̇ 

t + [(1 − 𝛿) 𝐮̈ 
t + 𝛿 𝐮̈ 

t+Δt ] Δ𝑡 (3.48) 

𝐮 
t+Δt = 𝐮 

t + 𝐮̇ 
t  Δ𝑡 + [(

1

2
− 𝛼) 𝐮̈ 

t + 𝛼 𝐮̈ 
t+Δt ] Δ𝑡2 (3.49) 

 

Fig. 11 Linear Acceleration (left) and Constant Average Acceleration (Trapezoidal Rule) Methods [1] 
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Different coefficients 𝛿 and 𝛼 could be used. The linear acceleration method (Fig. 11) uses 𝛿 =

1 2⁄  and 𝛼 = 1 6⁄ , the constant average acceleration method (also known as the trapezoidal 

rule) uses the parameters 𝛿 = 1 2⁄  and 𝛼 = 1 4⁄  and the formulas above are rewritten as 

𝐮 
t+Δt = 𝐮 

t +
Δ𝑡

2
( 𝐮̇ 
t + 𝐮̇ 

t+Δt ) (3.50) 

𝐮̇ 
t+Δt = 𝐮̇ 

t +
Δ𝑡

2
( 𝐮̈ 
t + 𝐮̈ 

t+Δt ) =
2

Δ𝑡
( 𝐮 
t+Δt − 𝐮 

t ) − 𝐮̇ 
t  (3.51) 

𝐮̈ 
t+Δt =

4

(Δ𝑡)2
( 𝐮 
t+Δt − 𝐮 

t ) −
4

Δ𝑡
𝐮̇ 
t − 𝐮̈ 

t  (3.52) 

Considering the iterations in every time increment as described in equations (3.45) and (3.46), 

the formulas are rewritten as 

𝐮̇ 
t+Δt (k) =

2

Δ𝑡
( 𝐮 
t+Δt (k−1) + Δ𝐮k − 𝐮 

t ) − 𝐮̇ 
t  (3.53) 

𝐮̈ 
t+Δt (k) =

4

(Δ𝑡)2
( 𝐮 
t+Δt (k−1) + Δ𝐮k − 𝐮 

t ) −
4

Δ𝑡
𝐮̇ 
t − 𝐮̈ 

t  (3.54) 

Using these formulas, the equilibrium equation (3.39) is modified 

𝐊̃ Δ𝐮k = 𝐑 
t+Δt (k−1) − 𝐅 

t+Δt (k−1) −𝐌(
4

(Δ𝑡)2
 ( 𝐮 
t+Δt (k−1) − 𝐮 

t ) −
4

Δ𝑡
 𝐮̇ 
t + 𝐮̈ 

t )

+ 𝐂(k−1)t+Δt
 (

2

Δ𝑡
 ( 𝐮 
t+Δt (k−1) − 𝐮 

t ) − 𝐮̇ 
t ) = Δ𝐑̃(k−1) 

(3.55) 

𝐊̃ Δ𝐮k = Δ𝐑̃(k−1) (3.56) 

As well as in the static analysis, the modified stiffness matrix 𝐊̃ in equations (3.55) and (3.56), 

enriched with the inertia and damping effects, can be solved by using different modifications 

of the Newton-Raphson method, analogically to formulas (3.42), (3.43) and (3.44). Therefore, 

the further formulas are possible ways of the nonlinear Newmark method solution (Full 

Newton-Raphson Method, Modified Newton-Raphson Method, Initial Stress Method) 

(
4

Δ𝑡2
 𝐌 +

2

Δ𝑡
 𝐂(k−1)t+Δt

 + 𝐊(k−1)t+Δt
 )  Δ𝐮k = Δ𝐑̃(k−1) (3.57) 

(
4

Δ𝑡2
 𝐌 +

2

Δ𝑡
 𝐂τ
 + 𝐊τ

 )  Δ𝐮k = Δ𝐑̃(k−1) (3.58) 

(
4

Δ𝑡2
 𝐌 +

2

Δ𝑡
 𝐂0
 + 𝐊0

 )  Δ𝐮k = Δ𝐑̃(k−1) (3.59) 

Note: As in the case of the nonlinear static analysis, the full Newton-Raphson iteration scheme 

is highly recommended when solving the nonlinear implicit dynamic of tensile structures. 

3.5.2 Central Difference Method 

Another possible integration scheme is the central difference method, as a method of the explicit 

integration group. The velocity and the acceleration in time 𝑡 are described 
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𝐮̇ 
t =

1

2Δ𝑡
( 𝐮 
t+Δt − 𝐮 

t−Δt ) (3.60) 

𝐮̈ 
t =

1

(Δ𝑡)2
( 𝐮 
t+Δt − 2 𝐮 

t + 𝐮 
t−Δt ) (3.61) 

Using these formulas, the equation (3.47) takes the following form

(
1

Δ𝑡2
 𝐌 +

1

2Δ𝑡
 𝐂t
 ) 𝐮 

t+Δt = 𝐑 
t − 𝐅 

t +
2

(Δ𝑡)2
𝐌 𝐮 

t − (
1

(Δ𝑡)2
𝐌−

1

2Δ𝑡
𝐂t
 ) 𝐮 

t−Δt

= Δ𝐑̃ 

(3.62) 

This method is effecient when using the diagonal mass 𝐌  and the diagonal damping 𝐂t
  

matrixes, as every new nodal deformation can be solved independently 

𝐮i 
t+Δt = (

1

1
(Δ𝑡)2

 mii +
1
2Δ𝑡 cii

)Δ𝐑̃i (3.63) 

In contrary to the Newmark method, which is unconditionally stable, the central difference 

method is only conditionally stable. The condition to be satisfied is the time step 𝛥𝑡 

𝛥𝑡 ≤ 𝛥𝑡𝑐𝑟 (3.64) 

This integration scheme can be used for both the nonlinear dynamic and also the static analysis, 

known as the Dynamic relaxation, where the mass and the damping factors are the artificial 

values chosen in such a way to obtain good convergence behaviour. 
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4 FORM FINDING 

It was already mentioned in the introduction of this thesis that membrane structures belong to 

the group of structures, whose shapes cannot be chosen freely, as the shape is inherently 

connected to the equilibrium of forces within the given boundary conditions. For a civil 

engineer or an architect designing these structures, the equilibrium of the internal and external 

forces within the frame of the defined boundaries are the shaping parameters as well as the 

degree of freedom. The typical double curvature is the characteristic aesthetic appearance as 

well as the necessity of the structures to be satisfied, in connection with the internal forces, to 

reach the required load bearing capacity. Some of the basic shapes are displayed in the 

following figure (Fig. 12). 

 

Fig. 12 Categorization of Membrane Structure Shapes [V] 

In the past, physical models were used to find the appropriate shapes for membrane, cable, shell 

or combined structures. The hanging models used by Antoni Gaudí, hanging membranes by 

Heinz Isler [5], or the fascination with the shapes of isotropic stress field presented by the soap 

film analogy investigated by Frei Otto [6, 7, 8] were the ways of the shape designing by these 

and other brilliant brains until the advent of computer methods. The rapid development of the 

computer methods for the shape designing, called a form finding analysis, started in the 1970s 

and until now, many methods were proposed. 

4.1 OVERVIEW OF EXISTING FORM FINDING METHODS 
A number of methods have been proposed for the form finding procedure. Some of them 

assumed the process as a general nonlinear finite element analysis with the consideration of 

large deformations and the defined material, calculated by the implicit procedure, as could be 
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observed in the work by J. H. Argyris, T. Angelopoulos and B. Bichat [9], presented for 1D 

elements, or in the work by B. Tabarrok and Z. Qin [10], assumed for 1D and 2D elements. 

Another possible way, the Dynamic Relaxation (DR), was introduced by M. R. Barnes [11, 12], 

where the explicit solution procedure is used and the equilibrium is reached by using the 

artificial inertia and damping (the kinetic damping is particularly recommended). 

The most extensive group of the methods for form finding is considered as a materially 

independent process, where the equilibrium of the predefined (or specially defined) forces, 

loads and boundaries is only assumed. The well-known Force Density Method (FDM) proposed 

by K. Linkwitz and H. J. Schek [13, 14] for 1D elements was the first of that group. This method 

was derived from the equilibrium equations of the nodes connected by cable elements, and the 

relation between the lengths and the forces of the cables was introduced and named as a force 

density. By this way, the method is distinguished by its linearity and the solving process is 

rapid. Assuming the updating the force density within iterations, the method can be extended 

to a nonlinear form. This method has inspired many other authors, who extended the idea of it, 

namely J. Sánchez, M. Á. Serna and P. Morer proposed the Preliminary Form-Finding and 

Surface-Fitting Method (PFSM) and the Multi-Step Force Density Method and Surface-Fitting 

Approach (MFDS) [15], R. M. O. Pauletti and P. M. Pimenta proposed the Natural Force 

Density Method (NFDM) [16], and B. Maurin and R. Motro proposed the Surface Stress 

Density Method (SSDM) [17]. A very general approach was derived by the authors R. B. Haber 

and J. F. Abel, who proposed the Assumed Geometric Stiffness Method (AGSM) and its 

nonlinear form Iterative Smoothing Method (ISM) [18, 19], which are consistently derived from 

the continuum mechanics basis (2.38), and these are really natural in the sense of the FEM 

software implementation. It can be proven that the Force Density Method (FDM) as well as the 

later contributions derived from this method are a special case of this generalized method 

(AGSM or ISM). The work of the authors R. B. Haber and J. F. Abel was also an inspiration for 

the contribution of T. Nouri-Baranger, who proposed the Stress Ratio Method (SRM) [20] and 

stated that this method is a special case of AGSM. Also the authors K. U. Bletzinger and 

E. Ramm [21] followed the consistent derivation of the form finding method from the 

continuum mechanics basis and proposed the Updated Reference Strategy (URS) method, 

which can be understood as a possible extension of (AGSM) by the homotopy mapping for 

working with the known and searched configurations. When only assuming the reference 

configuration, the URS identifies itself with the (AGSM resp. ISM). The author team around 

K. U. Bletzinger has published further investigations in [22, 23, 24, 25]. 

A very interesting and valuable contribution, dealing with summarizing, categorization and 

even comparing the existing methods for networks, was written by the authors D. Veenendaal 

and P. Block [26]. Here, three essential groups of the form finding methods are identified and 

consequently named as the Stiffness Matrix Method (SM), Geometric Stiffness Methods (GSM), 

and Dynamic Equilibrium Methods (DM). The categorization can be seen in the following 

figure (Fig. 13), overtaken from the mentioned work. In a generalized way, all the methods can 

be understood as different, or even special, solving procedures of the general continuum 

equilibrium equation. 
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Fig. 13 ‘Development and categorization of form finding methods with key references Arrows denote 

descendence, dotted lines denote independent but related methods and triangles a first formulation using surface 

elements.’ according to D. Veenendaal and P. Block [26]. 

In the following, three of the above-mentioned methods from the group of GSM, namely the 

FDM, AGSM with ISM and URS, will be described briefly. 

4.1.1 Force Density Method (FDM) 

The force density method, proposed by K. Linkwitz and H. J. Schek [13, 14] and published in 

1971 or 1974, is derived from the equilibrium equations of the forces in net nodes, as can be 

seen in the figure (Fig. 14), overtaken from the contribution by the author team of L. Grüendig, 

E. Moncrieff., P. Singer and D. Ströbel [27]. 

 

Fig. 14 Cable Structure (left) and Extracted Part of Cable Network (right), Modified Illustration from [27] 

If a part of the net is extracted from the general network (Fig. 14), the equilibrium equations in 

the node 𝑘 = 1 can be written as 

∑𝑁𝑗  𝑐𝑜𝑠(𝑙𝑗𝑥𝑖)

𝑚

𝑗

= 𝑅𝑖
𝑘 (4.1) 

𝑁1 𝑐𝑜𝑠(𝑙1𝑥𝑖) + 𝑁
2 𝑐𝑜𝑠(𝑙2𝑥𝑖) + 𝑁

3 𝑐𝑜𝑠(𝑙3𝑥𝑖) + 𝑁
4 𝑐𝑜𝑠(𝑙4𝑥𝑖) = 𝑅𝑖

1 (4.2) 

where 𝑗, 𝑚, 𝑘 and 𝑖 are the number of the particular element and the total elements amount, the 

node number and the Cartesian axis direction respectively, 𝑁𝑗 and 𝑙𝑗 are the normal force and 

the length of the element 𝑗, 𝑅𝑖
𝑘 is the external force acting on the node 𝑘 in the 𝑖𝑡ℎ direction 𝑥𝑖 
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of the global Cartesian system, the term 𝑐𝑜𝑠(𝑙𝑗𝑥𝑖) is cosine of the angle between the cable 𝑗 

and the global axis 𝑥𝑖. 

The equations can be rewritten into the following form: 

𝑁1

𝑙1
(𝑥𝑖

2 − 𝑥𝑖
1) +

𝑁2

𝑙2
(𝑥𝑖

3 − 𝑥𝑖
1) +

𝑁3

𝑙3
(𝑥𝑖

4 − 𝑥𝑖
1) +

𝑁4

𝑙4
(𝑥𝑖

5 − 𝑥𝑖
1) = 𝑅𝑖

1 (4.3) 

Since the lengths of the individual cables are dependent on the unknown nodal positions, the 

equilibrium equation is still nonlinear. Therefore, the authors of this method K. Linkwitz and 

H. J. Schek [13, 14] proposed a consequent linearization. The ratio of the internal force 𝑁𝑗 in 

the cable and its length 𝑙𝑗 is replaced by the quantity 𝑞𝑗, named force density, which also gave 

the name to this method. 

𝑁𝑗

𝑙𝑗
= 𝑞𝑗 (4.4) 

Assuming this replacement for all the cables, the linearized form of the equilibrium can be 

rewritten and the unknown nodal position 𝑥𝑖
1 can be calculated 

𝑞1(𝑥𝑖
2 − 𝑥𝑖

1) + 𝑞2(𝑥𝑖
3 − 𝑥𝑖

1) + 𝑞3(𝑥𝑖
4 − 𝑥𝑖

1) + 𝑞4(𝑥𝑖
5 − 𝑥𝑖

1) = 𝑅𝑖
1 (4.5) 

The nodal equilibrium described above can be written in the general matrix form as described 

in [14] (by using a slightly different indexation). The general network (Fig. 14) consists of 𝑚 

cables (branches) and 𝑛  nodes. The topology of the construction can be described by the 

branch-node matrix 𝐂 [28, 29], which describes the connectivity of the individual nodes and 

cables. Each cable (branch) 𝑗 defines two records 𝑐𝑗𝑘 on the line 𝑗 of the matrix 𝐂. The records 

for the start and end nodes take on the values +1 or −1 in the appropriate columns 𝑘, other 

positions of that row 𝑗 are equal to zero. 

𝑐𝑗𝑘 = {
+1
−1
0
    
𝑘 ∈ 𝑗𝑠𝑡𝑎𝑟𝑡
𝑘 ∈ 𝑗𝑒𝑛𝑑  

∅

 (4.6) 

Further, the vector of the nodal positions in the specific Cartesian axis direction is denoted 𝐱i, 

the diagonal matrix 𝐐 contains the force densities and the vector 𝐑i  is assembled from the 

external force contributions in the particular directions. 

In the contribution of H. J. Schek [14], the division of the branch-node matrix 𝐂 and the position 

vector 𝐱i are assumed to separate the free (movable) 𝐱̃i and the fixed 𝐱̅i nodal positions as well 

as the 𝐂̃ and 𝐂 representing the columns assigned to the free and fixed nodes. The equilibrium 

equation can be written and further modified as follows: 

𝐂̃T 𝐐 𝐂̃ 𝐱̃i + 𝐂̃
T 𝐐 𝐂 𝐱̅i = 𝐑̃i (4.7) 

𝐃̃ 𝐱̃i + 𝐃̅ 𝐱̅i = 𝐑̃i (4.8) 

𝐃̃ 𝐱̃i = 𝐑̃i − 𝐃̅ 𝐱̅i (4.9) 
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𝐱̃i = 𝐃̃
−1(𝐑̃i − 𝐃̅ 𝐱̅i) (4.10) 

Formula (4.10) represents the linear equilibrium equation for solving new nodal positions of 

the general network. Since the assumption of the force density was prescribed, the resulting 

forces in the particular cables 𝑗 of such obtained configuration are calculated as 

𝑁𝑗 = 𝑙𝑗 𝑞𝑗 (4.11) 

A very interesting behaviour of this method is, that the resulting shape is completely 

independent of the initial approximation of the shape, as the shape is purely defined by the 

predefined force densities 𝐐 , topology description 𝐂 , external loads 𝐑i  and the specified 

boundary conditions. 

By modifying the force densities after the solving procedure, the nonlinear form of Equation 

(4.10) can be obtained since the force density matrix 𝐐(𝐱) becomes nonlinear. Such an iterative 

form of the force density method (FDM) provides the possibility to influence the resulting 

forces, thus also the equilibrium shape, in order to avoid under-tensioned or over-tensioned 

areas. The force densities can be modified after the individual iterations according to the user-

defined force requirements, as this physical quantity is easier to predefine for a civil engineer 

or an architect than the force density itself. 

As this subchapter is focused on a brief introduction of the FDM method principles, the 

individual steps in deriving the equations are not presented. The insight into the formulation 

and derivation of the formulas mentioned above are described in the contributions by 

K. Linkwitz and H. J. Schek [13, 14]. 

4.1.2 Assumed Geometric Stiffness Method (AGSM) and Iterative Smoothing Method 

(ISM) 

The assumed geometric stiffness method (AGSM), as well as its nonlinear version iterative 

smoothing method (ISM), was proposed by the authors R. B. Haber and J. F. Abel in 1982 [18, 

19]. In the first of these contributions, the authors stated that ‘the force density method provides 

and efficient linear solution to the initial equilibrium problem for cable structures composed of 

bar elements’, and also ‘this approach cannot be extended to cover curved cable elements or 

membrane behavior. A new method, based on assumed geometric stiffness matrices, will be 

developed in this section. The new method contains the force density method as a special case, 

and can be applied to any finite element structural model’, as an evaluation of the previous 

method restrictions. 

This method is consistently derived from the general equation of the virtual work (2.30) or 

(2.38), rewritten in the matrix notation 

∫ 𝐒t
  δ 𝛆t

  dV 
t

 

V t

+ ∫ 𝐒t
  δ 𝛈t

  dV 
t

 

V t

+ ∫ 𝛔 
t  δ 𝛆t

  dV 
t

 

V t

+ ∫ 𝛔 
t  δ 𝛈t

  dV 
t

 

V t

= 𝓡 
t+∆t  (4.12) 

Considering the essential physical statement that the shape is defined by the equilibrium of 

forces and is therefore completely independent of the material, the first and the second term of 

Equation (2.38) can be cancelled, as they represent the internal forces increment, which is zero 
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when using the zero constitutive matrix 𝐂t
 . Furthermore, when assuming the given tensor of 

the Cauchy stress 𝛔 
t , the third term is known and will be moved to the right hand side 

∫ 𝛔 
t  δ 𝛈t

  dV 
t

 

V t

= 𝓡 
t+∆t − ∫ 𝛔 

t  δ 𝛆t
  dV 
t

 

V t

 (4.13) 

Even though this equation can be solved by the standard way described in Chapter Finite 

Element Procedure, the authors proposed the following procedure. The virtual work 

equilibrium is associated with the deformed configuration, which is obtained by collapsing all 

the nodes of the structure to the global origin of the Cartesian system. This deformation can be 

expressed by setting the vector of the displacements 𝐮 equal to the negative vector of the nodal 

positions −𝐱. 

As a consequence, the discretized equation does not have the usual meaning of the Updated 

Lagrangian procedure, where the vector of the nodal deformations Δ𝐮k is obtained in each 

iteration, which defines the relation between the current and the new configuration. Instead, the 

vector of the nodal positions 𝐱k is obtained. 

𝐊NL
(k−1)

t+Δt
  𝐱k = −Δ𝐑(k−1) (4.14) 

If a designer would specify directly the required geometric stiffness, the procedure of AGSM 

would be linear as well as the FDM, when the force density is predefined. However, this 

quantity is not natural to define from the user’s point of view, so the stiffness matrix is derived 

from the required stress and thus the geometric stiffness matrix become a nonlinear function, 

therefore the method become nonlinear as well. In the contribution of the authors R. B. Haber 

and J. F. Abel [18], this procedure is named Iterative Smoothing Method (ISM). 

A similar separation of the equations as performed in FDM is proposed here, where the free 

nodal positions are indexed with the letter 𝐴 and fixed with the letter 𝐵. The same applies to 

the residual forces. The stiffness matrix is also separated, where the submatrix 𝐊AA belongs to 

the free nodes, 𝐊BB belongs to the fixed nodes, and 𝐊AB and 𝐊BA represent the coupling of 

them. By performing the condensation procedure of the fixed node positions 𝐱B, which are 

known, the following equation can be further rewritten 

[ 
𝐊AA 𝐊AB
𝐊BA 𝐊BB

 ]
t+Δt

 

NL

(k−1)

{
𝐱A
𝐱B
}
k

= −{
Δ𝐑A
Δ𝐑B

}
(k−1)

 (4.15) 

[𝐊AA]t+Δt
 

NL
(k−1)

 {𝐱A}
k = −{Δ𝐑A}

(k−1) − [𝐊AB]t+Δt
 

NL
(k−1)

 {𝐱B}
k (4.16) 

{𝐱A}
k = ( [𝐊AA]t+Δt

 
NL
(k−1)

)
−1

(−{Δ𝐑A}
(k−1) − [𝐊AB]t+Δt

 
NL
(k−1)

 {𝐱B}
k) (4.17) 

It is possible to observe the similarity in the expressions (4.10) and (4.17). However, the method 

is general as Equation (4.17) is derived from the basis of the FEM analyses. 

As already mentioned previously, the equation can be solved by the standard procedure of the 

Updated Lagrangian formulation without changing the physical meaning. 
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4.1.3 Updated Reference Strategy (URS) 

The updated reference strategy (URS) was proposed by the authors K. U. Bletzinger and 

E. Ramm [21], followed by the further contributions of the author team around K. U. Bletzinger 

[22, 23, 24, 25]. As well as the previous method, the URS was also consistently derived from 

the continuum mechanics basis (2.38). 

As already stated, the shape of the tensile structures is given by the equilibrium of forces in the 

space. Assuming that the stress field in the final configuration is known, the equation of the 

virtual work is written with respect to the unknown final position as follows: 

∫ 𝛔 
t+∆t  δ 𝐞t+∆t

  dV 
t+∆t

 

V t+∆t

= 𝓡 
t+∆t  (4.18) 

Thus, the shape would only be unknown, not the internal stress state. However, this equation 

cannot be solved directly, since the singularity appears in the tangential direction of the 

unknown surface, as the floating of nodes in this tangential direction does not affect the spatial 

shape and thus even the equilibrium prescribed by this equation. This fact was presented in 

many contributions of the author team mentioned above and is demonstrated by the following 

figure (Fig. 15), overtaken from the contribution [22]. 

 

Fig. 15 Floating Mesh [22] 

Equation (4.18) in context of the known reference configuration can be rewritten to obtain the 

consequent relation 

∫ 𝐒t
t+∆t  δ 𝐄t

  dV 
t

 

V t

= 𝓡 
t+∆t  (4.19) 

Since the physical meaning of the equation does not change, as the second Piola-Kirchhoff 

stress tensor is obtained by the pull-back operation, even the singularity will not disappear. 
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𝐒t
t+∆t = det( 𝐅t

t+∆t ) 𝐅−1t
t+∆t  𝛔 

t+∆t  𝐅−Tt
t+∆t  (4.20) 

∫det( 𝐅t
t+∆t ) 𝐅−1t

t+∆t  𝛔 
t+∆t  𝐅−Tt

t+∆t  δ 𝐄t
  dV 

t

 

V t

= 𝓡 
t+∆t  (4.21) 

Therefore, the regularization is proposed to solve this problem, which is based on the addition 

of the stabilization term, that is formulated as an integral with the known second Piola-

Kirchhoff stress tensor 𝐒t
t  on the reference configuration. Thus, by using the Cauchy stress 

𝛔 = 𝐒t
t   

t , since the second Piola-Kirchhoff stress in time 𝑡 is related to the configuration in the 

same time 𝑡. The weighting factor 𝜆 is used to relate these two definitions of the internal work 

𝜆 ∫det( 𝐅t
t+∆t ) 𝐅−1t

t+∆t  𝛔 
t+∆t  𝐅−Tt

t+∆t  δ 𝐄t
  dV 

t

 

V t

+ (1 − 𝜆) ∫ 𝛔 
t  δ 𝐄t

  dV 
t

 

V t

= 𝓡 
t+∆t  (4.22) 

The factor 𝜆 forms a relationship between the prescription of the user-required stress (Cauchy 

stress) in the known and unknown configurations. If the homotopy factor 𝜆 > 0, Equation 

(4.22) is nonlinear and requires the internal iterative loops in each iteration of the FEA. 

If the homotopy factor 𝜆 = 0 , the method is linear in each FEA iteration and principally 

coincides with the AGSM method described above, even though it differs in the solution 

procedure itself. 

∫ 𝛔 
t  δ 𝐄t

  dV 
t

 

V t

= 𝓡 
t+∆t  (4.23) 

∫ 𝛔 
t  δ 𝛈t

  dV 
t

 

V t

= 𝓡 
t+∆t − ∫ 𝛔 

t  δ 𝛆t
  dV 
t

 

V t

 (4.24) 

As the prescription of the user-required prestress 𝛔  causes the deformations towards the 

equilibrium position, the Cauchy stress prescribed in the known configuration by such a defined 

value 𝛔 = 𝛔 
t  in time 𝑡 can be expressed as the second Piola-Kirchhoff stress tensor 𝐒t+∆t

t  in the 

newly calculated configuration. These vectors differ numerically in their magnitudes 

𝛔 ≠ 𝐒t+∆t
t

 
t  until the equilibrium is reached. As soon as the structure reaches the equilibrium 

position, the deformation gradient identifies itself with the identity matrix and the relation of 

the vectors remains 𝐒t+∆t
t = 𝛔 = 𝛔 

t . Thus, the shape for the predefined stress distribution 𝛔 is 

finally obtained.

4.1.4 Hybrid Methods 

Three methods of the GSM group were described and the procedures of SM and DM could also 

be described. However, it is not necessary to only restrict the form finding for one method, as 

the obvious overlapping could be seen when the methods of the different groups are consistently 

derived from the general equation of the virtual work. As the physical basis is the same, 

specifically reaching the equilibrium shape, the appropriate hybrid method can be developed. 

Such a statement can be found in the contribution by D. Veenendaal and P. Block [26], which 

states: ‘By examining the relation between methods and how they solve the initial equilibrium 
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problem, it may occur to the reader where new possibilities lie for future development of new 

approaches. The framework allows hybrid solutions combining strengths of existing methods.’ 

4.2 SEARCHING FOR EQUILIBRIUM PRESTRESS 
In the text above, form finding was considered as searching for a shape when the equilibrium 

prestress is explicitly known and thus given. However, this is generally not a true, except the 

isotropic prestress. The constant orthotropic prestress cannot exist in the surface with double 

curvature, so the general anisotropic stress field has to be reached if the isotropic prestress does 

not satisfy the engineering or architectural requirements for the given tensile structure. Such 

a user entry is not realistic and therefore, the constant values in the orthogonal directions, called 

warp and weft, are the usual software entries. 

The authors J. Linhard, K. U. Bletzinger [22] stated that ‘…it is not possible to generate 

a doubly curved surface with constant anisotropic prestress distribution, but if the prestress is 

allowed to vary around its mean value, many interesting and physically stable shapes can be 

generated’, and also the authors R. B. Haber and J. F. Abel [18] presented a really general 

statement: ‘The problem of finding a reference configuration that satisfies the laws of 

equilibrium has been termed form finding or shape finding by some. This nomenclature does 

not adequately describe methods in which variables besides the shape are adjusted to satisfy 

equilibrium. For this reason, the selection of an appropriate reference configuration will be 

referred to here as the initial equilibrium problem’. Indeed, the initial equilibrium problem 

solving is much more suitable description of this process, and besides the shape, the calculation 

also comprises finding of the equilibrium of forces itself. 

If the constant anisotropic stress field would be prescribed and enforced during consequent 

iterations, all the methods would diverge, which is represented by sliding the nodes to some 

regions and thus by collapsing of the mesh. In fact, it does not matter which specific method of 

the groups described above [recall: Stiffness Matrix Method (SM), Geometric Stiffness Methods 

(GSM), and Dynamic Equilibrium Methods (DM)] is used if the prescribed values are strictly 

required. 

There are many possible ways for stabilization techniques [22, 26, 31, 38], which are briefly 

described below. 

4.2.1 Specifying Number of Form Finding Steps 

A natural solution is to allow the user to influence the number of form finding steps. Although 

this is the simplest way, it is very powerful stabilization technique, which allows a user to trace 

the shaping process. However, this method is more a safety break than an advanced tool, and it 

is more comfortable for a civil engineer or an architect to avoid this, if possible. 

4.2.2 Elastic Control 

This way is an essential part of the stiffness methods (SM) [9, 10], and usable in the dynamic 

equilibrium methods (DM) as well [12]. If the constitutive relation is left within the form finding 

loops, it can be used in two different ways. Let's call them natural and controlling. 
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The first one, the natural way, assumes that the constitutive law has a direct impact on the 

resulting stress field, that is, the element elongation and shortening cause increasing and 

decreasing of the resulting stress in comparison with the prescribed stress. This constitutive law 

is artificial and usually very small, and turns the form finding process into the standard FEA. 

However, with increasing the stiffness, the resulting shape is increasingly dependent on the 

initial model position and some regions could be understressed or overstressed. This is 

a drawback of this stabilization technique. 

The second method, called a controlling way here, uses the constitutive law as a brake of the 

unwanted diverging of the model described above. The material stiffness does not influence the 

prestress during the form finding steps here, nevertheless the incorporation of this term slows 

down the in-plane sliding of FE nodes. It also decreases the speed of the whole form finding 

process, but still the method has a considerable influence on keeping a good mesh quality for 

a long time. Though the method helps to avoid fast sliding of the in-plane mesh nodes, it does 

not lead to the equilibrium prestress in fact, since the prestress is not influenced here, and 

without changing the forces, this method would also lead to the unwanted mesh distortions 

though it is slower than without this elastic control. Therefore, if the deformations in the normal 

direction become minor in comparison to the tangential direction, the shaping process should 

be replaced by the equilibrium finding process, which closely approximates the required 

unrealizable prestress values by the equilibrium values. This can be done by taking into account 

the force changes caused by the artificial material. 

The elastic control method is a powerful tool for the form finding process. The first way is 

easier to implement, but it leads to worse results in general. The second way is sensitive in 

terms of the algorithm tuning for appropriate switching, but leads to better results in general. 

4.2.3 Element Size Control 

Another possibility for stabilization, when non-equilibrium prestress is prescribed, can be the 

element size control, as proposed for example in the following contributions [22, 25, 26, 38]. 

This method can be used in the way, that the predefined forces stops to be enforced when 

a particular element reaches the limit deformation. The last reached stress in the actual 

configuration for the geometric stiffness methods (GSM) (the Cauchy stress calculated from the 

second Piola-Kirchhoff stress defined in the last reference configuration before the limit 

deformation was reached) can be used for further iterations, or the forces caused by the artificial 

material can be encountered for the stiffness matrix methods (SM) or the dynamic equilibrium 

methods (DM) when the limit deformation is reached, for example. 

This method is also a strong way of avoiding the divergence in the form finding analysis, even 

so a disadvantage can be seen in the fact, that the nonphysical prestress starts to be influenced 

up to the moment when the limit distortion is reached. Up to this point, the tangential 

movement, or sliding of nodes, is not influenced.

4.2.4 Other Methods 

There could be found other proposals for solving the problems described above. For example, 

inserting control strings [26], or inserting an artificial damping when the dynamic equilibrium 
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method (DM) is used [31], or by incorporation of the constrained problems [14, 32, 33, 34, 35, 

36]. 

4.2.5 Projection Method 

A possible way for searching the equilibrium can be seen in defining the general anisotropic 

prestress by a realizable manner, specifically by defining the equilibrium in the configuration, 

where it is possible to do it analytically and use this for the projection into the spatial 

configuration. This is a really general method, which leads to the definition of the spatial 

equilibrium indirectly, but uniquely and without using the safety brakes. 

Even though this was not the only stabilization technique implemented in the form finding 

algorithms of the above-mentioned FEA solver during the development work (there were three 

stabilization methods used as described later), the detailed investigation and development 

works were performed to formulate and implement this tool. Therefore, the next chapter will 

be focused on the description of this particular stabilization method, before introducing the 

chapter of the whole form finding implementation description. 

4.3 PROJECTION METHOD 
A proposal of this special stabilization technique, which defines the spatial equilibrium in the 

implicit manner, is based on determining the equilibrium in an arbitrarily oriented plane. Thus, 

the analytically defined planar equilibrium is further projected into finite elements in their 

spatial configuration. Therefore, the integral of the particular FE force components parallel to 

such a plane has to be equal to the integral of forces in the fictitious FE, which is obtained by 

the projection of the real element into the defined projection plane with the analytically 

prescribed equilibrium prestress 

∫ 𝛔|| 
t  dV 

t

 

V t

= ∫ 𝐒p
t  dP 

t

 

P t

 (4.25) 

where P 
t  is the surface obtained by the projection of the structure into the specified plane in 

time 𝑡 and 𝐒p
t  is the analytically predefined second Piola-Kirchhoff stress of the assumed FE in 

such an artificial reference configuration. The overall predefined stress field 𝐒p
  does not change 

during the form finding analysis, so it represents an equilibrium stress in an infinite projection 

plane in fact, but the position of the assumed FE projection to such a plane changes its position 

and since this field 𝐒p
  could be generally anisotropic, the used FE prestress 𝐒p

t  depends on its 

actual projected position into P 
t . 𝛔|| 

t represents stress components of the given FE in its actual 

position, which are parallel to the defined projection plane P 
t . From knowing the stress 𝛔|| 

t , the 

actual membrane stress 𝛔 
t  for each FE can be derived directly (Fig. 16).

The process could also be described by using an artificial deformation gradient 𝐅p
t . This tensor 

describes a virtual deformation, which would be performed to move the fictitious FE, obtained 

by the projection of the real FE into the projection plane, back to the real FE position in the 

particular iteration. As this tensor 𝐅p
t   is known for the actual configuration of the current 

iteration, as well as the prestress 𝐒p
t  in such a reference configuration is known, the real 
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prestress 𝛔 
t  in the actual FE configuration can be obtained by the stress transformation formula 

(2.19) 

𝛔 
t =

ρ 
t

ρ p
 𝐅p
t  𝐒p

t  𝐅Tp
t =

1

det( 𝐅p
t ) 

 𝐅p
t  𝐒p

t  𝐅Tp
t  (4.26) 

Using this implicit manner of the spatial equilibrium prestress definition, the input values for 

the general formulas are defined 

∫ 𝛔 
t  δ 𝛈t

  dV 
t

 

V t

= 𝓡 
t+∆t − ∫ 𝛔 

t  δ 𝛆t
  dV 
t

 

V t

 (4.27) 

This leads to the unique solution, which is independent of the initial shape configuration. This 

is a great advantage of this projection method stabilization technique, as such a behaviour is 

usually considered as valid for the isotropic prestress only, because if the unrealizable prestress 

is prescribed (for example, constant orthotropic pretension in the space), the resulting prestress 

values are affected by the used stabilization techniques and does not have its unique solution. 

The isotropic (Fig. 37), the constant orthotropic, or even the general anisotropic radial prestress 

in equilibrium (Fig. 45) can be formulated analytically for the arbitrarily oriented projection 

plane. This method is especially suitable for the conical shapes, where it leads to smoothly 

changing prestress between the base and the top of the cone, as presented in the example 4.6.4 

Projection Method. 

 

Fig. 16 Prestress Defined in Projection Plane and Prestress in Membrane Structure 

4.4 PUSHING METHOD FOR COMPRESSION REQUIREMENTS IN FORM FINDING 

PROCESS 
During the research and the development works of the form finding process of membrane 

structures, including shaping the cables and gas chambers as well, the shape optimization of the 

conventional structures was also additionally investigated. Since for both the arches and the 

shells, the load bearing capacity is increased when the in-plane resistance is preferred form the 

bending resistance.
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A physically new phenomenon has to be dealt with here, as in the contrast to the tensile 

definitions, which could be considered as a stable equilibrium state finding, the unstable 

equilibrium searching is the case when the compression requirements are prescribed. Since the 

tensile forces try to reach the stable equilibrium from the arbitrary unequilibrium position, as 

illustrated in the left part of the figure below, the compression forces try to diverge far away 

from the given unequilibrium position, as illustrated by the right part of the figure below (Fig. 

17). 

In this case, the stabilization procedure has to be used to ensure reaching the required 

equilibrium. Already from the ancient times, the mirroring of the shapes under tension was used 

to obtain the shapes under compression. Thus, the procedure of replacing the negative forces 

by tensile forces and inverting the load could be the way for the structures loaded exclusively 

by the compressive normal forces, since it is the analogical process to the mirrored physical 

models used in the past. 

 

Fig. 17 Stable and Unstable Equilibrium Position 

Such a simple procedure has one considerable disadvantage, specifically the cases when the 

mixed requirements are used, where the tension is defined for membranes and the compression 

for supporting arches, for example. Inverting the whole task would change the compression 

requirement for the arches into tension, however, the tension in membranes would be inverted 

into compression. So, the same problem stays here. 

Therefore, the proposed stabilization, called here as a pushing method, tries to push up the 

structure to the maximum energy position, which is represented by the top position in the right 

part of the figure above (Fig. 17). The process consists physically of two artificial modifications 

during assembling the equilibrium equations, described in 3.3 Discretization of Equation of 

Virtual Work and 3.4 Solution of Nonlinear Equilibrium Equations in Static Analysis. The first 

modification inserts an artificial geometric stiffness into the elements with the compression 

requirement, for which the zero bending stiffness is assumed in this proposal during the form 

finding process itself. The geometrical stiffness derived from the absolute value of the internal 

normal force was considered in the algorithms used. The second, more sensitive and important 

modification, deals with inverting the unbalanced forces in the appropriate FE nodes, where the 

unstable equilibrium is expected [106]. 

Δ𝐑 = 𝐑t
t+Δt  − 𝐅 

t  (4.28) 

Δ𝐑i = { 
Δ𝐑i = −Δ𝐑i   i ∈ U
Δ𝐑i                   i ∈ S

 (4.29) 
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where 𝑖  is the number of particular FE node, 𝑈  and 𝑆  are the groups of nodes, where the 

unstable and stable equilibrium is expected. 

It is crucial to do this inversion as postprocessing after the standard assemblage process of the 

unbalanced forces is ready, since it is necessary to preserve the magnitude, but change the 

direction. Finally, the decision of the group membership for the individual nodes is quite 

a sensitive task. In this proposal, it is suggested that this is performed according to the hierarchy 

algorithm. This algorithm is assigning the nodes into groups according to the assumed role of 

the structural part in the structure and its form finding requirement. For example, the algorithm 

assumes that a beam is the supporting object for shells or membranes, so if all mentioned 

structural objects meet in one FE node, the assignment is done according to the beam object 

form finding requirement. Further, the geometrical requirements are superior to the force 

requirements, etc. 

During the development, more different methods were proposed and investigated. For example, 

the methods dealing with the actual force or the energy changes were less reliable, since they 

were quite sensitive on the shape changes of the other structural parts. Since the initial model 

position in the form finding analysis could be really far from the equilibrium one, these 

algorithms had quite a problem to find the 'right way'. 

The examples presenting the results reached by using the proposed pushing method stabilization 

technique are presented below 4.6.6 and 4.6.7, where the second example exhibits one more 

interesting phenomenon, namely a possible existence of nonunique equilibrium positions, when 

the mixed requirement is prescribed. 

4.5 IMPLEMENTED FORM FINDING METHODS 
Note: Based on the research work during the doctoral study, focused on the investigation of 

numerical methods, the form finding process and the algorithmization procedures of the 

consequent development was performed in the FEA core by the FEM consulting company [IV], 

which is used in the RFEM software by the Dlubal Software company[III].

Two form finding methods were implemented in the mentioned solver, the first one used as 

a default procedure, considering all the structural parts, the second one used as a preliminary 

form finding, considering only the structural parts with the definition of the required forces. 

4.5.1 Preliminary Form Finding 

To implement the preliminary form finding, the GSM group was chosen, specifically the AGSM 

with ISM. As the subchapter name declares, this method was intended for a fast shaping of the 

structural parts with the form finding force requirements. Other structural parts are ignored and 

this allows to minimize the number of equations for a rapid shaping procedure. 

This tool can be used separately in the RFEM software environment for the topology shaping 

and thus the visualization of the shape when changing the forces or boundary condition. Also, 

the preliminary method can be used in the interaction with the default form finding, which is 

general and takes into account the entire structure defined. 



EXAMPLES 

 

39 

 

For stabilizing the non-equilibrium prestress definition, the preliminary form finding uses three 

possible stabilizations: first, the simple influencing of step numbers by a user, further the 

calculation interruption based on the deformation monitoring algorithm, and also a possible 

usage of the projection method. 

4.5.2 Default Form Finding 

The default form finding can be classified as a hybrid method, which balances between the GSM 

and SM groups according the user setting of the speed of convergence in the Calculation 

Parameters/Form-Finding dialog box of the RFEM software. 

The development was inspired by the above-described methods URS without the internal loops 

(4.24) and AGSM with ISM solved by the Newton-Raphson algorithms instead of the above-

written (4.17) procedure (that both physically overlaps in this specification are materially 

independent and consistently derived from the equation of the virtual work), and their physical 

meaning is dominant when a high speed of convergence is set by a software user. Therefore, 

with this setting, the implemented hybrid form finding moves towards the GSM group. 

The SM group was also an inspiration, in the modified form, as the incorporation of the artificial 

material (internally driven by the algorithms based on the decreasing parameter of the speed of 

convergence) has a considerable advantage. Usually, the SM methods are implemented with 

the natural way of the elastic control (4.2.2), which makes the resulting shape dependent on 

the initial model position [9]. Since this was not intended, the controlling way was implemented 

into the FEA core with further tuning, since the equilibrium has to be finally reached, even if 

the unphysical prestress has been defined. The mentioned advantage lies in a more natural and 

stable enforcing of geometrical requirements given by a civil engineer or an architect. This 

behaviour starts to be predominant when specifying a low speed of convergence. Although the 

calculation needs more iterations, the process is thus more robust. 

For stabilizing the non-equilibrium prestress definition, the default form finding uses the 

controlling way of the elastic control, whose influence is dependent on the speed of 

convergence setting, the deformation monitoring and the equilibrium finding when 

deformations normal to the plane starts to be minor in comparison with the tangential 

deformations and the possible usage of the projection method can be included as well. Of 

course, the setting of a number of the form finding steps can also be influenced. 

The default form finding is fully incorporated into the general FEA solver (this is the great 

difference compared with the preliminary form finding) and considers the structure supporting 

the membranes, cables, gas chambers, etc., which are subjected to the form finding. Thus, the 

supporting structure, with arbitrary geometry, nonlinearities, etc., is taken into account. 

4.6 EXAMPLES 
In the following, there are some examples of form finding analyses presented in context with 

the particular phenomena, either physical or implementation nature. First, different phenomena 

are shown on rather simple structure for a clear presentation of the intended issues, and later, 

more complex structures are shown to also present the abilities of the implemented algorithms. 
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4.6.1 Catenoid Benchmark 

The first example deals with a catenoid surface, which arise by rotation of the catenary curve 

about an axis. As it is a minimal surface, the isotropy prestress defines such a shape as well. 

This example was chosen as the analytical solution is known and thus it serves as a benchmark. 

Moreover, the convergence speed can be also presented here for the GSM (preliminary) form 

finding and the hybrid (default) form finding with different settings. More verification examples 

can be found on the website [VIII].

The analytical surface of the catenoid in the three dimensional Cartesian coordinate system can 

be describe by the following equations: 

𝑥 = 𝑎 𝑐𝑜𝑠ℎ (
𝑧

𝑎
)  𝑐𝑜𝑠(𝑣) (4.30) 

𝑦 = 𝑎 𝑐𝑜𝑠ℎ (
𝑧

𝑎
)  𝑠𝑖𝑛(𝑣) (4.31) 

where 𝑥, 𝑦, 𝑧 are the positions in the Cartesian coordinate system, 𝑣 ∈ (−𝜋, 𝜋) is the angle of 

rotation about 𝑧 axis, and 𝑎 is the constant to be determined. Assuming the rotation symmetry 

of the Catenoid surface, the relation can be expressed in the 𝑥 coordinate axis only 

𝑥 = 𝑎 𝑐𝑜𝑠ℎ (
𝑧

𝑎
) (4.32) 

The surface, described by the equations above, can exist if the ratio of the height ℎ to the radius 

of the base 𝑟 fulfill this requirement ℎ < 1.32548 𝑟. Behind this ratio, the surface collapses 

[37]. In this example, the following values are chosen: 𝑟 = 1.00 𝑚, ℎ = 1.20 𝑚. Knowing the 

solution in 𝑧𝑚𝑎𝑥 = ℎ 2⁄  

𝑟 = 𝑎 𝑐𝑜𝑠ℎ (
ℎ

2𝑎
) (4.33) 

The value of 𝑎 = 0.461689 𝑚  is solved numerically. If the initial shape of the analysed 

structure is a cylinder (Fig. 18), the maximal deformation from the cover in the middle of the 

height is 𝑢𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 = 𝑟 − 𝑎 = 1.00 − 0.745071 = 0.254929 𝑚. 

The equilibrium shape for the isotropic prestress 𝑛𝑥 = 𝑛𝑦 = 1.00 𝑘𝑁 𝑚⁄  was calculated with 

both implemented methods, the GSM preliminary form finding and the HM default form finding, 

where three different speed of convergence were used (Fig. 20). The maximum deformation in 

the middle of the catenoid height has the value 𝑢 = 254.484 𝑚𝑚 (Fig. 19) and the difference 

with the analytical solution is 𝑒𝑟𝑟𝑜𝑟 = 0.18%, using the standard precision setting and the 

presented FE mesh (1536 triangle FE, 832 nodes). When refining the FE mesh, the error 

converges to zero. 
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Fig. 18 Model in Initial Position (left), FE Mesh in Equilibrium Shape (right) 

 

Fig. 19 Deformation in Form Finding Analysis (right) 

 

Fig. 20 Convergence Behaviour of GSM and HM Form Finding 

Isometric
Isometric

Global Deformations
|u| [mm]

254.484

231.350

208.215

185.080

161.945

138.810

115.675

 92.540

 69.405

 46.270

 23.135

  0.000

Max : 254.484
Min :   0.000

Isometric



FORM FINDING 

 

42 

 

4.6.2 Independence of Equilibrium Shape on Initial Model Position 

As mentioned above, the resulting shape is dependent exclusively on the predefined equilibrium 

of forces and the given boundary conditions. This fact is presented in the next example of 

a hypar shaped membrane (Fig. 12), where two different initial configurations were chosen 

(Fig. 21).  The isotropy prestress of the membrane is 𝑛𝑥 = 𝑛𝑦 = 1.00 𝑘𝑁 𝑚⁄  and the tension in 

the cables is 𝑁 = 10.00 𝑘𝑁 . Since different deformations are required for reaching the 

equilibrium, it does not make sense to compare them. Instead, the final geometry is compared 

directly (Fig. 22), which proves the identity resulting positions. Again, the convergence 

behaviour is presented in also (Fig. 23). 

 

Fig. 21 Initial Geometry of Two Hypar Membranes 

 

Fig. 22 Final Geometry and FE Mesh of Two Hypar Membranes (1D FE: 152, 2D FE: 1100, FE Nodes: 628) 

Isometric

Isometric
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Fig. 23 Convergence Behaviour of GSM and HM Form Finding 

4.6.3 Orthotropic Prestress 

The left hypar-shaped membrane structure (Fig. 21) is overtaken for this example, presenting 

the issue of the constant orthotropic prestress impossibility in double-curved surfaces. The 

values of 𝑛𝑥 = 2.00 𝑘𝑁 𝑚⁄  and 𝑛𝑦 = 1.00𝑘𝑁 𝑚⁄  are used for the membrane prestress and the 

requirement of the relative sag is prescribed for the cables 𝑠𝑟𝑒𝑙 = 8.00 %. 

If the constant orthotropic prestress is strongly enforced, uncontrolled model distortions occur 

(Fig. 24). However, a close approximation of these values can lead to equilibrium, as presented 

in the following figures (Fig. 25, Fig. 26). The normal forces in the cables for satisfying the 

geometric requirement are found (Fig. 27). The normal forces vary along the cable lengths, as 

necessary for the equilibrium with the membrane. 

 

Fig. 24 Analysis Divergence Characterised by Uncontrolled Mesh Distortions 
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Fig. 25 Prestress 𝑛𝑥 Approximating Predefined Values 𝑛𝑥 = 2.00 𝑘𝑁/𝑚 

 

Fig. 26 Prestress 𝑛𝑦 Approximating Predefined Values 𝑛𝑦 = 1.00 𝑘𝑁/𝑚 

 

Fig. 27 Prestress 𝑁 Satisfying Predefined Cables Sag Value 𝑠𝑟𝑒𝑙 = 8.00 % 
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4.6.4 Projection Method 

The following example shows two umbrellas, the left one with the square base made of cables, 

and the right one with the circular base made of a steel frame (Fig. 28). 

 
Fig. 28 Initial Models Positions of Membrane Umbrellas (Light Blue: Membrane, Blue: Cables, Gray: Beams) 

 

Fig. 29 Axis Orientation: 𝑥 (Radial), 𝑦 (Tangential) 

Such a conical shapes are typical by necessity of the stress concentration in the regions of the 

top or bottom rings, thus the prestress vary much more than in the previous example (4.6.3), 

where quite a close approximation of the given values was reached. Here, the given prestress 

values 𝑛𝑥 = 𝑛𝑦 = 1.00 𝑘𝑁/𝑚 will be far away from the resulting prestress of the membrane. 

To be complete, the prestress 𝑁 = 5.00 𝑘𝑁 for the boundary cables is required. 

A stabilization procedure needs to be applied. As mentioned above, the possible ways are 

Specifying Number of Form Finding Steps (4.2.1), Elastic Control in the natural way (4.2.2), 

Element Size Control (4.2.3), Projection Method (4.2.5), etc. In the following, for the sake of 

the comparison, the number of iterations is restricted first and the example is then calculated 

with the Projection Method. 

The final geometry (Fig. 30) and results of the form finding process with the restricted number 

of calculation steps can be seen in following figures (Fig. 31 – Fig. 35). 
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Fig. 30 Final Geometry and FE Mesh: Stabilization: Specifying Number of Form Finding Steps 

 

Fig. 31 Normal Forces in 𝑥 Direction; Stabilization: Specifying Number of Form Finding Steps 

 

Fig. 32 Normal Forces in 𝑦 Direction; Stabilization: Specifying Number of Form Finding Steps 
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Fig. 33 Shear Forces; Stabilization: Specifying Number of Form Finding Steps 

 

Fig. 34 Principal Forces Vectors in Corner of Left Membrane; Stabilization: Specifying Number of Form 

Finding Steps 

 

Fig. 35 Normal Forces; Stabilization: Specifying Number of Form Finding Steps 
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While observing these two umbrellas, it can be seen that quite nice prestress can be reached for 

the axially symmetric structure. However, when observing the results of the left structure, no 

smooth prestress is reached and the locations with the overtension and undertension can be 

detected. As an example, the undertensioned region in the 𝑦 direction of all four corners is 

observable in (Fig. 32), or the vectors of principal forces in one corner of the left membrane 

(Fig. 34). This method is therefore not an optimum solution for the general membrane structures 

with high or low points. 

The next form finding analysis is performed with the Projection Method (4.2.5) stabilization 

technique. In the figure (Fig. 36), the circular cutout of the infinite projection plane is presented. 

The membranes prestress values 𝑛𝑥 = 𝑛𝑦 = 1.00 𝑘𝑁/𝑚 are specified in the given projection 

planes and the cable prestress of the left membrane 𝑁 = 5.00 𝑘𝑁. 

Note 1: It is important to note that this is only a cutout of the infinite projection plane, whose 

orientation in the space is uniquely defined by the normal vector. The precise position of this 

plane is not important, only its orientation plays a role. Moreover, the equilibrium in the whole 

projection plane is satisfied, so when the model of the membrane moves, it always has its 

projection to the mentioned plane. 

Note 2: When the radial direction of the FE local axes of the membrane structure is defined by 

a line (by two nodes), the two nodes are used for the definition of the mentioned normal vector. 

Thus, using of this method is user-friendly. 

The equilibrium of isotropic prestress in the projection plane is presented in (Fig. 37), the final 

geometry in (Fig. 38) and the results of the form finding analysis can be seen in figures (Fig. 

39, Fig. 40, Fig. 41, Fig. 42, Fig. 43). 

 

Fig. 36 Projection Planes for Prestress Definition (green) 
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Fig. 37 Isotropic Prestress Definition in Projection Plane (Note: 𝑛𝑦 = 𝑛𝑥) 

 

Fig. 38 Final Geometry and FE Mesh: Stabilization: Projection Method 

 

Fig. 39 Normal Forces in 𝑥 Direction; Stabilization: Projection Method 
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Fig. 40 Normal Forces in 𝑦 Direction; Stabilization: Projection Method 

 

Fig. 41 Shear Forces; Stabilization: Projection Method 

 

Fig. 42 Principal Forces Vectors in Corner of Left Membrane ; Stabilization: Projection Method 
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Fig. 43 Normal Forces; Stabilization: Projection Method 

While observing the umbrellas, it can be seen that nice and smooth prestress is reached for both 

models. In the regions with the necessary rapid change of curvatures, specifically the top of the 

cones, the prestress is increased for the 𝑥  direction (Fig. 39), while the prestress in the 

𝑦 direction (Fig. 40) decreases to prevent the strangulation effect. However, in the regions 

without the necessity for rapid curvature changes, the prestress is practically isotropic (as was 

the task input), therefore, the undertensioned regions in the corners does not occur (comparison 

well observable in figures Fig. 34 and Fig. 42). Assuming the specified axis directions, the shear 

stresses are considerably low (Fig. 41). 

In comparison with other stabilization techniques, the projection method has one considerable 

advantage. This type of the prestress definition leads to the uniquely defined spatial 

equilibrium, even so it is not known in advance. However, as well as the isotropy prestress, the 

Projection Method (4.2.5) stabilization technique leads to the independence of the resulting 

shape of the initial model position. 

To illustrate other possible equilibrium definition in the projection plane, other case is presented 

briefly. The average prestress values in the projection plane 𝑛𝑥 = 2.00 𝑘𝑁 𝑚⁄ , 𝑛𝑦 =

1.00 𝑘𝑁 𝑚⁄  and 𝑁 = 10.00 𝑘𝑁 (Fig. 45). The prestress values in the projection plane cannot 

have a nature of constant orthotropic prestress, so the analytical equations for the calculation of 

the equilibrium anisotropic prestress in projection planes are implemented, as can be seen in 

the bottom part of (Fig. 45). The final geometry (Fig. 44) and the vectors of principal spatial 

equilibrium forces in the membrane, derived from the equilibrium in the projection plane, are 

presented below (Fig. 45). 
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Fig. 44 Final Geometry and FE Mesh for Task 𝑛𝑥 = 2.00 𝑘𝑁/𝑚, 𝑛𝑦 = 1.00 𝑘𝑁/𝑚 and 𝑁 = 10.00 𝑘𝑁; 

Stabilization: Projection Method 

 

Fig. 45 Vectors of Principal Forces for Task 𝑛𝑥 = 2.00 𝑘𝑁/𝑚, 𝑛𝑦 = 1.00 𝑘𝑁/𝑚 and 𝑁 = 10.00 𝑘𝑁; 

Stabilization: Projection Method 

4.6.5 Gas Chambers 

Above, the form finding requirements were presented on the examples with membranes and 

cables. Here, the form-finding of a simple gas chamber is shown. The prestress of the ETFE 

foil is assumed as 𝑛𝑥 = 𝑛𝑦 = 0.40𝑘𝑁 𝑚⁄  and the pressure requirement 𝑝 = 250.00 𝑃𝑎  is 

used. As well the required volume can be defined to find the final geometry. The initial model, 

final geometry and pressure in the gas chamber after form finding is presented below. 
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Fig. 46 Initial Model of Gas Chamber 

 

Fig. 47 Final Geometry and FE Mesh of Gas Chamber 

 

Fig. 48 Resulting Overpressure 

4.6.6 Form finding for Structures Under Compression 

The form finding of shell structures with boundary beams is presented here. The input values 

are 𝑛𝑥 = 𝑛𝑦 = −9.00 𝑘𝑁 𝑚⁄  for the concrete shell with the thickness 𝑡 = 70.00 𝑚𝑚 , 𝑁 =

−150.00 𝑘𝑁 as an average value for the boundary beams and the gravity acceleration 𝑔 =

10.00𝑚 𝑠2⁄ . The triangle edge lengths of the initial model are 𝑙 = 19.60 𝑚. 

The initially planar structure (Fig. 49) is deformed to an equilibrium position (Fig. 50), bending 

moments in the shell (Fig. 51) as well as in the beams are virtually zero, the shell compression 

is presented in (Fig. 52, Fig. 53) and the compression in the boundary beams in (Fig. 54). Thus, 

the shape is optimized to act purely in the normal directions when the gravity load is applied. 
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Fig. 49 Initial Model 

 

Fig. 50 Final Geometry and FE Mesh Discretization 

 

Fig. 51 Principal Moment 𝑚2 

 

Fig. 52 Principal Normal Force 𝑛2 
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Fig. 53 Vectors of Principal Normal Forces 𝑛1 and 𝑛2 

 

Fig. 54 Normal Forces 𝑁 [𝑘𝑁] 

4.6.7 Possibility of Multiple Equilibrium Solutions for Some Form Finding Analyses 

The example to be presented now, specifically a membrane on arches, combines more 

individual form finding requirements and presents a very interesting physical phenomenon. 

First, the implemented and thus available physical and geometrical requirements for the form 

finding analyses are listed here, to provide the overview of the possibilities: 

- Cable/Beam (1D): normal force (positive or negative), sag (relative or absolute), length 

(relative or absolute). 

- Membrane/Shell (2D): normal force or stress (positive or negative) 

- Gas chambers (3D): pressure (resulting or increment), volume (resulting or increment) 

Note: All the requirements are available in the HM form finding, while the force requirements 

are available in the GSM form finding algorithms. 

Now, the prestress of the analysed membrane structure is defined as an orthotropic one with the 

values 𝑛𝑥 = 2.50 𝑘𝑁 𝑚⁄  and 𝑛𝑦 = 2.00 𝑘𝑁 𝑚⁄ , the cables have the defined relative sag 𝑠𝑟𝑒𝑙 =

10.00 % (and acts in tension), the arches of the top model are considered as the supporting 

structure (no form finding definition) and the arches of the middle and bottom model has the 

form finding definition of the resulting length 𝑙 = 13.37 𝑚 under compression (Fig. 55) (this 

length is considered to be the same as the length of the top model arches). Thus, the example 

consists of the structural entities both under the positive and the negative required resulting 
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values. This analysis requires a special procedure. Moreover, the phenomenon of multiple 

equilibrium solutions is highlighted here (Fig. 56). 

The resulting values of the prestress in both directions approximates the defined values and the 

shear stress has low magnitude (Fig. 57, Fig. 58, Fig. 59). However, the main differences are 

observable in the shape and the internal forces of beam arches (Fig. 60, Fig. 61). While the first 

(top) model is exposed to all the beam internal forces, the beams in two other models acts 

virtually under compression only, since their shape was optimised to behave like this. The 

structures with the mixed requirements (tension and compression) also often do not have one 

unique solution, but more equilibrium shapes could be found here (note: although there are only 

two shapes shown here, four possible solutions exist for this task) and the process converges 

from the initial position to the closest minimum of energy. Thus, the slight difference between 

middle and bottom models results in different equilibrium shape after the form finding analysis. 

 

Fig. 55 Initial Model Positions with 𝑥 and 𝑦 Axis Orientation 
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Fig. 56 Final Geometry and FE Mesh Discretization 

 

Fig. 57 Normal Forces in 𝑥 Direction [𝑘𝑁/𝑚] 
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Fig. 58 Normal Forces in 𝑦 Direction [𝑘𝑁/𝑚] 

 

Fig. 59 Shear Forces [𝑘𝑁/𝑚] 
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Fig. 60 Normal Forces 𝑁 [𝑘𝑁] (left), Shear Forces 𝑉𝑦 [𝑘𝑁] (right) 

 

Fig. 61 Bending Moments 𝑀𝑧 [𝑘𝑁 𝑚⁄ ] (left), Torsion Moments 𝑀𝑥 [𝑘𝑁 𝑚⁄ ] (right) 

In the graph bellow (Fig. 62), it can be seen that the higher is the speed of convergence, the 

more sensitive is the structure to the oscillations and sometime even instabilities. Here, the 

model is also stable for the highest speed, however, in the case of more complex and especially 

sensitive structures, the process can be prone to instabilities and thus, the lower speed of 

convergence ensures the higher stability of the implemented algorithms. 
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Fig. 62 Convergence Behaviour for Different Setting of HM Form Finding Speed of Convergence 

4.6.8 Regeneration of Local FE Axial System 

For the example presented in this subchapter, a really crazy initial model position was 

intentionally chosen as it improves the visibility of the described operation, namely the FE local 

axial system regeneration. The prestress values are not of interest here, as this issue is generally 

valid. The initial model has a user-defined local axis direction. Here, the line connecting the 

bottom supports is a defining line for aligning the local 𝑥 FE Cartesian direction. The initial 

model position is presented in the figure (Fig. 63). As the model deforms, the axial system 

rotates in the space and can change its directions extremely (Fig. 64, Fig. 65). 

As the form finding is an initial equilibrium problem solving procedure, the local axial system 

orientation is not kept during the analysis, but should be regenerated in each iteration in order 

to keep the orientation as specified by a civil engineer or an architect. It has a great importance 

on both the material orientation in the subsequent analyses and on the resulting shape, since the 

local axes are connected with the values prescribed for the form finding process itself. Thus, 

the local axes regeneration has to be performed. 

 

Fig. 63 Initial Position of Models (left) 

Isometric Isometric
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Fig. 64 Final Geometry – Local Axial System Obtained by: Deformation of Original Axial System (left), 

Regenerated Local Axial System (right); Isometry View 

 

Fig. 65 Final Geometry – Local Axial System Obtained by: Deformation of Original Axis System (left), 

Regenerated Local Axial System (right); Top View 

4.6.9 Material Assignment After Form Finding Analysis 

As already mentioned, the form finding analysis is a materially independent process. However, 

the form finding results are the initial equilibrium state of the given structure for the subsequent 

analyses, which are materially dependent. Thus, the inverse task in comparison to the usual 

structural analysis has to be performed on the material level, since the appropriate strains need 

to be estimated for the actual equilibrium of forces. The strains undergone during the form 

finding analysis does not have any physical meaning, so, the real physical strains are calculated 

when the form finding convergence is reached from the resulting stresses 

𝛆 = 𝐂−1 𝛔 (4.34) 

where 𝛆 is the unknown strain state, 𝛔 is the resulting stress of the form finding analysis, and 

𝐂−1 is the inverse of the constitutive matrix. 
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Fig. 66 Initial Position of Model (left), Final Geometry with FE Mesh (right) 

 

Fig. 67 Determined Total Strains 𝜀𝑥 

 

Fig. 68 Determined Plastic Strains 𝜀𝑝𝑙,𝑥 
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In the example here, the membrane (Fig. 66) prestress has the values 𝜎𝑥 = 𝜎𝑦 = 1.50 𝑀𝑃𝑎, the 

material used is defined as an isotropic plastic with the following constants 𝐸 = 12.00 𝑀𝑃𝑎, 

𝜐 = 0.40, 𝑓𝑦 = 1.00 𝑀𝑃𝑎, 𝐸𝑝 = 1.20 𝑀𝑃𝑎, and the chosen strain hypothesis is Von Mises. In 

this example, very low material stiffness was used to obtain higher strain values (Fig. 67, Fig. 

68). 

The process is valid for any available material model. For nonlinear models, the iteration 

procedure has to be performed when seeking the appropriate strain values (for example, with 

the Newton-Raphson iteration scheme) in each integration node of the analysed FE. 

4.6.10 Examples of Complex Structures 

The examples already presented were rather simple structures for a straightforward description 

of the intended issue, phenomenon or implementation necessity to be algorithmizated during 

the development process. Now, there are few other structures of more complex compositions 

shown for illustrative purposes (Fig. 69 – Fig. 76). Therefore, the initial and equilibrium shapes 

are shown without a detailed description. 

 

Fig. 69 Composition of Conical and Hypar Membranes – Initial Position [44] 

 

Fig. 70 Composition of Conical and Hypar Membranes – Equilibrium Position [44] 

Isometric

Isometric
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Fig. 71 Bus Station Roofing – Initial Position [44, IX] 

 

Fig. 72 Bus Station Roofing – Equilibrium Position and Vectors of Principal Forces [44, IX] 

 

Fig. 73 Tanzbrunnen – Initial Shape 
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Fig. 74 Tanzbrunnen – Equilibrium Position 

 

Fig. 75 Greenhouse Made of Pressurized ETFE Cushions – Initial Model [44] 

 

Fig. 76 Greenhouse Made of Pressurized ETFE cushions – Equilibrium Position [44] 
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5 STRUCTURAL ANALYSIS 

The membrane structures are a really special in analysis requirements, which is the consequence 

of their virtually zero bending stiffness. That implies the singularity when the material stiffness 

matrix is only taken into account. Thus, the geometric stiffness matrix needs to be regular, 

which implies tension in the whole membrane. Therefore, if compression occurs, a special 

treatment has to be performed in the implemented codes. This is done by applying an artificial 

minimal tension in the numerical analysis. 

However while the geometrical nonlinearities could be accounted by a general description of 

the chapters Continuum Mechanics andFinite Element Procedure , using the Updated 

Lagrangian formulation (ULF) or the Total Lagrangian formulation (TLF), being quite standard 

in terms of the continuum mechanics, the material nonlinearity of membrane structures is quite 

unique issue. If a membrane loses its pretension, the compression is released by the surface 

wrinkling and the standard membrane theory does not describe such a state. This is one of the 

most important and difficult tasks of the structural analysis of such a type of structures. 

As this short introduction suggests, the description and studying of the wrinkling phenomenon 

was one of the crucial parts of this thesis. Thus, this chapter includes the subchapter that deals 

with the introduction into the physical problem and the current state of the art. Later, the 

subchapter with the proposed solving technique called Wrinkling Separation and Elastic 

Prediction Modification is presented, where the formulated method is completed by 

verification examples. Further, the next subchapter present analyses focused on the wrinkling 

phenomenon. At the end of this chapter, the results of static and dynamic analyses of the 

Tanzbrunnen membrane structure with consideration the proposed technique, are presented. 

5.1 WRINKLING OF MEMBRANE SURFACES 
The special behaviour of the membrane material is the subject of research for many decades. 

The pioneer contribution to this field, studied on the flat sheet metal girders with very thin metal 

web, was already presented by the author H. Wagner [45], who proposed the Tension Field 

Theory (TF). The TF assumes that a membrane has zero flexural stiffness. While the membrane 

is stretched, the classic membrane theory for the evaluation of the stress state is valid, however, 

when the compression is about to appear, in the consequence of the zero flexural stiffness 

assumption, the compression is immediately released by the buckling effect, thus by the 

development of little waves aligned with the tensile direction. 

Essentially, there are two ways for solving the wrinkled state of the membrane in FEA. The 

first way is to use an extremely dense FE discretization and the in-plane stiffness in both the 

tension and the compression directions, while the bending stiffness is zero. Such a mesh allows 

the material to follow the little waves, but this is inadequate costly solution and it inevitably 

depends on the mesh. The second way, which is further categorised, focuses on the separation 

of the total strain into the elastic and wrinkling part. Such a solution allows for using the FE 

discretization, where the particular elements are much bigger than the wrinkles. Even so the 

particular wrinkles are not modelled here, the method is not so strongly dependent on the mesh 
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as in the case of the previous method and, in terms of the continuum analysis, the global stress 

state is precisely described by such a ‘smeared wrinkle’ analysis. 

 

Fig. 77 Applied Stress (left), Real Physical Deformation (Wrinkling) of Membrane (middle), In-Plane 

Deformation/Strain (right). [46] 

The figure (Fig. 77) shows the described physical process, where the compressive stresses are 

released by the local buckling effect followed by the appearance of wrinkles. If the presented 

square is assumed to be a quadrangle FE, the out-of-plane deformations presented in the middle 

of the figure cannot be properly modelled and the in-plane strains presented in the right part of 

the figure are obtained. Such strains do not properly represent the real physical behaviour and 

thus, it is necessary to decompose the deformation into an elastic and a wrinkling part (Fig. 78). 

 

Fig. 78 Real Physical Deformation (Wrinkling) of Membrane (left), Total In-Plane Deformation/Strain (middle), 

Separation of Total Deformation/Strain into Elastic and Wrinkling Part (right) [46] 

The methods of proper strain decomposition have been the subject of many researchers for 

decades, and the possible methods are briefly mentioned bellow, separated into two main 

groups, namely Kinematics Modifications (KM) and Material Modifications (MM) [42]. 

5.1.1 Kinematic Modifications (KM) 

This method, proposed by C.H. Wu and T.R. Cansfield [47] and further extended by D.G. 

Roddeman et al [48, 49], is based on the modification of the total deformation gradient 𝐅0
t  to 

eliminate the nonphysical in-plane strains caused by the wrinkling effect. 

The orthonormal vectors 𝑛1  and 𝑛2  denotes the principal directions of the Cauchy stress, 𝑙 ̅

represents the real deformed length while 𝑙  is the fictive non-wrinkled length and 𝑏  is the 

deformed width. As derived in the contribution by D.G. Roddeman et al [48], the original 

deformation gradient 𝐅0
t  is subsequently modified 

𝐅̅0
t = (𝐈 + β 𝐧1𝐧1) 𝐅0

t  (5.1) 

where 𝐈  denotes the identity matrix, β  is the parameter, which express a measure of the 

membrane wrinkling and is never negative because if the wrinkles disappear, the modified 
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deformation gradient 𝐅̅0
t  unifies with the standard deformation gradient 𝐅0

t  and also, it can be 

said that 𝑙 ̅can only be greater or equal to 𝑙, never smaller. The β parameter is determined by 

the coupled nonlinear conditions, as described in the paper mentioned above. 

 

Fig. 79 Wrinkled Membrane with Deformed Length 𝑙,̅ Fictive Non-Wrinkled Membrane Length 𝑙 and Deformed 

Width 𝑏 (left). Wrinkled Membrane Part Straight in Tangent Plane Determined by 𝑛1 and 𝑛2 (right). [48] 

Thus, the main idea of this method can be illustrated by the description written in the 

contribution [48]: ‘The tensor (𝐈 + β 𝐧1𝐧1) lengthens the fictive non-wrinkled membrane part 

to become just as long as the real wrinkled membrane part.’ This can be seen on the right side 

of the figure above (Fig. 79). 

Using the modified deformation gradient 𝐅̅0
t , different measures of the modified strain tensors 

can be calculated as, for example, the Green-Lagrange and the infinitesimal strain tensors are 

rewritten in the following formulas, analogous to (2.7) and (2.11) 

𝐄0
t =

1

2
( 𝐅̅T0
t  𝐅̅0

t − 𝐈) (5.2) 

𝛆0
t =

1

2
( 𝐅̅0
t + 𝐅̅T0

t ) − 𝐈 (5.3) 

Consequently, the different measures of the real/physical stresses in the wrinkled membrane 

are also calculated. It is important to note that no material assumption was used when deriving 

this method. Further interesting contribution related to this method was published by H. Schoop 

et al [50]. 

5.1.2 Material Modifications (MM) 

In contrast to the previous method where the deformation gradient was modified to obtain the 

real non-wrinkled configuration by the kinematic modifications (KM), the material 

modification (MM) methods consider the wrinkling phenomenon as a special case of perfect 

plasticity, and therefore, the total strain 𝛆 (note: the fictive strain in the language of the method 

mentioned above) is decomposed into the elastic 𝛆e and the wrinkling 𝛆w part. The wrinkling 

is a zero strain energy process. The standard strain decomposition, known in the material 

nonlinearity, is written as 

𝛆 = 𝛆e + 𝛆w (5.4) 
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Many approaches for the material modification (MM) process were proposed by various 

authors. For example, the contribution of the authors T. Akita et al [46] uses a special projection 

technique, which separates the elastic and the wrinkling parts of the strain and maps the original 

constitutive matrix to the modified one (Fig. 80). By this method, the nonphysical stresses 

belonging to the wrinkling strain are released. 

 

Fig. 80 Visualization of Strain Decomposition with Usage of Projection Matrix 𝑷 and Consequent Stress 

Calculation with Constitutive Matrix 𝑪, or Direct Stress Calculation with Usage of Modified Constitutive Matrix 

𝑪̃ [46]. 

The derivation of the projection matrix 𝐏 can be found in [46]. This contribution was also 

an inspiration for the work by A. Jrusjrungkiat [42] and A. Jrusjrungkiat et al [51]. 

There are further proposed approaches, where the modified strass-strain relation in a wrinkled 

membrane is mostly used for dealing with the wrinkling phenomenon. 

The way of the material modification (MM) is the method published more widely, such as in 

[52, 53, 54, 55, 56, 57, 58, 59], and many others. An interesting contribution which compares 

different methods from both groups was written by Y. Miyazaki [60]. Many other proposals, 

presented analyses, derivations of the analytical examples and their comparisons can be found 

in the following contributions [60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71]. 

At the end of this chapter, it is necessary to conclude that the majority of the proposed methods 

are not general in the sense of using them for the anisotropy and the nonlinearity of the material 

used for a membrane. Some of them are usable exclusively for linear isotropic materials, 

another also for anisotropic linear material models, but the general methods are rare. Moreover, 

when studying the research articles, the fact that many methods merely approximate the real 

physical stress state in the wrinkled membrane can be observed on the presented numerical 

examples which are compared with the analytical solutions. These facts are the reason for the 

work of many researchers and their subsequent publications in this field.

5.2 WRINKLING CRITERIA 
In order to determine the actual state of the membrane, the wrinkling criteria were developed 

to distinguish whether the membrane is in a taut, wrinkled or slack state (Fig. 81), and they are 

widely used for both of the above-mentioned groups of the methods for dealing with the 

artificial stress caused by fictitious strain [42, 52, 55, 59, 72, 73, 74, 75]. 
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Tab. 1 Wrinkling Criteria to Distinguish Membrane Status 

 

 

Fig. 81 State of Membrane: Taut, Wrinkled and Slack [42] 

 

The principal stress and principal strain criterion can be misleading as the principal stress 

criterion is not reliable when detecting the wrinkled or slack state, while the principal strain 

criterion is not reliable when detecting the taut or wrinkled state. Therefore, the mixed criterion 

is considered and widely used as a suitable choice. 

This status recognition is a tool further used for determining which type of the algorithm should 

be applied to the actual state of the particular FE integration node. 

5.3 PLANE STRESS STATE IN CLASSIC MEMBRANE THEORY 
Before the next chapter including a description of the proposed method is presented, the basic 

formulas used later are listed here [1, 2, 3, 76], starting with the stress-strain law for the elastic 

and plastic materials, continuing with the constitutive matrix for the isotropic and orthotropic 

materials 

𝛔 = 𝐂 𝛆e (5.5) 

𝛔 = 𝐂 (𝛆 − 𝛆p) (5.6) 

𝐂 = [ 
𝐶1111 𝐶1122 𝐶1112
𝐶2211 𝐶2222 𝐶2212
𝐶1211 𝐶1222 𝐶1212

 ] (5.7) 

where 𝛔 denotes the actual stress, 𝛆, 𝛆e, 𝛆p are the total, elastic and plastic strain components 

respectively, 𝐂 is the plane stress constitutive relation, which can be described for the isotropic 

or orthotropic materials as follows: 

𝐂 =

[
 
 
 
 

 

𝐸

1 − 𝜈2
𝜈𝐸

1 − 𝜈2
0

𝜈𝐸

1 − 𝜈2
𝐸

1 − 𝜈2
0

0 0 𝐺

 

]
 
 
 
 

=
𝐸

1 − 𝜈2
 [ 

1 𝜈 0
𝜈 1 0

0 0
1 − 𝜈

2

 ] (5.8) 
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𝐂 =

[
 
 
 
 
 

 

𝐸𝑥
1 − 𝜈𝑥𝑦𝜈𝑦𝑥

𝜈𝑥𝑦𝐸𝑦

1 − 𝜈𝑥𝑦𝜈𝑦𝑥
0

𝜈𝑦𝑥𝐸𝑥

1 − 𝜈𝑥𝑦𝜈𝑦𝑥

𝐸𝑦

1 − 𝜈𝑥𝑦𝜈𝑦𝑥
0

0 0 𝐺𝑥𝑦

 

]
 
 
 
 
 

=
1

1 − 𝜈𝑥𝑦𝜈𝑦𝑥
 [ 

𝐸𝑥 𝜈𝑥𝑦𝐸𝑦 0

𝜈𝑦𝑥𝐸𝑥 𝐸𝑦 0

0 0 (1 − 𝜈𝑥𝑦𝜈𝑦𝑥)𝐺𝑥𝑦

 ] 

(5.9) 

where 𝐸, 𝐸𝑥 , 𝐸𝑦  are the elasticity moduli, and 𝜈, 𝜈𝑥𝑦 , 𝜈𝑦𝑥  denote the transverse contraction 

coefficients for the isotropic and orthotropic constitutive laws. 

 

Fig. 82 Stress State in Planar and Main Directions ([77] with Modifications) 

The figure above (Fig. 82) displays the stress state in the planar and main directions. The 

principle stress values can be determined by evaluating the eigenvalue problem of the stress 

state. Bellow, the stress is written in the matrix notation 

𝛔 = [ 
𝜎11 𝜎12
𝜎21 𝜎22

 ] (5.10) 

(𝛔 − σ0𝐈) 𝐧 = 𝟎 (5.11) 

Since the normal vector 𝐧 relates to the unit length, the tensor in the brackets has to be singular, 

thus the following relation has to be fulfilled: 

det(𝛔 − σ0𝐈) = [ 
𝜎11 − 𝜎0 𝜎12
𝜎21 𝜎22 − 𝜎0

 ]

= (𝜎0)
2 − (𝜎11 + 𝜎22) 𝜎0 + (𝜎11𝜎22 − (𝜎12)

2) 
(5.12) 

where 𝐈 is the unit matrix, and 𝜎0 denotes the eigenvalues, thus the magnitude of the principal 

stresses in the first and the second main direction 𝜎1 and 𝜎2 

𝜎1,2 =
(𝜎11 + 𝜎22)

2
± √(

𝜎11 − 𝜎22
2

)
2

+ (𝜎12)2 (5.13) 

Bellow, the well-known vizualisation of the stress state using the Mohr circle (Fig. 83) is 

attached. 
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Fig. 83 Mohr Circle for Stress Transformation 

The angle between the planar and the main directions 𝛼 is given by the following equation: 

𝛼 =
1

2
𝑡𝑎𝑛−1 (

2𝜎12
𝜎11 − 𝜎22

) (5.14) 

For the sake of distinguishing the physical values in the planar Cartesian coordinate system of 

the element and in the main stress directions, a bar is used. Whenever the value is written 

without the bar, it denotes the planar Cartesian coordinate system directions, and when the bar 

is used, the physical values are considered as transformed into the direction of the main stresses. 

𝛔 = [ 𝜎11 𝜎22 𝜎12 ]T (5.15) 

𝛔̅ = [ 𝜎1 𝜎2 0 ]T (5.16) 

The transformation of the membrane strains and the stress strain matrix between the planar 

Cartesian coordinate system and the axial system given by the directions of the main stresses is 

performed by the following transformation matrix: 

𝐓ε = [

𝑐𝑜𝑠2 𝑥̅1𝑥1 𝑐𝑜𝑠2 𝑥̅1𝑥2 𝑐𝑜𝑠 𝑥̅1𝑥1 𝑐𝑜𝑠 𝑥̅1𝑥2
𝑐𝑜𝑠2 𝑥̅2𝑥1 𝑐𝑜𝑠2 𝑥̅2𝑥2 𝑐𝑜𝑠 𝑥̅2𝑥1 𝑐𝑜𝑠 𝑥̅2𝑥2

2 𝑐𝑜𝑠 𝑥̅1𝑥1 𝑐𝑜𝑠 𝑥̅2𝑥1 2 𝑐𝑜𝑠 𝑥̅1𝑥2 𝑐𝑜𝑠 𝑥̅2𝑥2 𝑐𝑜𝑠 𝑥̅1𝑥1 𝑐𝑜𝑠 𝑥̅2𝑥2 + 𝑐𝑜𝑠 𝑥̅2𝑥1 𝑐𝑜𝑠 𝑥̅1𝑥2

] (5.17) 

where 𝑥̅𝑖 and 𝑥𝑖 denote the main and the planar Cartesian coordinate axes, so the matrix can be 

rewritten by using the angle 𝛼 

𝐓ε = [ 
𝑐𝑜𝑠2 𝛼 𝑠𝑖𝑛2 𝛼 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼
𝑠𝑖𝑛2 𝛼 𝑐𝑜𝑠2 𝛼 −𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼

−2 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼 2 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼 𝑐𝑜𝑠2 𝛼 − 𝑠𝑖𝑛2 𝛼

 ] (5.18) 

The strains transformation is given by the equations

𝛆̅ = 𝐓ε 𝛆 (5.19) 

𝛆 = 𝐓ε
−1 𝛆̅ (5.20) 
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And the transformation of the constitutive matrix can be written as 

𝐂 = 𝐓ε
−T 𝐂 𝐓ε

−1 (5.21) 

𝐂 = 𝐓ε
T 𝐂 𝐓ε (5.22) 

5.4 YIELDING CRITERIA FOR ISOTROPIC NONLINEAR ELASTIC AND PLASTIC 

MATERIAL MODELS 
Some of the well-known yielding criteria for the isotropic nonlinear elastic and plastic material 

models are listed here in the form of the figures attached below (Fig. 84, Fig. 85, Fig. 86). Their 

detailed description can be found in the literature, for example [1, 3]. It is possible to combine 

these models with the further described Wrinkling Separation and Elastic Prediction 

Modification procedures for an appropriate representation of such combined nonlinearities, 

namely the wrinkling and the yielding process together, as described in Subchapter (5.5.2). 

 

Fig. 84 Visualization of Von Mises and Drucker-Prager Yielding Criteria in Plane of 𝜎1 and 𝜎2 (𝜎3 = 0) [76] 

 

Fig. 85 Visualization of Tresca and Mohr-Coulomb Yielding Criteria in Plane of 𝜎1 and 𝜎2 (𝜎3 = 0) [76] 



WRINKLING SEPARATION AND ELASTIC PREDICTION MODIFICATION 

75 

 

 

Fig. 86 Visualization of Rankine Yielding Criterion in Plane of 𝜎1 and 𝜎2 (𝜎3 = 0)

5.5 WRINKLING SEPARATION AND ELASTIC PREDICTION MODIFICATION 
As a part of this thesis, the proposal of a new technique dealing with the wrinkling phenomenon 

described above was made. This method, called Wrinkling Separation and Elastic Prediction 

Modification processes, could be categorized among the material modification (MM) 

techniques. The actual strain is decomposed into the real in-plane and wrinkling components 

and the fictitious stress is decomposed into the real and nonphysical parts, released by the local 

buckling process. The presented method will be further followed by numerical examples. 

Following the mixed wrinkling criterion, the actual state of the membrane is determined. If the 

membrane is tensioned in both directions, the classic membrane theory is used, whereas if both 

principal strains are negative, the slack status is detected and all the stress components are 

released by the wrinkling effect, and the tangent stiffness becomes a zero matrix. If the wrinkled 

status is detected, the real stress state is the unknown to be determined. 

Redrawing the above presented figure of the wrinkling process (Fig. 78) into the following form 

shown in the figure below (Fig. 87), the real sequence of the physical processes is described. 

As the membrane is tensioned in one direction, the transverse elastic deformation is proceeding 

first according to the Poisson effect. Until now, no wrinkling occurs. However, when the 

transverse contraction continues beyond this limit value, the compression occurs and at the 

same time, this compression is released by the wrinkling effect. The real stress state is already 

given by the first step of this sequence as the wrinkling process itself does not influence neither 

the contracted nor the stretched direction. Thus, the stress state on the border of the first and the 

second sequence step is the aim of the following process. 

 

Fig. 87 Transverse Contraction (left), Additional Contraction Causing Wrinkling Effect (middle and right) 

5.5.1 Wrinkling Separation Procedure for Anisotropic Linear Elastic Material Models 

The whole process is described on the level of each FE integration point from the moment the 

total strain is known until the moment the real physical stress is determined, the total strain is 
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decomposed and the constitutive matrix is derived. First, the elastic stress estimation in the 

planar Cartesian coordinate system is performed 

𝛔 = 𝐂 𝛆 (5.23) 

Further, the stress is transformed into the main directions 

𝛔 → 𝛔̅ = [ 𝜎1 𝜎2 0 ]T (5.24) 

Now, the case when the lower principle stress 𝜎2 < 0 and the higher principle strain 𝜀1̃ > 0 

(where generally the principle directions do not coincide as denoted by different accents) is 

assumed, denoting the membrane is in the wrinkled state. The actual stress is unknown as the 

elastic estimation 𝛔 → 𝛔̅ using the classic membrane theory does not give the proper values. 

For the actual stress state estimation, the Wrinkling Separation procedure uses the above-

defined assumption that the negative stress σ̅2 is released by the local buckling effect and thus 

the real elastic stress 𝜎2
 𝑒 = 0 . As the value of 𝜎1  is influenced by the coefficient of the 

transverse contraction even for the wrinkling part of the strain, its value is not correct and thus 

the elastic stress 𝜎1
 𝑒  is set as unknown 𝜎1

 𝑒 = ? . Furthermore, the actual strain and the 

constitutive matrix are transformed into the direction of the principle stresses as denoted by the 

bar accent. 

𝛆̅ = 𝐓ε 𝛆 = [ 𝜀1̅1 𝜀2̅2 𝜀1̅2 ]T (5.25) 

𝐂 = 𝐓ε
−T 𝐂 𝐓ε

−1 = [ 

𝐶1̅111 𝐶1̅122 𝐶1̅112
𝐶2̅211 𝐶2̅222 𝐶2̅212
𝐶1̅211 𝐶1̅222 𝐶1̅212

 ] (5.26) 

where 𝜀1̅2 ≠ 0 and 𝐂 is the full occupied matrix for the general linear anisotropic material 

model. However, since the membrane is in the wrinkled state, the elastic stress 𝜎1
 𝑒 is positive. 

As the membrane does not wrinkle in the direction of the first principal stress σ̅1, the strain 

component 𝜀1̅1  does not require further decomposition, and it holds 𝜀1̅1
 𝑒 = 𝜀1̅1  and 𝜀1̅1

 𝑤 = 0, 

where the indexes 𝑒 and 𝑤 denote the elastic and the wrinkling strain parts. Following these 

physical assumptions, the limit state of the wrinkling initialization depicted on the left side of 

the figure (Fig. 87) is given by the equation 

[ 
𝜎1
 𝑒 = ?
0
0

 ] = [ 

𝐶1̅111 𝐶1̅122 𝐶1̅112
𝐶2̅211 𝐶2̅222 𝐶2̅212
𝐶1̅211 𝐶1̅222 𝐶1̅212

 ] [ 

𝜀1̅1
 𝑒 = 𝜀1̅1
𝜀2̅2
 𝑒 = ?    

𝜀1̅2
 𝑒 = ?    

 ] (5.27) 

This system of three equations with three unknowns, namely the elastic stress 𝜎1
 𝑒 and the elastic 

strains 𝜀2̅2
 𝑒  and 𝜀1̅2

 𝑒 , represent the state when wrinkling starts to appear. By solving this system, 

the elastic part is obtained and the wrinkling part is separated out. For solving this, the equation 

(5.27) is modified as follows: 

[ 
𝜎𝐴
 𝑒 = ?
0

 ] = [ 
𝐶𝐴̅𝐴 𝐶𝐴̅𝐵
𝐶𝐵̅𝐴 𝐶𝐵̅𝐵

 ] [ 
𝜀𝐴̅
 𝑒 = 𝜀1̅1
𝜀𝐵̅
 𝑒 = ?    

 ] (5.28) 
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Solving the unknown elastic strains 𝜀2̅2
 𝑒  and 𝜀1̅2

 𝑒  

0 = 𝐶𝐵̅𝐴 𝜀1̅1 + 𝐶𝐵̅𝐵 𝜀𝐵̅
 𝑒 (5.29) 

𝜀𝐵̅
 𝑒 = −𝐶𝐵̅𝐵

−1 𝐶𝐵̅𝐴 𝜀1̅1 (5.30) 

[ 
𝜀2̅2
 𝑒

𝜀1̅2
 𝑒  ] = − [ 

𝐶2̅222 𝐶2̅212
𝐶1̅222 𝐶1̅212

 ]

−1

[ 
𝐶2̅211
𝐶1̅211

 ]  𝜀1̅1 (5.31) 

Solving the unknown elastic stress 𝜎1
 𝑒 

𝜎1
 𝑒 = 𝜎𝐴

 𝑒 = 𝐶1̅111 𝜀1̅1 + 𝐶1̅122 𝜀2̅2
 𝑒 + 𝐶1̅112 𝜀1̅2

 𝑒  (5.32) 

Following the wrinkling separation process described above, the artificial stress associated 

with the in-plane strain representing the buckling effect is separated out and the elastic parts of 

the stress and the strain tensors are obtained 

𝛔̅ e = [ 𝜎1
 𝑒 0 0 ]T (5.33) 

𝛆̅ e = [ 𝜀1̅1 𝜀2̅2
 𝑒 𝜀1̅2

 𝑒  ]T (5.34) 

And here, the separated stress and strain values 

𝛔̅ w = [ 𝜎1
 𝑤 𝜎2 0 ]T = [ (𝜎1 − 𝜎1

 𝑒) 𝜎2 0 ]T (5.35) 

𝛆̅ w = [ 0 𝜀2̅2
 𝑤 𝜀1̅2

 𝑤 ]T = [ 0 (𝜀2̅2 − 𝜀2̅2
 𝑒 ) (𝜀1̅2 − 𝜀1̅2

 𝑒 ) ]T (5.36) 

Having obtained the actual stress state in its principal directions, the transformation of the 

stresses and strains into the planar coordinate system can be performed 

𝛔 e = 𝐓σ
−1 𝛔̅ e = 𝐓ε

T 𝛔̅ e (5.37) 

𝛆 e = 𝐓ε
−1 𝛆̅ e (5.38) 

𝛔 w = 𝐓σ
−1 𝛔̅ w = 𝐓ε

T 𝛔̅ w (5.39) 

𝛆 w = 𝐓ε
−1 𝛆̅ w (5.40) 

When rewriting the constitutive law into the following form, the similarity with the general 

nonlinear material models can be seen. 

𝛔 = 𝐂 (𝛆 − 𝛆 w) (5.41) 

As written above, if the membrane status is taut, the original constitutive matrix is valid 𝐂t =

𝐂, and if the membrane status is slack, the constitutive matrix 𝐂s becomes a zero matrix. 

𝐂t = 𝐂 =  [ 
𝐶1111 𝐶1122 𝐶1112
𝐶2211 𝐶2222 𝐶2212
𝐶1211 𝐶1222 𝐶1212

 ] (5.42) 

𝐂s = [ 
0 0 0
0 0 0
0 0 0

 ] (5.43) 
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If the membrane is in the wrinkled status, the constitutive matrix 𝐂w  can be calculated 

numerically 

𝐂w =

[
 
 
 
 
 
 

 

𝜕𝜎11
𝜕𝜀11

𝜕𝜎11
𝜕𝜀22

𝜕𝜎11
𝜕𝜀12

𝜕𝜎22
𝜕𝜀11

𝜕𝜎22
𝜕𝜀22

𝜕𝜎22
𝜕𝜀12

𝜕𝜎12
𝜕𝜀11

𝜕𝜎12
𝜕𝜀22

𝜕𝜎12
𝜕𝜀12

 

]
 
 
 
 
 
 

 (5.44) 

Moreover, it can be proven that for the isotropic material, the following analytical constitutive 

relation holds 

𝐂w = [ 
𝐸 0 0
0 0 0
0 0 𝑘 𝐺

 ] = [ 

𝐸 0 0
0 0 0

0 0 𝑘 
𝐸

2(1 + 𝜈)

 ] (5.45) 

where 𝑘 is the coefficient of the shear softening, which is dependent on the degree of wrinkling, 

thus on the relation of the elastic and total strains 

𝑘 =
𝜀12
 𝑒

𝜀12
=
𝜀11
 𝑒 − 𝜀22

 𝑒

𝜀11 − 𝜀22
 (5.46) 

For the sake of the FEA numerical stability, the real tangential stiffness 𝐂s or 𝐂w cannot be 

used directly as it leads to the oscillations of forces and the deformations during the calculation, 

and the analysis often even does not converge at all. Thus, the artificial stiffness modification 

applies in order to avoid such behaviour. The selection of such artificial stiffness can be 

modified according to the required analysis robustness. These modifications should be 

understood as the algorithmically tuning of the given software behaviour. 

The calculation process is demonstrated with a simple example below, where the selected 

material is assumed to represent the woven fabric. More complex examples and their results are 

presented in the next subchapter, so this example was chosen as a basic one, where the principle 

directions are aligned with the planar directions (Fig. 88). The size of each square membrane is 

𝑎 = 1.00 𝑚 , thickness 𝑡 = 1.00 𝑚𝑚 . The imposed deformations are 𝑢𝑥
1 = 𝑢𝑥

2 = 𝑢𝑥
3 =

10.00 𝑚𝑚 , 𝑢𝑦
2 = 20.00 𝑚𝑚  and 𝑢𝑦

3 = 80.00 𝑚𝑚  (the upper index denoting the particular 

model). The first model deforms in the 𝑢𝑦
1  direction according to the elastic transverse 

contraction coefficient. The other membranes are in the wrinkled state. 

𝐸𝑥 = 1000.0 𝑘𝑁 𝑚⁄ , 𝐸𝑦 = 800.0 𝑘𝑁 𝑚⁄ , 𝐺 = 100.0 𝑘𝑁 𝑚⁄ , 𝜈𝑥𝑦 = 0.20 (5.47) 

𝐂 =  [ 
1033.1 165.3 0

 826.4 0
𝑠𝑦𝑚.  100.0

 ] 𝑘𝑁 𝑚⁄  (5.48) 

First, the classic membrane theory is used for the calculation of the elastic stress prediction, 

which is shown in the following figures (Fig. 89, Fig. 90, Fig. 91). 
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Fig. 88 Three Square Membranes, FE Mesh and Planar Directions Definition, Imposed Deformation 

Visualization 

 
Fig. 89 Elastic Prediction of 𝑛𝑥  𝑘𝑁 𝑚⁄  

 
Fig. 90 Elastic Prediction of 𝑛𝑦  𝑘𝑁 𝑚⁄  

 

Fig. 91 Vectors Visualizing Elastic Prediction of Principal Forces 𝑛1 and 𝑛2  𝑘𝑁 𝑚⁄  
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As the membranes 2  and 3  are classified to be in the wrinkled state, the above-described 

calculation scheme of the wrinkling separation is performed. Therefore, the unnatural effect 

caused by the in-plane strain belonging to the wrinkling is separated out and the resulting elastic 

stresses are presented in the figures (Fig. 92, Fig. 93, Fig. 94). 

 

Fig. 92 Elastic Part of Force 𝑛𝑥  𝑘𝑁 𝑚⁄  

 

Fig. 93 Elastic Part of Force 𝑛𝑦  𝑘𝑁 𝑚⁄  

 

Fig. 94 Vectors Visualizing Elastic Part of Principal Forces 𝑛1 and 𝑛2  𝑘𝑁 𝑚⁄  

Since the uniaxial tension is caused by the same value of in-plane strain 𝜀𝑥 = 0.01, the resulting 

forces have to be same, as presented above. This return algorithm into the common stress state 
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is visualized by the following graph (Fig. 95), where all elastic predictions are connected with 

the final elastic stress by the lines with the arrows. 

 

Fig. 95 Graph of Elastic Prediction and Consequent Return Process to Real Elastic Stress State 

5.5.2 Elastic Prediction Modification for Nonlinear Elastic and Plastic Material 

Models 

In the previous subchapter (5.5.1), the Wrinkling separation process was presented for the 

anisotropic linear elastic material models. In this subchapter, the process is also extended for 

the application in the case of the nonlinear elastic or plastic material models. The additional 

decomposition of the total strain written in the previous subchapter (5.41) is extended with the 

plastic strain 𝛆 p. 

𝛔 = 𝐂 (𝛆 − 𝛆 p − 𝛆 w) (5.49) 

Some of the possible material models combinations suitable for membrane structures are 

presented in the figure below (Fig. 96), namely Von Mises/Rankine, Drucker-Prager/Rankine, 

Tresca/Rankine or Mohr-Coulomb/Rankine yielding criteria. 

 

Fig. 96 Combined Yielding Criteria in Plane of 𝜎1 and 𝜎2 (𝜎3 = 0): Von Mises/Rankine (left), Drucker-

Prager/Rankine (middle) and Tresca or Mohr-Coulomb/Rankine (right) 

The essence of combining these criteria with the Wrinkling separation process lies in a suitable 

treatment or the appropriate modification of the actual elastic prediction. As well as the standard 

membrane theory formulas cannot be used for the linear material models and the modification 

presented is necessary (5.27), also the standard elastic prediction cannot be used for the return 
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algorithms on the plasticity surfaces and thus the modification of the elastic prediction is 

a crucial issue. 

The proposed calculation procedure is represented by the attached figures (Fig. 97, Fig. 98) and 

can be described by the consequent flowchart. For the sake of different elastic prediction 

distinctions, the left index is added. Moreover, to be consistent in the notation of the formulas, 

the bar above the stress vectors and components is used, since the main directions are assumed 

in the following formulas. 

I. the calculation of the standard elastic prediction 𝛔̅ 
I = [ 𝜎 

𝐼
1 𝜎 

𝐼
2 0 ]T 

II. the modification of the elastic prediction by the wrinkling separation procedure 𝛔̅ 
II =

[ 𝜎 
𝐼𝐼

1 0 0 ]T 

III. Performing the return algorithm to the yielding surface representing the chosen criterion 

with consideration of the additional elastic prediction modification 𝛔̅ 
III =

[ 𝜎 
𝐼𝐼𝐼

1 𝜎 
𝐼𝐼𝐼

2 0 ]T and thus converging to the final stress state 𝛔̅ e = [ 𝜎1
 𝑒 𝜎2

 𝑒 0 ]T. 

Since the first two steps are the same as in the previous subchapter (5.5.1), the last step needs 

to be described in more detail. 

Let’s assume the return process from the elastic prediction modified by the wrinkling separation 

algorithm 𝛔̅ 
II = [ 𝜎 

𝐼𝐼
1 0 0 ]T . The stress change caused by the yielding process can be 

described as 

𝚫𝛔̅ = [𝛥𝜎1 𝛥𝜎2 0] (5.50) 

When observing this process in two following figures (Fig. 97, Fig. 98), the origination of the 

tensile force 𝛥𝜎2 in the wrinkled direction is obvious. However, the fictitious compression 

component σ̅2
w of the eliminated fictitious stress state 𝛔̅𝑤 = [𝜎1

𝑤 𝜎2
𝑤 0] was separated out 

by the wrinkling separation procedure (note: 𝜎2
𝑤 = 𝜎 

𝐼
2 ). Thus, the tension increment 𝛥𝜎2 

cannot be the final stress state. In other words, the stress increment in the wrinkled direction 

caused by the yielding process is absorbed by the wrinkling smoothing process. Thus, the elastic 

prediction 𝛔̅ 
II  is further modified to 𝛔̅ 

III . Two essential cases can be described by the following 

formulas: 

𝜎2
 𝑤 + 𝛥𝜎2 ≤ 0 ⟶ 𝛔̅ 

III = [ 𝜎 
𝐼𝐼𝐼

1 𝜎 
𝐼𝐼𝐼

2 0 ]T = [ 𝜎 
𝐼𝐼

1 −𝛥𝜎2 0 ]T (5.51) 

𝜎2
 𝑤 + 𝛥𝜎2 > 0 ⟶ 𝛔̅ 

III = [ 𝜎 
𝐼𝐼𝐼

1 𝜎 
𝐼𝐼𝐼

2 0 ]T = [ 𝜎̅ 
𝐼𝐼

1 𝜎 
𝐼
2 0 ]T     (5.52) 

The green lines (Fig. 97, Fig. 98) connecting the stress points 𝛔̅ 
I  and 𝛔̅ 

II  represent the separated 

𝛔̅𝑤 = [ 𝜎1
𝑤 𝜎2

𝑤 0 ] components. While the stress 𝜎1
𝑤, represented by the horizontal green 

line, does not possess any physical meaning as it is caused by the transverse contraction effect 

which disappears when the wrinkling process is initialized, the second component 𝜎2
𝑤 , 

represented by the vertical green line, can be understood as a stress deficit to smooth out the 

wrinkles. It is obvious that the figure (Fig. 97) represents the case when the wrinkles are not 

soothed out by the yielding process and the membrane is still tensioned in one direction only. 

However, the second figure (Fig. 98) represents the case when the wrinkles are totally absorbed 

by the yielding process and the resulting stress state is the membrane tensioned in both 

directions. 
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Fig. 97 Standard Elastic Prediction 𝝈̅ 
𝐼  and Elastic Prediction after Wrinkling Separation 𝝈̅ 

𝐼𝐼  (left), Iterative 

Modification of Elastic Prediction 𝝈̅ 
𝐼𝐼𝐼  (middle and right), Final Elastic Prediction 𝝈̅ 

𝐼𝐼𝐼  and Resulting Stress 

State 𝝈̅ 𝑒 (right). Iteration Counter (Above). 

 

Fig. 98 Standard Elastic Prediction 𝝈̅ 
𝐼  and Elastic Prediction After Wrinkling Separation 𝝈̅ 

𝐼𝐼  (left), Modification 

of Elastic Prediction 𝝈̅ 
𝐼𝐼𝐼  and Resulting Stress State 𝝈̅ 𝑒 (right). 

Although the iterative procedure was mentioned (Fig. 97) for the description purpose of the 

method and physical process, it is not necessary to perform the calculation by this way and it is 

possible to proceed directly. The normal vector in the node, which is defined by the intersection 

of the Rankine criterion with some other (the yielding node on the 𝜎1 axis), is calculated. Two 

cases can occur: 

1. If the normal line to the yielding criterion used for the material description in tension 

(created in the position of the intersection with the axis 𝜎1) intersects the vertical green 

line first, this node defines the final elastic stress prediction 𝛔̅ 
III  directly (Fig. 97 right). 

This is the case of the wrinkled membrane even with the consideration of the yielding 

process. 

2. If this normal line to the yielding criterion intersects the horizontal green line first, the 

final elastic stress prediction is defined as 𝛔̅ 
III = [ 𝜎 

𝐼𝐼
1 𝜎 

𝐼
2 0 ]T = [ 𝜎 

𝐼𝐼
1 𝜎2

𝑤 0 ]T 

(Fig. 98). This is the case when the yielding process smooth out the wrinkles and the 

membrane become tensioned in both directions. 

For the algorithmization purposes, such a direct process is preferred as it ensures a higher 

calculation performance than the iterative procedure. 
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Finally, the real stress state is estimated and the transformation into the planar Cartesian 

coordinate directions can be performed, holding the well-known equation 𝛔 = 𝐂 (𝛆 − 𝛆 p −

𝛆 w), which was extended with the strain representing the wrinkling 𝛆 w. 

The main advantage of the proposed method of the wrinkling separation and the consequent 

elastic prediction modification lies in its modularity. As this process originates from the 

mentioned modification of the elastic prediction, it does not change the definition of the used 

material yielding criterion itself. The return algorithms and the constitutive matrices can be then 

used in a standard manner. 

The process of the wrinkling smoothing is presented by the following simple example. More 

complex situations are further presented in the subsequent chapter, which is only focused on 

the presentation of examples. For this simple example, the Von Mises/Rankine yielding 

criterion is assumed and the following material properties are used 

𝐸 = 900.0 𝑀𝑃𝑎, 𝜈 = 0.3, 𝑡 = 300.0 𝜇𝑚 

𝑓𝑦,𝑡 = 10.0 𝑀𝑃𝑎, 𝐸𝑝 = 0.0 𝑀𝑃𝑎 

𝐂 =  [ 
989.0 296.7 0
 989.0 0

𝑠𝑦𝑚.  346.2
 ]  𝑀𝑃𝑎 

(5.53) 

 
Fig. 99 Two Square Membranes, FE Mesh and Planar Directions Definition, Imposed Deformations 

Visualization 

The two square membranes are defined and the imposed load is applied according to the 

presented figure (Fig. 99). The fact that both membranes are in the wrinkled state before starting 

the yielding process is demonstrated by two following figures (Fig. 100, Fig. 101), where the 

elastic stress prediction 𝛔̅ 
I  according to the standard membrane theory is presented. 

 
Fig. 100 Standard Elastic Prediction 𝜎 
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Fig. 101 Standard Elastic Prediction 𝜎 
𝐼
𝑦 

When performing the yielding process, wrinkles in the left membrane are smoothed out, while 

the right membrane is still wrinkled, as it can be demonstrated by resulting stresses (Fig. 102, 

Fig. 103, Fig. 104). 

 

Fig. 102 Resulting Stress 𝜎𝑥 

 

Fig. 103 Resulting Stress 𝜎𝑦 
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Fig. 104 Vectors of Resulting Principal Stress 𝜎1 and 𝜎2

5.6 NUMERICAL EXAMPLES 
This chapter presents numerical examples. First, the wrinkling separation procedure for the 

linear elastic material models is verified on an example with the analytical solution available. 

Further, other examples are presented covering also the nonlinear material models. 

5.6.1 Pure Bending of Rectangular Membrane 

As the first example, the well-known and often used pure bending of the stretched rectangular 

membrane is chosen (Fig. 105). This example has an analytical solution [78] and therefore, it 

serves as a benchmark when evaluating the wrinkling separation process for elastic materials. 

The membrane is initially prestressed in both directions with the value of 𝑛0. The prestress is 

applied by the continuous load acting on the top and bottom borders and by the force 𝑃 = ℎ 𝑛0 

acting on the left and right edges. A beam with the high flexural and zero normal stiffness is 

used for the 𝑃 force transmission into the membrane. The membrane height is denoted by ℎ. 

Furthermore, the value of the nodal moment 𝑀 is increased in the middle of the left and right 

edges. By applying this moment, the isotropic pretension changes and when reaching a certain 

value, the bottom region starts to wrinkle. The height of the wrinkling region 𝑏  changes 

continuously until the limit value 𝑏 = ℎ is reached. 

The proportion of the wrinkled region magnitude 𝑏 to the height of the rectangular membrane 

ℎ is described by 

𝑏

ℎ
= { 

0.
𝑀

𝑃ℎ
<
1

6
3𝑀

𝑃ℎ
−
1

2
          

1

6
≤
3𝑀

𝑃ℎ
<
1

2

 (5.54) 

The proportion of the resulting horizontal tension 𝑛𝑥 to the original pretension 𝑛0 according to 

the 𝑦 coordinate is defined as 

𝑛𝑥
𝑛0
=

{
 

 
 

2(𝑦 ℎ⁄ − 𝑏 ℎ⁄ )

(1 − 𝑏 ℎ⁄ )2
          

𝑏

ℎ
<
𝑦

ℎ
≤ 1

0. 0. ≤
𝑦

ℎ
≤
𝑏

ℎ

 (5.55) 
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Fig. 105 Pure Bending of Stretched Rectangular Membrane [46] 

Since the membrane is symmetric along the vertical line situated in the middle of the structure, 

the right half will only be analyzed numerically (Fig. 106). The height ℎ = 1.0 𝑚, the length of 

the selected half is 𝑙 = 2.0 𝑚 (this parameter is not relevant for the results, so this is only the 

information about the particular model), the pretension 𝑛0 = 1.00 𝑘𝑁 𝑚⁄ . The first model is 

considered to be created from the isotropic linear elastic material model representing the linear 

part of the ETFE stress-strain response with the values 𝐸 = 900.0 𝑀𝑃𝑎, 𝜈 = 0.45, 𝑡 =

300.0 𝜇𝑚. Even these particular material values do not influence the monitored results of the 

presented example, as the formulas above do not use any of this information. However, this 

information is still mentioned to have an engineering idea or touching with the used material, 

since the orthotropic material will be used later, even with a different axis orientation and the 

mentioned material independence of this example will be proven. The selected FE size is 𝑙𝐹𝐸 =

0.05 𝑚, so the structure is composed of 𝑛 = 800 bilinear isoparametric FE. 

 

Fig. 106 Right Half of Rectangular Membrane, FE Mesh, Local Cartesian Coordinate System Orientation and 

Applied Forces and Moment 

The results in the form of figures are presented for three discrete states. First, for the initial 

pretension when 𝑀 = 0.0 𝑘𝑁𝑚  (Fig. 107), then for the limit state when the wrinkling 

initialization has started 𝑀 = 𝑃ℎ 6⁄ 𝑘𝑁𝑚 (Fig. 108), and finally for the relation 𝑏 ℎ⁄ = 1 2⁄ , 

which implies 𝑀 = 𝑃ℎ 3⁄  (Fig. 109). Other calculations with the gradual changes of the applied 

moment 𝑀 are presented in the form of graphs (Fig. 110, Fig. 111). 
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Fig. 107 Internal Forces 𝑛𝑥 Distribution for 𝑀 = 0.0 𝑘𝑁𝑚 

 

Fig. 108 Internal Forces 𝑛𝑥 Distribution for 𝑀 = 𝑃ℎ 6⁄  

 

Fig. 109 Internal Forces 𝑛𝑥 Distribution for 𝑀 = 𝑃ℎ 3⁄ , thus 𝑏 ℎ⁄ = 1 2⁄  

In the following, two graphs are presented, where the first one presents spreading of the 

wrinkled region bandwidth 𝑏  in dependence on the applied moment 𝑀  (Fig. 110). The 

comparison of the analytical and the numerical solution can be observed. The second graph 

presents the actual internal force 𝑛𝑥 distribution over the vertical cut for three different applied 
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moments 𝑀 (Fig. 111). Again, the comparison of the analytical and the numerical solution is 

available. Both attached graphs prove the reliability and the accuracy of the proposed wrinkling 

separation process. 

 

Fig. 110 Spreading of Wrinkled Region Bandwidth 𝑏 in Dependence on Applied Moment 𝑀 

 

Fig. 111 Comparison of Analytical and Numerical Results of Internal Forces 𝑛𝑥 on Vertical Cut for Three 

Different Applied Moments 𝑀 

In the end of this example, two other analyses are presented, where nothing changes but the 

material definition. While the material properties of the presented example are assumed to 

represent the linear stress-strain diagram part of the isotropic ETFE foil material, the follow-

ing two examples use the linear orthotropic material definition, which can be a representation 

for response of the woven fabric with top cover.  
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The properties are defined as 𝐸𝑥 = 1000.0 𝑘𝑁 𝑚⁄ , 𝐸𝑦 = 800.0 𝑘𝑁 𝑚⁄ , 𝐺 = 100.0 𝑘𝑁 𝑚⁄ , 

𝜈𝑥𝑦 = 0.20, 𝑡 = 1.0 𝑚𝑚 . As mentioned previously, the presented formulas are materially 

independent and hold for any elastic material and orthotropic direction definition (Fig. 112). Of 

course, the deformations are different but they are not a subject of this benchmark analysis. 

 

 

Fig. 112 FE Model with Changed Material Definition (Both) and Changed Orthotropic Direction (Bottom) 

 

Fig. 113 Internal Forces 𝑛𝑥 Distribution for 𝑀 = 𝑃ℎ 3⁄ , Thus 𝑏 ℎ⁄ = 1 2⁄  
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The analysis was performed for the nodal moment with the value 𝑀 = 𝑃ℎ 3⁄ . Comparing the 

results presented in the attached figures (Fig. 109, Fig. 113), it can be observed that the internal 

forces for the isotropic and both direction definitions of the orthotropic material are the same. 

5.6.2 Shear Test of Rectangular Membrane for Orthotropic Elastic Material 

In the second example, the shear test of the rectangular membrane is performed. As there is no 

analytical solution defined, another proof of the result reliability is used. 

Recalling the statement written in the beginning of this chapter, where it is written: ‘Essentially, 

there are two ways for solving the wrinkled state of the membrane in FEA. The first way is to 

use an extremely dense FE discretization and the in-plane stiffness in both the tension and the 

compression directions, while the bending stiffness is zero. Such a mesh allows the material to 

follow the little waves, but this is inadequate costly solution and it inevitably depends on the 

mesh. The second way, which can be further categorised, focuses on the separation of the total 

strain into the elastic and wrinkling part. Such a solution allows for using the FE discretization, 

where the particular elements are much bigger than the wrinkles. Even so the particular 

wrinkles are not modelled here, the method is not so strongly dependent on the mesh as in the 

case of the previous method and, in terms of the continuum analysis, the global stress state is 

precisely described by such a ”smeared wrinkle” analysis.’ 

A similar statement can be found in the contribution of the authors D.J. Steigmann and A.C. 

Pipkin [62]: ‘To estimate the load-carrying capacity of a wrinkled membrane without obtaining 

unneeded information about its precise shape, Wagner [45] formulated tension field theory, in 

which the wrinkles are treated as being spaced infinitesimally close together.’ 

Thus, the method reliability and accuracy can be proven by comparing the results performed 

by both of these analysis ways. Furthermore, the mesh dependence is presented here in the form 

of a graph. 

In this example, the following properties of a coated woven fabric are assumed 𝐸𝑥 =

2000.0 𝑘𝑁 𝑚⁄ , 𝐸𝑦 = 1000.0 𝑘𝑁 𝑚⁄ , 𝐺 = 200.0 𝑘𝑁 𝑚⁄ , 𝜈𝑥𝑦 = 0.20, 𝑡 = 1.0 𝑚𝑚. The length 

of the rectangular membrane is defined as 𝑙 = 2.0 𝑚  and the height is ℎ = 1.0 𝑚 . The 

horizontal imposed deformation in the top part of the membrane is defined with the value 𝛥 =

100.0 𝑚𝑚. For imposing a little imperfection in the direction perpendicular to the membrane 

and thus initiating the formation of wrinkles, a really small area load is applied, specifically 

𝑓 = 0.01𝑁 𝑚2⁄ , thus the load of only 2.0 grams in the total magnitude is used, negligible when 

comparing with the value of the resulting forces caused by the imposed deformation. For this 

analysis, the triangular isoparametric constant strain FE are used. The figure below (Fig. 114) 

shows the FE mesh with the given size 𝑙𝐹𝐸 = 0.10 𝑚, thus 𝑛 = 400, however different mesh 

sizes are further used to compare the mesh dependence. 

Note: The nearly unnoticeable perpendicular load for wrinkling initialization is only necessary 

in the case the shell elements with the zero bending stiffness are used. The wrinkling separation 

procedure does not need this crutch. 
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Fig. 114 Rectangular Membrane, FE Mesh, Local Cartesian Coordinate System Orientation, Imposed 

Deformation and Applied Perpendicular Forces, Node for Result Presentation (purple dot) 

As there are different FE meshes during studying this example, it is not possible to focus on 

one particular element and instead, the results are presented in the particular grid point (the 

point for result presentation). 

Since the diagonals run from left to right, the discretization is not symmetric and thus two cases 

of loading are studied. First, the imposed deformation is assumed from left to right, as shown 

in the figure (Fig. 114), then the direction is reversed and the deformation is applied from right 

to left (in the same magnitude). The aim of this process is focused on studying the mesh 

dependence as well as changing the element sizes. 

The results for the mesh size 𝑙𝐹𝐸 = 0.10 𝑚 and the first mode of shear loading is presented in 

the form of figures (Fig. 115 - Fig. 120), while the results of different mesh length definitions 

are presented in the form of the graph attached (Fig. 122). 

 

Fig. 115 Wrinkling Separation: Global Deformations 𝑢 
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Fig. 116 Wrinkling Separation: Deformations Perpendicular to Membrane 𝑢𝑧 

 

Fig. 117 Wrinkling Separation: Vectors of Principal Internal Forces 𝑛1 and 𝑛2 

 

Fig. 118 Shell Element with Zero Bending Stiffness: Global Deformations 𝑢 
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Fig. 119 Shell Element with Zero Bending Stiffness: Deformations Perpendicular to Membrane 𝑢𝑧 

 

Fig. 120 Shell Element with Zero Bending Stiffness: Vectors of Principal Internal Forces 𝑛1 and 𝑛2 

Comparing the graphical results, several notes can be written there. First, the zero perpendicular 

deformation 𝑢𝑧 can be observed for the wrinkling separation procedure (Fig. 116), which is  

 

Fig. 121 Shell Element with Zero Bending Stiffness: Deformations Perpendicular to Membrane 𝑢𝑧 for 𝑙𝐹𝐸 =

0.01 𝑚 
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consistent with the above-mentioned assumption of the tension field theory that the wrinkling 

of a membrane is replaced by the in-plane deformation. Instead, the inevitable wrinkles are 

observed in the case the equal tensile and compressive stiffness, but zero flexural stiffness are 

used (Fig. 119). When observing this perpendicular deformation for 𝑙𝐹𝐸 = 0.10 𝑚 (Fig. 119) 

and for 𝑙𝐹𝐸 = 0.01 𝑚 (Fig. 121), the fact that the wave size is restricted by the FE size is 

obvious. Applying the further refinement, the wrinkles are located closer to each other and the 

perpendicular deformation tends to zero. 

The second important observation can be seen when comparing the resulting forces. While in 

the case of the wrinkling separation procedure, the internal forces are absolutely homogeneous 

with the values 𝑛1 = 31.97 𝑘𝑁 𝑚⁄  and 𝑛2 = 0.00 𝑘𝑁 𝑚⁄  in the whole membrane (Fig. 117), 

the force variation can be seen in the case of the shell elements with zero bending stiffness, 

where there is also the compression occurring on the border as the omnidirectional supports do 

not allow for the wrinkles here (Fig. 120). However, the tendency of the results is the same and 

the good agreement with the most of the membrane surface is evident. 

The shear test of a rectangular membrane with the orthotropic elastic material was further 

studied for different FE mesh refinements, whose settings can be seen in the table below (Tab. 

2). The comparison of the results obtained is measured for the first principal force 𝑛1 in the 

highlighted grid point (Fig. 114, Fig. 122). 

Tab. 2 Description of Eight Performed Analyses FE Data 

Analysis number 1 2 3 4 5 6 7 8 

FE size 𝑙𝐹𝐸  (𝑚𝑚)  500 400 300 200 100 50 25 12.5 

Number of 2D FE 16 25 44 100 400 1600 6400 25600 

Number of FE nodes 15 24 42 66 231 861 3321 13041 

Equations number 45 72 126 198 693 2583 9963 39123 

 

Fig. 122 Resulting Values of First Principal Force 𝑛1 in Grid Point (Fig. 114) for Eight Different FE 

Refinements 
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Four analyses were calculated for each FE mesh setting, since the imposed deformation was 

applied from left to right (right direction) and from right to left (left direction), further both the 

wrinkling separation process (WS) and the shell with zero flexural stiffness (Shell) cases were 

also used. 

Several conclusions can be made on the basis of the presented graph. First, the wrinkling 

separation procedure is independent of the mesh, while the usage of the shell with the zero 

bending stiffness is distinguished by a considerable FE mesh dependence as the inevitable 

perpendicular deformations are directly restricted by the FE mesh used. Furthermore, when 

used the shell elements, a well-seen difference of the different imposed load direction is 

presented, which is the consequence of the alignment of the wrinkles with the FE mesh 

diagonals in the right direction, while the left direction causes the wrinkles which are crossing 

the diagonal direction (Fig. 114). However, both shell models converge to the results of the 

wrinkling separation procedure when the extensive refinement is used. 

5.6.3 Shear Test of Rectangular Membrane for Isotropic Nonlinear Elastic and Plastic 

Material 

The same geometry of the model and the imposed load conditions as in the previous example 

(Fig. 114) are now subjected to the analysis with the isotropic nonlinear elastic combined 

yielding criterion Von Mises/Rankine. This example is performed by using the above-described 

wrinkling separation procedure and the elastic prediction modification. The material used here 

is considered as a bilinear approximation of the ETFE stress-strain diagram with the parameters 

𝐸 = 900.0 𝑀𝑃𝑎, 𝜈 = 0.45, 𝑡 = 300.0 𝜇𝑚 , the yielding stress 𝑓𝑦,𝑡 = 21.0 𝑀𝑃𝑎  and the 

elasticity modulus after yielding 𝐸𝑝 = 90.0 𝑀𝑃𝑎. The results of the mesh size 𝑙𝐹𝐸 = 0.10 𝑚 

are again presented in the graphical form (Fig. 123 - Fig. 128). 

 

Fig. 123 Wrinkling Separation: Global Deformations 𝑢 

Global Deformations
|u| [mm]

100.0

 90.9

 81.8

 72.7

 63.6

 54.5

 45.5

 36.4

 27.3

 18.2

  9.1

  0.0

Max : 100.0
Min :   0.0

In Z-direction



NUMERICAL EXAMPLES 

 

97 

 

 

Fig. 124 Wrinkling Separation: Deformations Perpendicular to Membrane 𝑢𝑧 

 

Fig. 125 Wrinkling Separation: Vectors of Principal Stresses 𝜎1 and 𝜎2 

 

Fig. 126 Shell Element with Zero Bending Stiffness: Global Deformations 𝑢 
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Fig. 127 Shell Element with Zero Bending Stiffness: Deformations Perpendicular to Membrane 𝑢𝑧 

 

Fig. 128 Shell Element with Zero Bending Stiffness: Vectors of Principal Stresses 𝜎1 and 𝜎2 

When using the tenth of the size of the previously used FE 𝑙𝐹𝐸 = 0.01 𝑚 and the shell elements 

with the zero bending stiffness, the wrinkles are smaller and spaced closer to each other, as can 

be seen when comparing the figures (Fig. 127) and (Fig. 129).

 

Fig. 129 Shell Element with Zero Bending Stiffness: Deformations Perpendicular to Membrane 𝑢𝑧 for 𝑙𝐹𝐸 =

0.01 𝑚 
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An analogous comparison of the resulting values as presented in the previous example is made 

for the different mesh refinements and imposed load orientation. The example details and 

results are attached below (Tab. 3, Fig. 130). 

Tab. 3 Description of Eight Performed Analyses FE Data 

Analysis number 1 2 3 4 5 6 7 8 

FE size 𝑙𝐹𝐸  (𝑚𝑚) 500 400 300 200 100 50 25 12.5 

Number of FE 16 25 44 100 400 1600 6400 25600 

Number of FE nodes 15 24 42 66 231 861 3321 13041 

Equations number 45 72 126 198 693 2583 9963 39123 

 

Fig. 130 Resulting Values of First Principal Force 𝑛1 in Grid Point (Fig. 114) for Eight Performed Analyses 

As well as in the previous example, when using the shell elements with the zero flexural 

stiffness, the diagonal directions have a considerable influence on the resulting stresses if the 

FE mesh is not refined enough. With the consequent decreasing of the FE length value, the shell 

solution converges to the wrinkling separation procedure solution, which is again independent 

of the mesh. 

There are completely identical results obtained when using the combined plastic yielding 

criterion Von Mises/Rankine, instead of the nonlinear elastic material definition.

5.7 STATIC AND DYNAMIC ANALYSIS OF MEMBRANE STRUCTURES 
While the previous chapter was focused on the verification of the proposed method for dealing 

with the wrinkling phenomenon, this chapter presents the structure analysis of the whole 

membrane structure, starting with the static analysis and then presenting the results of the 

dynamic analysis. 

The analyzed model is inspired by the Tanzbrunnen structure [I, II] and the PVC/PES Type III 

is  assumed  in  the  analysis,  defined  by  the material  characteristics     𝐸𝑥 = 1000.0 𝑘𝑁 𝑚⁄ , 
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𝐸𝑦 = 700.0 𝑘𝑁 𝑚⁄ , 𝐺 = 70.0 𝑘𝑁 𝑚⁄ , 𝜈𝑥𝑦 = 0.20, 𝑡 = 1.0 𝑚𝑚 The radius defining horizontal 

distance of the high or low points from the middle is 𝑟 = 10.0 𝑚, the low points are situated in  

 

Fig. 131 Geometry of Membrane Structure After Form Finding and Orthotropy Directions 

 

Fig. 132 FE Mesh 

 

Fig. 133 Snow Load 𝑓𝑠 = 1.00 𝑘𝑁 𝑚2⁄  
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the zero level ℎ𝑙 = 0.0 𝑚, the high points are in the position of ℎℎ = 4.0 𝑚 and the middle ring 

is situated at the height ℎ𝑟 = 2.0 𝑚 with the diameter 𝑟𝑟 = 2.0 𝑚. As can be observed in the 

following figure, the membrane is reinforced by the cables connecting the inner ring with the 

outer low and high points (Fig. 131). The definition of the orthotropy directions as well as the 

FE discretization can be seen in the figure (Fig. 132). Later, the figures of the applied snow and 

wind loads are presented (Fig. 133, Fig. 134, Fig. 135). The isotropic prestress is defined with 

the values 𝑛𝑥 = 𝑛𝑦 = 1.0𝑘𝑁 𝑚⁄ . 

 

Fig. 134 Wind Load Varying from Pressure Value 𝑓𝑤 = 1.00 𝑘𝑁 𝑚2⁄  until Suction with Value 𝑓𝑤 =

−1.50 𝑘𝑁 𝑚2⁄  

 

Fig. 135 Wind Load in Coloured Display 

A short review of some results is presented below, first the prestress after the form finding 

process (Fig. 136), then the deformations and the first principal normal forces after the snow 

(Fig. 137, Fig. 138) and wind (Fig. 139, Fig. 140) load analyses. 
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Fig. 136 Prestress in Main Direction 𝑛1 After Form Finding Analysis (Note: 𝑛2 = 𝑛1 According to Task 

Definition) 

 

Fig. 137 Snow Load: Global Deformations 𝑢 

 

Fig. 138 Snow Load: First Principal Normal Forces 𝑛1 
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Fig. 139 Wind Load: Global Deformations 𝑢 

 

Fig. 140 Wind Load: First Principal Normal Forces 𝑛1 
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0.5 . To approximate the damping caused by the surrounding environment, the Rayleigh 

coefficient 𝛼 = 0.5 is used first, where this quite a high value is assumed because of the low 

self-weight of the membrane material. Both the implicit Newmark and the explicit central 

difference methods were used and the results are presented for two selected nodes (Fig. 141) in 

the form of a graph (Fig. 142) where four results represent the deformations in two discrete 

nodes for both of the mentioned methods and the time interval of one period 𝑇 = 2.0 𝑠. A good 

agreement for both, the implicit and the explicit solutions, can been observed. 
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Fig. 141 Investigated Nodes 

 

Fig. 142 Deformation 𝑢𝑧 of Selected Nodes in Nonlinear Time History Analysis 
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6 CUTTING PATTERN GENERATION 

Due to the discrepancy between the double curvature of membrane structures and the planar 

pieces of the material they should be made of, the cutting pattern generation is an essential 

procedure to be performed before the manufacturing process. The quality of the generated 

patterns strongly affects the quality of the intended prestress approximation, thus this analysis 

precision is of a high importance. 

The whole procedure could be divided into two essential steps. First, it is necessary to cut the 

spatial shape into appropriately sized pieces, therefore the spatial patterns are obtained. The 

appropriate width of the patterns is driven by the available material widths, by the curvature of 

the structure and the aesthetic impression. This step does not bring any approximations as the 

shape has not been changed yet. However, the manner of the structure division strongly affects 

the approximation task, which is done in the second step. 

The second task to be done is the flattening procedure, thus the planar patterns have to be 

calculated for their spatial shapes. This is inevitably connected with the necessary distortions, 

which have to be undertaken. However, it is of the highest interest to come with a procedure, 

which decrease this discrepancy as much as possible. 

In addition to the engineering aspect of this task, the aesthetic importance of cutting patterns 

has to be considered as well, since the welding lines are a well-visible architectural element 

(Fig. 143). 

 

Fig. 143 Shopping Centre Chodov in Prague (East Exit from Metro), Czech Republic [X] 
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In the following, the commonly used cutting lines are described, and the categorization and 

overview of flattening procedures are further provided. Then, the chosen analysis procedure is 

presented and finally, the subchapter presenting examples concludes this chapter about the 

generation of cutting patterns. 

6.1 CUTTING LINES 
Although the membrane surface could be generally divided into pieces by the arbitrarily chosen 

lines, there could be practically met two commonly used line types, namely the geodesic lines 

and the planar sections. The planar sections are created by the intersection of the definition 

plane with the membrane surface and sometimes, they are preferred. However, the geodesic 

lines are the most broadly used way when cutting double-curved surfaces, since they have 

considerable advantages arising from their nature. 

It is quite common to meet a definition of the geodesic line, which states that it as a shortest 

path between the defined nodes. However, a rigorous mathematical definition describes 

a geodesic line as a line, which does not curve while going through the surface. Therefore, more 

than one geodesic line can exist for a given surface in general, as could be observed in the 

following figure (Fig. 144). For sure, the shortest line between the defined nodes is a geodesic 

line, which is of interest when cutting a membrane. 

 

Fig. 144 Possibility of Existence of Different Geodesic Lines [77] 

A considerable advantage when using these lines arise from the fact that the geodesic line does 

not curve when going through the surface as the flattened patterns are relatively straight after 

flattening when comparing with the patterns defined by different line type. For example, when 

using planar cuts, the flattened patterns have a curved shape as will be shown in the chapter 

with examples. 

A possible way of a geodesic line calculation on a discretized FE mesh is presented in the figure 

below (Fig. 145). Considering the point 𝑃𝑠𝑡𝑎𝑟𝑡 as a geodesic line start and 𝑃𝑒𝑛𝑑 as its intended 

end, the line could be searched in the following way. The initial direction in 𝑃𝑠𝑡𝑎𝑟𝑡 is chosen 

and, when crossing the FE edge, the angle 𝛼 is preserved. This is based on the geodesic line 

definition saying that it does not curve in the tangential plane to the surface. Following this 

algorithm, the line is crossing the FE edges until it reaches the border of the surface. Then, the 

distance between the current end point position 𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and the intended point position 𝑃𝑒𝑛𝑑 

is a basis for the initial direction adjustment at the point 𝑃𝑠𝑡𝑎𝑟𝑡. Following this procedure in an 

iterative way, the current geodesic line end position 𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 converges to the intended position 

𝑃𝑒𝑛𝑑. The left and the middle parts of the figure (Fig. 145) display the spatial FE discretization, 

the intended geodesic line start and end positions and its final spatial geometry. The right part 
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of the figure demonstrates the uncurved nature of the geodesic line when transforming the given 

spatial mesh into a plane. 

 

Fig. 145 Geodesic Line on FE Mesh Before and After Flattening ([77] with Modifications) 

In the literature, the process presented above can be found in a more detailed description, and 

other solution procedures are also available [38, 39, 77, 82, 83, 84, 85, 86].

6.2 FLATTENING PROCEDURE 
After dividing the surface into a series of spatial patterns, the flattening procedure is to be 

performed. Essentially, two different classes of this approximative task can be followed: the 

mathematical solution and the continuum mechanics solution procedures. Further, there will be 

presented some solution approaches, starting from the earlier simplified methods until the 

general ones. 

6.2.1 Mathematical Flattening 

One of the oldest flattening procedures is called the Simple Triangulation Method. This 

approach is based on replacing the initial FE mesh, cut-out by using specified cutting lines, by 

a special mesh for unfolding. During this process, the mesh for unfolding is created in such 

a way that the individual elements cross the whole width of the pattern. Thus, the spatial pattern 

can be further transformed into a plane easily. This process is described in the attached figure 

(Fig. 146). While replacing the FE mesh by the special one, there is really enormous 

simplification performed and the methods precision is poor. 

 

Fig. 146 Basis of Simple Triangulation Method (from left: Spatial Shape, FE Mesh of Spatial Model Used for 

Form Finding and Structural Analysis Purposes, Modified Mesh for Flattening Purposes, Flattened Pattern) 

[77] 

Far more advanced procedure of this class can be named Mathematical Squashing. In this 

second mathematically based method, the FE mesh of the cut-out membrane pieces is used 
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during the analysis. Furthermore, the best geometrical approximation of the spatial pattern is 

searched for by the least square approach, minimizing the prescribed geometrical function. 

𝐅(x, y) =
𝟏

𝟐
𝐯𝐓𝐏 𝐯 (6.1) 

δ𝐅(x, y) = 0 (6.2) 

where 𝐯 represents the vector of residuals, 𝐏 represents the matrix of weights, and 𝐅 is the 

function to be minimized. More detailed description of this method could be found in the 

following literature [87, 88]. 

The mathematical squashing is considerably more precise than the simple triangulation 

method described previously. It represents a good compromise between the accuracy and the 

algorithm performance, as the solution is obtained in a single calculation step. However, this 

method is still unable to precisely consider the physical properties of the material used for 

patterns. 

6.2.2 Physical Flattening 

This class of methods considers the flattening procedure as a physical process, mostly directly 

derived from the continuum mechanics basis. The pattern shape transformation from the space 

into the plane causes strains and thus, searching for equilibrium is performed (Fig. 147). 

One of the earlier contributions dealing with the comparison of the pattern quality when using 

different methods was written by E. Moncrieff and B.H.V. Topping. [89]. Further interesting 

contribution with the proposal of Stress Composition Method (SCM) was presented by the 

authors B. Maurin and R. Motro [90]. Recently, the authors K.U. Bletzinger and 

A. Widhammer contributed to this field with the method called Variation of Reference Strategy 

(VaReS) [91], which inverts the workflow of the Total Lagrangian formulation in principle and 

searches for the appropriate reference for the prescribed erected (deformed) pattern in the space. 

In the publications [92, 93, 94, 95], further research works of the author team around 

K.U. Bletzinger are presented. Another contributions to this area of analyses could be found in 

[96, 97, 98, 99, 100, 101, 102, 103, 104], where some of the authors replace the continuum by 

the system of nodes connected with springs. 

Considering the methods consistently derived from the continuum mechanics basis, the 

approaches minimizing the sum of the stress differences as well as the methods minimizing the 

sum of the energy differences accumulated during the flattening process could be identified. 

The first one of the mentioned procedures has considerably poorer convergence behaviour than 

the second one [38, 94]. As presented in the mentioned research works, both procedures lead to 

quite close resulting pattern shapes.

Using the procedure minimizing the sum of the energy differences accumulated in the patterns 

during the flattening process, the general principle of the virtual work (2.25), thus also the 

linearized forms (2.40) and (2.41), is consistently followed. Therefore, the earlier derived 

equations are appropriate for this analysis 
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∫ 𝐶𝑡
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𝑡
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𝑖𝑗  𝑑𝑉 
𝑡

 

𝑉 𝑡

= ℛ 
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𝑡

 

𝑉 𝑡

 (6.3) 

or in the matrix notation 

∫ 𝐂t
  𝛆t

  δ 𝛆t
  dV 
t

 

V t

+ ∫ 𝛔 
t  δ 𝛈t

  dV 
t

 

V t

= 𝓡 
t+∆t − ∫ 𝛔 

t  δ 𝛆t
  dV 
t

 

V t

 (6.4) 

By this really natural way, in terms of the FEA, the cutting patterns with a high quality can be 

calculated under consideration of the given material properties and other possible requirements, 

as will be presented later. 

 

Fig. 147 Flattening Process ([38] with Modifications) 

When following this FEA procedure, two strategies can be identified. The forward flattening 

process, squashing down the spatial patterns, or the backward flattening process, simulating 

the erecting process of the patterns into their final position (VaReS) while modifying the 

reference pattern position. 

Whether choosing the first or the second way, the suitable starting shape of planar patterns is 

of high interest, as gradual deforming from the spatial configuration would exhibit poor 

calculation performance. This planar shape can be seen as the shape after the first iteration. The 

pattern projection into the global plane or into the mean tangential plane of the spatial pattern 

is used quite often, as could be seen in the presented research papers and works. The closer is 

the initial planar shape to the equilibrium one, the higher is the algorithm performance. Thus, 

the mathematical squashing could be used as a really good starting position for the subsequent 

physical analysis.

6.3 SPECIAL REQUIREMENTS FOR FLATTENING PROCEDURE 
Even though the physical flattening procedure could be classified as a special case of FEA, 

there are some peculiarities and differences, which has to be satisfied during this analysis. 

Specifically, the fact that the orthotropic directions are driven by the planar shape instead of the 

original spatial one, is of high importance. Furthermore, there is also an important engineering 

requirement for the compatibility of the seam lines. 
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6.3.1 Orthotropic Directions 

When taking into consideration the material behaviour of the woven fabric during the flattening 

procedure, the resulting orthotropic directions could not be derived from the standard 

deformation from the spatial template, thus the spatial pattern, to the plane. This would not lead 

to the orthogonal orthotropy in the final pattern, which, however, is the physical nature of the 

woven fabrics. Thus, the local Cartesian axial system of the FE in the pattern has to be driven 

by its definition in the resulting pattern. 

In other words, the orthotropic directions have to be treated carefully while calculating the 

patterns to avoid violating the flattening process as well as the physical nature of the materials 

used. 

6.3.2 Compatibility of Seam Lines 

While the previous requirement was of physical nature, the other one is more the manufacturing 

restriction. Since the planar patterns are to be connected together in the unstressed state, the 

seam line compatibility is required. Thus, the same length of the seam lines of the adjacent 

patterns is a required restriction during the flattening procedure 𝛥𝐿𝑖 = 0. Therefore, the patterns 

are not calculated separately, but together to ensure this compatibility for all the patterns (Fig. 

148). 

 

Fig. 148 Ensuring Same Lengths of Boundary Lines of Adjacent Patterns ([38] with Modifications) 

6.3.3 Compensation 

As the cutting pattern analysis deals with the membrane structures under pretension, the process 

of stress releasing has to be satisfied. Thus, the final pattern size is adjusted to satisfy the 

required pretension in the tensioned state. 

However, the woven fabric exhibits a nonlinear material response. Therefore, not only the form 

found shape with the required prestress has to be taken into account, but also the stresses 

reached in the nonlinear structural analysis. The goal of the applied compensation is to satisfy 

the approximation of the intended prestress after undergoing the loading cycles. If only the 

prestress would be compensated, the plastic deformations caused by applying the load would 

remove the prestress after unloading. Thus, the applied membrane compensation is summing 

both the expected plastic strains after the loading and unloading cycles and the residual elastic 

strains for satisfying the prestress in the membrane. 
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The simulation of the loading and unloading cycles could be seen in the results of a particular 

biaxial test, where in the first figure, the load history is presented (Fig. 149), and in the second 

one, the subsequent strain history is monitored (Fig. 150). 

 

Fig. 149 Biaxial Test: Load History [80] 

 

Fig. 150 Biaxial Test: Measured Strains [80] 

In the consequence of this complexity, the standard way of the compensation consideration 

applies the additional strains into the flattening procedure, which contributes to the 'right hand 

side' of the equilibrium equation (6.3) or (6.4). These strains are obtained by the biaxial testing 

while applying the prescribed load history, or by using the recommended values when following 

the simplified way. 

There could be observed a research interest in the consideration the compensation automatically 

by releasing the prestress of the form found membrane with the consideration of the defined 

material model. However, this way needs further investigation and detailed research as such 

a procedure is extremely complex. This process would have to deal with the plastic material 
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model and load history, since both the form finding results and the static analysis results would 

have to be considered in the process of the automatic compensation estimation. For sure, this is 

a great field for detailed investigations, research and experimental work.

6.4 SELECTED CALCULATION PROCEDURES 
As the examples presented in further chapter were calculated in the software RFEM by the 

company Dlubal Software [III], using the FEA solver by the FEM consulting company [IV], 

the selected and consequently implemented procedures are mentioned here. 

In the calculation of the geodetic lines, the above-described angular based algorithm was 

followed. 

For the development of the flattening procedure, the combination of the mathematical 

squashing (for estimation of the shape in the first iteration) and the subsequent minimization of 

the energy differences sum was followed, as this process provides the optimum combination of 

the speed and precision with the possibility of applying the selected material definition, 

structural requirements, etc.

6.5 EXAMPLES 
The examples presented below demonstrate some of the facts mentioned above, as for example 

the consequence of using different cutting lines, the influence of the selected material during 

the flattening procedure, and the example dealing with the evaluation of the pattern quality [44]. 

6.5.1 Comparison of Usage of Different Cutting Lines 

The first example to be presented is a hypar shaped membrane structure. For splitting this 

model, different cutting lines are applied to demonstrate their influence on the resulting pattern 

shape. The prestressed spatial configuration is presented in the first figure (Fig. 151) and the 

shapes of the resulting patterns are shown in the second figure (Fig. 152). 

 

Fig. 151 Different Cutting Lines Used to Split Membrane: Irregular Lines (Left Pattern), Geodesic Lines 

(Middle Pattern) and Planar Sections (Right Pattern) [44] 
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Fig. 152 Planar Patterns: Usage of Irregular Lines (Upper Pattern), Geodesic Lines (Middle Pattern) and 

Planar Sections (Lower Pattern) [44] 

Based on this observation, the reason for preferring the geodesic lines is obvious, as this 

solution leads to decreasing the material wastage as well as the possibility of a quite close 

alignment of the warp direction with the seam lines. 

6.5.2 Influence of Selected Material Model 

The second presented example deals with the influence of the selected material model 

consideration during the flattening procedure. Here, two different materials are used for the 

simple structure presented below (Fig. 153). First, the linear response of the ETFE material is 

assumed with the values 𝐸 = 900.0 𝑀𝑃𝑎, 𝜈 = 0.45, and further the linear orthotropic response 

of the coated woven fabric is defined as 𝐸𝑥 = 2000.0 𝑘𝑁 𝑚⁄ , 𝐸𝑦 = 1000.0 𝑘𝑁 𝑚⁄ , 𝐺 =

200.0 𝑘𝑁 𝑚⁄ , 𝜈𝑥𝑦 = 0.20. 

The structure is flattened as one pattern, obviously not appropriate for a real designing case, but 

for this exemplary demonstration, this choice is suitable, since there can be bigger distortions 

expected and observed than when the membrane would be cut into small patterns. Furthermore, 

the resulting strains undergone during the flattening are presented for both cases of the 

predefined materials (Fig. 154 – Fig. 161). 

 

Fig. 153 Membrane Structure to be Flattened 
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Fig. 154 ETFE: Principal Strains 𝜀1 and 𝜀2 

 

Fig. 155 ETFE: Axial Strains 𝜀𝑥 

 

Fig. 156 ETFE: Axial Strains 𝜀𝑦 
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Fig. 157 ETFE: Shear Strains 𝛾𝑥𝑦 

 

Fig. 158 Woven Fabric: Principal Strains 𝜀1 and 𝜀2 

 

Fig. 159 Woven Fabric: Axial Strains 𝜀𝑥 
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Fig. 160 Woven Fabric: Axial Strains 𝜀𝑦 

 

Fig. 161 Woven Fabric: Shear Strains 𝛾𝑥𝑦 

6.5.3 Evaluation of Flattened Patterns 

The structure presented above is now analyzed by using different cutting pattern layout 

definitions. Two cases are identified (Fig. 162, Fig. 163), where in the first case, the membrane 

is divided into three patterns, and in the second case, the membrane is divided into six patterns. 

The orthotropic material defined above is used. 

 

Fig. 162 Different Cutting Pattern Layouts and Orthotropic Directions Definition 
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Fig. 163 Different Cutting Patterns Layouts After Flattening 

 

Fig. 164 Principal Strains 𝜀1 and 𝜀2 

 

Fig. 165 Axial Strains 𝜀𝑥 
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Fig. 166 Axial Strains 𝜀𝑦 

 

Fig. 167 Shear Strains 𝛾𝑥𝑦 

The selected layout has a considerable influence on the strains necessary for reaching the flat 

configuration (Fig. 164 - Fig. 167). By means of these results, it can be evaluated whether the 

pattern is suitable or not, when the acceptable distortion is defined. Of course, the smaller are 

the patterns, the lower are the strains. But the manufacturing process, the aesthetic appearance 

and the available material widths should be considered as well. The results of the cutting pattern 

analysis can thus help when deciding the pattern layout and the evaluation of their quality. 

6.5.4 Examples of Complex Structure Patterning 

The previous structure had quite simple configurations as they were intended to focus on 

particular tasks. The structure below, on the other hand, has the demonstrative purpose to show 

the pattern layout for a more complex membrane structure (Fig. 168, Fig. 169). 
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Fig. 168 Composition of Conical and Hypar Membranes 

 

Fig. 169 Pattern Layout 
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7 USE IN PRACTICE 

Due to the possibility of fruitful interconnection of the research work performed at the 

university environment and the development work performed in the established software 

companies, the calculation tools for membrane structures were developed in the framework of 

a teamwork and implemented into the RFEM software [III]. The calculation procedures are 

implemented as described above. 

 

Fig. 170 Oxigeno in San Francisco de Heredia, San José, Costa Rica [XI] 

 

Fig. 171 Interior View of Project Oxigeno, San Francisco de Heredia, San José, Costa Rica [XI] 
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Here, a really interesting customer project calculated by using the algorithms described above 

is presented. This project’s name is Oxigeno and is located in San José, Costa Rica (Fig. 170, 

Fig. 171, Fig. 172). The detailed description could be found on this website [XI], where it is 

also stated: ‘The ETFE cushion is the first one in the city of San Francisco de Heredia and at 

the same time the biggest in the world.’ 

 

Fig. 172 Numerical Model of Project Oxigeno, San Francisco de Heredia, San José, Costa Rica [XI] 
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8 CONCLUDING REMARKS 

Membrane structures are a really special kind of structures requiring uncommon designing steps 

in comparison with the conventional structures. The form finding procedure has to be performed 

at the beginning of their design process and cutting patterns need to be generated for the 

manufacturing process. For proper structural analysis, it is also necessary to consider the 

wrinkling phenomenon as the classic membrane theory does not ensure the real stress state 

estimation. 

Each of the stated physical procedures were a part of the presented dissertation, thus the deep 

investigation of the current state of the art was carried out. Based on these investigations, the 

theoretical descriptions were written down at the beginnings of the particular chapter. 

Furthermore, the general and efficient methodologies selected for the numerical analysis were 

described. Furthermore, the methods and calculation sequences proposed during the research 

work were presented. Whole work was supported by the beneficial interconnection of the 

research work at the university environment and the development work for the above-stated 

software companies. Thus, the theoretical sections, statements and proposals are followed by 

the results of numerical analyses, that are demonstrating and proving the individual statements. 

Based on the investigations performed in the field of the form finding analysis, the selected 

calculation procedure is derived from the geometric stiffness and hybrid platforms. 

Nevertheless, the crucial point of the form finding analysis consists of the equilibrium searching 

process itself. The necessity of reaching such a prestress is the cause of many different 

stabilization techniques. The advanced projection method was proposed for conical membranes 

which derives the spatial equilibrium, which would not be possible to define directly, from the 

equilibrium in the arbitrary oriented projection plane, where it can be defined directly. This 

strong stabilization technique is quite unique in the principle, as it does not work as 

an emergency brake of an unrealistic prestress requirement as the stabilization techniques 

usually work, but it defines the exact equilibrium, although in the implicit manner. During the 

work focused on the form finding of tensile structures, the attention, in addition to the given 

scope of the dissertation thesis focus, was paid to the shape optimization procedure of the 

structures under compression or even of the structures with the mixed form finding 

requirements. The pushing method stabilization technique was proposed within the framework 

of the doctoral thesis to deal with these difficult and complex physical requirements. The above-

described calculation procedures and the individual phenomena as well as the crucial 

implementation necessities were demonstrated on particular examples. Namely, the 

independence of the equilibrium shape on the chosen initial approximation if the equilibrium 

of the forces within the given boundary conditions is known, the regeneration of the local axial 

system, the interaction of the supporting structure with the parts with shape analyzing, 

presenting the result of the projection method and pushing method stabilization techniques, or 

even the extraordinary phenomenon of the multiple equilibrium existence possibility for the 

structures with the mixed shaping requirements, etc. 

Based on the investigations in the field of the wrinkling phenomenon, the new advanced and 

modular technique was proposed. The process for dealing with the linear elastic materials was 
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named wrinkling separation, while the procedure for dealing with the nonlinear elastic or 

plastic materials was named elastic prediction modification, which incorporates the wrinkling 

separation algorithms inside as a modular part. These procedures separate out the unnatural 

stress which would be considered by the standard membrane theory, but which cannot appear 

in the membrane in the consequence of its physical nature. Furthermore, the proposed methods 

were extensively verified and few of the analyzed examples were incorporated to this work to 

prove their reliability. The first benchmark example disposes with the analytical solution, while 

the other examples use the well-known equivalency of the wrinkling models with the 

extensively refined discretization in combination with the shell elements with zero flexural 

stiffness. Finally, the structural analysis of the whole membrane structure in both the static and 

dynamic response demonstrated the algorithms capabilities. 

In the chapter focused on the generation procedure of cutting patterns, the possible approaches 

were presented and both their advantages and disadvantages were mentioned. Based on the deep 

investigations performed in this research area, the optimum algorithmic sequence was 

proposed to combine the strengths of the individual methods. As the mathematical squashing 

is a really good initial approximation for the planar patterns, the pattern shapes obtained in this 

way were consequently used for the advanced minimization of energy differences between the 

spatial and the planar patterns. This combination thus exhibits increasing of the calculation 

performance while ensuring the physically optimized patterns. At the end of this section, the 

numerical examples proved particular statements mentioned in this section as well as 

demonstrated the possibility of the resulting pattern quality evaluation. 

The fascinating field of tensile structures still attracts the attention of many researchers and 

developers as there is still a huge space for further investigations and improvements. Among 

others, for example, the automatic compensation of patterns, which has to be derived from 

intended prestress and inelastic strains undergone during the lifetime. Thus, not only the form 

finding results, but also the static analysis results have to be the basis of this process. Some 

authors performed the analyses of the mounting process simulation by tensioning the planar 

patterns into their final form, as this analysis allow for getting closer to the real stress state of 

the erected structures. Here, the mutual interaction of all the processes could be observed, as 

the form finding affects the structural behaviour and the shape to be patterned, the structural 

analysis influences, the necessary compensation, and the reassembly process leads to a closer 

approximation of the erected structure, but also affects the structural analysis response itself. 

Thus, the investigation of proper analysis sequences and impacts is of a great interest and will 

be a part of a future work in the field of membrane structures. 
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