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ABSTRACT

The present thesis deals with membrane structures, focusing on the description of both the
inherent physical necessitates which has to be dealt and the algorithms used when developing
the FEM software. After introducing physical basis of the individual design and analysis steps,
the specific issues associated with these calculation procedures as well as the particular solution
processes are described.

The first chapter deals with the form finding analysis, which is inherently associated with
designing tensile structures. The equilibrium shape is derived from the requirement for the
resulting prestress, given boundary conditions and applied external load. However, this process
is also generally dealing with a complex task of searching for the equilibrium itself. Therefore,
necessary stabilization techniques are an inherent part of the calculation procedures. The
selected methods as well as the proposed technique specialized for the calculation of conical
membranes are presented. In addition to the given thesis scope, the proposal of an algorithm
for dealing with optimizing the shapes of arches and shells is described.

In the chapter about the structural analysis, the main focus is given to the phenomenon of
membranes wrinkling. This sudden loss of stability, when the compression occurs, strongly
affects the structural response. The proposed algorithm is presented, which is modularly
applicable to both the elastic and inelastic materials as described in detail.

The chapter dealing with the cutting pattern generation process presents the proposal of the
selected combination of two existing solution methods. This algorithms sequence focuses on
reaching the optimum combination of the calculation speed, generality and precision.

The individual chapters are complemented by presenting of the examples analyzed by using the
described algorithms, which demonstrate the individual physical or implementation issues and
the associated solution procedures.

KEYWORDS

Membrane structures, tensile structures, form finding, wrinkling, structural analysis, generation
of cutting patterns, FEA software



ABSTRAKT

Predkladana prace se zabyva problematikou navrhovani membranovych konstrukci, a to
piedevsim s ohledem na vyvoj potiebnych vypocetnich nastroji v ramci MKP programii. Po
uvedeni zakladnich fyzikalnich pozadavka jednotlivych krokt pii navrhovani téchto konstrukei
budou dale prezentovany vybrané ¢i navrzené algoritmy.

Kapitola form finding se zabyva analyzou tvaru membranovych konstrukci. Rovnovazny tvar
je odvozen od pozadavku na vysledné predpéti, specifikované okrajové podminky a aplikované
zatizeni. Obecné se ale tento proces zabyva i samotnym hleddnim rovnovazné soustavy sil v
prostoru. V diisledku této skutecnosti jsou soucasti popisované analyzy také vhodné stabilizacni
metody. V této kapitole budou prezentovany jak zvolené postupy, tak i navrzena stabiliza¢ni
technika specializovana na hledani tvart kuzelovych membran. Dale je také popsan navrzeny
algoritmus pro feSeni tloh optimalizujicich tvary ohybov¢ tuhych konstrukei, které jsou spjaty
s hledanim labilnich rovnovaznych konfiguraci.

Kapitola structural analysis je zaméfena predev§sim na fenomén vrasnéni membran. Tato nahla
ztrata stability siln€ ovliviluje statickou i dynamickou odezvu membranovych konstrukei.
V ramci této kapitoly je pfedstavena a verifikovdna navrzena vypocetni metoda, modularné
aplikovatelna na linearni, nelinearné elastické i1 plastické materidly pouzivané pro uvedené
konstrukce.

Kapitola cutting pattern generation se zabyva vypoctem stithovych vzorl, nezbytnych pro
vyrobni proces membranovych konstrukci. Pro tento proces je v ramci predkladané prace
navrzena kombinace dvou riznych metod. Zvolena posloupnost algoritmu cili na optimalizaci
pomeéru rychlosti, obecnosti a pfesnosti vypoctu.

Zminéné kapitoly jsou doplnény jednotlivymi ptiklady, analyzovanymi pomoci popisovanych
algoritmi, které demonstruji konkrétni fyzikalni problémy ¢i nezbytné implementacni procesy.

KLICOVA SLOVA

Membranové konstrukce, tahové konstrukce, hledani tvaru, vradsnéni, generovani stiihovych
vzort, MKP program
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1 INTRODUCTION

The membrane structures are fascinating from many points of view. From an architectural
aspect, they are light, beautiful and non-conventional. From civil engineer’s point of view,
membrane structures have the ability to overcome large spans and are really uncommon in their
design and fabrication processes, both of them influenced by special requirements associated
with these structures. From a point of view of a developer of computer FEM software, these
structures represent a great challenge, as it is necessary to cope with their large nonlinearities
in structural analysis, and develop special tools for form finding and cutting pattern generation.
More than anywhere else, the cooperation of all these professions can be observed as the shapes
of tensile structures are driven by the will of nature and its physical laws more than by the will

of a man.

] il
? Aﬁi 17 =

Fig. 1 Iconic Structure Tanzbrunnen Designed by Frei Otto, Cologne, Germany [I, II]

Even though the tensile structures are one of the oldest types of structures, serving mostly in
the past for covering both the permanent and temporary living places and for shading, their
renaissance has started in the second half of the 20th century. The growth in their usage in
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modern architecture and civil engineering, with respect to their size and variety, was strongly
affected by the development in the field of available materials, the advent of computers, and
the development in the field of computational mechanics of structures. Nowadays, these
structures are able to take impressive shapes and to overcome large spans, so they are used for
roofing of public spaces (Fig. 1), stadiums, stations, airports (Fig. 2) etc.

1.1 OUTLINE OF THE THESIS

This thesis is structured into the following chapters, covering the topics from the general
theoretical introduction, following with the chapters focused on the particular membrane
constructions design steps up to the chapter that presents a usage of described algorithms in
practice.

Continuum Mechanics

This chapter includes a brief introduction into the essential principles of the continuum
mechanics, which are the basis for further work. The Lagrangian continuum is described and
the important quantities are depicted, namely the deformation gradient, different strain and
stress measures. The principle of the virtual work and linearization of this general principle is
further described and used in the following chapters.

Finite Element Procedure

The chapter is focused on the continuum discretization, the description of the basics of finite
elements and the system of equations assemblage process in static and dynamic analyses, based
on the usage of finite elements. The possible solution procedures used for the calculation of
static and dynamic response are introduced.

Form Finding

The membrane structures are made of the material that only acts in tension and, as
a consequence of this fact, the structural response of them is derived from their tension and
curvature. For those structures, the statement 'Form follows force' is completely true, therefore
the requirement of the forces is the main designing parameter. In contrast with conventional
civil engineering design procedures, where the shape of the structure is predefined and the
internal forces are calculated, the forces are predefined here and the shape is searched for. This
implies that the structural analysis must be preceded by the form finding analysis to obtain the
initial equilibrium position of the structure. The algorithms for this process as well as the
proposals of two special stabilization techniques are presented. The numerical examples
demonstrate solving of the individual physical or implementation issues.

Structural Analysis

The structural analysis, starting from this initial equilibrium position, is characterized by strong
nonlinearities in both, the geometrical and the material response. The material lacks the bending
stiffness as well as the compressive strength since the stability loss occurs due to local buckling
immediately even at low compression stress, and exhibit itself as wrinkling of the membrane.
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The proposed algorithm for dealing with this phenomenon as well as the examples verifying
this method are presented.

Cutting Pattern Generation

The other characteristic designing step is the generation of cutting patterns, which is crucial for
the manufacturing process. The double-curved shapes of the membrane structures need to be
decomposed into pieces, for which the planar approximations are calculated in order to obtain
the patterns that can be cut out, assembled and joined together for the subsequent assembly
process. In this chapter the proposed algorithms sequence is presented and further contributed
by numerical examples.

Use in Practice

This chapter presents an interesting customer example calculated by using the described and
further implemented algorithms.

1.2 OBJECTIVES OF THE THESIS
Here, the thesis objectives are listed, covering the research work performed.

Form Finding

The objective of this part of the thesis is the description of a general form finding algorithm
suitable for the implementation. Furthermore, the aim is also the proposal of an advanced
stabilization technique for dealing with conical membranes, which needs special treatment of
prestress in the regions of high or low points. In addition to the scope of this thesis, the
stabilization technique dealing with the optimization of beams and shell shapes is also proposed
and introduced.

Structural Analysis

The aim of this part of the thesis is to deal with the wrinkling phenomenon. Thus, the proposal
of a suitable algorithm usable for elastic and inelastic materials is required here. The proposed
method should be verified by suitable examples.

Cutting Pattern Generation

The objective of this part of the thesis is the investigation of existing algorithms for the cutting
pattern generation and the consequent proposal of a suitable procedure for the implementation.
Thus, the combined procedure composed of two different algorithms is proposed as an optimal
solution technique.

The chapters focused on the mentioned objectives are further complemented with the numerical
examples calculated by using the FEA solver by the FEM consulting company [IV],
incorporated into the RFEM software by the Dlubal Software company [III]. Thus, the
dissertation presents the theoretical research as well as the proposals of suitable or new
algorithms, which were used for the development of the tools for designing and analysing
tensile structures in the RFEM software. However, the codes are not a subject of the thesis but
they are a property of these private companies.
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2 CONTINUUM MECHANICS

2.1 ESSENTIAL QUANTITIES OF CONTINUUM MECHANICS

This section gives the essential formulas for definition of the variational formulation of the
principle of the virtual work. For tensile structures, the Lagrangian continuum description is
assumed with the consideration of large displacements, large rotations and also with large
strains in general.

In the very start, the basic assumptions, quantities and measures for geometrically nonlinear
analysis are introduced.

Configuration

Configuration at time t
x2‘ at time 0 P(Ix“ th, |x3)

P(%%1, %%z, %Xa)

‘A, 'V
t
OA,OV U;
t
%; Xi
X1:

X3

Fig. 3 Original (Material) and Actual (Spatial) Configuration of Body

The particle of the body at time 0 is described by the position vector %x;, when undergoing the
deformation ‘u; the particle position ‘x; is described as follows (Fig. 3):

txi = Oxi + tui (21)

Thus, the relation of different configurations in the original and the actual positions is described
by the deformation gradient tensor. The matrix notation

[0tx, 0'%; 0%
0%, 0%, 0%%;,
dtx, 0d'x, d'x

tF — 2 2 2 2.2
0 0%, 0%, 0%, 22)
0fx; 0fx; 0'xg
(0%, 0%, 0O,

and the index notation

(2.3)



CONTINUUM MECHANICS

This tensor describes the straining and the rigid body rotation of material fibres. This is
a fundamental quantity of continuum mechanics, used for the definition and relation of different
measures and quantities used later.

Xz

X3

Fig. 4 Polar Decomposition

The deformation gradient JF can be decomposed into two parts (Fig. 4), capturing the straining
JU first and then the rigid body rotation R, or capturing the rigid body rotation (R first and
then the straining (V. This process is called polar decomposition.

F=(R{U= VIR (2.4)
The rotation tensor (R is orthogonal and the straining tensors JU and §V are symmetric.

With the use of the deformation gradient, the right and left Cauchy-Green deformation tensors
can be defined:

§C = §FT §F = (UT SRR U) = (§U)? 2.5)
$B = §F {FT = (v RRT V) = ((V)? (2.6)

Both of these tensors are only related to the stretch tensors (U or §V, which are symmetric, and
therefore, both of the Cauchy-Green deformation tensors are also symmetric and invariant
under the rigid body rotation. These tensors will be further used for the definition of the strain
measures in the reference and current configurations.

As described later, for the variational formulation of the principle of the virtual work, we are
dealing with the equilibrium in the unknown configuration. Since we cannot integrate the virtual
work over the body with unknown configuration, this equation will be modified and linearized
afterwards. For further calculation, different strain and stress measures will be used. Particularly
two strain measures, the Green-Lagrange and the Euler-Almansi strain tensors, as well as two
conjugated stress measures, the Second Piola-Kirchhoff and Cauchy stress tensors, will be
described.
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The Green-Lagrange strain tensor is related to the chosen reference configuration.
Considering the figure above (Fig. 3), the strain caused by the body deformation from the
original configuration at time O to the actual configuration at time t can be expressed in the
matrix notation as

1 1
oF =5 (GF' gF =D =2 (€D 2.7)
and in the index notation as

oEij = >

1(0%; 0% 9%y atuk> 1
= + + == (bwy; + Sup i + Supy Sug; (2.8)
<6°xj d%; = 0%; 0%%; 2(0 TRE TR LR )

The Green-Lagrange strain tensor is symmetric and for rigid body motion, it is equal to zero.

Note: The upper left index denotes the deformed configuration of the body in time t and the
bottom left index denotes the required/chosen reference configuration to which the strain is
related.

The Euler-Almansi strain tensor is related to the actual configuration. Referring to (Fig. 3),
the strain can be expressed in the matrix notation as

1 1
©='e=-(I—oF " F)=-(I-B™) (29)

and in the index notation as

1 (0% 0w 0'u, dfw\ 1
2 2

t —t — — t t t t
teij = el’j == T + 7 + r T == ui,j + tu]"l' + tUk,i tuk’j) (210)
dtx;  0'x; 0'x; 0%

Note: Since the strain is related to the actual configuration, the upper and the bottom left index
are the same. Therefore, the bottom left index is redundant and will not be written further.

If the deformations are so small that the nonlinear (second-order) terms of the Green-Lagrange
or the Euler-Almansi strain tensor can be neglected, the linear part of these tensors identifies
them as an Infinitesimal strain tensor, which is equal to the linear deformation tensor. The
Infinitesimal strain tensor in the original configuration in the matrix notation can be written as

1
5£=§(§F+(§FT)—I (2.11)
and in the index notation as
1/0%; 0Jty; 1
t L ] t t
= __Jy_Z . . 2.12
o€ij > <a°xj + aoxi> > (Oul,] + Ou],l) ( )

The Infinitesimal strain tensor in the actual configuration in the matrix notation can be written
as

1
fe=te=1- E((%F‘l + F7T) (2.13)
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and in the index notation as

t
1 /0%, 0%y, 1
t t i ] t t
t€iji = ‘€& == + ==+ (2.14)
9] tj 2 atxj atxi 2 ( L] ] l)
o doT
“ g d%A
e 5n
1! 2512 \
1 } \
% | \\ |}
? \\ * EISZI ;
~=T"~a_." _e=—TT=
Configuration ,”
attime=0 ( o4, -d-—-{
A S
S~ c7124-11—\
s Gz: /
Xy X .
Configuration
attime=t

Fig. 5 Second Piola-Kirchhoff and Cauchy Stresses

Assuming the force d'T acting on the area d'A of the body in the actual configuration, the
Cauchy formula defines the relation

d'T = 6T tndtA (2.15)
where o is the Cauchy stress tensor and 'n is the normal vector to the area d*A.

The analogical relation defines the force d°T acting on the area d°A of the body in the original
configuration

d°T = ST °n d°A (2.16)

where $S is known as the Second Piola-Kirchhoff stress tensor and °n is the normal vector to
the area d°A.

Considering the kinematic relationship, known as the Nanson’s formula, and the formula for
transformation between forces d°T and d*T

0
tn dtA = % YT On 4°A 2.17)

d°T = (F1d'T (2.18)

the relationship between the Cauchy stress and the Second Piola-Kirchhoff stress tensors is
defined by the following equations in the matrix notation

t
t P tp tq¢ tpT — 1 t¢ tpT
=— oF oS oF oF ¢S ¢F 2.19
Y 0p oF 0% oF " = 3o t(éF) ( )
tS — :)) tF—l t tF—T det( F) tp-1t 5F_T (2_20)
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and in the index notation

t 1
t P ¢ t t t t t
Omn = 7 o0Xmi 0Xni 09ii = ——== 0Xm.i 0Xn i 05ii (2.21)
mn 0,0 04m,i 0*n,j 0“1ij det(gF) 0+m,l 0%n,j 01
0
t _pt—lt—lt _ t t,—1 t,.—1t
0Sij = 5 0Xim 0Xjn Omn = det(oF) 0Xim 0Xjn Omn (2.22)

The first formula can be called as a ‘pull-back’ and the second one as a ’push-forward’
operation.

The above defined quantities will be further used in the following chapters and subchapters of
this work. For many cases, there could be other different strain and stress measures defined, as
described in [1, 3].

Based on the measures above, the virtual work of the internal forces in the body at time t can
be described in different configurations, here in the actual (spatial) or the original (material)
configuration as

Swint - j oy Sty AV = j £, 8EE; °dv (2.23)
ty oy
and the virtual work of the external forces is described as
swext = f Y Su; tdV + f °fS Su tdS + Z ‘F; Sy
ty tg n

= jgfiV Su; OdV + fgff sus °dS+Z(§Fi Su;
n

oy 0s

(2.24)

wheretV, Vand 'S, °S are the volume and the surface in the original and actual configurations,

LRV 5FYL RS EfS, BF; and EF; are the volume, surface and nodal external forces respectively,

Su; and Su; are the nodal displacement variations of the body and the body surface.

3y

two ?erial particles wo mqtgrial particles two material particles
SN ;

time =0

Fig. 6 Deformation of Body and Application of Deformation Variation

For the body in equilibrium, the variation of the overall virtual work disappears, as described
by the formula

SW = sWnt — swext =0 (2.25)
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2.2 LINEARIZATION OF GENERAL PRINCIPLE OF VIRTUAL WORK

As described above, we assume for tensile structures that the body is subjected to large
displacements, large rotations as well as large strains in general. In the following figure (Fig.
7), the original (time 0), the actual (time t) and the new (time t + At) configurations are
depicted.

Configuration Conﬁguration
Configuration at time t at time t+ At
i +.\l l+_'\l t+At
at time 0 P(X1, X2, 'Xa) X2, " Xa)

A
X
2 P(*x1, “X2, “Xa)

@

X1
X3

Fig. 7 Original, Actual and New Configurations of Body

The virtual work of the internal and external forces related to the new configuration (time t +
At) is described by

swint = t+AtO.ij 6t+AtSij t+At gy (226)

t+Aty

SWext = f EHALEY gy, THALGY 4 f CHALES 5,8 THALGS 4 Z tHAtE gy,
t+Aty t+atg n
— t+At:R

(2.27)

Based on the equilibrium equation of the principle of the virtual work for the new configuration

swint = sgyext (2.28)

t+AtO.l] 6t+At t+Ath — t+At:R (229)

t+Aty

Based on the fact that the new configuration (time t + At) is not known, the direct integration
of the Cauchy stress tensor and the variation of the Infinitesimal strain tensor over the unknown
volume of the body cannot be performed directly. The equilibrium equation needs to be
rewritten by using another stress and strain measures, specifically the Second Piola-Kirchhoff
stress and the Green-Lagrange strain tensors, which are related to the known configurations.

There are two practical choices for the reference configuration, the original one in time 0 and
the actual one in time t. The procedure using the original configurationis known as a Total

10
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Lagrangian formulation, the procedure considering the actual configuration is called an
Updated Lagrangian formulation. In the following, the Updated Lagrangian formulation will
be followed and used for rewriting and further linearization of the principle of the virtual work.

f t+A€Sij 6t+A§EU th — t+At:R (230)

ty

This equation is physically totally equivalent to the previous one. The decomposition of the
unknown Second Piola-Kirchhoff stress and the Green-Lagrange strain tensors will be
performed in order to separate the known values in time t and the unknown increments.

t+A§Sij = gSU + tSij = tO'ij + tSij (231)
t+Atthij — %Eij + tEij — tEij (232)
The increment of the Green-Lagrange strain tensor

1
tEij = 5 (cwij + Wi+ Ui Ui j) (2.33)

can be decomposed into its linear (Infinitesimal) and nonlinear parts in terms of the
displacement vector u;

t€ij = %(tui,j + tuj,i) (2.34)
1
ij = 5 Wit Uk, (2.35)
Therefore, the following holds
tEij = t&ij + Nij (2.36)
8:Eij =685 +8my (2.37)

Using the formulas above, the equation of the principle of the virtual work can be rewritten

] tSij 5t€ij tdv + j tSij 6tnij tdv + f tO'ij 5t€ij tdv + f tO'ij 6tnij tdv
ty tv ty tv
— t+AtR

(2.38)

with no approximation introduced till now.

Since the equation of the principle of the virtual work is generally a complicated nonlinear
function of the unknown displacement increment, the linearization is performed by neglecting
the higher-order terms in u;, so an approximate equation is obtained.

The term ‘o;; describes a known value of the actual Cauchy stress in the body. With the given
variation §u;, the variation of the linear term §,¢;; is also known, however the variation of the

term §,7;; is linearly dependent on u;. The Second Piola-Kirchhoff stress increment .S;; is

11
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generally a nonlinear function of the Green-Lagrange strain E;;. Using the Taylor series, the

stress increment .S;; can be rewritten

ats;,; ats;,;
tSij = atE;]S tErs + 00 = at—E;js (tgrs + tnrs) = tCijrs t&rs (2.39)

while neglecting the higher-order terms of the Taylor series and the second-order part of the
Green-Lagrange strain tensor7),;. The linearized stress increment .S;; is thus obtained and the
linearization the whole equation of the principle of the virtual work can be written as follows:

f tCijrs t&rs 6¢&i; tAV + f ‘o 8¢my; tdV = TR — f tojj 6,85 tdV (2.40)
ty

ty ty

or in the matrix notation

j C €8tV + j to §m AV = THAtR — J to 5. tdV (2.41)
tv tv ty
The integral with the linearized term of the stress increment .S;; and the variation of §.7;;
(linearly dependent in u;) had to be neglected. The linearly dependent terms remain on the left
side, the known values are given to the right side. The term ‘*A¢R is the already described
virtual work of external forces at time ¢ + At, the integral on the right hand side is the virtual
work of the element internal stresses at time t and the difference of these terms is known as an

out-of-balance virtual work term. As a consequence of linearization, the approximative
deformation Au is obtained

CHAty, =ty + Ay, (2.42)

This leads to the iteration scheme

t+Ae,, () _ t+Atui(k_1) + Aui(k) (2.43)

l

Assuming the load is deformation dependent
t+Atg — j EHALEV Sy, tHALQY 4 J LHALES 58 tHAtgg +Z LHALE. Sy,
t+hty t+htg n
- t+AtﬁV(k—1) Sy t+At gy (k=1)
l

ety Ge-1) (2.44)

+ f t+Atfl-S(k_1) 5uis t+Atggk—1) 4 Z t+AtFi(k—1) Sy
t+AtS(k—1) n
— t+Atq (k-1)

the linearized equation of the principle of the virtual work can be rewritten into the following
form of the Newton iteration scheme

12
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k-1 k k-1 -
t+AtCi(jrs )At+At£1Es) 6t+Atgi(j ) t+At gy (k—=1)
t+Aty (k—1)
(k-1) (k) -
+ PG T SA ;) TRV D) (2.45)
t+Aty (k-1)
_ _ (k-1) (k-1) -
= t+Atp(k-1) _ t+At0.ij 6t+Atgij t+At gy (k—1)
t+Aty (k-1)
where
0 _
t+Atui =ty (2.46)
t+at (0) _ ¢t
+ o) = toy (2.47)
t+at(0) _ ¢, (2.48)
ij ij '

The term t and At are the generalized load or/and time state and increment, the counter k
denotes the iteration number. If the dynamic analysis is to be performed, the virtual work of
inertia forces is assumed in the equilibrium equation described above

t+Atg (k) — j t+Atp t+Atui(k) Su; tHAt gy = j 0 t+Atui(k) Su; °dV (2.49)

t+Aty oy

13
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3 FINITE ELEMENT PROCEDURE

The previous chapter Continuum Mechanics focused on the brief description of the physical
basis of the mathematical modeling of structures. This chapter deals with the continuum
discretization in space, or in time, of the previously depicted formulas in order to obtain the
finite number of the equilibrium equations, which are to be solved.

3.1 CONTINUUM DISCRETIZATION

The objective of this process is to replace the continuum by finite elements (FE) (Fig. 8) and to
evaluate the equilibrium in the finite number of nodes, depending on the required accuracy,
thus on the fineness of the mesh.

Configuration Coniiguration
Configuration at time t at time t + At
i LAl 144, 144t
at time 0 P(lxh 'Xz, 'X:s) p( %1, %o %)

I )
X2

P, %%z, %%a)

X3

Fig. 8 Continuum Discretization by Finite Elements (Triangular FE)

The variation of the linearized general equation of the virtual work for continuum (2.41)

f tC t£ 8t£ th + f tO' 8tn th = t+AtR - f tO' 8t€ th
ty ty ty

1s therefore modified to the form, where the variation is expressed by the summation the virtual
work variation for the individual elements

m m m
Z f ¢Ck &k 8¢y 'dVy + Z f oy Sy 'dVy = AR — Z f ‘o 88 dVy (3.1)
K

Vi k- tvy k- tvy
Where k and m are the FE number and the total amount of FE respectively.

The evaluation of the element contributions, thus the formation of the required matrices and
vectors, is an important phase of the whole analysis solution. There can be different FE
formulations identified, specifically the generalized coordinate and isoparametric finite
elements. The usage of the isoparametric elements is more common and usually more efficient,
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although it can be sometime of interest to follow the generalized coordinate choice, especially
in the case of beam elements.

The following subchapter includes a short introduction of the basic principle of the
isoparametric elements and presents rewriting of the individual contributions (3.1).

3.2 ISOPARAMETRIC FINITE ELEMENTS

“The principal idea of the isoparametric finite element formulation is to achieve the
relationship between the element displacements at any point and the element nodal point
displacements directly through the use of interpolation functions (also called shape functions).”

[1].
X = z hl fil (32)

n
wy = z hy 0, (3.3)
l

and in the matrix form

x=HX (3.4)
u=Hu (3.5
RT=[xi x3 x3 x{ x§ x§ - x xF xf] (3.6)
W' =[ul wy w3 wf uf ui - ul up uf] (3.7)

where x; or X and u; or u are the positions and displacements at any node respectively, £} or &
and @i} or @ are the position and displacement of the element nodes, h; and H are the
displacement interpolation functions and the displacement interpolation matrix, [ and n are the
node number and the number of element nodes.

All the finite element matrices K;,, Kyi, M, C, internal forces F contributions, surface and body
load effects R are calculated by using these interpolation functions, precisely said using the
displacement interpolation matrix H, the linear By, and the nonlinear By, strain interpolation
matrices, which are derived and assembled on the basis of the elements shape functions.

The isoparametric elements can be formulated as continuum or structural elements. Whereas
for the continuum elements, the displacements are interpolated in terms of the nodal point
displacements, for structural elements, the displacements are interpolated in terms of the
midsurface displacements and rotations.

The general procedure is described on a 2D isoparametric continuum element, where two
broadly used of them are shown in the following figure (Fig. 9). The global x; and the local X;
Cartesian systems are depicted, where the local Cartesian system is defined in such a way that
the local x5 axis coincide with the element normal direction n.

16
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Fig. 9 2D Continuum Isoparametric Elements in Global x; and Local x; Cartesian System

For derivation of the following quantities, the Updated Lagrangian formulation is assumed.
Further, the planar (local) axial system of the element is used, therefore the transformation
between the global @i and the local U nodal displacement is introduced by the transformation
matrix T

tﬁ:Ttﬁ (3'8)
a=T" @ (3.9)
tﬁT = [tﬁ% tﬁ% tﬁ?1> ta% ta% tag Uy Uy (U3 (3.10)
T 0 : O
1
J=[0 T ¢ 0 G.11)
o 0 : T
cos(x1%1) cos(x1Xx;) cos(x1X3)
T = | cos(x,%;) cos(x,%,) cos(x,%3) (3.12)
cos(x3x;) cos(x3Xx,) cos(xzx3)
0 0O
0=|0 0 O (3.13)
0 0O

The displacement interpolation matrix is defined by putting together the displacement
interpolation functions

_[m O 0 k0 0 hy 0 O
A=|0 n, 0 0 h, O _ 0 h, O ] (3.14)
0 0 hy 0 0 hy 0 0 h,

Furthermore, the Green-Lagrange incremental strain tensor is expressed in the local coordinate
system by using the formulas depicted in (2.33), (2.34) and (2.35)

_ 1
tE11 = €11 + M1 = (U + E((tﬁm)z + (tﬁZ,l)z + (tﬁ3,1)2) (3.15)

_ 1
tE22 = (€22 + M2z = tUz 2 + E ((tl_h,z)z + (tﬂz,z)z + (tﬂ3,2)2) (3.16)

17
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_ _ _ 1, _ 1, _ _ B B B
tE12 = €12+ M1z = 5 (tul,z + tuZ,l) + 5 (tul,l tU12 T (U1 Uz 2 T+ (U3 tu3,2) (3.17)

To express the linear part of the Green-Lagrange incremental strain tensor, the linear strain
interpolation matrix is derived by taking the partial derivatives of the shape functions

B thi1 0 0 thz1 0 0 thn 1 0 0
BL=|0 thiz 0 0 thez o0 - 0 thnz 0 (3.18)
thiz thyy 0 thaz (hyy O thnz thp1 O
€ = [t§11 €22 2t§12] = tEL tﬁ (3.19)
where
dh;
chui == o, (3.20)

By using the introduced formulas, the first integral of the equation (3.1) can be rewritten in
terms of the nodal displacement vector

t _ e =T 5T Bt = _oaT T 7 o~
f tCx &k O¢&x AV = Sy f tBrk tCk Bk dVk dug = 640y Ty (Kpk (T Uiy
th th

e aT -
= 8y Kk Uk

(3.21)

where K and K|y are the linear (denoted by the index L) stiffness matrixes of the element
k in time t in the local and global Cartesian coordinate system respectively.

To consider the nonlinear part of the Green-Lagrange incremental strain tensor, the nonlinear
strain interpolation matrix is derived as follows:

[¢hin O 0 thy;y O 0 thna 0 0 1
tha2 hO 8 tha2 hO 8 thn 2 0 8
By = 0 1,1 0 tN2,1 0 0 tn,1 0 (3.22)
0 tha2 0 tha,2 thn,2
0 0 thi1 0 0 tha 1 0 0 thn,1
0 0 thi2 0 0 tha2 0 0 thn,2
where

— —~ _ _ _ _ _ _ T
BNL (U = [tul,l tU1,2 U211 tUz2 U3 tu3,2] (3.23)

For the integration of the virtual work caused by the nonlinear strain increment, the Cauchy
stress matrix has to be modified to the following form:

18
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fo11 fop, O 0 0 0
t012 tUzz 0 0 0 0
tg=| 0 0 ‘o foy, O 0 (3.24)
0 0 ‘o, oy, . 0 . 0 '
0 0 0 0 011 012
L 0 0 0 0 toy, tog;

By using the introduced formulas, the second integral of the equation (3.1) can be rewritten in
terms of the nodal displacements vector

t t _ =T nT t= n t = __ T T 17 =
f o Oy dV = Sy f tBNLk Ok tBnik dVk dux = 6y Ty Ky Ty Uk

th th (3 25)

_ e aT ~
= Sl Knpk Uk

where Kyix and Ky are the nonlinear (denoted by the index NL) stiffness matrices of the
element k in time ¢ in the local and global Cartesian coordinate system respectively.

The virtual work integral of the known actual internal stresses, written in the Voight notation
of Cauchy stress tensor, is expressed as

t

B 011
%6 = |to,, (3.26)
t012
oy 8.& 'V = 8,0y | By o) [dVy = 84} To 'F = 8.4} 'F
Ok Otk dVk = Olly tPLk Ok AVk = Oy ¢l K = Ol Ty (3.27)

th th
The surface, body and inertia forces can also be rewritten as

] AU Sauy AV = 8l J Hy "4 AV = 84 Ty “ARY = 84 AR (3.08)

th th

j GALS § 1y tdS, = 8,8] j S A S, = 5,af (TT RS = 5,7 RS (3.20)

tSk tSk

t+At; t _ =T aTig t t+At,
f Pk g Sy dVy = Seuy f tPr Hi Hy "dVy Ty
th th
_ = T wa t+AtY T t+AtST =T t+At S
= 8y (T My (T iy = 84y, My iy, = 8.0y, My Uy

(3.30)

where 'FV and 'FS are the vectors of nodal contributions for the body and surface forces and
+M is the mass matrix. In the consequence of the mass preservation assumption, the mass matrix
does not change and holds the identity (M = ( M = M and therefore, this matrix does not need
to be recalculated during the analysis.
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3.3 DISCRETIZATION OF EQUATION OF VIRTUAL WORK
Using the equations derived in Chapter 3.2, the formula (3.1) can be rewritten into the following
form:

m
z 8ty Kyl + Z 8ty Knpx ¢l
K K
m q m (3.31)
“~ o T
= D88 (ARY + ARE) + > 8.aF (FARY) - ) s
k p k
With the localization procedure, the elements contributions can be assembled into the form of
p
global matrices and vectors
ST Kyp 0+ 887 Kyp, (0 = 8,07 (*fARY + “ARS + %ARN) — 5,47 'F (3.32)
StﬁT tKL tﬁ + StﬁT tKNL tﬁ = StﬁT t+A%R - StﬁT tF (333)

As the consequence that the variation §,QiT can be arbitrary, the identity matrix is chosen and
the equation above takes the form

(Kp + Knp) (0 = t+A*ER —'F (3.34)
K i ="AR — tF (3.35)

For the case of dynamic analysis, the equation is extended of the inertia and the damping effect

m

Z M, t+Atﬁk =M t+Atﬁ (336)
k

m

z tCk t+At’ﬁk — tC t+At’ﬁ (337)
k

In the following sections of this thesis, the global nodal deformations (Ui will be further written
without the hat (u as the subsequent chapters consider the case of discretized equations, so the
distinction between the continuum and discretized deformations is not needed.

Ku="R —F (3.38)
or
M A% + C %A% + K qu = "AR —'F (3.39)

There are three basic requirements that has to be satisfied at the end of each load, or time,
increment

- Equilibrium
- Compatibility (compatible mesh layout and satisfaction of the boundary conditions)
- Stress-strain low
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3.4 SOLUTION OF NONLINEAR EQUILIBRIUM EQUATIONS IN STATIC ANALYSIS
To achieve the equilibrium solution in the nonlinear static analysis, the most crucial requirement

is the zero ‘right-hand side’, thus the zero (in the context of the convergence criteria)
unbalanced forces vector

AR = YAR —tF (3.40)
assuming the iterations in each load increment
AR(k—l) — t+AtR(k—1) _ t+AtF(k—1) (3.41)

where t and At denote the load level and the increment respectively, k is the iteration counter
and "AR&-D js the vector of the applied deformation dependent loads (if no deformation

dependent load is present, the vector takes the form *A'R, which does not change during the
particular load level).

Load Load )

teAtg _ te AtEW@ teAIg _ t+ ALE) tvatg _ t+ALED) Lol _ t+AIEN)

tebtg : / 4//$<’"'_ teatg / // P

\ Slope t+ Atgein V /f
smm r«uKm_ IK

Slopa I+ Argeio

‘R

'R

1

du(ll

B
S
]

Au'"

Aut®

g -
c

u frafy Displacement

Displacement ty

Fig. 10 Full Newton-Raphson Method and Modified Newton-Raphson Method [1]

For solution of the nonlinear equations in the static analysis (3.38), there are many iterative

methods and the most common one is the Newton-Raphson iteration scheme and its
modifications (Fig. 10).

e aKED Auk = ARK-D (3.42)
KAuk = ARK-D (3.43)
oK Auk = ARK-D (3.44)

where AuX denotes the deformation increment in the iteration k. The converged deformation

increment (u of the time step ¢ + At and the total deformation of the structure are subsequently
calculated

k
u= Z Aul (3.45)
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k
Wiy =ty + u="u+ z Au! (3.46)

=1

Note: Even though the modifications of the Newton-Raphson method are effective in many
cases, the observations during the development proved the full Newton-Raphson method is
suitable for tensile structures. The stiffness changes are considerable and it is not efficient to
keep the fixed stiffness, and it even does not usually lead to the convergence

3.5 SOLUTION OF NONLINEAR EQUILIBRIUM EQUATIONS IN DYNAMIC
ANALYSIS

For the solution of the dynamic response of tensile structures, the direct integration methods
are assumed. The methods are divided into two main groups, namely Implicit Methods and
Explicit Methods. In the group of the implicit methods, the Newmark method is broadly used,
further the Houbolt method, Wilson method, Bathe method, etc. can be identified and used. In
the group of the explicit methods, the Central difference method is well-known and usually
used. In the following, the implicit Newmark method and the explicit Central difference method
are described.

The main difference between these two methods is the time when the solution of the nonlinear
equilibrium equations is considered. While the implicit methods are assuming the equilibrium
in time t + At to solve the deformation increment in the same time (3.39), the explicit methods
are assuming the equilibrium in time t to solve the deformation increment in time t + At.

M t+Atﬁ + tC t+Atl'l + tK = t+A'ER —tF
M+ Ctu+'F=R (3.47)
Both well-known methods, one from each group, are briefly introduced bellow.

3.5.1 Newmark Method
This method uses the following formulas for the calculation of velocity and deformation in time
t + At [4].

Aty =t + [(1 — &) i + §UHA%I] At (3.48)

1
HAy = ty + W At + [(E — a) Y+ at+Atﬁ] At? (3.49)

‘0U=05(0+0)

S h,—
o -
t T T

1+ At t t+At

Fig. 11 Linear Acceleration (left) and Constant Average Acceleration (Trapezoidal Rule) Methods [1]
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Different coefficients § and a could be used. The linear acceleration method (Fig. 11) uses § =
1/2 and @ = 1/6, the constant average acceleration method (also known as the trapezoidal
rule) uses the parameters § = 1/2 and @ = 1/4 and the formulas above are rewritten as

A

tHAty = ty 4 7t (ta + H0ty) (3.50)

At 2
t+Atil =N+ — (tﬁ + t+Atﬁ) —— (t+Atu _ tu) —ta (3'51)

2 At

4 4
A T A . .o

t+AL — ToE (BHity — ty) — Etu _ tjj (3.52)

Considering the iterations in every time increment as described in equations (3.45) and (3.46),
the formulas are rewritten as

2
t+Aty (K) — v (t+Atu(k—1) + Auk — tu) —ta (3.53)
t+At; (K) T at (k-1) kK_t LTS
i® = (traty + Auk — tu) — —ta — i (3.54)

(At)? At

Using these formulas, the equilibrium equation (3.39) is modified

R Auk = tHAtR(-D) _ thAtp(k-1) _ M(
(At)?

2 .
+ 42 CEY (— Aty (k=) — ty) — tu) = AR
t+At At ( )

(tram D) _ ) _Ai ta + tﬁ)
t (3.55)

K Auk = ARK-D (3.56)

As well as in the static analysis, the modified stiffness matrix K in equations (3.55) and (3.56),
enriched with the inertia and damping effects, can be solved by using different modifications
of the Newton-Raphson method, analogically to formulas (3.42), (3.43) and (3.44). Therefore,
the further formulas are possible ways of the nonlinear Newmark method solution (Full
Newton-Raphson Method, Modified Newton-Raphson Method, Initial Stress Method)

4 2 ~
(A_tz M+ erarlCED + t+AtK(k‘1)> Auk = ARK=D (3.57)
4 2 k 5 (k-1)
(Atz M+ C+ TK) Auk = AR (3.58)
4 2 k 5 (k-1)
1z M+ 1 o€+ oK) Au® = AR (3.59)

Note: As in the case of the nonlinear static analysis, the full Newton-Raphson iteration scheme
is highly recommended when solving the nonlinear implicit dynamic of tensile structures.

3.5.2 Central Difference Method
Another possible integration scheme is the central difference method, as a method of the explicit
integration group. The velocity and the acceleration in time ¢ are described
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i = % (t+Atu _ t—Atu) (3.60)
ts 1 t+At t t—At
UZW( u—2u+ u) (3.61)

Using these formulas, the equation (3.47) takes the following form

1
M —
(At)? 2At

1 1
(FM‘FE tC) t+Atu=tR—tF+

= AR

M ‘u-— ( tc) Aty

(At)? (3.62)

This method is effecient when using the diagonal mass M and the diagonal damping C
matrixes, as every new nodal deformation can be solved independently

1 _
. - AR, (3.63)

Bo)? M + 5Az Cii

t+At

u; =

In contrary to the Newmark method, which is unconditionally stable, the central difference
method is only conditionally stable. The condition to be satisfied is the time step At

At < At,, (3.64)

This integration scheme can be used for both the nonlinear dynamic and also the static analysis,
known as the Dynamic relaxation, where the mass and the damping factors are the artificial
values chosen in such a way to obtain good convergence behaviour.
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It was already mentioned in the introduction of this thesis that membrane structures belong to
the group of structures, whose shapes cannot be chosen freely, as the shape is inherently
connected to the equilibrium of forces within the given boundary conditions. For a civil
engineer or an architect designing these structures, the equilibrium of the internal and external
forces within the frame of the defined boundaries are the shaping parameters as well as the
degree of freedom. The typical double curvature is the characteristic aesthetic appearance as
well as the necessity of the structures to be satisfied, in connection with the internal forces, to
reach the required load bearing capacity. Some of the basic shapes are displayed in the
following figure (Fig. 12).

Barrel Vault

Inflatable

Fig. 12 Categorization of Membrane Structure Shapes [V]

In the past, physical models were used to find the appropriate shapes for membrane, cable, shell
or combined structures. The hanging models used by Antoni Gaudi, hanging membranes by
Heinz Isler [5], or the fascination with the shapes of isotropic stress field presented by the soap
film analogy investigated by Frei Otto [6, 7, 8] were the ways of the shape designing by these
and other brilliant brains until the advent of computer methods. The rapid development of the
computer methods for the shape designing, called a form finding analysis, started in the 1970s
and until now, many methods were proposed.

4.1 OVERVIEW OF EXISTING FORM FINDING METHODS

A number of methods have been proposed for the form finding procedure. Some of them
assumed the process as a general nonlinear finite element analysis with the consideration of
large deformations and the defined material, calculated by the implicit procedure, as could be

25



ForM FINDING

observed in the work by J. H. Argyris, T. Angelopoulos and B. Bichat [9], presented for 1D
elements, or in the work by B. Tabarrok and Z. Qin [10], assumed for 1D and 2D elements.

Another possible way, the Dynamic Relaxation (DR), was introduced by M. R. Barnes [11, 12],
where the explicit solution procedure is used and the equilibrium is reached by using the
artificial inertia and damping (the kinetic damping is particularly recommended).

The most extensive group of the methods for form finding is considered as a materially
independent process, where the equilibrium of the predefined (or specially defined) forces,
loads and boundaries is only assumed. The well-known Force Density Method (FDM) proposed
by K. Linkwitz and H. J. Schek [13, 14] for 1D elements was the first of that group. This method
was derived from the equilibrium equations of the nodes connected by cable elements, and the
relation between the lengths and the forces of the cables was introduced and named as a force
density. By this way, the method is distinguished by its linearity and the solving process is
rapid. Assuming the updating the force density within iterations, the method can be extended
to a nonlinear form. This method has inspired many other authors, who extended the idea of it,
namely J. Sanchez, M. A. Serna and P. Morer proposed the Preliminary Form-Finding and
Surface-Fitting Method (PFSM) and the Multi-Step Force Density Method and Surface-Fitting
Approach (MFDS) [15], R. M. O. Pauletti and P. M. Pimenta proposed the Natural Force
Density Method (NFDM) [16], and B. Maurin and R. Motro proposed the Surface Stress
Density Method (SSDM) [17]. A very general approach was derived by the authors R. B. Haber
and J. F. Abel, who proposed the Assumed Geometric Stiffness Method (AGSM) and its
nonlinear form Ilterative Smoothing Method (ISM) [18, 19], which are consistently derived from
the continuum mechanics basis (2.38), and these are really natural in the sense of the FEM
software implementation. It can be proven that the Force Density Method (FDM) as well as the
later contributions derived from this method are a special case of this generalized method
(AGSM or ISM). The work of the authors R. B. Haber and J. F. Abel was also an inspiration for
the contribution of T. Nouri-Baranger, who proposed the Stress Ratio Method (SRM) [20] and
stated that this method is a special case of AGSM. Also the authors K. U. Bletzinger and
E. Ramm [21] followed the consistent derivation of the form finding method from the
continuum mechanics basis and proposed the Updated Reference Strategy (URS) method,
which can be understood as a possible extension of (4GSM) by the homotopy mapping for
working with the known and searched configurations. When only assuming the reference
configuration, the URS identifies itself with the (AGSM resp. ISM). The author team around
K. U. Bletzinger has published further investigations in [22, 23, 24, 25].

A very interesting and valuable contribution, dealing with summarizing, categorization and
even comparing the existing methods for networks, was written by the authors D. Veenendaal
and P. Block [26]. Here, three essential groups of the form finding methods are identified and
consequently named as the Stiffness Matrix Method (SM), Geometric Stiffness Methods (GSM),
and Dynamic Equilibrium Methods (DM). The categorization can be seen in the following
figure (Fig. 13), overtaken from the mentioned work. In a generalized way, all the methods can
be understood as different, or even special, solving procedures of the general continuum
equilibrium equation.
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Fig. 13 ‘Development and categorization of form finding methods with key references Arrows denote
descendence, dotted lines denote independent but related methods and triangles a first formulation using surface
elements.’ according to D. Veenendaal and P. Block [26].

In the following, three of the above-mentioned methods from the group of GSM, namely the
FDM, AGSM with ISM and URS, will be described briefly.

4.1.1 Force Density Method (FDM)
The force density method, proposed by K. Linkwitz and H. J. Schek [13, 14] and published in

1971 or 1974, is derived from the equilibrium equations of the forces in net nodes, as can be
seen in the figure (Fig. 14), overtaken from the contribution by the author team of L. Griiendig,
E. Moncrieff., P. Singer and D. Strébel [27].

X2

Fig. 14 Cable Structure (left) and Extracted Part of Cable Network (right), Modified Illustration from [27]

If a part of the net is extracted from the general network (Fig. 14), the equilibrium equations in
the node k = 1 can be written as

m
Z NI cos(Ux;) = Rf 4.1)
j

Nt cos(I*x;) + N2 cos(I?x;) + N3 cos(3x;) + N* cos(I*x;) = R} 4.2)

where j, m, k and i are the number of the particular element and the total elements amount, the
node number and the Cartesian axis direction respectively, N/ and I/ are the normal force and
the length of the element j, RY is the external force acting on the node k in the i** direction x;
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of the global Cartesian system, the term cos(lj xi) is cosine of the angle between the cable j
and the global axis x;.

The equations can be rewritten into the following form:

Nt N? N3 N*
l—l(xiz—xi1)+l—2(xi3—Xi1)+l—3(xf—xi1)+l_4(xi5—xil) = R} (4.3)

Since the lengths of the individual cables are dependent on the unknown nodal positions, the
equilibrium equation is still nonlinear. Therefore, the authors of this method K. Linkwitz and
H. J. Schek [13, 14] proposed a consequent linearization. The ratio of the internal force N/ in
the cable and its length I/ is replaced by the quantity g/, named force density, which also gave
the name to this method.

N
— =g/ 4.4
=4 (44)
Assuming this replacement for all the cables, the linearized form of the equilibrium can be
rewritten and the unknown nodal position x; can be calculated

G 2 —x1) + @20 —xD) + i —x) + q*(xf —x}) =R} (4.5)

The nodal equilibrium described above can be written in the general matrix form as described
in [14] (by using a slightly different indexation). The general network (Fig. 14) consists of m
cables (branches) and n nodes. The topology of the construction can be described by the
branch-node matrix C [28, 29], which describes the connectivity of the individual nodes and
cables. Each cable (branch) j defines two records ¢, on the line j of the matrix C. The records
for the start and end nodes take on the values +1 or —1 in the appropriate columns k, other
positions of that row j are equal to zero.

+1 k€ jsare
Cjk =4—1 k Ejend (46)
0 1)

Further, the vector of the nodal positions in the specific Cartesian axis direction is denoted X;,
the diagonal matrix Q contains the force densities and the vector R; is assembled from the
external force contributions in the particular directions.

In the contribution of H. J. Schek [14], the division of the branch-node matrix C and the position
vector X; are assumed to separate the free (movable) X; and the fixed X; nodal positions as well
as the € and C representing the columns assigned to the free and fixed nodes. The equilibrium
equation can be written and further modified as follows:

CTQC%; +CTQCx; =R; 4.7)
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% =D }(R;—-Dx;) (4.10)

Formula (4.10) represents the linear equilibrium equation for solving new nodal positions of
the general network. Since the assumption of the force density was prescribed, the resulting
forces in the particular cables j of such obtained configuration are calculated as

Ni=1g (4.11)

A very interesting behaviour of this method is, that the resulting shape is completely
independent of the initial approximation of the shape, as the shape is purely defined by the
predefined force densities Q, topology description C, external loads R; and the specified
boundary conditions.

By modifying the force densities after the solving procedure, the nonlinear form of Equation
(4.10) can be obtained since the force density matrix Q(x) becomes nonlinear. Such an iterative
form of the force density method (FDM) provides the possibility to influence the resulting
forces, thus also the equilibrium shape, in order to avoid under-tensioned or over-tensioned
areas. The force densities can be modified after the individual iterations according to the user-
defined force requirements, as this physical quantity is easier to predefine for a civil engineer
or an architect than the force density itself.

As this subchapter is focused on a brief introduction of the DM method principles, the
individual steps in deriving the equations are not presented. The insight into the formulation
and derivation of the formulas mentioned above are described in the contributions by
K. Linkwitz and H. J. Schek [13, 14].

4.1.2 Assumed Geometric Stiffness Method (AGSM) and Iterative Smoothing Method
(ISM)

The assumed geometric stiffness method (AGSM), as well as its nonlinear version iterative
smoothing method (ISM), was proposed by the authors R. B. Haber and J. F. Abel in 1982 [18,
19]. In the first of these contributions, the authors stated that ‘the force density method provides
and efficient linear solution to the initial equilibrium problem for cable structures composed of
bar elements’, and also ‘this approach cannot be extended to cover curved cable elements or
membrane behavior. A new method, based on assumed geometric stiffness matrices, will be
developed in this section. The new method contains the force density method as a special case,
and can be applied to any finite element structural model’, as an evaluation of the previous
method restrictions.

This method is consistently derived from the general equation of the virtual work (2.30) or
(2.38), rewritten in the matrix notation

j S 8.tV + f S8m v + f 'c 8.V + f to §m tdV = AR (4.12)
ty ty ty ty

Considering the essential physical statement that the shape is defined by the equilibrium of
forces and is therefore completely independent of the material, the first and the second term of
Equation (2.38) can be cancelled, as they represent the internal forces increment, which is zero
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when using the zero constitutive matrix {C. Furthermore, when assuming the given tensor of
the Cauchy stress ‘o, the third term is known and will be moved to the right hand side

f to §m tdV = tHAtR — f ‘o 5. tdV (4.13)
ty t

Even though this equation can be solved by the standard way described in Chapter Finite
Element Procedure, the authors proposed the following procedure. The virtual work
equilibrium is associated with the deformed configuration, which is obtained by collapsing all
the nodes of the structure to the global origin of the Cartesian system. This deformation can be
expressed by setting the vector of the displacements u equal to the negative vector of the nodal
positions —X.

As a consequence, the discretized equation does not have the usual meaning of the Updated
Lagrangian procedure, where the vector of the nodal deformations AuX is obtained in each
iteration, which defines the relation between the current and the new configuration. Instead, the
vector of the nodal positions x¥ is obtained.

k-1
a0 gk = _ARGK-D (4.14)

If a designer would specify directly the required geometric stiffness, the procedure of AGSM
would be linear as well as the FDM, when the force density is predefined. However, this
quantity is not natural to define from the user’s point of view, so the stiffness matrix is derived
from the required stress and thus the geometric stiffness matrix become a nonlinear function,
therefore the method become nonlinear as well. In the contribution of the authors R. B. Haber
and J. F. Abel [18], this procedure is named Iterative Smoothing Method (ISM).

A similar separation of the equations as performed in FDM is proposed here, where the free
nodal positions are indexed with the letter A and fixed with the letter B. The same applies to
the residual forces. The stiffness matrix is also separated, where the submatrix Ky, belongs to
the free nodes, Kgg belongs to the fixed nodes, and K5 and Kgp represent the coupling of
them. By performing the condensation procedure of the fixed node positions Xg, which are
known, the following equation can be further rewritten

K KAB](k_l) {XA}k=‘{ARA}(k_1) (4.15)
eeacl Kea Kpel (X ARg '
(k- _ k—
eraclKaalln ” xal< = —(ARAID — | [Kapl Y (xpd (4.16)
k-1)\ "1 _ (k-
Al = (radKanlo”)  (—ARADED = [Kap] G (x5)) (4.17)

It is possible to observe the similarity in the expressions (4.10) and (4.17). However, the method
is general as Equation (4.17) is derived from the basis of the FEM analyses.

As already mentioned previously, the equation can be solved by the standard procedure of the
Updated Lagrangian formulation without changing the physical meaning.
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4.1.3 Updated Reference Strategy (URS)

The updated reference strategy (URS) was proposed by the authors K. U. Bletzinger and
E. Ramm [21], followed by the further contributions of the author team around K. U. Bletzinger
[22, 23, 24, 25]. As well as the previous method, the URS was also consistently derived from
the continuum mechanics basis (2.38).

As already stated, the shape of the tensile structures is given by the equilibrium of forces in the
space. Assuming that the stress field in the final configuration is known, the equation of the
virtual work is written with respect to the unknown final position as follows:

tHitg 5., 0 THAQY = tHAtR (4.18)

t+Aty

Thus, the shape would only be unknown, not the internal stress state. However, this equation
cannot be solved directly, since the singularity appears in the tangential direction of the
unknown surface, as the floating of nodes in this tangential direction does not affect the spatial
shape and thus even the equilibrium prescribed by this equation. This fact was presented in
many contributions of the author team mentioned above and is demonstrated by the following
figure (Fig. 15), overtaken from the contribution [22].

Fig. 15 Floating Mesh [22]

Equation (4.18) in context of the known reference configuration can be rewritten to obtain the
consequent relation

f t+A€S StE th — t+AtR (419)
ty

Since the physical meaning of the equation does not change, as the second Piola-Kirchhoff
stress tensor is obtained by the pull-back operation, even the singularity will not disappear.
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t+A»ES — det(t+AEF) t+AEF_1 t+At0. t+A'EF—T (4.20)

f det(t_{_AEF) t+A€F_1 t+At0. t+AEF—T StE th — t+AtR (421)
ty

Therefore, the regularization is proposed to solve this problem, which is based on the addition
of the stabilization term, that is formulated as an integral with the known second Piola-
Kirchhoff stress tensor {S on the reference configuration. Thus, by using the Cauchy stress
to = IS, since the second Piola-Kirchhoff stress in time t is related to the configuration in the
same time t. The weighting factor A is used to relate these two definitions of the internal work

yl f det(t+AEF) t+AEF_1 t+At s t+AEF_T 6tE tdv + (1 _ ﬂ.) .l- to 8tE tqy = t+atp (422)
ty ty

The factor A forms a relationship between the prescription of the user-required stress (Cauchy
stress) in the known and unknown configurations. If the homotopy factor A > 0, Equation
(4.22) is nonlinear and requires the internal iterative loops in each iteration of the FEA.

If the homotopy factor A = 0, the method is linear in each FEA iteration and principally
coincides with the AGSM method described above, even though it differs in the solution
procedure itself.

f to §,E tdV = AR (4.23)
ty
J te §m 'dV = AR — f ‘o 5 tdV (4.24)
ty ty

As the prescription of the user-required prestress ¢ causes the deformations towards the
equilibrium position, the Cauchy stress prescribed in the known configuration by such a defined
value ' = ¢ in time t can be expressed as the second Piola-Kirchhoff stress tensor ¢, ¢S in the
newly calculated configuration. These vectors differ numerically in their magnitudes
'6 # (4 atS until the equilibrium is reached. As soon as the structure reaches the equilibrium
position, the deformation gradient identifies itself with the identity matrix and the relation of
the vectors remains , ;S = ‘6 = 6. Thus, the shape for the predefined stress distribution o is
finally obtained.

4.1.4 Hybrid Methods

Three methods of the GSM group were described and the procedures of SM and DM could also
be described. However, it is not necessary to only restrict the form finding for one method, as
the obvious overlapping could be seen when the methods of the different groups are consistently
derived from the general equation of the virtual work. As the physical basis is the same,
specifically reaching the equilibrium shape, the appropriate hybrid method can be developed.
Such a statement can be found in the contribution by D. Veenendaal and P. Block [26], which
states: ‘By examining the relation between methods and how they solve the initial equilibrium
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problem, it may occur to the reader where new possibilities lie for future development of new
approaches. The framework allows hybrid solutions combining strengths of existing methods.’

4.2 SEARCHING FOR EQUILIBRIUM PRESTRESS

In the text above, form finding was considered as searching for a shape when the equilibrium
prestress is explicitly known and thus given. However, this is generally not a true, except the
isotropic prestress. The constant orthotropic prestress cannot exist in the surface with double
curvature, so the general anisotropic stress field has to be reached if the isotropic prestress does
not satisfy the engineering or architectural requirements for the given tensile structure. Such
a user entry is not realistic and therefore, the constant values in the orthogonal directions, called
warp and weft, are the usual software entries.

The authors J. Linhard, K. U. Bletzinger [22] stated that ‘...it is not possible to generate
a doubly curved surface with constant anisotropic prestress distribution, but if the prestress is
allowed to vary around its mean value, many interesting and physically stable shapes can be
generated’, and also the authors R. B. Haber and J. F. Abel [18] presented a really general
statement: ‘The problem of finding a reference configuration that satisfies the laws of
equilibrium has been termed form finding or shape finding by some. This nomenclature does
not adequately describe methods in which variables besides the shape are adjusted to satisfy
equilibrium. For this reason, the selection of an appropriate reference configuration will be
referred to here as the initial equilibrium problem’. Indeed, the initial equilibrium problem
solving is much more suitable description of this process, and besides the shape, the calculation
also comprises finding of the equilibrium of forces itself.

If the constant anisotropic stress field would be prescribed and enforced during consequent
iterations, all the methods would diverge, which is represented by sliding the nodes to some
regions and thus by collapsing of the mesh. In fact, it does not matter which specific method of
the groups described above [recall: Stiffness Matrix Method (SM), Geometric Stiffness Methods
(GSM), and Dynamic Equilibrium Methods (DM)] is used if the prescribed values are strictly
required.

There are many possible ways for stabilization techniques [22, 26, 31, 38], which are briefly
described below.

4.2.1 Specifying Number of Form Finding Steps
A natural solution is to allow the user to influence the number of form finding steps. Although
this is the simplest way, it is very powerful stabilization technique, which allows a user to trace

the shaping process. However, this method is more a safety break than an advanced tool, and it
is more comfortable for a civil engineer or an architect to avoid this, if possible.

4.2.2 Elastic Control

This way is an essential part of the stiffness methods (SM) [9, 10], and usable in the dynamic
equilibrium methods (DM) as well [12]. If the constitutive relation is left within the form finding
loops, it can be used in two different ways. Let's call them natural and controlling.
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The first one, the natural way, assumes that the constitutive law has a direct impact on the
resulting stress field, that is, the element elongation and shortening cause increasing and
decreasing of the resulting stress in comparison with the prescribed stress. This constitutive law
is artificial and usually very small, and turns the form finding process into the standard FEA.
However, with increasing the stiffness, the resulting shape is increasingly dependent on the
initial model position and some regions could be understressed or overstressed. This is
a drawback of this stabilization technique.

The second method, called a controlling way here, uses the constitutive law as a brake of the
unwanted diverging of the model described above. The material stiffness does not influence the
prestress during the form finding steps here, nevertheless the incorporation of this term slows
down the in-plane sliding of FE nodes. It also decreases the speed of the whole form finding
process, but still the method has a considerable influence on keeping a good mesh quality for
a long time. Though the method helps to avoid fast sliding of the in-plane mesh nodes, it does
not lead to the equilibrium prestress in fact, since the prestress is not influenced here, and
without changing the forces, this method would also lead to the unwanted mesh distortions
though it is slower than without this elastic control. Therefore, if the deformations in the normal
direction become minor in comparison to the tangential direction, the shaping process should
be replaced by the equilibrium finding process, which closely approximates the required
unrealizable prestress values by the equilibrium values. This can be done by taking into account
the force changes caused by the artificial material.

The elastic control method is a powerful tool for the form finding process. The first way is
easier to implement, but it leads to worse results in general. The second way is sensitive in
terms of the algorithm tuning for appropriate switching, but leads to better results in general.

4.2.3 Element Size Control

Another possibility for stabilization, when non-equilibrium prestress is prescribed, can be the
element size control, as proposed for example in the following contributions [22, 25, 26, 38].
This method can be used in the way, that the predefined forces stops to be enforced when
a particular element reaches the limit deformation. The last reached stress in the actual
configuration for the geometric stiffness methods (GSM) (the Cauchy stress calculated from the
second Piola-Kirchhoff stress defined in the last reference configuration before the limit
deformation was reached) can be used for further iterations, or the forces caused by the artificial
material can be encountered for the stiffness matrix methods (SM) or the dynamic equilibrium
methods (DM) when the limit deformation is reached, for example.

This method is also a strong way of avoiding the divergence in the form finding analysis, even
so a disadvantage can be seen in the fact, that the nonphysical prestress starts to be influenced
up to the moment when the limit distortion is reached. Up to this point, the tangential
movement, or sliding of nodes, is not influenced.

4.2.4 Other Methods
There could be found other proposals for solving the problems described above. For example,
inserting control strings [26], or inserting an artificial damping when the dynamic equilibrium
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method (DM) is used [31], or by incorporation of the constrained problems [14, 32, 33, 34, 35,
36].

4.2.5 Projection Method

A possible way for searching the equilibrium can be seen in defining the general anisotropic
prestress by a realizable manner, specifically by defining the equilibrium in the configuration,
where it is possible to do it analytically and use this for the projection into the spatial
configuration. This is a really general method, which leads to the definition of the spatial
equilibrium indirectly, but uniquely and without using the safety brakes.

Even though this was not the only stabilization technique implemented in the form finding
algorithms of the above-mentioned FEA solver during the development work (there were three
stabilization methods used as described later), the detailed investigation and development
works were performed to formulate and implement this tool. Therefore, the next chapter will
be focused on the description of this particular stabilization method, before introducing the
chapter of the whole form finding implementation description.

4.3 PROJECTION METHOD

A proposal of this special stabilization technique, which defines the spatial equilibrium in the
implicit manner, is based on determining the equilibrium in an arbitrarily oriented plane. Thus,
the analytically defined planar equilibrium is further projected into finite elements in their
spatial configuration. Therefore, the integral of the particular FE force components parallel to
such a plane has to be equal to the integral of forces in the fictitious FE, which is obtained by
the projection of the real element into the defined projection plane with the analytically
prescribed equilibrium prestress

j ‘o) v = J pS ‘dP (4.25)

tv tp

where 'P is the surface obtained by the projection of the structure into the specified plane in
time t and l;S is the analytically predefined second Piola-Kirchhoff stress of the assumed FE in
such an artificial reference configuration. The overall predefined stress field ,S does not change
during the form finding analysis, so it represents an equilibrium stress in an infinite projection
plane in fact, but the position of the assumed FE projection to such a plane changes its position
and since this field ;S could be generally anisotropic, the used FE prestress 1;5 depends on its

actual projected position into *P. t(r”represents stress components of the given FE in its actual
position, which are parallel to the defined projection plane *P. From knowing the stress tO'”, the
actual membrane stress ‘o for each FE can be derived directly (Fig. 16).

The process could also be described by using an artificial deformation gradient FEF. This tensor

describes a virtual deformation, which would be performed to move the fictitious FE, obtained
by the projection of the real FE into the projection plane, back to the real FE position in the
particular iteration. As this tensor IEF is known for the actual configuration of the current

iteration, as well as the prestress ;ES in such a reference configuration is known, the real
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prestress ‘o in the actual FE configuration can be obtained by the stress transformation formula
(2.19)

t
p 1

te — = tp tq tpT — tp tq tpT

o= b oF pS pF’ = det(gF) oF pS pF (4.26)

Using this implicit manner of the spatial equilibrium prestress definition, the input values for

the general formulas are defined

f to 5 m tdV = AR — f to 5. tdV 4.27)
ty ty

This leads to the unique solution, which is independent of the initial shape configuration. This
is a great advantage of this projection method stabilization technique, as such a behaviour is
usually considered as valid for the isotropic prestress only, because if the unrealizable prestress
is prescribed (for example, constant orthotropic pretension in the space), the resulting prestress
values are affected by the used stabilization techniques and does not have its unique solution.

The isotropic (Fig. 37), the constant orthotropic, or even the general anisotropic radial prestress
in equilibrium (Fig. 45) can be formulated analytically for the arbitrarily oriented projection
plane. This method is especially suitable for the conical shapes, where it leads to smoothly
changing prestress between the base and the top of the cone, as presented in the example 4.6.4
Projection Method.

Fig. 16 Prestress Defined in Projection Plane and Prestress in Membrane Structure

4.4 PUSHING METHOD FOR COMPRESSION REQUIREMENTS IN FORM FINDING
PROCESS

During the research and the development works of the form finding process of membrane

structures, including shaping the cables and gas chambers as well, the shape optimization of the

conventional structures was also additionally investigated. Since for both the arches and the

shells, the load bearing capacity is increased when the in-plane resistance is preferred form the

bending resistance.
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A physically new phenomenon has to be dealt with here, as in the contrast to the tensile
definitions, which could be considered as a stable equilibrium state finding, the unstable
equilibrium searching is the case when the compression requirements are prescribed. Since the
tensile forces try to reach the stable equilibrium from the arbitrary unequilibrium position, as
illustrated in the left part of the figure below, the compression forces try to diverge far away
from the given unequilibrium position, as illustrated by the right part of the figure below (Fig.
17).

In this case, the stabilization procedure has to be used to ensure reaching the required
equilibrium. Already from the ancient times, the mirroring of the shapes under tension was used
to obtain the shapes under compression. Thus, the procedure of replacing the negative forces
by tensile forces and inverting the load could be the way for the structures loaded exclusively
by the compressive normal forces, since it is the analogical process to the mirrored physical
models used in the past.

A A all
I (x) I (x) ox
on
0x
X X

Fig. 17 Stable and Unstable Equilibrium Position

Such a simple procedure has one considerable disadvantage, specifically the cases when the
mixed requirements are used, where the tension is defined for membranes and the compression
for supporting arches, for example. Inverting the whole task would change the compression
requirement for the arches into tension, however, the tension in membranes would be inverted
into compression. So, the same problem stays here.

Therefore, the proposed stabilization, called here as a pushing method, tries to push up the
structure to the maximum energy position, which is represented by the top position in the right
part of the figure above (Fig. 17). The process consists physically of two artificial modifications
during assembling the equilibrium equations, described in 3.3 Discretization of Equation of
Virtual Work and 3.4 Solution of Nonlinear Equilibrium Equations in Static Analysis. The first
modification inserts an artificial geometric stiffness into the elements with the compression
requirement, for which the zero bending stiffness is assumed in this proposal during the form
finding process itself. The geometrical stiffness derived from the absolute value of the internal
normal force was considered in the algorithms used. The second, more sensitive and important
modification, deals with inverting the unbalanced forces in the appropriate FE nodes, where the
unstable equilibrium is expected [106].

AR = "AR —F (4.28)
_ (ARj=—AR; i€U
AR; _{ AR, ies (4.29)
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where i is the number of particular FE node, U and S are the groups of nodes, where the
unstable and stable equilibrium is expected.

It is crucial to do this inversion as postprocessing after the standard assemblage process of the
unbalanced forces is ready, since it is necessary to preserve the magnitude, but change the
direction. Finally, the decision of the group membership for the individual nodes is quite
a sensitive task. In this proposal, it is suggested that this is performed according to the hierarchy
algorithm. This algorithm is assigning the nodes into groups according to the assumed role of
the structural part in the structure and its form finding requirement. For example, the algorithm
assumes that a beam is the supporting object for shells or membranes, so if all mentioned
structural objects meet in one FE node, the assignment is done according to the beam object
form finding requirement. Further, the geometrical requirements are superior to the force
requirements, etc.

During the development, more different methods were proposed and investigated. For example,
the methods dealing with the actual force or the energy changes were less reliable, since they
were quite sensitive on the shape changes of the other structural parts. Since the initial model
position in the form finding analysis could be really far from the equilibrium one, these
algorithms had quite a problem to find the 'right way'.

The examples presenting the results reached by using the proposed pushing method stabilization
technique are presented below 4.6.6 and 4.6.7, where the second example exhibits one more
interesting phenomenon, namely a possible existence of nonunique equilibrium positions, when
the mixed requirement is prescribed.

4.5 IMPLEMENTED FORM FINDING METHODS

Note: Based on the research work during the doctoral study, focused on the investigation of
numerical methods, the form finding process and the algorithmization procedures of the
consequent development was performed in the FEA core by the FEM consulting company [1V],
which is used in the RFEM software by the Dlubal Software company/[Ill].

Two form finding methods were implemented in the mentioned solver, the first one used as
a default procedure, considering all the structural parts, the second one used as a preliminary
form finding, considering only the structural parts with the definition of the required forces.

4.5.1 Preliminary Form Finding

To implement the preliminary form finding, the GSM group was chosen, specifically the AGSM
with ISM. As the subchapter name declares, this method was intended for a fast shaping of the
structural parts with the form finding force requirements. Other structural parts are ignored and
this allows to minimize the number of equations for a rapid shaping procedure.

This tool can be used separately in the RFEM software environment for the topology shaping
and thus the visualization of the shape when changing the forces or boundary condition. Also,
the preliminary method can be used in the interaction with the default form finding, which is
general and takes into account the entire structure defined.
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For stabilizing the non-equilibrium prestress definition, the preliminary form finding uses three
possible stabilizations: first, the simple influencing of step numbers by a user, further the
calculation interruption based on the deformation monitoring algorithm, and also a possible
usage of the projection method.

4.5.2 Default Form Finding

The default form finding can be classified as a hybrid method, which balances between the GSM
and SM groups according the user setting of the speed of convergence in the Calculation
Parameters/Form-Finding dialog box of the RFEM software.

The development was inspired by the above-described methods URS without the internal loops
(4.24) and AGSM with ISM solved by the Newton-Raphson algorithms instead of the above-
written (4.17) procedure (that both physically overlaps in this specification are materially
independent and consistently derived from the equation of the virtual work), and their physical
meaning is dominant when a high speed of convergence is set by a software user. Therefore,
with this setting, the implemented hybrid form finding moves towards the GSM group.

The SM group was also an inspiration, in the modified form, as the incorporation of the artificial
material (internally driven by the algorithms based on the decreasing parameter of the speed of
convergence) has a considerable advantage. Usually, the SM methods are implemented with
the natural way of the elastic control (4.2.2), which makes the resulting shape dependent on
the initial model position [9]. Since this was not intended, the controlling way was implemented
into the FEA core with further tuning, since the equilibrium has to be finally reached, even if
the unphysical prestress has been defined. The mentioned advantage lies in a more natural and
stable enforcing of geometrical requirements given by a civil engineer or an architect. This
behaviour starts to be predominant when specifying a low speed of convergence. Although the
calculation needs more iterations, the process is thus more robust.

For stabilizing the non-equilibrium prestress definition, the default form finding uses the
controlling way of the elastic control, whose influence is dependent on the speed of
convergence setting, the deformation monitoring and the equilibrium finding when
deformations normal to the plane starts to be minor in comparison with the tangential
deformations and the possible usage of the projection method can be included as well. Of
course, the setting of a number of the form finding steps can also be influenced.

The default form finding is fully incorporated into the general FEA solver (this is the great
difference compared with the preliminary form finding) and considers the structure supporting
the membranes, cables, gas chambers, etc., which are subjected to the form finding. Thus, the
supporting structure, with arbitrary geometry, nonlinearities, etc., is taken into account.

4.6 EXAMPLES

In the following, there are some examples of form finding analyses presented in context with
the particular phenomena, either physical or implementation nature. First, different phenomena
are shown on rather simple structure for a clear presentation of the intended issues, and later,
more complex structures are shown to also present the abilities of the implemented algorithms.
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4.6.1 Catenoid Benchmark
The first example deals with a catenoid surface, which arise by rotation of the catenary curve
about an axis. As it is a minimal surface, the isotropy prestress defines such a shape as well.

This example was chosen as the analytical solution is known and thus it serves as a benchmark.
Moreover, the convergence speed can be also presented here for the GSM (preliminary) form
finding and the hybrid (default) form finding with different settings. More verification examples
can be found on the website [ VIII].

The analytical surface of the catenoid in the three dimensional Cartesian coordinate system can
be describe by the following equations:

z

X = a cosh (5) cos(v) (4.30)
z

y = a cosh (E) sin(v) (4.31)

where x, y, z are the positions in the Cartesian coordinate system, v € (—m, ) is the angle of
rotation about z axis, and a is the constant to be determined. Assuming the rotation symmetry
of the Catenoid surface, the relation can be expressed in the x coordinate axis only

X = acosh (2) (4.32)

The surface, described by the equations above, can exist if the ratio of the height h to the radius
of the base r fulfill this requirement h < 1.32548 r. Behind this ratio, the surface collapses
[37]. In this example, the following values are chosen: r = 1.00 m, h = 1.20 m. Knowing the
solution in z,,q, = h/2

h
r = acosh (—) (4.33)

2a
The value of a = 0.461689 m is solved numerically. If the initial shape of the analysed
structure is a cylinder (Fig. 18), the maximal deformation from the cover in the middle of the

height is Ugnaiyricar = 7 — @ = 1.00 — 0.745071 = 0.254929 m.

The equilibrium shape for the isotropic prestress n, = n,, = 1.00 kN /m was calculated with
both implemented methods, the GSM preliminary form finding and the HM default form finding,
where three different speed of convergence were used (Fig. 20). The maximum deformation in
the middle of the catenoid height has the value u = 254.484 mm (Fig. 19) and the difference
with the analytical solution is error = 0.18%, using the standard precision setting and the
presented FE mesh (1536 triangle FE, 832 nodes). When refining the FE mesh, the error
converges to zero.
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Fig. 18 Model in Initial Position (left), FE Mesh in Equilibrium Shape (vight)

Global Deformations
Jul [mm]
254.484
231.350
208.215
185.080
161.945
138.810
115.675
92.540
69.405
46.270
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0.000

Max : 254.484
Min : 0.000

300
250 +
__ 200 +
E
E .
- Analytical
3
£ 150 + --3-- GSM
@
% — %— HM_1
2
a - & - HM_10
100 +
i@ HM_100
50 +
0 t f f f f f f f f f
0 2 4 6 8 10 12 14 16 18 20

Iterations

Fig. 20 Convergence Behaviour of GSM and HM Form Finding
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4.6.2 Independence of Equilibrium Shape on Initial Model Position

As mentioned above, the resulting shape is dependent exclusively on the predefined equilibrium
of forces and the given boundary conditions. This fact is presented in the next example of
a hypar shaped membrane (Fig. 12), where two different initial configurations were chosen
(Fig. 21). The isotropy prestress of the membrane is n,, = n,, = 1.00 kN /m and the tension in
the cables is N = 10.00 kN . Since different deformations are required for reaching the
equilibrium, it does not make sense to compare them. Instead, the final geometry is compared
directly (Fig. 22), which proves the identity resulting positions. Again, the convergence
behaviour is presented in also (Fig. 23).

> %

Fig. 21 Initial Geometry of Two Hypar Membranes

L
< g
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-
-
e

Fig. 22 Final Geometry and FE Mesh of Two Hypar Membranes (1D FE: 152, 2D FE: 1100, FE Nodes: 628)
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Fig. 23 Convergence Behaviour of GSM and HM Form Finding

4.6.3 Orthotropic Prestress
The left hypar-shaped membrane structure (Fig. 21) is overtaken for this example, presenting

the issue of the constant orthotropic prestress impossibility in double-curved surfaces. The
values of n, = 2.00 kN /m and n,, = 1.00 kN /m are used for the membrane prestress and the

requirement of the relative sag is prescribed for the cables s,,; = 8.00 %.

If the constant orthotropic prestress is strongly enforced, uncontrolled model distortions occur
(Fig. 24). However, a close approximation of these values can lead to equilibrium, as presented
in the following figures (Fig. 25, Fig. 26). The normal forces in the cables for satisfying the
geometric requirement are found (Fig. 27). The normal forces vary along the cable lengths, as

necessary for the equilibrium with the membrane.

e

Fig. 24 Analysis Divergence Characterised by Uncontrolled Mesh Distortions
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-

Fig. 25 Prestress n, Approximating Predefined Values n,, = 2.00 kN /m

<

Fig. 26 Prestress n,, Approximating Predefined Values n,, = 1.00 kN /m

Fig. 27 Prestress N Satisfying Predefined Cables Sag Value s,.,; = 8.00 %
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Base values
nx [KN/m]

Max :
Min :

2.08
2.06
2.04
2.02
2.00
1.98
1.96
1.94
1.92
1.90
1.88

1.86

2.08
1.86

Base values
ny [kN/m]

Max :
Min :

1.02
1.02
1.01
1.01
1.01
1.01
1.00
1.00
1.00
0.99
0.99

0.99

1.02
0.99
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4.6.4 Projection Method
The following example shows two umbrellas, the left one with the square base made of cables,
and the right one with the circular base made of a steel frame (Fig. 28).

Fig. 28 Initial Models Positions of Membrane Umbrellas (Light Blue: Membrane, Blue: Cables, Gray.: Beams)

Fig. 29 Axis Orientation: x (Radial), y (Tangential)

Such a conical shapes are typical by necessity of the stress concentration in the regions of the
top or bottom rings, thus the prestress vary much more than in the previous example (4.6.3),
where quite a close approximation of the given values was reached. Here, the given prestress
values n, = n,, = 1.00 kN/m will be far away from the resulting prestress of the membrane.

To be complete, the prestress N = 5.00 kN for the boundary cables is required.

A stabilization procedure needs to be applied. As mentioned above, the possible ways are
Specifying Number of Form Finding Steps (4.2.1), Elastic Control in the natural way (4.2.2),
Element Size Control (4.2.3), Projection Method (4.2.5), etc. In the following, for the sake of
the comparison, the number of iterations is restricted first and the example is then calculated
with the Projection Method.

The final geometry (Fig. 30) and results of the form finding process with the restricted number
of calculation steps can be seen in following figures (Fig. 31 — Fig. 35).
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Fig. 30 Final Geometry and FE Mesh: Stabilization: Specifying Number of Form Finding Steps

Base values

nx [kN/m]

2.315
2.140
1.965
1.790
1.615
1.441
1.266
1.091
0.916
0.741
0.566

0.392

2.315
0.392

Fig. 31 Normal Forces in x Direction; Stabilization. Specifying Number of Form Finding Steps

Base values

ny [kN/m]
1.045
0.965
0.886
0.806
0.726
0.646
0.566
0.487
0.407
0.327
0.247

0.168

Max : 1.045
Min : 0.168

Fig. 32 Normal Forces in y Direction; Stabilization: Specifying Number of Form Finding Steps
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Base values
Nxy [KN/m]
0.429
0.351
0.273
0.195
0.117
0.039
-0.039
-0.117
-0.195
-0.273
-0.351

-0.429

Max : 0.429
Min : -0.429

Fig. 33 Shear Forces; Stabilization: Specifying Number of Form Finding Steps

Principal values
n-1, n-2 [kN/m]
2.315
2.119 p
1.924
1.728 I
1.533
1.337
1.142
0.946
0.751
0.555
0.360

0.164

2.315
0.164

Fig. 34 Principal Forces Vectors in Corner of Left Membrane,; Stabilization: Specifying Number of Form
Finding Steps

5.9415.941

Fig. 35 Normal Forces; Stabilization: Specifying Number of Form Finding Steps
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While observing these two umbrellas, it can be seen that quite nice prestress can be reached for
the axially symmetric structure. However, when observing the results of the left structure, no
smooth prestress is reached and the locations with the overtension and undertension can be
detected. As an example, the undertensioned region in the y direction of all four corners is
observable in (Fig. 32), or the vectors of principal forces in one corner of the left membrane
(Fig. 34). This method is therefore not an optimum solution for the general membrane structures
with high or low points.

The next form finding analysis is performed with the Projection Method (4.2.5) stabilization
technique. In the figure (Fig. 36), the circular cutout of the infinite projection plane is presented.
The membranes prestress values n, = n,, = 1.00 kN /m are specified in the given projection

planes and the cable prestress of the left membrane N = 5.00 kN.

Note 1: It is important to note that this is only a cutout of the infinite projection plane, whose
orientation in the space is uniquely defined by the normal vector. The precise position of this
plane is not important, only its orientation plays a role. Moreover, the equilibrium in the whole
projection plane is satisfied, so when the model of the membrane moves, it always has its
projection to the mentioned plane.

Note 2: When the radial direction of the FE local axes of the membrane structure is defined by
a line (by two nodes), the two nodes are used for the definition of the mentioned normal vector.
Thus, using of this method is user-friendly.

The equilibrium of isotropic prestress in the projection plane is presented in (Fig. 37), the final
geometry in (Fig. 38) and the results of the form finding analysis can be seen in figures (Fig.
39, Fig. 40, Fig. 41, Fig. 42, Fig. 43).

Z

Fig. 36 Projection Planes for Prestress Definition (green)
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Base values
nx [kN/m]

1.000
Max : 1.000
Min : 1.000

Fig. 37 Isotropic Prestress Definition in Projection Plane (Note: n,, = ny)

Fig. 38 Final Geometry and FE Mesh: Stabilization: Projection Method

Base values
nx [KN/m]
2.789
2.627
2.464
S 2.302
2.140
1.978
1.816
1.654
1.491
1.329
1.167

1.005

Max : 2.789
Min : 1.005

Fig. 39 Normal Forces in x Direction; Stabilization: Projection Method
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Base values

ny [kN/m]
0.990
0.931
0.872
0.813
0.754
0.695
0.636
0.577
0.518
0.460
0.401
0.342

Max : 0.990

Min : 0.342

Fig. 40 Normal Forces in y Direction; Stabilization: Projection Method

Base values
Nxy [kKN/m]
0.053
0.043
0.034
0.024
0.014
0.005
-0.005
-0.014
-0.024
-0.034
-0.043

-0.053

Max : 0.053
Min : -0.053

Fig. 41 Shear Forces; Stabilization: Projection Method

Principal values
n-1, n-2 [kN/m]
2.789
2.566
2.344
2.121
1.899
1.676
1.454
1.232
1.009
0.787
0.564

0.342

Max : 2.789
Min : 0.342

e

Fig. 42 Principal Forces Vectors in Corner of Left Membrane ; Stabilization: Projection Method
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Fig. 43 Normal Forces, Stabilization: Projection Method

While observing the umbrellas, it can be seen that nice and smooth prestress is reached for both
models. In the regions with the necessary rapid change of curvatures, specifically the top of the
cones, the prestress is increased for the x direction (Fig. 39), while the prestress in the
y direction (Fig. 40) decreases to prevent the strangulation effect. However, in the regions
without the necessity for rapid curvature changes, the prestress is practically isotropic (as was
the task input), therefore, the undertensioned regions in the corners does not occur (comparison
well observable in figures Fig. 34 and Fig. 42). Assuming the specified axis directions, the shear
stresses are considerably low (Fig. 41).

In comparison with other stabilization techniques, the projection method has one considerable
advantage. This type of the prestress definition leads to the uniquely defined spatial
equilibrium, even so it is not known in advance. However, as well as the isotropy prestress, the
Projection Method (4.2.5) stabilization technique leads to the independence of the resulting
shape of the initial model position.

To illustrate other possible equilibrium definition in the projection plane, other case is presented
briefly. The average prestress values in the projection plane n, = 2.00kN/m, n, =
1.00 kN/m and N = 10.00 kN (Fig. 45). The prestress values in the projection plane cannot
have a nature of constant orthotropic prestress, so the analytical equations for the calculation of
the equilibrium anisotropic prestress in projection planes are implemented, as can be seen in
the bottom part of (Fig. 45). The final geometry (Fig. 44) and the vectors of principal spatial
equilibrium forces in the membrane, derived from the equilibrium in the projection plane, are
presented below (Fig. 45).
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Fig. 44 Final Geometry and FE Mesh for Task n, = 2.00 kN /m, n,, = 1.00 kN/m and N = 10.00 kN;
Stabilization: Projection Method

Principal values

n-1, n-2 [kN/m]
6.878
6.310
5.743
5.175
4.607
4.040
3.472
2.905
2.337
1.770
1.202

0.635

Max : 6.878
Min : 0.635

Fig. 45 Vectors of Principal Forces for Task n, = 2.00 kN /m, n,, = 1.00 kN/m and N = 10.00 kN,
Stabilization: Projection Method

4.6.5 Gas Chambers

Above, the form finding requirements were presented on the examples with membranes and
cables. Here, the form-finding of a simple gas chamber is shown. The prestress of the ETFE
foil is assumed as n, =n, = 0.40kN/m and the pressure requirement p = 250.00 Pa is
used. As well the required volume can be defined to find the final geometry. The initial model,
final geometry and pressure in the gas chamber after form finding is presented below.
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Fig. 46 Initial Model of Gas Chamber

Fig. 47 Final Geometry and FE Mesh of Gas Chamber

Solid Stresses
Overpressure Po
[Pa]

249.9

Max : 249.9
Min : 249.9

Fig. 48 Resulting Overpressure

4.6.6 Form finding for Structures Under Compression
The form finding of shell structures with boundary beams is presented here. The input values

are ny =n, = —9.00 kN /m for the concrete shell with the thickness t = 70.00 mm, N =
—150.00 kN as an average value for the boundary beams and the gravity acceleration g =
10.00 m/s?. The triangle edge lengths of the initial model are [ = 19.60 m.

The initially planar structure (Fig. 49) is deformed to an equilibrium position (Fig. 50), bending
moments in the shell (Fig. 51) as well as in the beams are virtually zero, the shell compression
is presented in (Fig. 52, Fig. 53) and the compression in the boundary beams in (Fig. 54). Thus,
the shape is optimized to act purely in the normal directions when the gravity load is applied.
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‘

Fig. 49 Initial Model

/{

Fig. 50 Final Geometry and FE Mesh Discretization

Principal values
m, [kKNm/m]

/{

0.00
Max : 0.00
Min : 0.00

Fig. 51 Principal Moment m,

Principal values

ny [kN/m]

-8.58
-8.69
-8.80
-8.90
-9.01
-9.12
-9.23
-9.34
-9.45
-9.56
-9.66

-9.77

: -8.58
Min: -9.77

/{

Fig. 52 Principal Normal Force n,
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Principal values

n-1, n-2 [kN/m]
-8.19
-8.33
-8.48
-8.62
-8.77
-8.91
-9.05
-9.20
-9.34
-9.49
-9.63

-9.77

Max : -8.19
Min: -9.77

Fig. 54 Normal Forces N [kN]

4.6.7 Possibility of Multiple Equilibrium Solutions for Some Form Finding Analyses
The example to be presented now, specifically a membrane on arches, combines more
individual form finding requirements and presents a very interesting physical phenomenon.

First, the implemented and thus available physical and geometrical requirements for the form
finding analyses are listed here, to provide the overview of the possibilities:

- Cable/Beam (1D): normal force (positive or negative), sag (relative or absolute), length
(relative or absolute).

- Membrane/Shell (2D): normal force or stress (positive or negative)

- Gas chambers (3D): pressure (resulting or increment), volume (resulting or increment)

Note: All the requirements are available in the HM form finding, while the force requirements
are available in the GSM form finding algorithms.

Now, the prestress of the analysed membrane structure is defined as an orthotropic one with the
values n, = 2.50 kN/m and n,, = 2.00 kN /m, the cables have the defined relative sag s, =
10.00 % (and acts in tension), the arches of the top model are considered as the supporting
structure (no form finding definition) and the arches of the middle and bottom model has the
form finding definition of the resulting length [ = 13.37 m under compression (Fig. 55) (this
length is considered to be the same as the length of the top model arches). Thus, the example
consists of the structural entities both under the positive and the negative required resulting
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values. This analysis requires a special procedure. Moreover, the phenomenon of multiple
equilibrium solutions is highlighted here (Fig. 56).

The resulting values of the prestress in both directions approximates the defined values and the
shear stress has low magnitude (Fig. 57, Fig. 58, Fig. 59). However, the main differences are
observable in the shape and the internal forces of beam arches (Fig. 60, Fig. 61). While the first
(top) model is exposed to all the beam internal forces, the beams in two other models acts
virtually under compression only, since their shape was optimised to behave like this. The
structures with the mixed requirements (tension and compression) also often do not have one
unique solution, but more equilibrium shapes could be found here (note: although there are only
two shapes shown here, four possible solutions exist for this task) and the process converges
from the initial position to the closest minimum of energy. Thus, the slight difference between
middle and bottom models results in different equilibrium shape after the form finding analysis.

Fig. 55 Initial Model Positions with x and y Axis Orientation
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Fig. 56 Final Geometry and FE Mesh Discretization

Base values

nx [kN/m]
2.587
2.564
2.542
2.519
2.497
2.474
2.451
2.429
2.406
2.384
2.361

2.339

Max : 2.587
Min : 2.339

Fig. 57 Normal Forces in x Direction [kN /m]
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Base values

ny [kN/m]
2.052
2.046
2.040
2.034
2.028
2.022
2.015
2.009
2.003
1.997
1.991

1.985

Max : 2.052
Min : 1.985

Fig. 58 Normal Forces in y Direction [kN /m]

Base values
nxy [kN/m]
0.074
0.060
0.047
0.033
0.020
0.007
-0.007
-0.020
-0.033
-0.047
-0.060

-0.074

Max : 0.074
Min : -0.074

Fig. 59 Shear Forces [kN /m]
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Fig. 60 Normal Forces N [kN] (left), Shear Forces V,, [kN] (right)

Fig. 61 Bending Moments M, [kN /m] (left), Torsion Moments M,. [kN /m] (right)

In the graph bellow (Fig. 62), it can be seen that the higher is the speed of convergence, the
more sensitive is the structure to the oscillations and sometime even instabilities. Here, the
model is also stable for the highest speed, however, in the case of more complex and especially
sensitive structures, the process can be prone to instabilities and thus, the lower speed of
convergence ensures the higher stability of the implemented algorithms.
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Fig. 62 Convergence Behaviour for Different Setting of HM Form Finding Speed of Convergence

4.6.8 Regeneration of Local FE Axial System

For the example presented in this subchapter, a really crazy initial model position was
intentionally chosen as it improves the visibility of the described operation, namely the FE local
axial system regeneration. The prestress values are not of interest here, as this issue is generally
valid. The initial model has a user-defined local axis direction. Here, the line connecting the
bottom supports is a defining line for aligning the local x FE Cartesian direction. The initial
model position is presented in the figure (Fig. 63). As the model deforms, the axial system
rotates in the space and can change its directions extremely (Fig. 64, Fig. 65).

As the form finding is an initial equilibrium problem solving procedure, the local axial system
orientation is not kept during the analysis, but should be regenerated in each iteration in order
to keep the orientation as specified by a civil engineer or an architect. It has a great importance
on both the material orientation in the subsequent analyses and on the resulting shape, since the
local axes are connected with the values prescribed for the form finding process itself. Thus,
the local axes regeneration has to be performed.

Fig. 63 Initial Position of Models (left)
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Fig. 64 Final Geometry — Local Axial System Obtained by: Deformation of Original Axial System (left),
Regenerated Local Axial System (right); Isometry View

Fig. 65 Final Geometry — Local Axial System Obtained by: Deformation of Original Axis System (left),
Regenerated Local Axial System (right); Top View

4.6.9 Material Assignment After Form Finding Analysis

As already mentioned, the form finding analysis is a materially independent process. However,
the form finding results are the initial equilibrium state of the given structure for the subsequent
analyses, which are materially dependent. Thus, the inverse task in comparison to the usual
structural analysis has to be performed on the material level, since the appropriate strains need
to be estimated for the actual equilibrium of forces. The strains undergone during the form
finding analysis does not have any physical meaning, so, the real physical strains are calculated
when the form finding convergence is reached from the resulting stresses

e=Clo (4.34)

where € is the unknown strain state, ¢ is the resulting stress of the form finding analysis, and
C~1 is the inverse of the constitutive matrix.
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Fig. 66 Initial Position of Model (left), Final Geometry with FE Mesh (rvight)

Fig. 67 Determined Total Strains €,

Fig. 68 Determined Plastic Strains €y 5
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EXAMPLES

In the example here, the membrane (Fig. 66) prestress has the values o, = 0, = 1.50 MPa, the
material used is defined as an isotropic plastic with the following constants E = 12.00 MPa,
v = 0.40, f, = 1.00 MPa, E,, = 1.20 MPa, and the chosen strain hypothesis is Von Mises. In
this example, very low material stiffness was used to obtain higher strain values (Fig. 67, Fig.
68).

The process is valid for any available material model. For nonlinear models, the iteration
procedure has to be performed when seeking the appropriate strain values (for example, with
the Newton-Raphson iteration scheme) in each integration node of the analysed FE.

4.6.10 Examples of Complex Structures

The examples already presented were rather simple structures for a straightforward description
of the intended issue, phenomenon or implementation necessity to be algorithmizated during
the development process. Now, there are few other structures of more complex compositions
shown for illustrative purposes (Fig. 69 — Fig. 76). Therefore, the initial and equilibrium shapes
are shown without a detailed description.

Fig. 70 Composition of Conical and Hypar Membranes — Equilibrium Position [44]

63



ForM FINDING

Fig. 71 Bus Station Roofing — Initial Position [44, IX]

-

Fig. 72 Bus Station Roofing — Equilibrium Position and Vectors of Principal Forces [44, 1X]

-

Fig. 73 Tanzbrunnen — Initial Shape

64



EXAMPLES

Fig. 76 Greenhouse Made of Pressurized ETFE cushions — Equilibrium Position [44]
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The membrane structures are a really special in analysis requirements, which is the consequence
of their virtually zero bending stiffness. That implies the singularity when the material stiffness
matrix is only taken into account. Thus, the geometric stiffness matrix needs to be regular,
which implies tension in the whole membrane. Therefore, if compression occurs, a special
treatment has to be performed in the implemented codes. This is done by applying an artificial
minimal tension in the numerical analysis.

However while the geometrical nonlinearities could be accounted by a general description of
the chapters Continuum Mechanics andFinite Element Procedure , using the Updated
Lagrangian formulation (ULF) or the Total Lagrangian formulation (TLF), being quite standard
in terms of the continuum mechanics, the material nonlinearity of membrane structures is quite
unique issue. If a membrane loses its pretension, the compression is released by the surface
wrinkling and the standard membrane theory does not describe such a state. This is one of the
most important and difficult tasks of the structural analysis of such a type of structures.

As this short introduction suggests, the description and studying of the wrinkling phenomenon
was one of the crucial parts of this thesis. Thus, this chapter includes the subchapter that deals
with the introduction into the physical problem and the current state of the art. Later, the
subchapter with the proposed solving technique called Wrinkling Separation and Elastic
Prediction Modification is presented, where the formulated method is completed by
verification examples. Further, the next subchapter present analyses focused on the wrinkling
phenomenon. At the end of this chapter, the results of static and dynamic analyses of the
Tanzbrunnen membrane structure with consideration the proposed technique, are presented.

5.1 WRINKLING OF MEMBRANE SURFACES

The special behaviour of the membrane material is the subject of research for many decades.
The pioneer contribution to this field, studied on the flat sheet metal girders with very thin metal
web, was already presented by the author H. Wagner [45], who proposed the Tension Field
Theory (TF). The TF assumes that a membrane has zero flexural stiffness. While the membrane
is stretched, the classic membrane theory for the evaluation of the stress state is valid, however,
when the compression is about to appear, in the consequence of the zero flexural stiffness
assumption, the compression is immediately released by the buckling effect, thus by the
development of little waves aligned with the tensile direction.

Essentially, there are two ways for solving the wrinkled state of the membrane in FEA. The
first way is to use an extremely dense FE discretization and the in-plane stiffness in both the
tension and the compression directions, while the bending stiffness is zero. Such a mesh allows
the material to follow the little waves, but this is inadequate costly solution and it inevitably
depends on the mesh. The second way, which is further categorised, focuses on the separation
of the total strain into the elastic and wrinkling part. Such a solution allows for using the FE
discretization, where the particular elements are much bigger than the wrinkles. Even so the
particular wrinkles are not modelled here, the method is not so strongly dependent on the mesh
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as in the case of the previous method and, in terms of the continuum analysis, the global stress
state is precisely described by such a ‘smeared wrinkle’ analysis.

v /// S S

Tensile stress Tensile stress Tensile stress

Fig. 77 Applied Stress (left), Real Physical Deformation (Wrinkling) of Membrane (middle), In-Plane
Deformation/Strain (right). [46]

The figure (Fig. 77) shows the described physical process, where the compressive stresses are
released by the local buckling effect followed by the appearance of wrinkles. If the presented
square is assumed to be a quadrangle FE, the out-of-plane deformations presented in the middle
of the figure cannot be properly modelled and the in-plane strains presented in the right part of
the figure are obtained. Such strains do not properly represent the real physical behaviour and
thus, it is necessary to decompose the deformation into an elastic and a wrinkling part (Fig. 78).

// s ///

JS S S 7 v

Fig. 78 Real Physical Deformation (Wrinkling) of Membrane (left), Total In-Plane Deformation/Strain (middle),
Separation of Total Deformation/Strain into Elastic and Wrinkling Part (right) [46]

The methods of proper strain decomposition have been the subject of many researchers for
decades, and the possible methods are briefly mentioned bellow, separated into two main
groups, namely Kinematics Modifications (KM) and Material Modifications (MM) [42].

5.1.1 Kinematic Modifications (KM)

This method, proposed by C.H. Wu and T.R. Cansfield [47] and further extended by D.G.
Roddeman et al [48, 49], is based on the modification of the total deformation gradient (F to
eliminate the nonphysical in-plane strains caused by the wrinkling effect.

The orthonormal vectors n; and n, denotes the principal directions of the Cauchy stress, [
represents the real deformed length while [ is the fictive non-wrinkled length and b is the
deformed width. As derived in the contribution by D.G. Roddeman et al [48], the original
deformation gradient JF is subsequently modified

ofF = (I+ B nyny) oF (5.1

where I denotes the identity matrix, 3 is the parameter, which express a measure of the
membrane wrinkling and is never negative because if the wrinkles disappear, the modified
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deformation gradient (F unifies with the standard deformation gradient (F and also, it can be
said that [ can only be greater or equal to [, never smaller. The  parameter is determined by
the coupled nonlinear conditions, as described in the paper mentioned above.

\
v

fictive
non-wrinkied

N2

n1

Fig. 79 Wrinkled Membrane with Deformed Length [, Fictive Non-Wrinkled Membrane Length | and Deformed
Width b (left). Wrinkled Membrane Part Straight in Tangent Plane Determined by n, and n, (right). [48]

Thus, the main idea of this method can be illustrated by the description written in the
contribution [48]: ‘The tensor (1 + B nyn,) lengthens the fictive non-wrinkled membrane part
to become just as long as the real wrinkled membrane part.” This can be seen on the right side
of the figure above (Fig. 79).

Using the modified deformation gradient §F, different measures of the modified strain tensors
can be calculated as, for example, the Green-Lagrange and the infinitesimal strain tensors are
rewritten in the following formulas, analogous to (2.7) and (2.11)

|
0E = 5 (§F" 6F ) (5.2)
t 1 tp tgT
0£=E(0F+0F )_I (5.3)

Consequently, the different measures of the real/physical stresses in the wrinkled membrane
are also calculated. It is important to note that no material assumption was used when deriving
this method. Further interesting contribution related to this method was published by H. Schoop
et al [50].

5.1.2 Material Modifications (MM)

In contrast to the previous method where the deformation gradient was modified to obtain the
real non-wrinkled configuration by the kinematic modifications (KM), the material
modification (MM) methods consider the wrinkling phenomenon as a special case of perfect
plasticity, and therefore, the total strain € (note. the fictive strain in the language of the method
mentioned above) is decomposed into the elastic €, and the wrinkling &,, part. The wrinkling
1S a zero strain energy process. The standard strain decomposition, known in the material
nonlinearity, is written as

£E=¢g,+&, (5.4)
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Many approaches for the material modification (MM) process were proposed by various
authors. For example, the contribution of the authors T. Akita et al [46] uses a special projection
technique, which separates the elastic and the wrinkling parts of the strain and maps the original
constitutive matrix to the modified one (Fig. 80). By this method, the nonphysical stresses
belonging to the wrinkling strain are released.

q

|

=

Fig. 80 Visualization of Strain Decomposition with Usage of Projection Matrix P and Consequent Stress
Calculation with Constitutive Matrix C, or Direct Stress Calculation with Usage of Modified Constitutive Matrix
C [46].

The derivation of the projection matrix P can be found in [46]. This contribution was also
an inspiration for the work by A. Jrusjrungkiat [42] and A. Jrusjrungkiat et al [51].

There are further proposed approaches, where the modified strass-strain relation in a wrinkled
membrane is mostly used for dealing with the wrinkling phenomenon.

The way of the material modification (MM) is the method published more widely, such as in
[52, 53, 54, 55, 56, 57, 58, 59], and many others. An interesting contribution which compares
different methods from both groups was written by Y. Miyazaki [60]. Many other proposals,
presented analyses, derivations of the analytical examples and their comparisons can be found
in the following contributions [60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71].

At the end of this chapter, it is necessary to conclude that the majority of the proposed methods
are not general in the sense of using them for the anisotropy and the nonlinearity of the material
used for a membrane. Some of them are usable exclusively for linear isotropic materials,
another also for anisotropic linear material models, but the general methods are rare. Moreover,
when studying the research articles, the fact that many methods merely approximate the real
physical stress state in the wrinkled membrane can be observed on the presented numerical
examples which are compared with the analytical solutions. These facts are the reason for the
work of many researchers and their subsequent publications in this field.

5.2 WRINKLING CRITERIA

In order to determine the actual state of the membrane, the wrinkling criteria were developed
to distinguish whether the membrane is in a taut, wrinkled or slack state (Fig. 81), and they are
widely used for both of the above-mentioned groups of the methods for dealing with the
artificial stress caused by fictitious strain [42, 52, 55, 59, 72, 73, 74, 75].
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Tab. 1 Wrinkling Criteria to Distinguish Membrane Status

Membrane state  Principal stress criteiron  Principal strain criterion Mixed criterion
Taut Smin > 0 Epin >0 Siin > 0
V\-Trinkled Smg'” {_m. 0 and S,ljlm_}_‘ = U E””'” E O and E”m_\' = O S.‘J‘H‘H E O and. E”m_\' = O
Slack Simin < 0and Spax < 0 Emin <0and Epax <0 Emax <0
reference state taut state wrinkled state slack state

Fig. 81 State of Membrane: Taut, Wrinkled and Slack [42]

The principal stress and principal strain criterion can be misleading as the principal stress
criterion is not reliable when detecting the wrinkled or slack state, while the principal strain
criterion is not reliable when detecting the taut or wrinkled state. Therefore, the mixed criterion
is considered and widely used as a suitable choice.

This status recognition is a tool further used for determining which type of the algorithm should
be applied to the actual state of the particular FE integration node.

5.3 PLANE STRESS STATE IN CLASSIC MEMBRANE THEORY

Before the next chapter including a description of the proposed method is presented, the basic
formulas used later are listed here [1, 2, 3, 76], starting with the stress-strain law for the elastic
and plastic materials, continuing with the constitutive matrix for the isotropic and orthotropic
materials

c=Ceg, (5.5)

6 =C(e—¢gp) (5.6)

(5.7)

62211 C2222 C2212

61111 C1122 C1112
C=
61211 C1222 C1212

where o denotes the actual stress, €, €., €, are the total, elastic and plastic strain components

respectively, C is the plane stress constitutive relation, which can be described for the isotropic
or orthotropic materials as follows:

(5.8)
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[ E, VyyEy 0 1
1—vyyvyr 1=V,
C= VyxEx E, 0
1= vy 1=V, (59
0 0 Gy | '
1 Ex,  VyE, 0
=T VyrEx E, 0

e Lo 0 (1= veyVyx)Gry

where E, Ey, E, are the elasticity moduli, and v, vy, v, denote the transverse contraction
coefficients for the isotropic and orthotropic constitutive laws.

022 0>

[

XzI 012
011 011
o X

12 01
-

012 ¥
022 02

Fig. 82 Stress State in Planar and Main Directions ([77] with Modifications)

The figure above (Fig. 82) displays the stress state in the planar and main directions. The
principle stress values can be determined by evaluating the eigenvalue problem of the stress
state. Bellow, the stress is written in the matrix notation

_[011 012
= o o] (5.10)
(6—o0gDn=0 (5.11)

Since the normal vector n relates to the unit length, the tensor in the brackets has to be singular,
thus the following relation has to be fulfilled:

det(o — o,l) = [011 — % 12 ]

021 022 — O

(5.12)
= (00)2 — (011 + 03;) 09 + (011022 — (012)2)

where I is the unit matrix, and g, denotes the eigenvalues, thus the magnitude of the principal
stresses in the first and the second main direction ¢; and 7,

(011 + 022) + (011 — 022

2
) 4 (010 (5.13)

Bellow, the well-known vizualisation of the stress state using the Mohr circle (Fig. 83) is
attached.
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Fig. 83 Mohr Circle for Stress Transformation

The angle between the planar and the main directions « is given by the following equation:

a = ltan‘1 (ﬂ) (5.14)
2 011 — 022

For the sake of distinguishing the physical values in the planar Cartesian coordinate system of

the element and in the main stress directions, a bar is used. Whenever the value is written

without the bar, it denotes the planar Cartesian coordinate system directions, and when the bar

is used, the physical values are considered as transformed into the direction of the main stresses.

6=[011 Oz 012]T (5.15)

=[5, &, O]T (5.16)

The transformation of the membrane strains and the stress strain matrix between the planar
Cartesian coordinate system and the axial system given by the directions of the main stresses is
performed by the following transformation matrix:

cos? xyx; cos? x,x, COS X1X1 COS X1X
T, = cos? x,x; cos? x,x, COS XX COS XpX (5.17)
2C0S X1X1 COS XpX1 2COSX1XyCOSXpXy COSX1X1COSXyXy + COSXpXq COS X1X;

where X; and x; denote the main and the planar Cartesian coordinate axes, so the matrix can be
rewritten by using the angle «

cos’«a sin® « sina cosa
T, = sin®a cos’«a —sina cosa (5.18)
—2sina cosa 2sina cosa cos®a—sina

The strains transformation is given by the equations
€E=T.¢ (5.19)
=T;'€ (5.20)
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And the transformation of the constitutive matrix can be written as

C=T;TCT ! (5.21)

C=TICT. (5.22)

5.4 YIELDING CRITERIA FOR ISOTROPIC NONLINEAR ELASTIC AND PLASTIC
MATERIAL MODELS

Some of the well-known yielding criteria for the isotropic nonlinear elastic and plastic material
models are listed here in the form of the figures attached below (Fig. 84, Fig. 85, Fig. 86). Their
detailed description can be found in the literature, for example [1, 3]. It is possible to combine
these models with the further described Wrinkling Separation and Elastic Prediction
Modification procedures for an appropriate representation of such combined nonlinearities,
namely the wrinkling and the yielding process together, as described in Subchapter (5.5.2).

’

7

09 = Ueq

Ty = —Teq

t ';J.'IJ"'I =n fi

5
: '
- 1
P = - _ 7 4
Ton=15 _pf Lof A 2
-
.
2, '
:
i

~~— Drucker-Prager
Mohr-Clonlomb

4
— o] »

a3
/ . _m=8mn+h
Feg AL~ ~

T = —0O¢q

e =
Y von Mises

Tresca

;f’.-:l =—fi

0] — Oeq o1 =—fc o1 =fi

Fig. 85 Visualization of Tresca and Mohr-Coulomb Yielding Criteria in Plane of 6, and &, (53 = 0) [76]
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Je

5
Tt !

Fig. 86 Visualization of Rankine Yielding Criterion in Plane of 6, and 6, (65 = 0)

5.5 WRINKLING SEPARATION AND ELASTIC PREDICTION MODIFICATION

As a part of this thesis, the proposal of a new technique dealing with the wrinkling phenomenon
described above was made. This method, called Wrinkling Separation and Elastic Prediction
Modification processes, could be categorized among the material modification (MM)
techniques. The actual strain is decomposed into the real in-plane and wrinkling components
and the fictitious stress is decomposed into the real and nonphysical parts, released by the local
buckling process. The presented method will be further followed by numerical examples.

Following the mixed wrinkling criterion, the actual state of the membrane is determined. If the
membrane is tensioned in both directions, the classic membrane theory is used, whereas if both
principal strains are negative, the slack status is detected and all the stress components are
released by the wrinkling effect, and the tangent stiffness becomes a zero matrix. If the wrinkled
status is detected, the real stress state is the unknown to be determined.

Redrawing the above presented figure of the wrinkling process (Fig. 78) into the following form
shown in the figure below (Fig. 87), the real sequence of the physical processes is described.
As the membrane is tensioned in one direction, the transverse elastic deformation is proceeding
first according to the Poisson effect. Until now, no wrinkling occurs. However, when the
transverse contraction continues beyond this limit value, the compression occurs and at the
same time, this compression is released by the wrinkling effect. The real stress state is already
given by the first step of this sequence as the wrinkling process itself does not influence neither
the contracted nor the stretched direction. Thus, the stress state on the border of the first and the
second sequence step is the aim of the following process.

v S S

; | / >/ / {}:’I::{jﬁl: 7 7/
s haas

Fig. 87 Transverse Contraction (left), Additional Contraction Causing Wrinkling Effect (middle and right)

5.5.1 Wrinkling Separation Procedure for Anisotropic Linear Elastic Material Models
The whole process is described on the level of each FE integration point from the moment the
total strain is known until the moment the real physical stress is determined, the total strain is

75



STRUCTURAL ANALYSIS

decomposed and the constitutive matrix is derived. First, the elastic stress estimation in the
planar Cartesian coordinate system is performed

6=Ce (5.23)

Further, the stress is transformed into the main directions

0 —> 0= [0-1 52 0 ]T (524)

Now, the case when the lower principle stress 6, < 0 and the higher principle strain & > 0
(where generally the principle directions do not coincide as denoted by different accents) is
assumed, denoting the membrane is in the wrinkled state. The actual stress is unknown as the
elastic estimation ¢ = @ using the classic membrane theory does not give the proper values.

For the actual stress state estimation, the Wrinkling Separation procedure uses the above-
defined assumption that the negative stress 0, is released by the local buckling effect and thus
the real elastic stress ,° = 0. As the value of &, is influenced by the coefficient of the
transverse contraction even for the wrinkling part of the strain, its value is not correct and thus
the elastic stress ,° is set as unknown &,° =?. Furthermore, the actual strain and the
constitutive matrix are transformed into the direction of the principle stresses as denoted by the
bar accent.

E=T.e=[&1 & & (5.25)

_ Cj1111 Cj1122 Cj1112
C=TTCT;'=|Cp11 Cozaz Cozra (5.26)

C1211 C1222 C1212

where &, # 0 and C is the full occupied matrix for the general linear anisotropic material
model. However, since the membrane is in the wrinkled state, the elastic stress ,° is positive.
As the membrane does not wrinkle in the direction of the first principal stress 64, the strain
component &, does not require further decomposition, and it holds &% = &, and &7 = 0,
where the indexes e and w denote the elastic and the wrinkling strain parts. Following these
physical assumptions, the limit state of the wrinkling initialization depicted on the left side of
the figure (Fig. 87) is given by the equation

.’ =7 Cj1111 Cj1122 Cj1112 1
0 =|[Ca211 C2222 (2212 || &2

[N
® L
Il

(5.27)

N

€11
?
?

[\

0 &

N

61211 C1222 61212

This system of three equations with three unknowns, namely the elastic stress &,° and the elastic
strains £, and &5, represent the state when wrinkling starts to appear. By solving this system,
the elastic part is obtained and the wrinkling part is separated out. For solving this, the equation
(5.27) 1s modified as follows:

[5,490: ?] _ [EAA Cap ] [gAe = &11 ] (5.28)

= = e _
Cps Cppllép =7

76



WRINKLING SEPARATION AND ELASTIC PREDICTION MODIFICATION

Solving the unknown elastic strains &, and &5

0 =Cpy &1+ Cpp &5 (5.29)
p = _EB_BI Cpa €11 (5.30)
&5, C C C _
[&]=[F Gl [En) e 30
Solving the unknown elastic stress ;°
0.° =G4 = Ci111 811 + Cr122 &5 + Cr112 &5 (5.32)

Following the wrinkling separation process described above, the artificial stress associated
with the in-plane strain representing the buckling effect is separated out and the elastic parts of
the stress and the strain tensors are obtained

o®=[d° 0 0]T (5.33)
ef=[&1 & &5 ]T (5.34)
And here, the separated stress and strain values
sV=[6" & 0]"=[(G-6°) & 0] (5.35)
eV =[0 &7 &5]"=[0 (&, —&3) (En—&a]" (5.36)

Having obtained the actual stress state in its principal directions, the transformation of the
stresses and strains into the planar coordinate system can be performed

6¢=T;'6¢=Tlc°® (5.37)
eC=T;'€® (5.38)
oV =T;'cV=T0G (5.39)
W =Tl eV (5.40)

When rewriting the constitutive law into the following form, the similarity with the general
nonlinear material models can be seen.

c=C(e—¢gv) (5.41)

As written above, if the membrane status is taut, the original constitutive matrix is valid C; =
C, and if the membrane status is slack, the constitutive matrix Cg becomes a zero matrix.

Ci111 Ciiz2z Giarz
C=C= lczzn C2222 (o212 ] (5.42)
Ci211 Ci222 G212
0 0 O
cszlo 0 0] (5.43)
0 0 O
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If the membrane is in the wrinkled status, the constitutive matrix C,, can be calculated
numerically

[ 0oy, 00q1 0071

dey; 0&y, 0&,
C, = do,, 00,5, 00, (5.44)
dgqn  0& Oéqy

doy, 00y, 001,

| Jey; 0&y, 0&qy |

Moreover, it can be proven that for the isotropic material, the following analytical constitutive
relation holds

c o o E 0 0
0 0 0
C,= |0 0 o]= E (5.45)
0 0 kG 0 0 kgt

where k is the coefficient of the shear softening, which is dependent on the degree of wrinkling,
thus on the relation of the elastic and total strains

P I ik (5.46)
€12 €11 — €22

For the sake of the FEA numerical stability, the real tangential stiffness Cg or C,, cannot be
used directly as it leads to the oscillations of forces and the deformations during the calculation,
and the analysis often even does not converge at all. Thus, the artificial stiffness modification
applies in order to avoid such behaviour. The selection of such artificial stiffness can be
modified according to the required analysis robustness. These modifications should be
understood as the algorithmically tuning of the given software behaviour.

The calculation process is demonstrated with a simple example below, where the selected
material is assumed to represent the woven fabric. More complex examples and their results are
presented in the next subchapter, so this example was chosen as a basic one, where the principle
directions are aligned with the planar directions (Fig. 88). The size of each square membrane is
a = 1.00m , thickness t = 1.00 mm . The imposed deformations are ul =u2 =1ud =
10.00 mm, uJZ, = 20.00 mm and uf, = 80.00 mm (the upper index denoting the particular
model). The first model deforms in the u}, direction according to the elastic transverse
contraction coefficient. The other membranes are in the wrinkled state.

E, = 1000.0 kN/m,E, = 800.0 kN/m,G = 100.0 kN/m,v,, = 0.20 (5.47)
1033.1 165.3 0
C= 826.4 0 kN/m (5.48)
sym. 100.0

First, the classic membrane theory is used for the calculation of the elastic stress prediction,
which is shown in the following figures (Fig. 89, Fig. 90, Fig. 91).
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Fig. 88 Three Square Membranes, FE Mesh and Planar Directions Definition, Imposed Deformation
Visualization

Base values
nx [kN/m]
10.00
8.83
7.66
6.48
5.31
4.14
297
1.80
0.62
-0.55
-1.72

-2.89

Max : 10.00
Min : -2.89

Fig. 89 Elastic Prediction of n, kN/m

Base values
ny [kN/m]
0.00
-5.86
-11.72
-17.58
-23.44
-29.30
-35.16
-41.02
-46.88
-52.74
-58.60
-64.46

Max : 0.00
Min : -64.46

Fig. 90 Elastic Prediction of n,, kN /m

Principal values
n-1, n-2 [kN/m]
10.00
3.23
-3.54
-10.31
-17.08
-23.85
-30.62
-37.38
-44.15
-50.92
-57.69

-64.46

Max : 10.00
Min : -64.46

Fig. 91 Vectors Visualizing Elastic Prediction of Principal Forces n, and n, kN/m
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As the membranes 2 and 3 are classified to be in the wrinkled state, the above-described
calculation scheme of the wrinkling separation is performed. Therefore, the unnatural effect
caused by the in-plane strain belonging to the wrinkling is separated out and the resulting elastic

stresses are presented in the figures (Fig. 92, Fig. 93, Fig. 94).

Fig. 92 Elastic Part of Force n, kN/m

Fig. 93 Elastic Part of Forcen, kN/m

Base values

nx [KN/m]
10.00
Max : 10.00
Min : 10.00
Base values
ny [kN/m]
0.00
Max : 0.00
Min : 0.00

Principal values
n-1, n-2 [kN/m]

10.00
9.09

8.18
7.27
6.36
5.45
4.55
3.64
2.73
1.82
0.91
0.00
Max : 10.00
Min : 0.00

Fig. 94 Vectors Visualizing Elastic Part of Principal Forces n, and n, kN/m

Since the uniaxial tension is caused by the same value of in-plane strain €, = 0.01, the resulting
forces have to be same, as presented above. This return algorithm into the common stress state
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is visualized by the following graph (Fig. 95), where all elastic predictions are connected with
the final elastic stress by the lines with the arrows.
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Fig. 95 Graph of Elastic Prediction and Consequent Return Process to Real Elastic Stress State

5.5.2 Elastic Prediction Modification for Nonlinear Elastic and Plastic Material

Models
In the previous subchapter (5.5.1), the Wrinkling separation process was presented for the
anisotropic linear elastic material models. In this subchapter, the process is also extended for
the application in the case of the nonlinear elastic or plastic material models. The additional
decomposition of the total strain written in the previous subchapter (5.41) is extended with the
plastic strain €P.

c=C(e—€eP—-¢g") (5.49)

Some of the possible material models combinations suitable for membrane structures are
presented in the figure below (Fig. 96), namely Von Mises/Rankine, Drucker-Prager/Rankine,
Tresca/Rankine or Mohr-Coulomb/Rankine yielding criteria.

a2 g9 g2

fe fi fi

o1 g1 g1

I A fi hi

Fig. 96 Combined Yielding Criteria in Plane of 6, and &, (63 = 0): Von Mises/Rankine (left), Drucker-
Prager/Rankine (middle) and Tresca or Mohr-Coulomb/Rankine (right)

The essence of combining these criteria with the Wrinkling separation process lies in a suitable
treatment or the appropriate modification of the actual elastic prediction. As well as the standard
membrane theory formulas cannot be used for the linear material models and the modification
presented is necessary (5.27), also the standard elastic prediction cannot be used for the return
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algorithms on the plasticity surfaces and thus the modification of the elastic prediction is
a crucial issue.

The proposed calculation procedure is represented by the attached figures (Fig. 97, Fig. 98) and
can be described by the consequent flowchart. For the sake of different elastic prediction
distinctions, the left index is added. Moreover, to be consistent in the notation of the formulas,
the bar above the stress vectors and components is used, since the main directions are assumed
in the following formulas.

I.  the calculation of the standard elastic prediction ' = [ /5, ‘G, 0]7

II.  the modification of the elastic prediction by the wrinkling separation procedure o =
[ 11 51 0 0 ]T

II.  Performing the return algorithm to the yielding surface representing the chosen criterion

with consideration of the additional elastic prediction modification "o =

[ Mg, g, 0]T and thus converging to the final stressstate € = [ 5,5 & 0]T.

Since the first two steps are the same as in the previous subchapter (5.5.1), the last step needs
to be described in more detail.

Let’s assume the return process from the elastic prediction modified by the wrinkling separation
algorithm "6 = [/, 0 0]T. The stress change caused by the yielding process can be

described as

When observing this process in two following figures (Fig. 97, Fig. 98), the origination of the
tensile force 4o, in the wrinkled direction is obvious. However, the fictitious compression
component 6y of the eliminated fictitious stress state 6 = [67° &5’ 0] was separated out
by the wrinkling separation procedure (note: 5y = !G,). Thus, the tension increment A4,
cannot be the final stress state. In other words, the stress increment in the wrinkled direction
caused by the yielding process is absorbed by the wrinkling smoothing process. Thus, the elastic
prediction '@ is further modified to "'6. Two essential cases can be described by the following
formulas:

o +45,<0 — Mg=["g Mg 0o]"=[""g, -45, 0]T (5.51)
o' + 45, >0 — "o =["g "5, 0]"=["5 ‘g, 0] (5.52)

The green lines (Fig. 97, Fig. 98) connecting the stress points ' and "6 represent the separated
¥ =[0 0, 0] components. While the stress G,", represented by the horizontal green
line, does not possess any physical meaning as it is caused by the transverse contraction effect
which disappears when the wrinkling process is initialized, the second component 75",
represented by the vertical green line, can be understood as a stress deficit to smooth out the
wrinkles. It is obvious that the figure (Fig. 97) represents the case when the wrinkles are not
soothed out by the yielding process and the membrane is still tensioned in one direction only.
However, the second figure (Fig. 98) represents the case when the wrinkles are totally absorbed
by the yielding process and the resulting stress state is the membrane tensioned in both
directions.
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Fig. 97 Standard Elastic Prediction 'G and Elastic Prediction after Wrinkling Separation ''a (left), Iterative
Modification of Elastic Prediction '@ (middle and right), Final Elastic Prediction '@ and Resulting Stress
State @ ¢ (right). Iteration Counter (Above).
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Fig. 98 Standard Elastic Prediction 'G and Elastic Prediction After Wrinkling Separation ''a (left), Modification
of Elastic Prediction "''G and Resulting Stress State G ¢ (vight).

Although the iterative procedure was mentioned (Fig. 97) for the description purpose of the
method and physical process, it is not necessary to perform the calculation by this way and it is
possible to proceed directly. The normal vector in the node, which is defined by the intersection
of the Rankine criterion with some other (the yielding node on the g7 axis), is calculated. Two
cases can Occur:

1. If the normal line to the yielding criterion used for the material description in tension
(created in the position of the intersection with the axis ;) intersects the vertical green
line first, this node defines the final elastic stress prediction ' directly (Fig. 97 right).
This is the case of the wrinkled membrane even with the consideration of the yielding
process.

2. [If this normal line to the yielding criterion intersects the horizontal green line first, the
final elastic stress prediction is defined as "'e = ['5; 5, 0]T=["a, ¥ O0]T
(Fig. 98). This is the case when the yielding process smooth out the wrinkles and the
membrane become tensioned in both directions.

For the algorithmization purposes, such a direct process is preferred as it ensures a higher
calculation performance than the iterative procedure.
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Finally, the real stress state is estimated and the transformation into the planar Cartesian
coordinate directions can be performed, holding the well-known equation 6 = C (¢ — €P —
€"), which was extended with the strain representing the wrinkling €".

The main advantage of the proposed method of the wrinkling separation and the consequent
elastic prediction modification lies in its modularity. As this process originates from the
mentioned modification of the elastic prediction, it does not change the definition of the used
material yielding criterion itself. The return algorithms and the constitutive matrices can be then
used in a standard manner.

The process of the wrinkling smoothing is presented by the following simple example. More
complex situations are further presented in the subsequent chapter, which is only focused on
the presentation of examples. For this simple example, the Von Mises/Rankine yielding
criterion is assumed and the following material properties are used

E =900.0 MPa,v = 0.3,t = 300.0 um
fyt = 10.0 MPa,E, = 0.0 MPa

(5.53
989.0 296.7 0 )
C= 989.0 0 ] MPa
sym. 346.2
3000 e
P — )
77::\3_070?'_'_ =
500 T T, 500 30002000 ......
i ’ ) = = s o 3_0_10?7':
- 500 o 2000 - > - O

.00

Fig. 99 Two Square Membranes, FE Mesh and Planar Directions Definition, Imposed Deformations
Visualization

The two square membranes are defined and the imposed load is applied according to the
presented figure (Fig. 99). The fact that both membranes are in the wrinkled state before starting
the yielding process is demonstrated by two following figures (Fig. 100, Fig. 101), where the
elastic stress prediction 'e according to the standard membrane theory is presented.

Axial Stresses
Gx+ [MPa]
26.3
255
24.7
23.9
23.0
22.2
214
E 20.6
19.7
18.9
18.1
17.3
Max : 26.3
Min : 17.3

Fig. 100 Standard Elastic Prediction "o,
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Fig. 101 Standard Elastic Prediction ' ay

Axial Stresses
Gy,+ [MPa]

Max :
Min :

-1.1
-3.9
-6.6
-9.4

-12.1
-14.9
-17.6
-20.4
-23.2
-25.9
-28.7
-31.4

-1.1
-31.4

When performing the yielding process, wrinkles in the left membrane are smoothed out, while
the right membrane is still wrinkled, as it can be demonstrated by resulting stresses (Fig. 102,

Fig. 103, Fig. 104).

Fig. 102 Resulting Stress o,

Fig. 103 Resulting Stress a,,

Axial Stresses
Ox+ [MPa]

Max :

10.7
10.6
10.5
10.5
10.4
10.4
10.3
10.2
10.2
10.1
10.1

10.0

10.7
10.0

Axial Stresses
Gy,+ [MPa]

Max :
Min :

15
1.3
1.2
11
0.9
0.8
0.7
0.5
0.4
0.3
0.1

0.0

1.5
0.0
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Axial Stresses
G-1+, -2+ [MPa]

/./ // // Z;
/ / / 58
/ / 39

0.0

Max : 10.7
Min : 0.0

Fig. 104 Vectors of Resulting Principal Stress o, and o,

5.6 NUMERICAL EXAMPLES

This chapter presents numerical examples. First, the wrinkling separation procedure for the
linear elastic material models is verified on an example with the analytical solution available.
Further, other examples are presented covering also the nonlinear material models.

5.6.1 Pure Bending of Rectangular Membrane

As the first example, the well-known and often used pure bending of the stretched rectangular
membrane is chosen (Fig. 105). This example has an analytical solution [78] and therefore, it
serves as a benchmark when evaluating the wrinkling separation process for elastic materials.

The membrane is initially prestressed in both directions with the value of ny. The prestress is
applied by the continuous load acting on the top and bottom borders and by the force P = h n,
acting on the left and right edges. A beam with the high flexural and zero normal stiffness is
used for the P force transmission into the membrane. The membrane height is denoted by h.
Furthermore, the value of the nodal moment M is increased in the middle of the left and right
edges. By applying this moment, the isotropic pretension changes and when reaching a certain
value, the bottom region starts to wrinkle. The height of the wrinkling region b changes
continuously until the limit value b = h is reached.

The proportion of the wrinkled region magnitude b to the height of the rectangular membrane
h is described by

0 M1
b_ ' Ph "6 (5.54)
RT13M 1 1 3M 1 :
PR 2 6=Ph 2

The proportion of the resulting horizontal tension n, to the original pretension n, according to
the y coordinate is defined as

20/h=b/0) b _y_.
zg:{ (1—b/h)? RS RS (5.5%)
"o 0 0<X<2

\ | “h>h
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Fig. 105 Pure Bending of Stretched Rectangular Membrane [46]

Since the membrane is symmetric along the vertical line situated in the middle of the structure,
the right half will only be analyzed numerically (Fig. 106). The height h = 1.0 m, the length of
the selected half is [ = 2.0 m (this parameter is not relevant for the results, so this is only the
information about the particular model), the pretension ny = 1.00 kN /m. The first model is
considered to be created from the isotropic linear elastic material model representing the linear
part of the ETFE stress-strain response with the values E = 900.0 MPa,v = 0.45,t =
300.0 um. Even these particular material values do not influence the monitored results of the
presented example, as the formulas above do not use any of this information. However, this
information is still mentioned to have an engineering idea or touching with the used material,
since the orthotropic material will be used later, even with a different axis orientation and the
mentioned material independence of this example will be proven. The selected FE size is lpp =
0.05 m, so the structure is composed of n = 800 bilinear isoparametric FE.

Fig. 106 Right Half of Rectangular Membrane, FE Mesh, Local Cartesian Coordinate System Orientation and
Applied Forces and Moment

The results in the form of figures are presented for three discrete states. First, for the initial
pretension when M = 0.0 kNm (Fig. 107), then for the limit state when the wrinkling
initialization has started M = Ph/6 kNm (Fig. 108), and finally for the relation b/h = 1/2,
which implies M = Ph/3 (Fig. 109). Other calculations with the gradual changes of the applied
moment M are presented in the form of graphs (Fig. 110, Fig. 111).

87



STRUCTURAL ANALYSIS

Base values
nx [KN/m]

1.00

Max : 1.00
Min : 1.00

Fig. 107 Internal Forces n, Distribution for M = 0.0 kNm

Base values

nx [KN/m]

2.01
1.83
1.64
1.46
1.28
1.10
0.92
0.73
0.55
0.37
0.19
0.00

Max : 2.01
Min : 0.00

Fig. 108 Internal Forces n, Distribution for M = Ph/6

Base values

nx [kN/m]

3.98
3.62
3.26
2.89
2.53
217
1.81
1.45
1.09
0.72
0.36
0.00

Max : 3.98
Min : 0.00

Fig. 109 Internal Forces n, Distribution for M = Ph/3, thus b/h = 1/2

In the following, two graphs are presented, where the first one presents spreading of the
wrinkled region bandwidth b in dependence on the applied moment M (Fig. 110). The
comparison of the analytical and the numerical solution can be observed. The second graph
presents the actual internal force n,, distribution over the vertical cut for three different applied
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moments M (Fig. 111). Again, the comparison of the analytical and the numerical solution is
available. Both attached graphs prove the reliability and the accuracy of the proposed wrinkling
separation process.

1
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Fig. 110 Spreading of Wrinkled Region Bandwidth b in Dependence on Applied Moment M
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Fig. 111 Comparison of Analytical and Numerical Results of Internal Forces n, on Vertical Cut for Three
Different Applied Moments M

In the end of this example, two other analyses are presented, where nothing changes but the
material definition. While the material properties of the presented example are assumed to
represent the linear stress-strain diagram part of the isotropic ETFE foil material, the follow-
ing two examples use the linear orthotropic material definition, which can be a representation
for response of the woven fabric with top cover.
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The properties are defined as E, = 1000.0 kN/m,E, = 800.0kN/m,G = 100.0 kN /m,
Vyy = 0.20,t = 1.0 mm. As mentioned previously, the presented formulas are materially

independent and hold for any elastic material and orthotropic direction definition (Fig. 112). Of
course, the deformations are different but they are not a subject of this benchmark analysis.

-
-

Fig. 112 FE Model with Changed Material Definition (Both) and Changed Orthotropic Direction (Bottom)

Base values
nx [kN/m]

4.02
3.66
3.29
2.93
2.56
2.20
1.83
1.46
1.10
0.73
Max : 4.02

0.37
0.00

Min : 0.00

Fig. 113 Internal Forces n, Distribution for M = Ph/3, Thus b/h = 1/2
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The analysis was performed for the nodal moment with the value M = Ph/3. Comparing the
results presented in the attached figures (Fig. 109, Fig. 113), it can be observed that the internal
forces for the isotropic and both direction definitions of the orthotropic material are the same.

5.6.2 Shear Test of Rectangular Membrane for Orthotropic Elastic Material
In the second example, the shear test of the rectangular membrane is performed. As there is no
analytical solution defined, another proof of the result reliability is used.

Recalling the statement written in the beginning of this chapter, where it is written: ‘Essentially,
there are two ways for solving the wrinkled state of the membrane in FEA. The first way is to
use an extremely dense FE discretization and the in-plane stiffness in both the tension and the
compression directions, while the bending stiffness is zero. Such a mesh allows the material to
follow the little waves, but this is inadequate costly solution and it inevitably depends on the
mesh. The second way, which can be further categorised, focuses on the separation of the total
strain into the elastic and wrinkling part. Such a solution allows for using the FE discretization,
where the particular elements are much bigger than the wrinkles. Even so the particular
wrinkles are not modelled here, the method is not so strongly dependent on the mesh as in the
case of the previous method and, in terms of the continuum analysis, the global stress state is
precisely described by such a ’smeared wrinkle” analysis.’

A similar statement can be found in the contribution of the authors D.J. Steigmann and A.C.
Pipkin [62]: ‘To estimate the load-carrying capacity of a wrinkled membrane without obtaining
unneeded information about its precise shape, Wagner [45] formulated tension field theory, in
which the wrinkles are treated as being spaced infinitesimally close together.’

Thus, the method reliability and accuracy can be proven by comparing the results performed
by both of these analysis ways. Furthermore, the mesh dependence is presented here in the form
of a graph.

In this example, the following properties of a coated woven fabric are assumed E, =
2000.0kN/m,E,, = 1000.0kN/m,G = 200.0 kN/m,v,, = 0.20,t = 1.0 mm. The length
of the rectangular membrane is defined as [ = 2.0 m and the height is h = 1.0 m. The
horizontal imposed deformation in the top part of the membrane is defined with the value 4 =
100.0 mm. For imposing a little imperfection in the direction perpendicular to the membrane
and thus initiating the formation of wrinkles, a really small area load is applied, specifically
f = 0.01 N/m?, thus the load of only 2.0 grams in the total magnitude is used, negligible when
comparing with the value of the resulting forces caused by the imposed deformation. For this
analysis, the triangular isoparametric constant strain FE are used. The figure below (Fig. 114)
shows the FE mesh with the given size [y = 0.10 m, thus n = 400, however different mesh
sizes are further used to compare the mesh dependence.

Note: The nearly unnoticeable perpendicular load for wrinkling initialization is only necessary
in the case the shell elements with the zero bending stiffness are used. The wrinkling separation
procedure does not need this crutch.
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Fig. 114 Rectangular Membrane, FE Mesh, Local Cartesian Coordinate System Orientation, Imposed
Deformation and Applied Perpendicular Forces, Node for Result Presentation (purple dot)

As there are different FE meshes during studying this example, it is not possible to focus on
one particular element and instead, the results are presented in the particular grid point (the
point for result presentation).

Since the diagonals run from left to right, the discretization is not symmetric and thus two cases
of loading are studied. First, the imposed deformation is assumed from left to right, as shown
in the figure (Fig. 114), then the direction is reversed and the deformation is applied from right
to left (in the same magnitude). The aim of this process is focused on studying the mesh
dependence as well as changing the element sizes.

The results for the mesh size Iy = 0.10 m and the first mode of shear loading is presented in
the form of figures (Fig. 115 - Fig. 120), while the results of different mesh length definitions
are presented in the form of the graph attached (Fig. 122).

Global Deformations

Ju] [mm]

100.0
90.9
81.8
72.7
63.6
54.5
455
36.4
27.3
18.2
9.1
0.0
Max : 100.0

Min : 0.0

Fig. 115 Wrinkling Separation: Global Deformations u
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Global Deformations
uz [mm]

0.0
Max : 0.0
Min : 0.0

Fig. 116 Wrinkling Separation: Deformations Perpendicular to Membrane u,
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Principal values
n-1, Nn-2 [KN/m]
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— 20.34
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5.81
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Max : 31.97
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Fig. 117 Wrinkling Separation: Vectors of Principal Internal Forces ny and n,

Global Deformations
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Fig. 118 Shell Element with Zero Bending Stiffness: Global Deformations u
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Global Deformations
uz [mm]
16.7
14.1
11.4
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6.2
3.6
0.9
-1.7
-4.3
-6.9
-9.5

-12.2

Max : 16.7
Min : -12.2

Fig. 119 Shell Element with Zero Bending Stiffness: Deformations Perpendicular to Membrane u,

Principal values
n-1, n-2 [kN/m]
35.18
30.53
25.89
21.25
16.61
11.97
7.33
2.68
-1.96
-6.60
-11.24

-15.88

Max : 35.18
Min : -15.88

Fig. 120 Shell Element with Zero Bending Stiffness: Vectors of Principal Internal Forces ny and n,

Comparing the graphical results, several notes can be written there. First, the zero perpendicular
deformation u, can be observed for the wrinkling separation procedure (Fig. 116), which is

Global Deformations
uz [mm]
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3.2
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1.8
1.2
0.5
-0.1
-0.8
-1.5
-2.1
-2.8

Vo8 i / 7 7 -35
G/ diia / ‘ Max : 3.8
Min : -3.5

7
p

Fig. 121 Shell Element with Zero Bending Stiffness: Deformations Perpendicular to Membrane u,, for lpg =
0.01m
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consistent with the above-mentioned assumption of the tension field theory that the wrinkling
of a membrane is replaced by the in-plane deformation. Instead, the inevitable wrinkles are
observed in the case the equal tensile and compressive stiffness, but zero flexural stiffness are
used (Fig. 119). When observing this perpendicular deformation for Iy = 0.10 m (Fig. 119)
and for lpz = 0.01 m (Fig. 121), the fact that the wave size is restricted by the FE size is
obvious. Applying the further refinement, the wrinkles are located closer to each other and the
perpendicular deformation tends to zero.

The second important observation can be seen when comparing the resulting forces. While in
the case of the wrinkling separation procedure, the internal forces are absolutely homogeneous
with the values n; = 31.97 kN/m and n, = 0.00 kN /m in the whole membrane (Fig. 117),
the force variation can be seen in the case of the shell elements with zero bending stiffness,
where there is also the compression occurring on the border as the omnidirectional supports do
not allow for the wrinkles here (Fig. 120). However, the tendency of the results is the same and
the good agreement with the most of the membrane surface is evident.

The shear test of a rectangular membrane with the orthotropic elastic material was further
studied for different FE mesh refinements, whose settings can be seen in the table below (Tab.
2). The comparison of the results obtained is measured for the first principal force n, in the
highlighted grid point (Fig. 114, Fig. 122).

Tab. 2 Description of Eight Performed Analyses FE Data

Analysis number 1 2 3 4 5 6 7 8
FE size Iy (mm) 500 400 300 200 100 50 25 12.5
Number of 2D FE 16 25 44 100 400 1600 6400 25600
Number of FE nodes 15 24 42 66 231 861 3321 13041
Equations number 45 72 126 198 693 2583 9963 39123
40,00
35,00 Beeereenennn, '.';"—"'-'"’""-'-‘-7--'---'--'-..'.‘.‘..T..‘...‘...-.‘
Mg e
— 30,00 -7
£ A7
= o ’
? 2500 & e
§ 20,00 & ===== A----- ‘,
g_ —X— WS - Right direction
% 15,00 —o— WS - Left direction
% ««f@-- Shell - Right direction

— A - Shell - Left direction

1 2 3 4 5 6 7 8
Analysis number

Fig. 122 Resulting Values of First Principal Force ny in Grid Point (Fig. 114) for Eight Different FE
Refinements
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Four analyses were calculated for each FE mesh setting, since the imposed deformation was
applied from left to right (right direction) and from right to left (left direction), further both the
wrinkling separation process (WS) and the shell with zero flexural stiffness (Shell) cases were
also used.

Several conclusions can be made on the basis of the presented graph. First, the wrinkling
separation procedure is independent of the mesh, while the usage of the shell with the zero
bending stiffness is distinguished by a considerable FE mesh dependence as the inevitable
perpendicular deformations are directly restricted by the FE mesh used. Furthermore, when
used the shell elements, a well-seen difference of the different imposed load direction is
presented, which is the consequence of the alignment of the wrinkles with the FE mesh
diagonals in the right direction, while the left direction causes the wrinkles which are crossing
the diagonal direction (Fig. 114). However, both shell models converge to the results of the
wrinkling separation procedure when the extensive refinement is used.

5.6.3 Shear Test of Rectangular Membrane for Isotropic Nonlinear Elastic and Plastic
Material

The same geometry of the model and the imposed load conditions as in the previous example
(Fig. 114) are now subjected to the analysis with the isotropic nonlinear elastic combined
yielding criterion Von Mises/Rankine. This example is performed by using the above-described
wrinkling separation procedure and the elastic prediction modification. The material used here
is considered as a bilinear approximation of the ETFE stress-strain diagram with the parameters
E =900.0 MPa,v = 0.45,t = 300.0 um , the yielding stress f;; =21.0 MPa and the

elasticity modulus after yielding E, = 90.0 MPa. The results of the mesh size lpp = 0.10 m
are again presented in the graphical form (Fig. 123 - Fig. 128).

Global Deformations

|u] [mm]

100.0
90.9
81.8
727
63.6
54.5
455
36.4
27.3
18.2

9.1

0.0

Max : 100.0
Min : 0.0

Fig. 123 Wrinkling Separation: Global Deformations u
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Global Deformations
uz [mm]

0.0
= = =7 — = Max : 0.0
Min : 0.0

Fig. 124 Wrinkling Separation: Deformations Perpendicular to Membrane u,
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Fig. 125 Wrinkling Separation: Vectors of Principal Stresses o, and o,
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Fig. 126 Shell Element with Zero Bending Stiffness: Global Deformations u
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Global Deformations
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Fig. 127 Shell Element with Zero Bending Stiffness: Deformations Perpendicular to Membrane u,
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Fig. 128 Shell Element with Zero Bending Stiffness: Vectors of Principal Stresses o, and o,

When using the tenth of the size of the previously used FE [z = 0.01 m and the shell elements
with the zero bending stiffness, the wrinkles are smaller and spaced closer to each other, as can

be seen when comparing the figures (Fig. 127) and (Fig. 129).

Fig. 129 Shell Element with Zero Bending Stiffness: Deformations Perpendicular to Membrane u,, for lpg =

0.01m
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An analogous comparison of the resulting values as presented in the previous example is made
for the different mesh refinements and imposed load orientation. The example details and
results are attached below (Tab. 3, Fig. 130).

Tab. 3 Description of Eight Performed Analyses FE Data

Analysis number 1 2 3 4 5 6 7 8
FE size lpy (mm) 500 400 300 200 100 50 25 12.5
Number of FE 16 25 44 100 400 1600 6400 25600
Number of FE nodes 15 24 42 66 231 861 3321 13041
Equations number 45 72 126 198 693 2583 9963 39123
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Analysis number

Fig. 130 Resulting Values of First Principal Force n in Grid Point (Fig. 114) for Eight Performed Analyses

As well as in the previous example, when using the shell elements with the zero flexural
stiffness, the diagonal directions have a considerable influence on the resulting stresses if the
FE mesh is not refined enough. With the consequent decreasing of the FE length value, the shell
solution converges to the wrinkling separation procedure solution, which is again independent
of the mesh.

There are completely identical results obtained when using the combined plastic yielding
criterion Von Mises/Rankine, instead of the nonlinear elastic material definition.

5.7 STATIC AND DYNAMIC ANALYSIS OF MEMBRANE STRUCTURES

While the previous chapter was focused on the verification of the proposed method for dealing
with the wrinkling phenomenon, this chapter presents the structure analysis of the whole
membrane structure, starting with the static analysis and then presenting the results of the
dynamic analysis.

The analyzed model is inspired by the Tanzbrunnen structure [I, II] and the PVC/PES Type III
is assumed in the analysis, defined by the material characteristics E, = 1000.0 kN/m,
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E, =700.0kN/m,G = 70.0 kN /m,v,, = 0.20,t = 1.0 mm The radius defining horizontal
distance of the high or low points from the middle is 7 = 10.0 m, the low points are situated in

i =

Fig. 131 Geometry of Membrane Structure After Form Finding and Orthotropy Directions

e

Fig. 132 FE Mesh

e

Fig. 133 Snow Load f, = 1.00 kN /m?
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the zero level h; = 0.0 m, the high points are in the position of h;, = 4.0 m and the middle ring
is situated at the height h,, = 2.0 m with the diameter . = 2.0 m. As can be observed in the
following figure, the membrane is reinforced by the cables connecting the inner ring with the
outer low and high points (Fig. 131). The definition of the orthotropy directions as well as the
FE discretization can be seen in the figure (Fig. 132). Later, the figures of the applied snow and
wind loads are presented (Fig. 133, Fig. 134, Fig. 135). The isotropic prestress is defined with
the values n, = n, = 1.0kN/m.

Fig. 134 Wind Load Varying from Pressure Value f,, = 1.00 kN /m? until Suction with Value f,, =
—1.50 kN /m?

Distribution of load
pz [kN/m2]
1.00
0.77
0.55
0.32
0.09
-0.14
-0.36
-0.59
-0.82
-1.05
-1.27

-1.50

Max : 1.00
Min : -1.50

Fig. 135 Wind Load in Coloured Display

A short review of some results is presented below, first the prestress after the form finding
process (Fig. 136), then the deformations and the first principal normal forces after the snow
(Fig. 137, Fig. 138) and wind (Fig. 139, Fig. 140) load analyses.
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Principal values

n1 [kN/m]

1.00
Max : 1.00
Min : 1.00

Fig. 136 Prestress in Main Direction n, After Form Finding Analysis (Note: n, = ny According to Task

Definition)

Fig. 137 Snow Load: Global Deformations u

Fig. 138 Snow Load: First Principal Normal Forces ny
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Global Deformations
|u] [mm]
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249.3

213.7
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Fig. 139 Wind Load: Global Deformations u
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e g

Fig. 140 Wind Load: First Principal Normal Forces n,

After presenting the results of two load cases of the nonlinear static analysis, the results of the
nonlinear time history analyses are presented. In this test case, the periodical changing of the
wind load with the angular frequency w = m rad/s is assumed with the load multiplier y; =
0.5. To approximate the damping caused by the surrounding environment, the Rayleigh
coefficient @ = 0.5 is used first, where this quite a high value is assumed because of the low
self-weight of the membrane material. Both the implicit Newmark and the explicit central
difference methods were used and the results are presented for two selected nodes (Fig. 141) in
the form of a graph (Fig. 142) where four results represent the deformations in two discrete
nodes for both of the mentioned methods and the time interval of one period T = 2.0 s. A good
agreement for both, the implicit and the explicit solutions, can been observed.
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Deformation u, [mm]

Fig. 141 Investigated Nodes
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Fig. 142 Deformation u, of Selected Nodes in Nonlinear Time History Analysis



6 CUTTING PATTERN GENERATION

Due to the discrepancy between the double curvature of membrane structures and the planar
pieces of the material they should be made of, the cutting pattern generation is an essential
procedure to be performed before the manufacturing process. The quality of the generated
patterns strongly affects the quality of the intended prestress approximation, thus this analysis
precision is of a high importance.

The whole procedure could be divided into two essential steps. First, it is necessary to cut the
spatial shape into appropriately sized pieces, therefore the spatial patterns are obtained. The
appropriate width of the patterns is driven by the available material widths, by the curvature of
the structure and the aesthetic impression. This step does not bring any approximations as the
shape has not been changed yet. However, the manner of the structure division strongly affects
the approximation task, which is done in the second step.

The second task to be done is the flattening procedure, thus the planar patterns have to be
calculated for their spatial shapes. This is inevitably connected with the necessary distortions,
which have to be undertaken. However, it is of the highest interest to come with a procedure,
which decrease this discrepancy as much as possible.

In addition to the engineering aspect of this task, the aesthetic importance of cutting patterns
has to be considered as well, since the welding lines are a well-visible architectural element
(Fig. 143).

Fig. 143 Shopping Centre Chodov in Prague (East Exit from Metro), Czech Republic [X]
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In the following, the commonly used cutting lines are described, and the categorization and
overview of flattening procedures are further provided. Then, the chosen analysis procedure is
presented and finally, the subchapter presenting examples concludes this chapter about the
generation of cutting patterns.

6.1 CUTTING LINES

Although the membrane surface could be generally divided into pieces by the arbitrarily chosen
lines, there could be practically met two commonly used line types, namely the geodesic lines
and the planar sections. The planar sections are created by the intersection of the definition
plane with the membrane surface and sometimes, they are preferred. However, the geodesic
lines are the most broadly used way when cutting double-curved surfaces, since they have
considerable advantages arising from their nature.

It is quite common to meet a definition of the geodesic line, which states that it as a shortest
path between the defined nodes. However, a rigorous mathematical definition describes
a geodesic line as a line, which does not curve while going through the surface. Therefore, more
than one geodesic line can exist for a given surface in general, as could be observed in the
following figure (Fig. 144). For sure, the shortest line between the defined nodes is a geodesic
line, which is of interest when cutting a membrane.

geodesic line 2
(local distance minimum)
geodesic line 1

(global distance minimum)

2

Fig. 144 Possibility of Existence of Different Geodesic Lines [77]

A considerable advantage when using these lines arise from the fact that the geodesic line does
not curve when going through the surface as the flattened patterns are relatively straight after
flattening when comparing with the patterns defined by different line type. For example, when
using planar cuts, the flattened patterns have a curved shape as will be shown in the chapter
with examples.

A possible way of a geodesic line calculation on a discretized FE mesh is presented in the figure
below (Fig. 145). Considering the point Py .+ as a geodesic line start and P,,4 as its intended
end, the line could be searched in the following way. The initial direction in P, 1S chosen
and, when crossing the FE edge, the angle « is preserved. This is based on the geodesic line
definition saying that it does not curve in the tangential plane to the surface. Following this
algorithm, the line is crossing the FE edges until it reaches the border of the surface. Then, the
distance between the current end point position P, .n: and the intended point position P4
is a basis for the initial direction adjustment at the point Pg,,+. Following this procedure in an
iterative way, the current geodesic line end position P,,,-.n: converges to the intended position
P4 The left and the middle parts of the figure (Fig. 145) display the spatial FE discretization,
the intended geodesic line start and end positions and its final spatial geometry. The right part
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of the figure demonstrates the uncurved nature of the geodesic line when transforming the given
spatial mesh into a plane.

Pend l:)end Pend

"

Pslan Pstart

Pstarl

Fig. 145 Geodesic Line on FE Mesh Before and After Flattening ([77] with Modifications)

In the literature, the process presented above can be found in a more detailed description, and
other solution procedures are also available [38, 39, 77, 82, 83, 84, 85, 86].

6.2 FLATTENING PROCEDURE

After dividing the surface into a series of spatial patterns, the flattening procedure is to be
performed. Essentially, two different classes of this approximative task can be followed: the
mathematical solution and the continuum mechanics solution procedures. Further, there will be
presented some solution approaches, starting from the earlier simplified methods until the
general ones.

6.2.1 Mathematical Flattening

One of the oldest flattening procedures is called the Simple Triangulation Method. This
approach is based on replacing the initial FE mesh, cut-out by using specified cutting lines, by
a special mesh for unfolding. During this process, the mesh for unfolding is created in such
a way that the individual elements cross the whole width of the pattern. Thus, the spatial pattern
can be further transformed into a plane easily. This process is described in the attached figure
(Fig. 146). While replacing the FE mesh by the special one, there is really enormous
simplification performed and the methods precision is poor.

PEEE

Fig. 146 Basis of Simple Triangulation Method (from left: Spatial Shape, FE Mesh of Spatial Model Used for
Form Finding and Structural Analysis Purposes, Modified Mesh for Flattening Purposes, Flattened Pattern)

[77]

Far more advanced procedure of this class can be named Mathematical Squashing. In this
second mathematically based method, the FE mesh of the cut-out membrane pieces is used
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during the analysis. Furthermore, the best geometrical approximation of the spatial pattern is
searched for by the least square approach, minimizing the prescribed geometrical function.

1
F(x,y) = EVTP v (6.1)

SF(x,y) =0 (6.2)

where v represents the vector of residuals, P represents the matrix of weights, and F is the
function to be minimized. More detailed description of this method could be found in the
following literature [87, 88].

The mathematical squashing is considerably more precise than the simple triangulation
method described previously. It represents a good compromise between the accuracy and the
algorithm performance, as the solution is obtained in a single calculation step. However, this
method is still unable to precisely consider the physical properties of the material used for
patterns.

6.2.2 Physical Flattening

This class of methods considers the flattening procedure as a physical process, mostly directly
derived from the continuum mechanics basis. The pattern shape transformation from the space
into the plane causes strains and thus, searching for equilibrium is performed (Fig. 147).

One of the earlier contributions dealing with the comparison of the pattern quality when using
different methods was written by E. Moncrieff and B.H.V. Topping. [89]. Further interesting
contribution with the proposal of Stress Composition Method (SCM) was presented by the
authors B. Maurin and R. Motro [90]. Recently, the authors K.U. Bletzinger and
A. Widhammer contributed to this field with the method called Variation of Reference Strategy
(VaReS) [91], which inverts the workflow of the Total Lagrangian formulation in principle and
searches for the appropriate reference for the prescribed erected (deformed) pattern in the space.
In the publications [92, 93, 94, 95], further research works of the author team around
K.U. Bletzinger are presented. Another contributions to this area of analyses could be found in
[96, 97, 98, 99, 100, 101, 102, 103, 104], where some of the authors replace the continuum by
the system of nodes connected with springs.

Considering the methods consistently derived from the continuum mechanics basis, the
approaches minimizing the sum of the stress differences as well as the methods minimizing the
sum of the energy differences accumulated during the flattening process could be identified.
The first one of the mentioned procedures has considerably poorer convergence behaviour than
the second one [38, 94]. As presented in the mentioned research works, both procedures lead to
quite close resulting pattern shapes.

Using the procedure minimizing the sum of the energy differences accumulated in the patterns
during the flattening process, the general principle of the virtual work (2.25), thus also the
linearized forms (2.40) and (2.41), is consistently followed. Therefore, the earlier derived
equations are appropriate for this analysis
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f tCijrs tErs 5t5ij tav + f to'ij 5tT]ij by = tHAtR — f taij 6t5ij tav (6.3)

ty ty ty

or in the matrix notation

f C €8V + f to §m AV = THAtR — f 'o 5. 'dV (6.4)
ty ty tv
By this really natural way, in terms of the FEA, the cutting patterns with a high quality can be

calculated under consideration of the given material properties and other possible requirements,
as will be presented later.

Fig. 147 Flattening Process ([38] with Modifications)

When following this FEA procedure, two strategies can be identified. The forward flattening
process, squashing down the spatial patterns, or the backward flattening process, simulating
the erecting process of the patterns into their final position (VaReS) while modifying the
reference pattern position.

Whether choosing the first or the second way, the suitable starting shape of planar patterns is
of high interest, as gradual deforming from the spatial configuration would exhibit poor
calculation performance. This planar shape can be seen as the shape after the first iteration. The
pattern projection into the global plane or into the mean tangential plane of the spatial pattern
is used quite often, as could be seen in the presented research papers and works. The closer is
the initial planar shape to the equilibrium one, the higher is the algorithm performance. Thus,
the mathematical squashing could be used as a really good starting position for the subsequent
physical analysis.

6.3 SPECIAL REQUIREMENTS FOR FLATTENING PROCEDURE

Even though the physical flattening procedure could be classified as a special case of FEA,
there are some peculiarities and differences, which has to be satisfied during this analysis.
Specifically, the fact that the orthotropic directions are driven by the planar shape instead of the
original spatial one, is of high importance. Furthermore, there is also an important engineering
requirement for the compatibility of the seam lines.

109



CUTTING PATTERN GENERATION

6.3.1 Orthotropic Directions

When taking into consideration the material behaviour of the woven fabric during the flattening
procedure, the resulting orthotropic directions could not be derived from the standard
deformation from the spatial template, thus the spatial pattern, to the plane. This would not lead
to the orthogonal orthotropy in the final pattern, which, however, is the physical nature of the
woven fabrics. Thus, the local Cartesian axial system of the FE in the pattern has to be driven
by its definition in the resulting pattern.

In other words, the orthotropic directions have to be treated carefully while calculating the
patterns to avoid violating the flattening process as well as the physical nature of the materials
used.

6.3.2 Compatibility of Seam Lines

While the previous requirement was of physical nature, the other one is more the manufacturing
restriction. Since the planar patterns are to be connected together in the unstressed state, the
seam line compatibility is required. Thus, the same length of the seam lines of the adjacent
patterns is a required restriction during the flattening procedure AL; = 0. Therefore, the patterns
are not calculated separately, but together to ensure this compatibility for all the patterns (Fig.
148).

Als ALs3

AL AL
1 ‘ Ls[ l_l
L
L1 Ls ,_I L7 :
La Le
La
ALI = Ll — L-j_) AL.‘% == L.-"- o LG
Alo = 13— La ALy = Ly — Ls

Fig. 148 Ensuring Same Lengths of Boundary Lines of Adjacent Patterns ([38] with Modifications)

6.3.3 Compensation
As the cutting pattern analysis deals with the membrane structures under pretension, the process

of stress releasing has to be satisfied. Thus, the final pattern size is adjusted to satisfy the
required pretension in the tensioned state.

However, the woven fabric exhibits a nonlinear material response. Therefore, not only the form
found shape with the required prestress has to be taken into account, but also the stresses
reached in the nonlinear structural analysis. The goal of the applied compensation is to satisfy
the approximation of the intended prestress after undergoing the loading cycles. If only the
prestress would be compensated, the plastic deformations caused by applying the load would
remove the prestress after unloading. Thus, the applied membrane compensation is summing
both the expected plastic strains after the loading and unloading cycles and the residual elastic
strains for satisfying the prestress in the membrane.
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The simulation of the loading and unloading cycles could be seen in the results of a particular
biaxial test, where in the first figure, the load history is presented (Fig. 149), and in the second
one, the subsequent strain history is monitored (Fig. 150).

Stress [kN/m]

5.0 1

0.0

8.0 1

Strain [%]

warp weft
0:00:00 0:28:48 0:57:36 1:26:24 1:55:12 2:2;‘:00 2:5‘2:48 3:21:36
Time [hh:mm:ss]
Fig. 149 Biaxial Test: Load History [80]
weft
T T T T
00 0:28:48 0:57:36 1:26:24 1:55:12 war p

Time [hh:mm:ss]

Fig. 150 Biaxial Test: Measured Strains [80]

In the consequence of this complexity, the standard way of the compensation consideration
applies the additional strains into the flattening procedure, which contributes to the 'right hand
side' of the equilibrium equation (6.3) or (6.4). These strains are obtained by the biaxial testing
while applying the prescribed load history, or by using the recommended values when following
the simplified way.

There could be observed a research interest in the consideration the compensation automatically
by releasing the prestress of the form found membrane with the consideration of the defined
material model. However, this way needs further investigation and detailed research as such
a procedure is extremely complex. This process would have to deal with the plastic material
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model and load history, since both the form finding results and the static analysis results would
have to be considered in the process of the automatic compensation estimation. For sure, this is
a great field for detailed investigations, research and experimental work.

6.4 SELECTED CALCULATION PROCEDURES

As the examples presented in further chapter were calculated in the software RFEM by the
company Dlubal Software [III], using the FEA solver by the FEM consulting company [IV],
the selected and consequently implemented procedures are mentioned here.

In the calculation of the geodetic lines, the above-described angular based algorithm was
followed.

For the development of the flattening procedure, the combination of the mathematical
squashing (for estimation of the shape in the first iteration) and the subsequent minimization of
the energy differences sum was followed, as this process provides the optimum combination of
the speed and precision with the possibility of applying the selected material definition,
structural requirements, etc.

6.5 EXAMPLES

The examples presented below demonstrate some of the facts mentioned above, as for example
the consequence of using different cutting lines, the influence of the selected material during
the flattening procedure, and the example dealing with the evaluation of the pattern quality [44].

6.5.1 Comparison of Usage of Different Cutting Lines

The first example to be presented is a hypar shaped membrane structure. For splitting this
model, different cutting lines are applied to demonstrate their influence on the resulting pattern
shape. The prestressed spatial configuration is presented in the first figure (Fig. 151) and the
shapes of the resulting patterns are shown in the second figure (Fig. 152).

Fig. 151 Different Cutting Lines Used to Split Membrane: Irregular Lines (Left Pattern), Geodesic Lines
(Middle Pattern) and Planar Sections (Right Pattern) [44]
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Fig. 152 Planar Patterns: Usage of Irregular Lines (Upper Pattern), Geodesic Lines (Middle Pattern) and
Planar Sections (Lower Pattern) [44]

Based on this observation, the reason for preferring the geodesic lines is obvious, as this
solution leads to decreasing the material wastage as well as the possibility of a quite close
alignment of the warp direction with the seam lines.

6.5.2 Influence of Selected Material Model

The second presented example deals with the influence of the selected material model
consideration during the flattening procedure. Here, two different materials are used for the
simple structure presented below (Fig. 153). First, the linear response of the ETFE material is
assumed with the values E = 900.0 MPa,v = 0.45, and further the linear orthotropic response
of the coated woven fabric is defined as E, = 2000.0kN/m,E, = 1000.0kN/m,G =

200.0 kN/m,v,, = 0.20.

The structure is flattened as one pattern, obviously not appropriate for a real designing case, but
for this exemplary demonstration, this choice is suitable, since there can be bigger distortions
expected and observed than when the membrane would be cut into small patterns. Furthermore,
the resulting strains undergone during the flattening are presented for both cases of the
predefined materials (Fig. 154 — Fig. 161).

Fig. 153 Membrane Structure to be Flattened
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Fig. 154 ETFE: Principal Strains &, and &,

Fig. 155 ETFE: Axial Strains &,

Fig. 156 ETFE: Axial Strains &,
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Fig. 157 ETFE: Shear Strains Yy,

Fig. 158 Woven Fabric: Principal Strains &, and &,

Fig. 159 Woven Fabric: Axial Strains &,

EXAMPLES
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0.03027
0.01673
0.00318
-0.01036
-0.02390
-0.03745
-0.05099
-0.06453
-0.07808
-0.09162
-0.10517

0.04381
-0.10517

Strains
Ex+ [-]

Max :
Min :

0.01284

0.00660

0.00035
-0.00589
-0.01213
-0.01837
-0.02461
-0.03086
-0.03710
-0.04334
-0.04958
-0.05582

0.01284
-0.05582
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Strains

gy, []

0.04381
0.03027
0.01673
0.00318
-0.01036
-0.02390
-0.03745
-0.05099
-0.06453
-0.07808
-0.09162
-0.10516

Max : 0.04381
Min : -0.10516

Fig. 160 Woven Fabric: Axial Strains €,

Strains

exy,* [-]

0.03222
0.02636
0.02050
0.01464
0.00879
0.00293
-0.00293
-0.00879
-0.01465
-0.02051
-0.02637
-0.03222

0.03222
-0.03222

Fig. 161 Woven Fabric: Shear Strains Yy,

6.5.3 Evaluation of Flattened Patterns

The structure presented above is now analyzed by using different cutting pattern layout
definitions. Two cases are identified (Fig. 162, Fig. 163), where in the first case, the membrane
is divided into three patterns, and in the second case, the membrane is divided into six patterns.
The orthotropic material defined above is used.

Fig. 162 Different Cutting Pattern Layouts and Orthotropic Directions Definition
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Fig. 163 Different Cutting Patterns Layouts After Flattening

Strains

e-a,+ [-]

0.01788
0.01327
0.00865
0.00404
-0.00058
-0.00519
-0.00980
-0.01442
-0.01903
-0.02365
-0.02826

-0.03288

Max : 0.01788
Min : -0.03288

Fig. 164 Principal Strains &; and &,

Strains

ex+ [-]
0.00906
0.00562
0.00217
-0.00127
-0.00472
-0.00816
-0.01161
-0.01505
-0.01849
-0.02194
-0.02538

-0.02883

Max : 0.00906
Min : -0.02883

Fig. 165 Axial Strains €,
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Strains

gy, [-]

0.01083
0.00693
0.00302
-0.00088
-0.00479
-0.00869
-0.01260
-0.01651
-0.02041
-0.02432
-0.02822
-0.03213

Min: 003013
Fig. 166 Axial Strains &,

Strains

&y, []
0.03459
0.02828
0.02197
0.01566
0.00935
0.00304
-0.00328
-0.00959
-0.01590
-0.02221
-0.02852
-0.03483

Max : 0.03459

Min : -0.03483

Fig. 167 Shear Strains Yy,

The selected layout has a considerable influence on the strains necessary for reaching the flat
configuration (Fig. 164 - Fig. 167). By means of these results, it can be evaluated whether the
pattern is suitable or not, when the acceptable distortion is defined. Of course, the smaller are
the patterns, the lower are the strains. But the manufacturing process, the aesthetic appearance
and the available material widths should be considered as well. The results of the cutting pattern
analysis can thus help when deciding the pattern layout and the evaluation of their quality.

6.5.4 Examples of Complex Structure Patterning

The previous structure had quite simple configurations as they were intended to focus on
particular tasks. The structure below, on the other hand, has the demonstrative purpose to show
the pattern layout for a more complex membrane structure (Fig. 168, Fig. 169).
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Fig. 168 Composition of Conical and Hypar Membranes

Fig. 169 Pattern Layout
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7 USE IN PRACTICE

Due to the possibility of fruitful interconnection of the research work performed at the

university environment and the development work performed in the established software
companies, the calculation tools for membrane structures were developed in the framework of
a teamwork and implemented into the RFEM software [III]. The calculation procedures are
implemented as described above.

121



USE IN PRACTICE

Here, a really interesting customer project calculated by using the algorithms described above
is presented. This project’s name is Oxigeno and is located in San José, Costa Rica (Fig. 170,
Fig. 171, Fig. 172). The detailed description could be found on this website [XI], where it is
also stated: ‘The ETFE cushion is the first one in the city of San Francisco de Heredia and at
the same time the biggest in the world.’
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Fig. 172 Numerical Model of Project Oxigeno, San Francisco de Heredia, San José, Costa Rica [XI]
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8 CONCLUDING REMARKS

Membrane structures are a really special kind of structures requiring uncommon designing steps
in comparison with the conventional structures. The form finding procedure has to be performed
at the beginning of their design process and cutting patterns need to be generated for the
manufacturing process. For proper structural analysis, it is also necessary to consider the
wrinkling phenomenon as the classic membrane theory does not ensure the real stress state
estimation.

Each of the stated physical procedures were a part of the presented dissertation, thus the deep
investigation of the current state of the art was carried out. Based on these investigations, the
theoretical descriptions were written down at the beginnings of the particular chapter.
Furthermore, the general and efficient methodologies selected for the numerical analysis were
described. Furthermore, the methods and calculation sequences proposed during the research
work were presented. Whole work was supported by the beneficial interconnection of the
research work at the university environment and the development work for the above-stated
software companies. Thus, the theoretical sections, statements and proposals are followed by
the results of numerical analyses, that are demonstrating and proving the individual statements.

Based on the investigations performed in the field of the form finding analysis, the selected
calculation procedure is derived from the geometric stiffness and hybrid platforms.
Nevertheless, the crucial point of the form finding analysis consists of the equilibrium searching
process itself. The necessity of reaching such a prestress is the cause of many different
stabilization techniques. The advanced projection method was proposed for conical membranes
which derives the spatial equilibrium, which would not be possible to define directly, from the
equilibrium in the arbitrary oriented projection plane, where it can be defined directly. This
strong stabilization technique is quite unique in the principle, as it does not work as
an emergency brake of an unrealistic prestress requirement as the stabilization techniques
usually work, but it defines the exact equilibrium, although in the implicit manner. During the
work focused on the form finding of tensile structures, the attention, in addition to the given
scope of the dissertation thesis focus, was paid to the shape optimization procedure of the
structures under compression or even of the structures with the mixed form finding
requirements. The pushing method stabilization technique was proposed within the framework
of the doctoral thesis to deal with these difficult and complex physical requirements. The above-
described calculation procedures and the individual phenomena as well as the crucial
implementation necessities were demonstrated on particular examples. Namely, the
independence of the equilibrium shape on the chosen initial approximation if the equilibrium
of the forces within the given boundary conditions is known, the regeneration of the local axial
system, the interaction of the supporting structure with the parts with shape analyzing,
presenting the result of the projection method and pushing method stabilization techniques, or
even the extraordinary phenomenon of the multiple equilibrium existence possibility for the
structures with the mixed shaping requirements, etc.

Based on the investigations in the field of the wrinkling phenomenon, the new advanced and
modular technique was proposed. The process for dealing with the linear elastic materials was
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named wrinkling separation, while the procedure for dealing with the nonlinear elastic or
plastic materials was named elastic prediction modification, which incorporates the wrinkling
separation algorithms inside as a modular part. These procedures separate out the unnatural
stress which would be considered by the standard membrane theory, but which cannot appear
in the membrane in the consequence of its physical nature. Furthermore, the proposed methods
were extensively verified and few of the analyzed examples were incorporated to this work to
prove their reliability. The first benchmark example disposes with the analytical solution, while
the other examples use the well-known equivalency of the wrinkling models with the
extensively refined discretization in combination with the shell elements with zero flexural
stiffness. Finally, the structural analysis of the whole membrane structure in both the static and
dynamic response demonstrated the algorithms capabilities.

In the chapter focused on the generation procedure of cutting patterns, the possible approaches
were presented and both their advantages and disadvantages were mentioned. Based on the deep
investigations performed in this research area, the optimum algorithmic sequence was
proposed to combine the strengths of the individual methods. As the mathematical squashing
is a really good initial approximation for the planar patterns, the pattern shapes obtained in this
way were consequently used for the advanced minimization of energy differences between the
spatial and the planar patterns. This combination thus exhibits increasing of the calculation
performance while ensuring the physically optimized patterns. At the end of this section, the
numerical examples proved particular statements mentioned in this section as well as
demonstrated the possibility of the resulting pattern quality evaluation.

The fascinating field of tensile structures still attracts the attention of many researchers and
developers as there is still a huge space for further investigations and improvements. Among
others, for example, the automatic compensation of patterns, which has to be derived from
intended prestress and inelastic strains undergone during the lifetime. Thus, not only the form
finding results, but also the static analysis results have to be the basis of this process. Some
authors performed the analyses of the mounting process simulation by tensioning the planar
patterns into their final form, as this analysis allow for getting closer to the real stress state of
the erected structures. Here, the mutual interaction of all the processes could be observed, as
the form finding affects the structural behaviour and the shape to be patterned, the structural
analysis influences, the necessary compensation, and the reassembly process leads to a closer
approximation of the erected structure, but also affects the structural analysis response itself.
Thus, the investigation of proper analysis sequences and impacts is of a great interest and will
be a part of a future work in the field of membrane structures.
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