VYSOKE UCENI TECHNICKE V BRNE

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMACNICH TECHNOLOGIi

USTAV INFORMACNICH SYSTEMU

— / FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

COLLABORATIVE TEXT EDITING IN A PORTAL

DIPLOMOVA PRACE
MASTER'S THESIS

AUTOR PRACE Bc. JAN KORCAK
AUTHOR

VEDOUCI PRACE Ing. RADEK KOCI, Ph.D.
SUPERVISOR

BRNO 2012

Abstrakt

V tomto texte sa zameriame na popularnu koncepciu kolaborativngj tvorby dokumentov.
Predstavime si my3ienku vyuZzitia tohto mechanizmu v réznych oblastiach rozhodovania, popiseme si
koncept a princip fungovania. Nasledne si predstavime a rozoberieme portaly a portletovi technol 6giu,
ich vyhody a vyufZitie. Ciefom préce je implementécia kol aborativneho editora s vyuzitim kniZnice pre
précu so zmenami v dokumentoch s perzistentnou a aplikacnou logikou na platforme JEE a vytvorenie
jednoduchého portletu pre tato sluzbu.

Abstract

In this paper we will concern on popular concept of collaborative editing. We will introduce the
idea of leveraging this mechanism in a diverse areas of decision making, we will denote the concept
and principle of work. Then we will introduce and discuss portals and portlet technology, its
advantages and use. The objective of the work is an implementation of collaborative editor leveraging
the library for management of changes on documents with the persistence and application logic based
on JEE platform and creation of simple portlet for this service.

KIicové slova
kolaborativna tvorba dokumentov, portal, portlety, Etherpad, Etherpad lite, Java Portlets, JPA

Keywords

collaborative editing, portal, portlets, Etherpad, Etherpad lite, Java Portlets, JPA

Citace
Jan Kor¢ak: Collaborative text editing in a portal, diplomova préce, Brno, FIT VUT v Brng, 2012

Collaborative text editing in a portal

Declaration

I hereby declare that this thesis is my own work that has been created under the supervision of
Ing. Radek Koci, Ph.D. Where other sources of informations have been used, they have been duly
acknowledged.

Jan Korcak
23.5.2012

Acknowledgements

I would like to thank Ing. Radek Ko¢i for the time he spent during discussions with me. He offered me
valuable advices, consultations, which has helped me a lot. Moreover, I would like to thank
Mgr. Michal Vanco from the Red Hat company for his encouragement and cooperation on project.
Finally, T would like to thank my family for their support during my work on thesis.

© Jan Korcak, 2012

Tdato prdce vznikla jako skolni dilo na Vysokém uceni technickém v Brné, Fakulte informacnich
technoldgii. Prdce je chrdnend autorskym zdkonem a jeji uZiti bez udéleni oprdvnéni autorem je
nezdkonné, s vyjimkou zdkonem definovanych pripadii .

Contents

1 INEEOAUCION. ¢ttt ettt ettt e bt e st e e bt e st e e bt e sab e e bt e saae e s aesateensaeeenns 7
2 Collaborative @diting.........ccecvereiierierriieeieeiteeieereeete et eetesseesbeesraesbeesseesssaessaessseenseesnseennens 9
2.1 Introduction tO the COMCEPL......cccuiiecuieieiieeeiieeeiee et e e rteeeste e e saeesseaeesbaeeseaeesaseeensseaennns 9
2.1.1 Definition Of CE.....cccccoiiiiiiiiieeeeeeeete ettt 9
2.1.2 DiVISION Of CES....uiiiuiieiiiiieeieeiieeit ettt te et s veesteesteesaeessaeessseeesssaaessseasnnns 9
2.2 Implementations Of CE.........cccooiiiiiiiiniirieeieceee ettt ettt ettt e s 10
2.2.1 GOOBIE DOCS....ccouiieiieeiieeitieeieesteete e st e ete et esteesaeesseesseessseesssassseessaesnsseessssseesnnens 10
2.2.2 Real-time collaborative @ditorsS..........cooeirieriienieeiienieeitesiee et 10
2.3 The EtherpPad.........ccccueeiieriieiiiienieeiteeieeieeete ettt et te et esbeesaae s sssseeesssneeesasnaesnnns 11
2.3.1 Old EtherPad.....cccueiiiiiiiiieieiieeeiteeeite sttt e s site e s eae e s aaeesaaeessbeeessseeesasaeaeanns 11
2.3.2 EtherPad Lite......cooieiiiiiieeiieeieeieete ettt ettt sttt e st et e s sastaessanes 12
2.4 Collaborative editing systems vs. revision CONtrol SYStemS..........cceeveerruveerrueeeniuveeeeenns 13
2.4.1 Changesets and TeVISIONS........cceuerruterieriiienieeieeste et et e ettt e s bt sateebe e seesse e e 13
2.4.2 SYNCATONIZAtION. ... viitieiiierieeieerte et ete et e ete et e st e e beesstesbeesssesssaesstesssaaesssens 14
2.4.3 CONFLICE SOIVINEG...c.viiiiieeiieeiiecieecie ettt ettt e et e s teesteesbeesbeessaeesssaaeeessaaesnnsens 15

3 Portals and portlet teChNOLOZY.......cccueeiiiriiirieeiieeieeeee ettt e s e e 18
T8 20 1 721 PO OO OO OO PPRPPPPPPPRRRN 18
3.1.1 Common definition of @ Portal...........cccociiriiiiiiniiiieeeeeeeeee e 18
3.1.2 Definition of a Portal by the Java Portlet API's........ccccceeeuirvienrieenienieereeeeee e 19
3.2 POTLOTS. ...ttt ettt ettt et h e st e bt e st e e bt e s ab e e bt e st e e beesaneeaas 19
3.2.1 Definition of @ POTtlet.......cccccoiiiiriinieiieee e 19
3.2.2Java POTtIet APLL......oiiee ettt st 20
3.2.3 Aggregation and SOA.........coociiriirieiieet ettt ettt ettt e 20
3.3 POTLIELS VS. SEIVIELS....uuiiieiiiiieiieiriieiriee et e st e et e stte e st e e steeesareeessaaessssaeesenssssaeasssnans 21
3.3.1 Portlets relationship with ServIets..........ccceeevueeeeieieiieieiieeeee e 21
3.3.2 Differences between portlets and Serviets..........ccocceeeieriiircieenienienriieeeiee e 21
3.4 Portlet INfraStIUCIUIE.evtereieieeiereete ettt ettt ettt ettt be et e s beeaeesee 22
3.4.1 COIMPONENLS. ...ceeeerurreereirreeeeeirteeeertreeeeeseeeesassreeesasnseeesesssseeesssssaessssseeesssnnsssssnees 23
3.4.2 Portlet life CYCLe....ccuiiiieiieeeeceeeteeeete ettt et 24
3.4.3 POTtIet NOES.vieuiiiiiieeiteieetetete ettt sttt e s 25
3.4.4 WINAOW STALES.....uvietieeeieriieeeieeiteesieeseesteesteesteesseessseesseesssessseessseesseesssessseesseennsns 25
3.4.5 Portlet deployment deSCIIPLOT.......ccutirierieiiieeieerte ettt ettt 26
3.5 Inter-portlet COMMUNICATION.iiiierriieeieerieeieerteeteerteete et e sbeesaeesbeesaeessseesssesseesans 27

3.5,] P OTt O SOSSIOMuuuuuueeeeeeeeeeeeeeeeeeeeeeeetteeeeeeeeeeeeeenenaaeesseeseserennnaesssesessannnnaesesesennasenen 27

3.5.2 PUDLiC render PArameters..........cccueeruersueerieerieenressreesteeseesssessseesseesssessssssessnsneeas 28
3.5.3 POTtIEt @VENLS.oitiiiiieiieeee ettt ettt sttt e e e e e an 28
3.6 Portals and portlet frameworks...........cccevveririiriiriieeeeee e 29
3.6.1 GateIn Portal......c.cooiuiiiieiieeeeee et s 30

4 Etherpad Lite and EaSYSYIC......ccciiiiiiiiiinieiiieiieeieeste ettt ettt ettt et st e e ssivee e 31
4.1 EasySync protocol for collaborative editing............ccceevvervueiriieesieeniienieenieeieeeeeee s 31
411 OVEIVIEW.....eiiiiiieiitieeitee ettt e ettt e ettt e sttt e et e e e bt e seabteseabtesaabeesansbeeeeseasnsbaeeesennnes 31
4.1.2 ChangeSet SITUCTUIE.cccueerverrieerrerreeereesteesseesseessessseesseesseessssseesssseessssessnnsns 31
4.1.3 AttribDUtePOO] SIIUCKUTE.eoutiiiiieiieeieeteeete ettt ettt s 32
4.2 Etherpad Lite implementation...........cccoeerieriiterierrienieeieesteee ettt e e 33
420 SIVET....eiiiiiiiiiieeeite ettt ettt st s et e st e st e st e e ab e s b e e ra e e e e e e e raeeeas 33
4.2.2 ACE EQIT0OT...c..eeteeieriieieeieetesteete ettt et e st e ste st e stestesatesae e sesstesseesesnsesnsaesnnnenns 34
4.2.3 Pad MaNAQ@EIMENL.........ccocterreeriieeieenieeieestesteestesseesseesseesseessseesseesssassseesssessseesns 35
4.2.4 DAla SEOTAGEL....uveeeeerrieeeieiireeeesitteeeesiteeesesstteessssteeesssssteessssssteesssssseessssssssseeeeeeess 36

5 PersiStence tier AeSIGMN.......cueevuiirieriiiinieeitente ettt ettt s ettt e st e e sbe e st e e saeesabeebaessneas 37
5.1 DOMAIN ANALYSIS...uuvieirririiiieriiiiniieieiteesitteesitee et e ssteessiteessteeesssaeessaeesssaessnssseesssnsnnns 37
T 0 B 2 oL =TSSP 37
5.1.2 RElAtIONS. ...cutiiiiiieieieeeetes ettt ettt ettt ettt st 37
5.2 Extending the meta MOdel.........ccccuuieiiiiiiiieeiiieceeeceeeree e ee e e 38
5.2.1 TempPOral eNtItIeS.ccecveeriierieriiierieerieerte ettt ettt e et e s be e sabeesssasaessansaeeas 39
5.2.2 ATTIDULES.eeneieeteee ettt ettt et b e st st e et e e e e e e e e nreeeas 40
5.2.3 User sesSion CONfigUIation...........cceeveeiuierieriiienieerieente et eiee e et e e siee e e sieae e 41
5.2.4 Final meta MOdel..........ccouiiiiiriiiiiiiciieieeieete ettt esae s 42
5.3 Design oOf the database..........ccceevueeiierieniieiereeeeeec et 43
5.3 1 TaADLES .ttt st sttt r e 43
5.4 PerSiStENCE LOZIC....ciecuiiieiieeiiieiiieeecieeecte ettt eesteesie e e saeeesaeeesaaeessaaeesssaeeesensnsaeeaeens 45
5.4.1 HibDernate SeSSION.......ccc.eevuirueerierieniirieeteeiteteete sttt et st sbeesre st seseeeeneeeenees 45
5.4.2 Data Access ODJects (DAQ)....ciuuiiiiieiiieiiieeerieeeiteeesrteeseeesreessaeessseeessnsaeens 46

6 APPlIiCation tieT AESIGN.....cccueiiuiieiieiieeieete ettt ettt sttt et et e e st e e 47
6.1 Class MOAEL......cc.eerueriiriiiiieieetet ettt ettt ettt et st e sa et e bt e e sse e e saeeeaee 47
6.1.1 Base entity deCOMPOSITION........ccccueireieeeiieeeiieeeieeeeteeesreeesteeeseeeesseeessneesssneesnnns 47
6.1.2 MaAIN TEIATIONS. .. .eeueeriieiieieeiteeteet ettt ettt sttt s e b e aesaeesnee e 48
6.2 PTOCESSINE.veeiieiiieeeeeitieeeeitte ettt e e sttt e e e stte e s esateeeessasaeeeesssaeessesssssssnsssssneaaeeeeeees 49
6.2.1 Client-to-Client COMMUNICALION.ccoutirierriierieeieeeieeieeete et ste st e e s 49
6.2.2 Handling local text Change...........ccceecuerriiriiiinieniieieeieeee et 50

6.2.3 Handling remote teXt Change..........coceirieriiiinieeieeteeieete ettt e 51

6.2.4 Session Sender and SeSSiON LiStENET......c...cceevuerierierrienienienienteneeeeneeseeeeeeeens 51

6.3 Authentication and authOTiZation.........c.cueevuiiriiiiienieeteeee e 51
6.3.1 SIiNGLE SIGN-OM....uuiiiiiiiiiieieeiieeieete ettt sttt ettt e e st e e s sabaeesnneas 51

6.3.2 Retrieving user info from the portal...........ccccccveeciiirieeiiienieeiieeeeeee e 51

7 POSSIDI@ EXEEISIONS.eerueeeiieeiieeiieete et ettt e et e st e st e st e esat e st e e s st e sabe e st e e s sasbeeeeneeesenneas 53
7.1 TMPOTt QN @XPOT....veeurierierierieerieeieeseeeteesteesseesseessessseessseessessssessseesssesssesssssessssseens 53

7.2 Security control and PeIrMISSIONS.ccccueeerueerriieeriieeeeieeesteeesteeeseeeeseeeeeessseseeesessnnns 53
7.2.1 POITIISSIONS.uvtiiiiiiiiiieiitie ittt ettt ib e ra e be e e bee s ere e sesaeesnaneee e e 53

7.2.2 Prioritizing the text — permissions to update Or TEMOVE..........ccecveerrveerrveersreeeeenn 55

7.3 Data optimization and Caching.........c.cceevuiiriiriiiinienieeteeeeee e 55
7.3.1 Lazy SUDIMISSION.....ccciieiieriieeiieiteeeieesieesteesteesreesteessteesseesssessaesssessseessnseessnseesans 55

7.3.2 Changesets EXtTaCtiON.........cevueeruterruerrieeiieenieeteesieeeteesitesseesstessseesutesseessaeesnnseeens 56

7.4 EXtended fEatUres........cocuevieriirienieieeieetet ettt ettt ettt e 57
7.4.1 NON-eXtUAl ODJECES. ..ccciuiiieiiieeiieeeie ettt ettt e ste e e ae e e sabe e s saaeesaaeee s 57

8 CONCIUSION. ...ttt ettt ettt et s bt e b st s bt et e e st e s bee e seeesmneenaeeenneas 58
BiDLiOGIaDRY ...cccutiiiiieeieeeee et e st e e e s bt e e e e e ataaaeeeens 59
FRBUTES. ..ttt ettt et e et e et e et e e e st e e e bt e e s bt e e s bt e e s st e e eabeeeeanes 60
Appendix A: Manual how to set up the project environment and start the application............ 62
Appendix B: Definition of database structure and initial testing data in MySQL DDL........... 64
Appendix C: Object-relational mapping configuration with Hibernate mapping files............. 69

1 Introduction

There is awell-known saying that two heads are better than one - this states that when more people are
solving the same problem together, they can be more successful in finding the solution than when the
same problem is being solved by fewer people. This idea can be used in spheres where the focus is put
on a quick decision or where you have to bring out the solution in a short time. When working on a
project within a group of people the complex task is usualy decomposed into a number of smaller
tasks. Each of these tasks can be processed by a single person. If the task can be processed in a
paralel, it can speed the processing of whole task; otherwise the process could be slower. However, we
will not talk about a decomposition in this work. The collaborative editing is focusing on the tasks,
when we can provide more quickly and even a better solution when more people are cooperating on
the task in the same time. There can be founded some examples of practical use of this idea even in the
same platform we will talk about later — text editing.

In IT the idea of collaboration on the editing of single document is similar to the concept of
well-known programming method called extreme programming, where mostly a pair of programmers
(therefore also called pair programming) are creating one file together. This kind of work is performed
in a way of currently editing the file by only one programmer, while the second programmer is
watching the process, supporting writer by thinking of the code and control the writer. During the
process the roles can change, so the supervisor programmer may take the role of execution
programmer and former execution programmer may take a watching role. This concept makes
programming more agile as it lets the both of programmers concern on the part of the process more
intensively; this could make the devel opment process more effective.

The objective of the thesisis to examine the field of collaborative editors, especially the product
caled Etherpad Lite and provide an implementation of such application with the JEE and portlet
technology.

Chapters 2 and 3 will provide an introduction to the technologies we will work with. First there
will be described concept of collaborative editing, analogy with known technologies and
implementation of Etherpad collaborative editor, resp. Etherpad Lite. Then in third chapter we will
introduce portlet technology and portals. There will be discussed fundamentals of portlets introduced
in Portlet specification.

Chapter 4 will provide an inspection to the Etherpad Lite implementation of collaborative
editor; its domain, main components providing core features and processes performing within the
application.

The analysis and design process of application will be presented in the chapters 5 and 6, where

the 6th chapter will discuss the persistence tier and 7th application tier.

Chapter 8 is dedicated to the presentation of anayzed optimizations and extensions for the
application, that could be implemented in the later development.

The last chapter is conclusion of the project.

After the bibliography and figure registry the paper has a 3 appendixes with how to start the
application and descriptions of the database model used.

2 Collaborative editing

In this chapter we will look on the concept of collaborative editing (CE) and introduce actua
implementations. As the site of one from CE implementations, the SubEthaEdit project, says!, the idea
of CE is not so recent since it has been researched during the years. There can be found a number of
applications offering such a functionality that differs in the pack of extensions each of them provides
on behalf the core CE function. However, we will be discussing an implementation of CE, we should
define the term of the collaborative editor first.

2.1 Introduction to the concept

211 Definition of CE

Although, there is not an unified definition of the concept, we need to define the CE for our purposes,
so that we could build upon it. We can start with the definition provided by the Wikipedia Foundation:

A collaborative editor is a form of collaborative software application that allows several people
to edit a computer file using different computers.

It describes the application that enables the editing of the specific file by a group of people each of
them sitting in front of different computer. However, this definition does not specify the time
dimension and thus it can cover wide range of uses - you can surely imagine working with a shared file
using tools such as secure-shell, FTP or even by exchanging the updated file. This is however only
about sharing and there cannot be any talk about an effectiveness; the whole idea is almost a rubbish,
not to mention the complication of distribution within alarge group of users.

What the CEs brings is not only the ability to share a document, but also to edit the document
concurrently, during the other people works on it at the same time. Such a behavior must be supported
by the sufficient synchronization mechanisms. We will dive deeper into this problem in the section
concerning the similarities of CE with the revision (version) control systems.

21.2 Division of CEs

To push the description of CE more far, we have to provide a division. The most important attribute
with the very significant matter, as it affects the users, is away of synchronization; this splits the CEs
into two main subgroups:

Real-time collabor ative editor (RTCE). Synchronization is invoked on every change of text. Users
can edit the same file simultaneoudly and they are provided with the latest version of the document in
their editors in amost every second of work as the editor content is immediately updated when remote

1 More informations can be found on this site: http://www.codingmonkeys.de/subethaedit/

change occurs.

Non real-time collaborative editor. Synchronization is triggered with during the saving or on
different action occures, depending on the strategy of concrete editor. Users therefore can edit the
same file simultaneously, however, they are not exposed with the fresh content in such small intervals
asitisinthe RTCEs. Its behavior is more like that of revision control systems.

We will discuss the first type of CE, but before providing a deeper description, we will look at
probably more familiar technology to make some intuitive background.

2.2 Implementations of CE

2.21 Google Docs

One of the most popular collaborative editing programs is probably Google Docs word processor
called Writdly. It was founded by the Silicon Valley startup called Upstartle and during its existence
has attracted thousands of users. The main breakthrough, however, came with the Google's acquisition
of Upstartle. Big advantage of the Google here was that the editor was included into the portfolio of
Google services. In ashort time from adopting, Writely has made a millions of the Google users.

However, what Writely provides is non real-time collaborative editing - you may cooperate on
writing of the document, but you can not see the state of the document in a real time. The
synchronization is triggered on every save action of the document, so you can not see the real progress
in it. Another thing lacking in comparison to the RTCEs is that the editor does not provide user
distinguishing by color; therefore you can not identify the authorship of the exact dlice of text within
the document.

2.2.2 Real-time collaborative editors
Presentation properties

There are some characteristics that are common for many of these products and by which we could
identify them. Some of them are:

Real-time concurrent editing. The text can be edited by more than one writer in atime which is the
main idea of this concept; the text typed by another co-writer is shown immediatdly character by
character. The process is non-blocking and all conflicts among the authors currently editing the text
are solved automatically. This behavior is assured by the conflict solving mechanism, which will be
described in the section 2.4.

User distinguishing. Since we can edit the same file with the other person or even a group, we may
want to distinguish the users working on document, so it will be possible to watch the text we are

10

editing and identify text already written by us - otherwise it could be difficult to watch the changesin
text. RTCESs therefore provides each user with a color that distinguishes the text written by himself
from the other.

B|I|U|&|:=eE |9 C | & o202

: john

3 lucas

Figure 1: User text distinguishing in the Etherpad Lite CE

Unbounded history. The CEs works as a revision control systems in a way it deals with changes.
Every change is encapsulated as an increment to previous state. This encapsulation is called a
changeset. Each changeset is saved and since it exists also an inverse algorithm, it is possible to walk
through the created changesets and provide the history revocation. Storing the every change then
enables an access to even the oldest state of the document.

2.3 The Etherpad

This work concerns on the concrete RTCE product with motivation of leveraging this technology to
provide an integration within the another platform. We could therefore put down some start
informations about the technologies we will work with.

2.3.1 Old Etherpad

The Etherpad is a project of AppJet Inc., which was later acquired by Google. It is a web-based
application providing collaborative editing of documents hosted on network. The main functions it
provides are:

« real time collaborative editing of documents,

« distinguished userstexts,

* creating and cloning pads,

* import and export to and from a different types of documents,
* inserting and embedding the files into pads,

* uploading images into pads

 and more.

11

Digtribution and requirements

The Etherpad is an open-source product that can be downloaded and hosted by the user needs. It is
possible to run it on both the external and local server and provided for use in the company or even
within a group of people without any IT infrastructure built. What is needed, are the Internet
connection and the Etherpad installation with a pack of open-source free downloaded packages.

Since the Etherpad was made in collaboration of technologies: Java, Scala, JavaScript and
macro processor M4, required runtime environments and libraries must be installed on the target
machine.

Application needs to run on the Open JDK 6 digtribution of Java Virtual Machine (JVM),
therefore this runtime environment must be installed. The application is configured on every startup
with the build script to set the proper paths, so that the JAVA_HOME is targeted to the right
environment.

The server side of application uses the MySQL database to store a content, so the MySQL
database server must be installed too and the MySQL connector must be presented in order to enable
the Java application to connect to database.

EasySync protocol

In a collaborative editing you have a number of editor instances - each for user working on another
computer. The critical task that must be provided by server is maintaining the consistency among the
different document replicas, so the users have the latest version of the document in their editors. This
process must be non-blocking, because the users don not want to wait for the end of synchronization.
That is why the Etherpad is using the protocol hamed EasySync, which describes identification and
extraction of the changed part of the document and its encapsulation within a changeset object.
EasySync also provides functions for applying a changeset to the document and a strategy for conflict
solving when changesets from different users meet in the same time.

2.3.2 Etherpad Lite

Disadvantages of Etherpad are that it requires relatively high software and hardware resources. The
installation is not very user-friendly, too. Therefore there was a motivation to make a lighter
implementation of Etherpad that could be more accessible than the original one.

The project named Etherpad Lite got started afterwards. It was successful and has brought even
more invention since it was built only with use of single language - JavaScript and using a number of
JavaScript frameworks helping to build a server-side of the application. The Etherpad foundation
adopted the Etherpad Lite and made it an ancestor of the origin Etherpad since it was practically its
upgrade. Nevertheless, Eteherpad Lite does not cover the whole functionality of old Etherpad.

12

Currently you can see a reference to Etherpad Lite project on the official Etherpad web page
with original inventors encouragement to use it instead of the old one. The in-depth anaysis of this
implementation will be presented later in the paper.

2.4 Collaborative editing systems vs. revision control systems

We have mentioned earlier that a bit of similarity between the collaborative editing systems (CES) and
revision control systems (RCS) used in a software development can be found.

RCS, also known as version control systems are systems which manage changes to documents,
computer programs, or any other editable files. From the view of the software development, RCS
clarifies the development of projects involving more developers by providing tools for maintaining
consistent state of projects and revision control.

For the sake of understanding the concepts used within the CES and collaborative tasks in
general, it isgood to look at the RCS familiar processes and describe them briefly.

24.1 Changesets and revisions

It has been already outlined what the changeset is, but we should try to provide more illustrative
description. Changeset definition can diversify among the different RCS and the specific
implementations. The main principle is, nevertheless, quite simple. Basically, the changeset is a set of
changes made on document by concrete user. These changes are packed in one unique named object
that can be applied to a document as a patch. This patch can be then applied to the document in order
to update the state of document and thus provide a new document. The extraction of these changesis
held within the object Changeset. If we look on the whole document from the creation along to the
current state, it can be defined as application of ordered collection of all changesets created on the
document to an empty document. After the application of changeset, the current state of document is
called revision and isidentified by a unique revision number. Thisisillustrated on the next figure.

13

[Latest revision

— E
S

Applying the latest changeset to
the previous revision

r Revision #2 -51

-

- R
-
-y 2

Applying the changeset #2
to the revision #1

Initial revision — ::J&i.‘j | "-Applying the changeset #1
empty document ——— toanempty document

— -"""—:‘_}__B_;:‘“

Figure 2:Building a document by application of changesets

2.4.2 Synchronization

In the CES the most crucia part of the whole system is the changeset management. It provides
synchronization for the users so they can have the latest state of the document in their editors while
writing. That is why the situation where two users spent an hour writing the same text on the same
document cannot happen. This is a synchronization issue which is one of three things they have in
common with the revision control systems.

However, the synchronization is not working in the same way. In the RCS you have to put a
request every time you want to synchronize your working copy with a server state. ON the other side,
in the CES this must be done when the users work; it must happen automatically and most frequently
to ensure that the writer has the most actua version and therefore he will not produce a different
document as server copy. In anext figure a concept of synchronization in CE is shown.

14

- -
Central repository
(Server)

f?fb.
Fod
&
- -9

§ &

& a3

i :5“ y

Figure 3: Users A, B and C are synchronized

E Iﬁl'f .-',%II,-

with a server copy.

2.4.3 Conflict solving

Second functionality that can be seen in both RCS and CES is conflict solving. Thisis very important
part of the CES as the whole mechanism must be automatic and the conflicts would occur more
frequently as in a RCS, therefore the must of solving every change manually is aimost impossible.
There is even no objective need of it. Resolving this issues automatically provides that the users could
not be blocked from editing and requested to conflict solving because of bad synchronization; concrete
mechanisms will be discussed later in this paper. Now we will provide an example situation when you
need a conflict solving and describe the asset of such mechanism.

Imagine a situation when there are two users editing the same document. If we abstract the
behavior of such editor and say that the synchronization of users editors contents is provided in bigger
intervals or manually at the saving of the document by user and there is no conflict solving
mechanism.

Each of users now have made a different modification on the same file. The users now have
different documents in their editors without knowing of the other ones modifications. The problem
raise when both tries to update the current server copy. As from the algorithmic view there is not
possible that the two updates came in the exactly same time, the server first applies one of them and
tries to update the document on the server. The operation could finish successfully, because the
changeset was made as an increment of the previous state of document which is equal to that stored in
aserver. But once it tries to apply the second changeset, he meets the conflict. However, this changeset
was made as increment to the previous state of document, and therefore it cannot be applied because
the update could bring the document not in consistent state. The situation is illustrated on the next
figure.

15

p Server \

[Goals 2012 doc.ixt

_— Cur main goal for the next year is to maintain the amount of submitted work and raise

P » its quality. The suggested scenarios are: ™
/ LN
II A
I\.

\. Applying
. generated patch e /
S —— ™ i

/ to a document y

f Y /

| e

[

-..‘\\ - - e ,:'.III

Conflicts solving unit
e ,(/ g
R I
e -.\\ Saee=. »".:J e
——— "'_.—\ r
—— - \\n ,'//

Goals 2012 doc.txt 8

Our main goal for the next year is to maintain the amount of submitted work and raise
its quality. The suggested scenarios are:

Manager #2

Goals 2012 doc.ixt

Our main goal for the next year is to maintain the amount of submitted work and raise
its quality. The suggested scenarios are:

- hire a tester

Figure 4: Example: Production of conflict: 2 managers are writing down the possible scenarios to
meet the specified goal.

However, the conflict solving is present and the specified situations can be solved by merging the
actual state of file with a given changeset. Nevertheless, there may occur situations, when the conflict
solution can not be find automatically by a system. In such situations the changeset can be refused and
user is requested to backup its state, update its copy to the current document and until then apply the
change. But this scenario could be find just in revision systems, so we can suppose that after the
generation of merge its application file in the example could look as follows:

16

Goals 2012 doc.ixt e

Our main goal for the next year is to maintain the amount of submitted work and raise
its quality. The suggested scenarios are:

- hire a tester

Figure 5: Example of conflict solution for a situation denoted
on the picture in previous figure.

History

Finally, the version systems and CES also provide a history of changes so the user can every time,
when he needs, browse through the revisions and inspect the changes or even dynamically revert to the
specified older version. The file is then put into state of this revision without need to clicking back to

the wanted state.

17

3 Portals and portlet technology

3.1 Porta

If we want to discuss portlets and portlet technology, we will not omit a mention about the term portal
which is amain playground for portlets and on which whole technology is built.

311 Common definition of a Portal

A portal or aweb portal, since we will discuss portals used especialy in the ground of web sites and
web applications, is a well-known concept used in the area of graphic user interfaces. There were no
formal definition of it until recently, however, there are some that can describe it sufficiently for us.

On the Wikipedia.org we can find really simple definition of what aweb porta is:
A web portal is aweb site that brings together information from diverse sourcesin a unified way.

It can be also described as a collection comprising a number of small web applications each of them
has its own scope and context; the idea is to collect and enable co-existence of multiple applications

+Jan ps s Calendar Translate More - Jan Korcak | [0 Ak -]
- . . Google.sk offerad in
iGoogle ' - | o = § o
Date & Time ‘Weather Zive.sk
Bratislava » Noveé progresivne disky WD Scorpio Blue mieria nielen na
12 SMTWTES WP 1o Curment: Mostly Cloudy Liirabooky
n 1 : e 11°C : y
wog o2 Fri 1234567 e Wind: NEgt Blkm/h » Hranie hry Fruit Ninja na ultrabooku s pohybovym senzorom
APR 8 91011121314 — Humidity: 71% (video)
2 2 13 T p o o L ng;. » Nogna mora divakov: Dalsie preladovanie pri Skylink a CS
\ 22324252627 28 n . - MW, Link
g 4 29 30 B B B m
T 5 - =
8 18090 13°|7° 17°|9° 1°| @
To Do List
Settings
sport.sme.sk iy X
Pravda.sk - Spravy ey

b Vzpierac Kovat vyhral na MS C-skupinu do 94 kg
» Naj j3i Eas v tréni dosiahol v Sine S

» Statu chyba z dani oproti planu 16 percent

b 4 hei prvy
b Siracka: Dajme sa dokopy, mozno nieco dosiahneme EBEkeibosll Romame chol vy 419 Sticky Note

+ Japonska Eiema vdova dostala trest smirti

Click in the sticky note to edit it.
=
Classic Home 2012 GDO;H? - ;-C\‘."?IT\EHTQ pngIIi\‘!‘. = Frwa:;- & Terms - HE‘||3 o f-DDU[GDOQ\? -Goto GDOQ\E‘.(O\“ Aboutthis theme
Send feedback

Figure 6: Example of a web portal: iGoogle by Google.

within the one web (portal) page. This is rather comfortable solution as compared to standard
approach, where you have to use many different sites to gather all the needed informations. On the next
figure you can see Google's portal iGoogle, which can be referenced as a common portal, as we have

18

just introduced it.
3.1.2 Definition of aPortal by the Java Portlet API's

The definition provided by Java Portlet Specification? is little bit different from that commonly used
one. Within the Java portal the mechanisms and principles are more rigorous and therefore we can
surely write down the main characteristics and abilities of Java portal. According to Java Portlet AP,
the portal supports features like:

Content aggregation. Each porta page can concentrate the modules or services with a different
functionality — providing different output.

Authentication. User have to submit his credentials to confirm his identity on the portal in order to
get access to the portal content, the advantage of portal is, that it provides single sign-on capability, so
you have to authenticate only once, to have access to all the portlets within the portal page.

Personalization. Portal identifies user within a session or within a whole application scope and
provide him services for him and by his custom preferences.

Customization. Provide user with ability to have different preferences for the view and functionality.

3.2 Portlets

We have introduced a portal as a content aggregating concept of web application that concentrates on
one web page more applications. These applications are called portlets. In the next topic we will start
with aformal definition of what the portlet is.

3.21 Definition of aPortlet
The definition provided by Sarin in Portletsin Actrion says:

A portlet is a pluggable user interface component that provides a specific content, which could
be a service or information from existing information systems. Portlets provide the user interface of
the portal by accessing distinct applications, systems, or data sources and generating markup
fragments to present their content to portal users.

There we have aportal in role of acontainer or a platform for the small applications — portlets. Portlets
act as windowed web applications within the portal and each window in a portal web page represents a
portlet. They can be personalized and customized, they supports aggregation of content and also
authentication.[1]

The figure 7. illustrates how can the portal page look like and how the portlets are represented

2 There are 2 Portlet specfications: JSR-168 and JSR-286 (referenced in document as [9] and [10]).

19

within the portal page.

- | ——Decorations and controls
(@ <Title> I (o (€] (/%]
|| ——Portlet fragment
!
<Portlet content> | —Portlet window
[[E <Title> M ml[EIH || |[E <Title> M [ml [E][H | __— Portal page
la— L
<Portlet content= <Portlet content>
[E <Title= (5] [[E] [|
<Portlet content=

Figure 7: Portal page decomposition. [10]
3.22 JavaPortlet API

The two specification for Java Portlet API: JSR-168 for Portlet version 1.0 and updated specification
JSR-286 for Portlet version 2.0 were introduced.

The definitions of both portal and portlets was made in the JSR-168 and later upgraded in the
JSR-286, introducing new features for Portlet 2.0. The 2.0 specification addresses most of the
frequently required features of portlets that were missing from the 1.0 specification, such as resource
serving, inter-portlet communication, and portlet filters. However, most portlet containers support both
specifications, and the 2.0 specification is backward compatible with the 1.0 specification; and
therefore we can run Portlet 1.0 applications also within the most new Portlet containers.

3.2.3 Aggregation and SOA

As the portal provides a container for locating and managing diverse portlets, it enables to concentrate
whole bunch of services or applications into one page. This is one of the main motivations why to
develop with portlets. The second significant advantage of portletsis their ability to interact with other
portletsin the portal. Thisis provided by the process called inter-portlet communication.

The capability of communication between the portlets in the portal can be very likely used in
Service-oriented architecture (SOA), as it makes it possible to build new applications leveraging the

20

existing services. In portlets can be seen even an attitude when the applications provides new services
only by composing existing ones; these are known as mashups.

Hl‘f}flcu:aj Portal page T,
(forecast } ¢ Gmail
. Service _x""\ |_-W_ service
— ~.] Forecast Emaill | —"
portet portet
News Messanger]]
e - s o Facebook ™,
CNM news / messanger _
Senvice J ~_ Service

Figure 8: Illustration of content and service aggregation within the portal page.

3.3 Portletsvs. Servlets

In a number of books concerning on the portlet technology, there is often portlets nature described
through the comparison with the fundamental component of al Java web applications, serviet. It is not
a coincidence, as the portlets are in fact extension of the servlet specification and so we will provide
this comparison too. First we will introduce a common attributes for both components and then we
will chronologically pass to the portlet specific ones.

3.31 Portlets relationship with servlets

What have portlets and servlets significantly in common is, that they are both a web components. And
as the web components their life cycles are managed by its containers. The portlets containers
responsibilities are quite the same as the servlet ones, however, the Portlet API is an extension to the
servlet specification, which also means that a portlet container is also, by definition, a web container.
Portlet container's function is loading and instantiating a portlet, initializing portlet instance, directing
requests to it and finally destroying the portlet instance. The second fundamental attribute is that both
of them generates dynamic web content via the request-response paradigm.[2][9][10]

3.3.2 Differences between portlets and servlets

According to publication from Mr. Richardson and col., there can be found following differences
between portlets and servlets:

Portlets generates only fragments. On oppose to serviets that generates whole web documents,
portlets generates only a markup fragments for aweb page.

21

Not bound directly to the URL. Unlike servlets, portlets are not bound directly to the URL.

Sophigticated request scheme. Portlets have more precise request scheme consisting of 4 types of
reguests: action, render, event and resource.

Standardized set of modes and window states. For portlets there are predefined different modes, that
defines their operating context and rendering rules and window states, that defines the portion of space
within the portal page area portlets will take.

Among the differences the portlets differs from serviets by providing some features, that servlets does
not:

Management of configuration informations. Portlets can easily access and store the configuration
data thanks to its sophisticated management.

Access to user profile information. Portlets went beyond the basic user and role information
providing in the servlet specification.

URL rewriting. This means an ability of creating hyperlinks within the portlet context, which are
independent from the portal server implementation.

Two session scopes. Portlets can store a transient data within the two different session scopes:
application-wide scope and portlet private scope. These will be described later in the section
concerning on Portlet Session.

Inter-portlet communication. Portlet can communicate with the other portlets by the sending and
receiving events.

Multiple portlet instances. The same portlet can exists within the same portal page multiple times.

And there are also functionalities that portlets on oppose to servlets does not provide. The functions
that portlets lacks are:

Encoding. Portlet cannot change the charset encoding of the render response.

Access to URL. Portlets does not have access to the URL with which the client initiated the request on
the portal.

3.4 Portlet infrastructure

This section will describe some portlet basics such as an description of main components of portlet
technology, their responsibilities in managing the life cycle of portlets and finally, portlet options, that
could determine its view or behavior in aportal page.

22

341 Components
Portal page

A portal consists of web pages, in portal application called portal pages. These web pages includes
some header, footer and the main content consists of variable number of portlet applications.

Portal server

A portal server handles the contents provided by the portlet container and creates the portal page as a
sequence of HTML code. Portlets are located within the portal page by the portal server that applies
the specified layout to them.

Portlet container

The main component within the portal page is a portlet container. In it a portlets are deployed. Thisis
similar to servlet container, athough, a portlet container is responsible for managing the
communication between portlets and sending generated fragments to the portal server. It invokes life
cycle methods on the portlet instances and provides a runtime environment for them.

The portlet technology builds upon the servlet technology, since it's portlet container is
practically an extension to the base servlet container also known as web container (drawn in the figure

Portlet

: Portlet instance
instance

Portal page
Portl. Portlet
inst. | Portlet inst.

instance

‘ Portal Server ‘

‘ Portlet Container ‘

‘ Web Container ‘

Figure 9: Illustration of portlet
infrastructure.

23

above).
Portlet instances

The instances of portlets are created by the portlet container invoking the life cycle method on the
portlet. The portlet instance is then managed by the portlet container.

3.4.2 Portlet life cycle

If we put it al together we can describe the life cycle of a portlet. The portal server and portlet
container roles in handling a portlet request. The portlet container creates the portlet instance and
handles over the content to the portal server. The portal server then assembles the content from
different portlets to generate the portal page.[1]

Portal page Portal server Portlet container Portlet instance

Portlet request

Lifecycle method
>

Content from portlet
Assembled content
‘................................

Figure 10: Portal server and portlet container roles in handling of a portlet request.[1]

Now we can look on more illustrative scheme of portal page generation respecting the presented life
cycle. On the figure bellow we can see a bit simplified process of portal page generation from an
instantiation to afinal result shown that can be seen in a browser.

Portlets A, B, C, D and E are generated and its contents are sent to the portlet container. Container
then handles them to a portal server that have to integrate them within the portal page respecting
defined layout. On the portal page are displayed windows A, B, C, D and E, each for corresponding
portlet.[9]

24

Portal page
A B
Portlet B
Portal Portlet 4_-
- -
C server container
b E

Figure 11: Portal page generation as described in paragraph above.[9]

3.4.3 Portlet modes

Portlet specifications provides some predefined modes, in which the portlets could be rendered. This
modes defines the use and functionalities the portlets have when rendered.

Specification of the portlet modes

According to the specifications JSR-168 and JIR-286 portlet mode indicates the function portlet is
performing in the render method. It advices the portlet what task it should perform and what content it
should generate.

From the specification there can be found three predefined rendering modes:
View. Generates markup reflecting the current state of the portlet.

Edit. Allows a user to customize the behavior of the portlet.

Help. Providesinformation to the user as how to use the portlet.

When invoking a portlet, the portlet container provides the current portlet mode to the portlet.
However, portlets can programmaticaly change their mode when processing an action request.

The availability of the portlet modes for a portlet can be restricted to specific user roles by the portal.
3.4.4 Window states

It has been defined that portlets aggregates within the one portal page, but there was not mentioned
anything about the amount of space in the portal page that portlet occupies. However, the
specifications defines a three types of window states and manner how the portlets shows and behaves
on apage. There are:

Normal. Norma mode indicates that a portlet will be shown in a standard view - it will share the page

25

with the other portlets.

Maximized. This state declares that the portlet is only one rendered in the page, or it has more space
compared to the other portlets in the page.

Minimized. In this state the portlet should only render minimal output or even no output at al,
nevertheless, there can be defined custom states for the specific purpose.

3.4.5 Portlet deployment descriptor

Similarly, asfor aclassical JEE web application there is a deployment descriptor that roles as aform of
a configuration file providing informations used by the application server during deployment of the
application to the web container, in a portlet application there is a portlet descriptor that holds the
informations and settings used by the portlet server during deployment to the portlet container.

Deployment descriptor for a portlet application is an XML structured file named portlet.xml. Next we
will look into descriptor and describe interesting parts of its structure.

Portlet descriptor structure

The root element of the file is <portlet-app> element. Portlet declaration is enclosed within the
<portlet> subelement of the <portlet-app>. There can be even more portlets declarations within one
descriptor. Portlet application will then consists of that many portlets as specified in the descriptor -
all these portlets form a part of one portlet application.[1]

Within the portlet.xml it is a place for declaration of portlet name, used portlet class, enabled portlet
modes or window states. However, there can be set a list of parameters and options, they will be
presented on demand later in the text. For example, the simple portlet.xml can look like this:
<portlet-app>
<portlet>
<portlet-name>myPortlet</portlet-name>
<display-name>My Portlet</display-name>
<portlet-class>org.portlet.MyPortlet</portlet-class>
<init-param>
<name>email</name>
<value>my@mail.com</value>
</init-param>
</portlet>

<container-runtime-option>

26

<name>javax.portlet.actionScopedRequestAttributes</name>
<value>true</value>
</container-runtime-option>

</portlet-app>

Figure 12: Example of a portlet.xml file.
3.5 Inter-portlet communication

Inter-portlet communication is a process that provides an ability of a portlet to react on changes, events
and actions which take place in the other portlets. An example could be a portal of library where the
reader hove shown within the account portal page both the portlet with the list of available books and
second portlet of his own reservations. When the reader makes a reservation for a book through a
reservation portlet, it is wanted that this reservation instantly occurs in the portlet showing actual
reservation list. This can be done by an inter-portlet communication mechanism. Let's describe its
abilities and functionality.

There are three mechanisms that can be used for the inter-portlet communication:

Portlet session. Portlets are parts of the same portlet application or the portal page enables sharing of
session information over the different portlet application within the portal.

Public render parameters. Communication based on the simple string values sending between the
different portlet applications.

Portlet events. When portlets from the different portlet applications are communicating with each
other by sending and receiving complex objects, known as events.

3.5.1 Portlet session

This is the most commonly used type of communication between the portlets. It is the one
aready exists since the JSR-168 (Portlet 1.0 specification). The main component is a PortletSession
object storing, maintaining and providing an access to session attributes. As it was mentioned earlier,
there are two different contexts, in which the session data can be stored and which defines and limitate
the scopes of access to the attributes stored in:

APPLICATION_SCORPE. It is used to store data that need to be accessible within the whole portlet
application so the portlets of the same portlet application can access them.

PORTLET_SCOPE. This scope provides session data only for use within and for the current portlet
instance. So the the portlet session data cannot be shared even by the duplicate instance of the same
portlet application on the portal page. However, we are not unable to retrieve this data from the other

27

portlets, as the data are also stored in the application scope, athough in a different way, so we can
programmaticaly make an access to them.

3.5.2 Public render parameters

When the render method is fired, the parameters that are required by the portlet to generate the
appropriate content are handled to it. These are called render parameters and there are two types of
them:

Privaterender parameters. In the requests that are not visible to other portlets.
Public render parameters. In the requests that are visible to other portlets within a portal page.

The render parameters are received by a portlet in the situations, such as a form submission to a
portlet's render URL. In this situation the form fields are sent as render parameters to the render
method. Although, submitting of a form to the render URL, however, it changes the system state, it's
not recommended in the render phase. In the same way are sent the parameters set in the portlet's
render URL that references the render URL. Finally there can be render parameters sent to the portlet
through the render method call, if they were set in the ActionResponse before.

These parameters are implicitly private. So when there are sent request parameters as in the
previoudy listed, there are aways automaticaly treat as private. And as private they are visible only
for acurrent portlet.

If we want to create public request parameters, and therefore visible for the other portlets in the
application, we must also specify the names of the request parameters we want to make public in the
portlet deployment descriptor (we will look in a more detail within the applications in the phase of
andyze). Thus the scope the container knows that the request parameter must be changed in order to
be visible to the other portlets. The public render parameters are additionally available in action,
resource and event methods.

3.5.3 Portlet events

The portlet events were introduced in the JSR-286 (Portlet 2.0 specification). On oppose to the
previoudy described mechanisms for inter-portlet communication, the with events the sending portlet
is not responsible for the delivery of the event to the receiver portlet. This responsibility is put on the
container. Let's clarify this:

As there were mentioned, we can cal the two sides of inter-portlet communication: sender
portlet (a portlet that invokes or sends event) and receiver portlets (the portlets that listenes or states
they want to receive this event). When sender portlet fire the event, the event is sent to the portlet
container. The container is then responsible for marking the event available to receiver portlet. Portlet

28

container knows the receiver portlet and it handles the event to them as shown on the figure bellow.

Portal page
event ‘e’
-

A B

processing the

event ‘e’ by Ithe Portlet

c < receiver portlets container
-

D E

Figure 13: Sender portlet B generates an event and sends it
to portlet container, event is then processed by the
container to receiver portlets C and E.
Advantages. The advantage of communication through the events is that the event can transmit a
complex information on oppose to the public render parameters, where you can change only String
object information. There is aso an ability of event to fire another event from itself, and so there's
possible to create even a more complicated chains of events.

Disadvantages. On the other side a disadvantage of events are that they are a bit clumpy on both sides:
container and code increase. For the use when need to send and receive a primitive data it is better to
use public render parameters.

3.6 Portals and portlet frameworks

The platform for the portlets is the portlet container that is usualy included in the frameworks
providing portal deveoping tools. They aso provides Content Management Systems (CMS) to bring
developer more comfort when building a portal. There are number of commercia technol ogies coming
from the application server vendors as the IBM (WhbeSphere Portal), BEA (BEA Portal) or Oracle
Corporation (Oracle Portal). And there are also number of open-source and free technologies that
provides not fewer functionalities.

The most popular from the currently existing open source technologies is the project of the
Liferay, Inc., called Liferay Portal. It is also available with a packed Apache Tomcat web container in
it and provides a simple CMS to build a portal. Many books encourages the beginners in the portal
platform to use this technology and brings a different tutorials that helps to build up a portal without
amost any requirements.

Second, well known open source portal is Gateln Portal, that comes merges the two mature
projects: JBoss Portal, provided by RedHat inc. and Exo Platform developed by the company eXo.

29

However, the Gateln Portal will be used as implementation technology for the project, we will provide
small introduction to the technology in the next section.

3.6.1 Gateln Porta

Gateln Portal is one of the key components in the JBoss Enterprise Portal Platform (JBoss EPP). It
provides web portal and also a portal framework to build upon. As the follower of the JBoss Portal it
aso includes the JBoss Portlet Bridge that is an implementation of JSR-301 (specification of Portlet
1.0 Bridge for JavaServerm™ Faces 1.2) and JSR-329 (Portlet 2.0 Bridge for JavaServer™ Faces 1.2)3;
they also supports JBoss web frameworks such as JBossSeam and RichFaces.

Web Services for Remote Portlets (WSRP). Among the other Gateln Portal technologies integrated
in, there is also a technology called Web Services for Remote Portlets. The aim of WSRP specification
is to define a way how to display remotely-running portlets inside the localy-running portal page. This
is enabled by leveraging the SOAP (Smple Object Access Protocol) and use of the set of predefined
common interfaces. Interaction is then performed through the SOAP messages.

3 The specifications which defines semantics for executing JavaServer Faces (JSF) views within a portlets

30

4 Etherpad Lite and EasySync

The two main pillars on which the project of a collaborative editor as a portlet will be built are
Etherpad's EasySync library and the referential implementation leveraging the Etherpad libraries,
known as Etherpad Lite.

4.1 EasySync protocol for collaborative editing

Etherpad uses a protocol, that encapsulates change made on a document by single writer into small
and lightly transmittable form. Although, we are not focusing on reimplementing this protocol, we will
be close enough to that mechanism; therefore it will be usefull to introduce its main principle a bit.

411 Overview

The EasySync pratocol transmits a changeset as a pair of entities; these are Changeset and Attribute
Pool.

Changeset. Although, we have already described term changeset in common, in this case we will talk
about the specific implementation. Our Changeset is a string-encoded representation of change made
within the document - it carries an information about the most recent changes within the text. Such
informations are: amount of increase or decrease of text amount, whether it is an addition, removal or
change of characters, even a change of its style and the location of this changes. When addition is
submitted, the Changeset holds also the added characters.

AttributePool. Attribute pool is a collection of attributes used within the Changeset. It is a map of
attributes which actsin a current change of text. An attribute is represented as atuple of attribute name
and its value. These attribute definitions are within the map identified by the number key which is also
referenced from the Changeset string. The Changeset string also defines where it will be applied. The
Attribute Pool aso carries an information about the writer that made the change and the timestamp
when the change was made.

412 Changeset structure

As it was told, our changeset is a gtring representation of the most recent change made on the
document. It consists of alphanumeric characters and special reserved characters with defined
meanings. Let's show an example of such string for a more illustrative description; we have this
Changeset string:

Z:9y>1|8=79=2n*1+1$a

The string can be divided onto several main parts; however, we will describe step by step the meaning

31

of current valuesin respect of order:

Z

: 9y

>1

|8=79

*1

+1

magic character, it is the first character of the string and it retain practically
unchanged, as it denotes the version of protocol currently used,

this part tells how long (in base 36) was the original text (9y ~ 358 characters),

the manner of change - whether it was extended (>), retained (=), or decreased (<)
and how (>1 ~ increased by (1s5) character),

denotes how many characters will be retained (=), removed (+) or appended (-)
involving newlines, for us (79ss) characters will be let unchanged and (8s) from
them are newlines,

without the pipe sign (]) the notation says, that the newline characters would not be
involved, so it specifies that number of following characters (2nss) will be retained
(=), removed (-) or inserted (+) (none of them newlinge),

here we have, mentioned before, reference to the attribute transmitted over in the
Attribute Poal, the number starts at 1 and it is related only to the actual Attribute
Pool, the attribute declaration tells, that followed dlice of text would apply this
attribute,

this means an insertion (+), removal (-) or retention (=) of the specified nhumber of
characters (1), however the previous declaration specified the attribute, this
attribute would apply to this (1s) characters,

this character is a delimiting sign that divides the changeset string into two parts,
the declarative part and the stack of characters (if any inserted),

thisisthe last part of the changeset string consisting of alist of characters inserted
into the text within the current change.

Now let's move to the description of the AttributePool's structure.

413 AttributePool structure

Attributes within the AttributePool are formed as a JSON-friendly array. The example could look as

following:

{"0":["author","a.5pXEmWEfWEIT9cuyv"],

"1":["underline","true"]}

On the example shown above we can identify the array of two items, each with numeric key and a

32

value, which is atuple. The key is value that was referenced in the changeset after the *-sign. As was
said in the description of changeset string, it tells that the attribute will be applied on the following
(inserted or retained) character specified in shown example by +1. If we put these facts together we
can tell, that the inserted character a will have the attribute 1 applied on it. With a glance on the
AttributePool, we find out that the number 1 key is assigned to the atribute with name underline and
its value is true. The underline attribute could have only two values, telling whether it is underlined or
not. Therefore the current value means, that the character a will be after application of changeset
underlined.

What we have not mentioned yet is the attribute autor. As you can see it precedes the underline
attribute, athough it is not presented in the changeset string. The author attribute denotes the
identification of user, that made a current change and as from the current session could not came a
change made by another user, it is useless to involve it; therefore the attribute is provided only within
the AttributePool.

4.2 Etherpad Lite implementation

As was dready introduced, Etherpad Lite is an open-source project built with a motivation to bring
more light implementation of the project Etherpad. It leverages its EasySync library and JavaScript
version of editor used within Etherpad. It aso brings a new management of pads and adding an
interactive chat placed on the pad editor. The project is programmed in JavaScript and built upon a
JavaScript library NodeJS to model the server-side of application.

Although, an original Etherpad is open source project too, it is more complex to compare to its
follower. It is also made with use of different technologies on oppose to clearly JavaScript way that
took the Etherpad Lite. The third argument why to prefer study the later project is that, as it was told,
its practically Etherpad's upgrade and latest referenced revision.

421 Server

Although, JavaScript is widely known as a client-side programming language, it can be used also on
the side of the server. In the Etherpad Lite project it is provided with the use of the following
frameworks:

NodelS. Event-driven 1/O server-side JavaScript framework built on V8 JavaScript engine from
Google and severa other libraries.

Socket.io. Its API provides bidirectional communication over the web. It is lightweight and therefore
used for aclient-server communication between the user pad and the server app.

UeberDB. Database abstraction layer turning the database into a simple key value store, at the

33

moment. Currently, supporting only MySQL and SQLite. ueberDB uses a smart cache and buffer
algorithm to provide faster communication with the datastore. The optimalization is done also on the
side of the read/write operations. However, the reads are cached and writes are done in a bulk, the
overhead of database transactions is reduced.

Async. Utility module that provides functions for working with asynchronous JavaScript. As it was
originally designed for use with node,js, it can also be used directly in the browser. Async provides
functions as map, reduce, filter, forEach... as well as some common patterns for asynchronous flow
control (parallel, series, waterfall...). The functions are close tied with the node,js, so it must be
followed the node.js convention of providing a single callback as the last argument of your async
function.

Express. Lightweight and fast JavaScript server-side web development framework built on Nodejs
and Connect (middleware layer library for Node,js).

UglifyJS. This toolkit provides functions of parsing JavaScript code, compressing it, or even
transforming it to nicer code. Within the project it is used mainly for minimization of code and
therefore minimizing the overhead.

client
API handler

Export himl
e S e |

Import handler u

view

Pad manager

Figure 14: Brief illustration of client-server communication within the Etherpad Lite
infrastructure.

4.2.2 ACE editor

ACE states for a collaborative editor - a project providing functionality for a real-time collaboration on
editing the documents.

34

ACE editor is adready leveraged by the both of projects, we are discussing. The Etherpad Lite,
however, a bit overrides the existing API by providing tight integration with the management layer that
encapsulates whole pad functionality of the ACE editor.

4.2.3 Pad management

The concrete pad is managed by the pad manager object, that is responsible for establishing and
maintai ning the connection with the server, retrieving the pad, dispatching the actions within the editor
and delegating them over to the server. It aso provides notifiers for the actions held within the remote
collaboration user editor to be able to update the state of local editor with that of collaboration user.

However, the JavaScript environment does not provide session management - there are also
involved subelements which are responsible for all the aspects of the concrete pad:

ACEZ2Editor. Main module of the pad, holding the ACE editor, that provides the HTML frame
representing the editor. All the needed functions which can be called by pad manager and all the
events, which may take a place within the editor are registered through this module.

PadEditor. The pad editor must prepare the editor before it is initialized, set view options of the
editor, restore arevision text and even disabling or disposal of the current editor.

PadEditBar. It is responsible for maintaining the editor toolbar state and actions made on it.
PadDocBar. Manages the configuration of the toolbars and pad.

PadSavedRevs. Manages the stored revisions of the current pad.

PadUser List. Manages the list of users connected to the current pad.
PadConnectionStatus. Responsible for maintaining the current connection status of user.
PadCookie. Manages the retrieving and storing the cookies for the user session.

Padl mpExp. Management of the import and export actions revoked from the pad toolbar.

PadUtils. Auxilliary utilities providing the date formatting, URL escaping and other frequently used
functions.

35

Document toolbar }

[Editor toolbar }

Figure 15: The illustration of Pad manager decomposition.
424 Datagorage

Persistent data of the pads can be stored in Etherpad Lite either in DB or in a file, since used
technology provides support for both the mysgl and the sglite databases. However, in both cases the
data are not normalized at all. As it was mentioned before, the ueberDB data storage stores different
records in aform of amap consisting of two columns; key and value; diverse data is therefore stored in
one database table.

Description of table columnsin ueberDB:

Key. Thisis a primary key column athough, it has not ordina value. Vdue is provided as a string
concatenating attributes, that are tied with this record. The value could therefore rise fast to the high
lengths. Nevertheless, the algorithm is obvioudy aware of it, as the declared maximal available length
of key value is 100 characters.

Value. Vaue is a longtext-typed string in a form of dictionary and it comprises every attribute
significant for current action.

36

5 Persistencetier design

5.1 Domain anaysis

For the sake of clarity of the integration process: the presented meta model will be relatively simple
providing no advanced functions. The model will try to cover just the main objectives of such an
application until providing working integration with a portlet technology.

511 Entities
There were identified following entities in the implementation of Etherpad:

User. User is a main actor in an application of a collaborative editor. Each user must have unique
identification within the application, which can be either identification number or an unique user
name. Thanks to Single Sign-on mechanism provided by portals, we do not need to store any
additional passwords for users.

Pad. Pad entity stays for a document, that can be created, modified or deleted. The attributes should
include unique identification that can be same as within the User with a restriction on uniqueness of
the names.

Changeset. An essential part of the CE and revision systems s Changeset. It carries changes made on
the Pad. Changeset must includes the changeset string encapsulating the change on the Pad with a use
of the EasySync protocol.

AttributePool. As it was already mentioned, the AttributePool is co-transmitter of Pad modification,
including additional informations for the Changeset.

These are the base entities for modeling of a collaborative editor system. After small introduction to
domain we will look on therelationsin it next.

512 Rdations

To provide a basis for modeling the persistence logic we need to describe also relations between the
entities above. Following class diagram denotes the relationships between the previously described
entities:

37

Pad creates User

* 1

+
1| forms 1
produces
Changeset | Supports AttributePool

1 1

Figure 16: Class diagram denoting core domain

objects and relations.

The important entity within a CE model is a Pad. It is a document, that can and must be created by an
User. However, who is the creator of Pad is not an essentia information of core CE functionality, we
should not omit it.

The key to the less importance of relation between the Pad and User is in the next relationship. It is
that between the User and Changeset objects. Changeset is the most significant part of the editing
process since it reflects a change made on a document (in a Pad) and it is made by an User. It can be
therefore created only by the single User. However, the Changesets bears the whole information about
the changes made on the document, it is not needed to provide a Pad with such informations.

As aprevious figure denotes, Pad object is formed from the Changeset objects.

The third relation drawn puts together Changeset and AttributePool. Changeset will carry the string
rule defining the current change to a document. If we were building a very simple text editor, where
there is only one available color and no special listing signs and only one style for fonts, we will last
with only Changeset object. It is due to the fact, that the AttributePool carries only such attributes that
needs to be specified by atuple (key-value). Therefore the decomposition is better, as be could let open
the other options. The AttributePool instance should be, same as a Changeset, unique and the relation
must have cardinality 1:1. However, as we can provide clear decoupling on these two objects, the
relation could be made more effective. We will discuss thisissue later in this chapter.

5.2 Extending the meta model

In this topic we will move the analysisto the classes in the application.

38

521 Tempora entities

Some entities described in the previous topics have a character of temporal entities. We have the Pad
entity, which as a standard document should provide informations about its creation and modification
time. Although, the creation attribute have to be provided within the Pad, the behavior of the changes
made on it brings better solution for the modification time property.

This take us little bit aside of persistence layer, since we must have a look at the Changeset
entity. As we know, every change made on the Pad has a reflection in form of Changeset object.
Therefore, if we provide this entity with a creation time attribute — same as within a Pad, we can reuse
its value also as an information about the time of change on the Pad. Discussed ideais shown below on
the next figure.

Pad
creationTime

Changeset

creationTime

getCreationTime()
getLastModificationTime()

1 * | getCreationTime()

Figure 17: Class diagram denoting Pads and Changesets properties
providing temporal informations.

According to the previous figure, the getCreationTime()* method has in both cases role of getter
method, providing the applicable private property creationTime. The second method denoted within a
Pad class - getLastModificationTime() method would provide the desired value revoking the method
getCreationTime() on the latest Pad Changeset object. The method getl astModificationTime() can
look like this (for the sake of simplicity: we are supposing that the appropriate methods are defined
and members presented; also we suppose the list of changesets is not empty and method
getCreationTime provides legitimate value):

public long getLastModificationTime() {
Changeset latest = this.getLatestChangeset();

return latest.getCreationTime();

4 Some of the property names may not match with the implemention for sake of description.

39

5.2.2 Attributes

Behavior of the application puts a big requirements on the DB resources. If we will build on the base
meta model shown previoudy in Figure X., the CE could provide dozens of new records during the
user work. This amount would be even raised by the number of users writing. Therefore, the model
should be optimalized in order to provide more effective persistence logic. We will discuss two topics,
depending on the place of the optimalization, where will be provided.

Relationship between Changeset and AttributePool

When the user is writing the text into Pad, he probably will not change the attributes for every single
character he writes. The assumption is even on opose to it, however, the written text would very likely
comprise of continues text chunks, which all have the same attributes. Therefore, we should decrease
the amount of the redundant AttributePools changing the relationship to Many-to-One. Simply,
different continuoudy submitted Changesets could share the same AttributePools.

Updated class diagram will look like following:

Changeset' supports AttributePooII
; 1 ..* 1

Figure 18: Relationship between Changeset and
AttributePool with a new cardinality.

AttributePool

AttributePool object will comprise a set of attributes and their values to perform the additional
configuration for the current Changeset. Although, the attributes within the AttributePool can differ
from instance to instance, there is a certain quantity for both the attributes and the applicable values.
Since storing every attribute with a full name and value could obvioudy provide aso bit of
redundancy, what can be relatively expensive for some aspects:

Storage capacity. The frequency of changes would raise to high values and therefore produce a huge
amount of Changeset and AttributePool objects, that must be stored within the database.

Database operations overhead. The previous aspect also impacts time that the database operations
lasts.

However, the values could be also extracted because there is a limited number of them (for each
attribute), the occurrences probably would not be as frequent as in the case of attributes; therefore, we
could retain them for a now with, maybe, a bit benevolent behavior. Discussed solution is also denoted
on the next figure.

40

AttributePool I

w

w

Attributeltem I Attribute
* 1

Figure 19: Class diagram describing the

AttributePool entity breakdown as a
aggregation of more Attributeltem objects.

5.2.3 User session configuration

When User signs into already visited Pad, he should be provided with previoudy specified preferences.
These preferences could be: text color, information whether to show numbers of lines or not and other
editor settings that could be specific for the each User. A simple Session relationship is illustrated on
the next figure also providing time informations keeping the user evidence.

Session
color
Pad showLineNumbers User
| 1 *+ | created * 1
lastiSeen

Figure 20: User signed into a Pad creates a Session to provide informations specific for the
current relationship.

There will be a small relatively static number of preferences, User could specify; therefore we could
store them within the Session entity in form of attributes. The change made on available preferences
such as e.g. addition of a new preference will require the update of the Session entity. This would not
be problem for the database table, but it could bring complications when updating the application
logic. Thus, we could provide a little different model, that would be more flexible. This approach is
similar to that we made for the attributes within the AttributePool. Next figure shows such mode.

41

Session

firstSeen
lastSeen

1

-

SessionPreference

PreferenceValue

<<enums>
PreferenceName

0.1 1

1

1."

Figure 21: More sophisticated approach of modeling the preferences in the Session

relation.

This model of preferences if compared to that of attributes also provides us with specified vaues
which is preferred, as it assures using only regular ones. Additionally, advantage of this approach is
that it decreases amount of data, as the preference values are only referenced, not duplicated for every
SessionPreference item. Since there will not be many session attributes and since it is also not the most
essential part of the CE, it is not needed to provide such a decomposition and we can stay with the first

diagram.

5.2.4 Fina meta modd

Pad

creates

L 3
1 *

forms

*

1

Changeset

I produces

Session I

*

User

| .

1..* | supports

1

AttributePool I

Attributeltem I
* 1

Attribute I

Figure 22: Full meta model for our CE implementation.
In the figure above we can see whole meta model of our application asit was discussed in the previous
sections. The following section will build on this meta model to provide the model of database.

42

5.3 Design of the database

As the first thing in the development, we need to build up a correct database model, since it is a base
module of application and it can define even the simplicity or complexness of application logic
needed. We have also created a meta model that will very likely fits the actual database model;
therefore we will describe the model by looking on the single tables and their attributes.

531 Tables

To reduce the amount of text and to highlight more interesting parts of the structure we will extract
some attributes. They are:

Common attributes

Id. All of the mentioned entities will be provided with the attribute id, which will be used as an
identification of a record and primary key for the table. Definition of the column will be in al cases
the same and in DDL syntax for MySQL should look like this:

“id® integer(10) NOT NULL AUTO_INCREMENT,
primary key(~id")

CreationTime. This attribute is also common for more than one table. It bears the information about
the time, when the entity object was created. As default value current timestamp on record creation
will be used. The definition of the column will look as following, respecting the syntax of DDL for

MySQL.:
“created” timestamp DEFAULT NOW()

User

Within the portlet application we do not need to provide an authentication and authorization of users
sinceit is already provided by the portal. Although, all the informations about the users are held in the
portal, we can provide our User with just a few informations retrieved from the identity management
system of the concrete portal. We will specifying the name of user, that will be aready loaded from
the portal and optional extern User id, that will hold the id of aUser in a portal.

Pad

Besides mentioned attributes, Pad table will provide an information about the name of Pad and author
of Pad, that will be also aforeign key referencing the record in User table.

Changeset

Most significant informations provided by Changeset record will be held within the attributes. number,

43

rule and charbank. Attribute number will hold an information about the order of current changes as
they occurred within the Pad. Therefore it is aso an information for assembler of Changesets, so it
knows the order, in which the Changesets are applied to the parent Pad. Columns rule and charbank
will hold the information about the text change respecting the EasySync protocol. The changeset string
is, however digointed into two parts. declaration of change (rule) and the inserted characters
(charbank). Foreign keys will be described in the ERD in the following section.

Session
Session table will provide only some attributes specific for the User — Pad relation. For now it will be

the information about the color used by User within the current Pad and time when he was last seenin
aPed.

AttributePool

Thistable roles as a joining table in Many-to-Many relation between the Changeset and Attributel tem.
Therefore the only information providing is its primary key by which it is referenced in a Changeset
record.

Attributeltem

The table consists besides a primary key column from number column, that references the concrete
attribute as it is referenced within the Changeset. Then it holds the reference to Attribute table record
to identify the attribute to define its value and finally the value. Every record of this table belongs to
one record in an AttributePool, that references with foreign key attribPool I d.

Attribute

Table Attribute holds the available attributes, which can be used by the editor — which distinguishes. It
only holds the primary key identification and name identifying the attribute mainly in a browser.

44

Session
Pad id

id padid
name userld
authorld color
created created

lastseen

Changeset

id
number User
rule id
charbank name
padid externid
authorid
attribPoolld
created AttributePool

id
Attributeltem
id
attribPoolid Attribute
number id
attrid name
value

Figure 23: ERD diagram of the database.
All the attributes that was not mentioned can be simply understood by the ERD diagram above. All the
tables provides primary keysin a column named asid and al the foreign keys references joining tables
with name created as shortening of joining table name or role that can be intuitively held by the
current entity suffixing with “1d”. Whole tables definitions can be seen in Appendix A.

5.4 Pesistencelogic
541 Hibernate Session

Communication with the database is done through the Hibernate Session object. The Hibernate
Session is retrieved from HibernateSessionFactory which uses the configuration provided in
hibernate.cfg.xml file to create Hibernate Session. The work is done as follows:

Create the SessionFactory from hibernate.cfg.xml:

SessionFactory sf =

new Configuration().configure().buildSessionFactory();

Open the Session on SessionFactory:

Session s = sf.openSession();

45

Execute select query:
List<Pad> pads = s.createQuery("from Pad").list();
Or execute atransaction:

s.getTransaction().begin();
s.persist(pad);

s.getTransaction().commit();

54.2 DataAccess Objects (DAO)
DAO Factory

All the manipulation with the database data is done through the Data Access Objects. This design
pattern separates the application logic from the database operations by extracting the data
manipulation logic into separate objects.

46

6 Application tier design

6.1 Class model

6.11 Base entity decomposition

However, entities described in the previous sections reflects different objects in the application, they
have some attributes with the same semantic. These attributes can be extracted into abstract classes to
provide more unified definition, its behavior and finally, eliminate redundancy of code. We will
describe the extracted super classes and describe its meaning and purpose.

BaseEntity

All the entities we have talked about has one attribute in common. It is id that identifies current object.
Since the semantics of the id attribute is for al the entities the same, we can extract it into new class
that al of them will extends. A class diagram shown below the text describes the inheritance.

BaseEntity

- id:long

+ getld() : long
+ setld(in id : long) : void

Figure 24: Base entities inheritance — extending an abstract class BaseEntity.

Changeset Session Attributeltem AttributePool Attribute

TemporalEntity

We have also some entities which need to provide an information about the creation time and who
created them. The touched entities are Pad, Changeset and Session, although, they can be more of
them if we wanted to bring wider evidence. The inheritance is shown in the next class diagram.

47

TemporalEntity

- creationTime : timestamp

+ getCreationTime() : timestamp
+ setCreationTime(in time : timestamp) : void

Pad Changeset Session

Figure 25: Temporal entities inheritance -
extending an abstract class TemporalEntity.

6.1.2 Mainreations
Pad — Session — User

On the next class diagram it is shown the both Pad and User class relations with Session class.
However, the Session class is just extending of Many-to-Many relation between the two mentioned
classes, they both could provide a collection of related Session objects. In our case the collections of
Session objects is modeled as a map, where the key value is an id attribute of the other one class object
involved in relation with Session. For example in the user Sessions map, the concrete Session object
will be referenced by the Pad object id as akey value and vice versa.

The advantage of the modd is that we do not need walking through the collection of the Session every

Pad User
name : string name : string
userSessions : Map<Long,Session> padSessions : Map<Long,Session>
getWriters() : Set<User> getWritings() : Set<Pad>
getSessions() : Set<Session> getSessions() : Set<Session>
getSession(in user : User) : Session getSession(in pad : Pad) : Session
1 1
openedForTheUserln * /editingThePadIn
Session
color : string

created : timestamp
lastSeen : timestamp
getPad() : Pad
getUser() : User

Figure 26: Pad-User relation through the joining Session.

48

time we want to open the concrete Session.
Pad — Changeset

There has been aready told that the Pad object will consists of number of Changesets. However, the
Changesets bears only the information about change, not the text all, the concrete Changesets can be
applied to a Pad text with the exactly the same state in which the Pad was when the Changeset was
made. The Pad therefore must apply the Changesets in a specified order, nevertheless, no Changeset
may miss, as it would be impossible to apply the next ones. Thus, the Pad will comprise an ordered set
of Changeset objects.

Pad Changeset
name : string number : long
changesets : Set<Changeset> {ordered} ‘torms rule : string
appendChangeset(in changeset : Changeset) : void | 1 » | charBank : string
getLastModificationTime() : imestamp getCreationTime() : timestamp
getText() : string

Figure 27: Pad-Changeset relation — composition of Changesets.

6.2 Processing

6.2.1 Client-to-Client communication

The behavior of the CE puts the client application to need of synchronizing the actual state with the
other usersin the rea time. Communication based on storing and retrieving every change into database
would cost very much. Maintaining the communication through the sockets on the otherside could
bring cost of the connection management and building such infrastructure.

In the modern enterprise application servers there can be found a mechanism caled Java Message
Service (IMS), that works as a mediator between the clients in the application server. There are two
types of mediators defined in the IMS: queues and topics.

Queue. Queue provides point-to-point communication. There are two sides in the communication: the

Queue
JNDI name:
/queue/ExampleQueue

sender receiver

Figure 28: Communication through JMS Queue.
sender and the receiver. The message sent by the sender can be retrieved only by the one defined

49

receiver. Although, the name seems to predicts the behavior, the order of messages would not be
necessary kept.

Topic. On the other side, the topic represents communication in a way of ether. The message is
published aso by one sender (publisher), however, it can be received by the more listeners
(subscribers).

subscriber
Topic
JNDI name:
/topic/ExampleTopic
publisher subscriber
subscriber

Figure 29: Communication through JMS Topic.
Since in CE application the content in single pad have to be synchronized with all the pad writers,
which are editing the same file. Therefore we will choose atopic.

Topic registration

The topics are registered in the JBoss AS through the administration site of started instance (admin-
console). Both topics and queues are accessi ble through the JNDI5 |ookup.

6.2.2 Handling local text change

When the user modifies the document locally in his editor, the easysync's JavaScript function is called
for packing the change into changeset string to produce the changeset for the application. Returned
changeset is then propagated to valueChangel istener method of the ManagedBean. Then the changeset
string is parsed into Changeset object, that is appended to the Pad of current Session.

Publishing the Changeset

The second step after the change is locally handled, the Changeset must be published to the topic, so
the collaborating editors could synchronize their states with the modified one. For the sake of
simplicity wewill for now suppose that two or more Changesets with the same base® would not met.

5 Java Naming and Directory Interface — service provided by JEE app. servers for retrieving server resources

6 Base states for the state of document before application of the Changeset.

50

6.2.3 Handling remote text change
Subscribing to the topic

To be able to watch and react to remote changes, the local Session need to register Listener which will
be watching the changes in remote Sessions. The listener is connected to the concrete topic and hear
for the events that may occur on it. When the event occurs the onMessage method is been triggered
with the TextMessage object as a parameter. This object holds the message from the sender, The
receiver would then parse the message into Changeset and appliesit to the Pad.

6.2.4 Session Sender and Session Listener

Every user editing the Pad isdoing it in distinct Session. Thus the Session object is one that represents
the instance of the editor with the Pad concrete opened in it. Therefore the Session aobject should be
both the Listener and Sender of the changes. However, the Session could not extend more than one
interface, this objects will be provided as Session properties.

Sender S Listener

startListener()
close()

send(in msg : string) : void | { 1 1 1 |onMessage(in msg : TextMessage) : void

Figure 30: Class diagram of the Session - Sender and Session - Listener relations.
6.3 Authentication and authorization

6.31 SingleSign-On

However, identity management (IDM) is aready provided by the portal, portlet does not need to
provide another one. Since portlet will not be accessible bypassing the portal authentication, the only
needed information is identification of the user that can be provided by any information that has a
unique value for al the users. For such purpose we could last with such attributes like id in the portal
IDM or even login name.

6.3.2 Retrieving user info from the portal

The user credentials can be retrieved from the context above. In portlets there is PortletContext class
for such uses, that provides a method getRemoteUser (). Nevertheless, we can also use FacesContext if
we are implementing with use of JavaServer Faces technology(JSF), that also provides the method.
GetRemoteUser method returns from the application context login name of the User actualy logged
in, what is all we need for the sake of users distinction. Bellow code example shows the usein JSF.

PortletRequest req = (PortletRequest)
FacesContext.getCurrentInstance()

51

.getExternalContext ()
.getRequest();
String name = req.getRemoteUser();

By the user credentials retrieved from the portal the User of the application is searched in the
database. If the user was not found — he has not been logged into an application yet, new User object
have to be created and stored in the database for the reference of the application.

The responsibility on user retrieving is on UserBean Managed Bean object. First the application start
and questions the user info, the UserBean have to provide the User object. The code for UserBean
looks like this:
public class UserBean {
private User user;
public UserBean() {
loadLoggedUser () ;
}
private void loadLoggedUser() {
PortletRequest req =
(PortletRequest)FacesContext
.getCurrentInstance()
.getExternalContext ()
.getRequest();
String name = req.getRemoteUser();
user = loadUser (name);
if (user == null) {
user = new User();
user.setName (name) ;

save(user);

Figure 31: Piece of UserBean class code denoting the logic of loading the User.

where method loadUser triesto find the User with specified name in the database.

52

7 Possible extensions

Not al of the ideas was implemented this chapter will introduce or propose some interesting
extensions and features that could be later implemented providing better comfort or functionality.

7.1 Import and export

The import and export are both very important features that should take a place in the most number of
editors - as it enables mohility of documents and makes the documents transferable and reusable
between the many diverse applications.

7.2 Security control and permissions

For the sake of simplicity and due to the portlet API there was not designed any security system. All
the security was left out for the direction of portal. Therefore every user logged into a portal will have
an access to edit the documents. However, there could be added some kind of system for an access
control; such extended tool could be therefore deployed and integrated within the complex structure of
users and roles providing for them mandatory access control. We will shortly discuss some of the
anadyzed models.

721 Permissions
Entities
The intended security management system would diversify two entities: UserObject and PadSubject.

User Object. This entity represents the users, it can be athough a single user or a group of users. We
will say that a single user will be called as the User and a group of users as the User Group.

PadSubject. A PadSubject states for an editable entity. It can be both a document or a group of
documents. Wewill call the document as the Pad and a group of documents as the PadGroup.

The UserObject is tied with the PadSubject by the type of permission enabling the UserObject
to use on it certain functionality. Provided permission types could differ depending on the security
model used, however the two main would be the Read&Write (rw) and ReadOnly (ro) permissions.
The next figure shows the relations in the UML notation.

53

Permission PadSubject |

|
| type
I 1 * * 1

UserObject

Figure 32: Relationship between the UserObject and PadSubject over the Permission.

M odels

There can be designed a number of security models depending on the both UserGroups and
PadGroups management manner, however | will present just two attitudes which can be applied on
both entities:

Hierarchical. Instances of the entity (UserObject or PadSubject) are organized in a hierarchical
structure, where the UserGroup can be a member of another UserGroup and the PadGroup can be a
members of another PadGroup. On the bottom level there are the Users and Pads within applicable
groups. In such arrangement the permissions can be delegated from the higher nodes down to the
bottom nodes. Nevertheless, the closest parent-node's permissions should be applied to the current
node. The model isillustrated on the Figure X.

UserObject

1

<<implementationClass>> <<implementationClass>>
User e UserGroup

Figure 33: Class diagram describing “Hierarchical” model of UserObject
organization.

Flat. Another attitude can be an organization with just one level of aggregation. There are instances
which roles as grouping objects (UserGroup and PadGroup) providing the same permissions for its
members (User and Pad). There can be modeled two types of membership: exclusive and non-
exclusive. In the exclusive modd the groups will role as baskets - certain object could reside only
within one group. This model, however, will be not very useful for a UserObjects organization, since it
disallows dynamic assigning of permissions to the different UserGroups. On the other side the
organization of PadSubjects could work in that manner, although it could be rather messy within a
large amount of documents. The second model would allow that one object may reside within a more
groups which is more flexible compared to the first type. On the figure bellow it is shown the “Flat”

54

UserObject organization.

UserObject

<<implementationClass>>
UserGroup

<<implementationClass>>
User

Figure 34: Class diagram describing the “Flat” model of UserObjects
organization.

7.2.2 Prioritizing the text — permissions to update or remove

Collaboration on the documents within the group of people can bring the situation when there can be
some text or part of the document stated as important and therefore it could be unwanted to remove or
modify this slice of text. This can take a place when working on he same document with the
collaborating users through the different security levels, so the user on the higher level should have a
privilege to put atext that ca not be replaced or removed.

However, this idea also requires addition to the permission types. Although mentioned case suppose
the hierarchical model, this idea can be also provided within the flat security model.

7.3 Data optimization and caching

When developing a web-based application that tends to use huge amounts of data stored in a database,
you have to deal with the database communication overhead. This is even more critical topic for an
application we are developing.

CE places a rather challenging requirements on data management - it is due to high frequency of
changes, that could occur in CE and aso due to a fact that every change is stored within the separate
Changeset (pessimistically with AttributePool for each one) immediately into database. There are two
aspects for a database optimization that should be therefore reflected: communication overhead and
capacity of storage.

731 Lazy submission

We have told that the frequency of Changesets generation will be rather big, since the every little
change will immediately produce a changeset. This is the issue that can not be overlapped, however, it

55

emerges from the concept of a collaborative editor.

What we can override is the number of database submissions. However, we have also implemented a
protocol that serve as a mediator of changes between the currently working users, the users are already
up to date with the current state of actual document. Therefore there is no need to send every change
into a database and we can decrease amount of communication with the database to a minimum by
providing alazy submission of changes to a database.

Such a behavior would, however, need a more sophisticated synchronization mechanism in the
application logic.

7.3.2 Changesets extraction

The fact that every little change is processed as a Changeset and then submitted into database can
cause that its capacity will be very quickly cluttering; therefore a Pad with large content will likely
comprise a large number of Changesets. One of the possible solutions for minimizing the number of
Changesets within the Pad could be combination of older Changesets into single initial Changeset as
denotes following picture.

Figure 35:
Hlustration
describing extraction
of changesets into
one initial changeset.

However, in this case the changeset could comprise a text written by different users and we can not
assign an authorship for all of them within a single Changeset object. The solution could be to create

56

distinct changeset entity for the initial changeset and enable to provide the authorship of every single
change in the changeset; this could be provided by the AttributePool. This approach, nevertheless,
would not avoid the complications which could be caused just by a different authorship manipulation
in the objects of Changeset and initial (aggregated) changeset. For the addition we can look at a class
diagram in the following figure denoting discussed idea.

User Pad

1 1

*

*

AbstractChangeset I
Changeset e | AttributePool
number

charBank I 1 1

AggregatedChangeset I

| authorship of the comprised

oldestChangesetNumber
latestChangesetNumber

text chuncks is held only by
the AttributePool

Figure 36: Class diagram introducing a new entity for initial changeset.

On the figure above the AggregatedChangeset states for theinitial changeset as discussed, however, the
aggregation between the AggregatedChangeset and Pad tells that this changeset can be aso placed
elsewhere as on the Pad's beginning; as was discussed in the previous paragraph.

This extracted changesets, which where placed in the new AggregatedChangeset object could be then
removed from the database and exported possibly into XML file. With this backup, current changeset
could be on demand revoked and provided into origin state for use within the application.

7.4 Extended features

There can be provided features that can provide for user some added vaue or enrich the its functions
or usability.

741 Non-textual objects

For many uses a plain text documents would not sufficiently fulfill users needs. Many times when
writing different types of documents, we need a help of figures, diagrams or illustrations; therefore an
availability to involve e.g. images could be very helpful. Leveraging enough scalable AttributePool can
make the thing very likely. However, there is need of an addition for the database model in aform of a
new table that extends the Attribute entity providing the information for the injected text.

57

8 Conclusion

As can be seen, the work comprises a number of technologies and concepts which can rise much
inspiration. Rather interesting theme in the paper is the concept of collaborative editing. The idea
brings a big progress into an area of document editing. Collaborative editing can be very useful e.g. in
processes of making anaysis, decision making or even in extreme programming. Portlet technology
itself brings to the field of web development many interesting attitudes; starting with the unification of
communication between portlet applications in a portal page and ending with an ability to leverage
existing services to provide new ones, that could fit better user requirements.

Objective of the work was to study the both of technologies in order to bring an implementation of the
collaborative editor built with use of existing library for synchronization and manipulation with
changes provided by the project Etherpad that will be integrated into JEE platform in a form of portlet
application. The analysis brings many findings which sometimes resulted in choosing of another way
of design. Many of these findings was caused by the lack of experiences in an area of both the
technologies. The first task was to breakdown the infrastructure of the Etherpad Lite application. It
was aso the most crucial phase, however, it finally emerges the way, how to leverage the existing
libraries to build upon them JEE application.

From the aspect of JEE application logic the theme impresses with many challenges from the
possibilities of extension in a view of user experience, extension of Attributes to enable the inserting
of images and finally, with very crucial topic — optimization.

However, due to lack of experience in the area of JavaScript server-side frameworks and many
problems facing while trying to put together the part of the project with the JEE environment of JBoss
AS, the implementation of the CE tool did not provide sufficient results. Most of the time costs the
misleading anaysis of origin objective to leverage more from the Etherpad Lite implementation and
try to identify possible interface for attaching the JEE server side implementation.

The work on this paper brings me more than a wider overview of actually used technologies,
experience with the development of project in the environment of JEE or importance of JavaScript role
in todays web development, but mainly the knowledge that quality analysis needs to build wider
knowledge background.

58

Bibliography

[1]

[2]

[3]

[4]

[3]

[6]

[7]

(8]

[9]

[10]

ASHISH SARIN. Portlets in Action. 20 Baldwin Road PO Box 261 Shelter Island, NY
11964: Manning Publications Co., 2012. ISBN 9781935182542.

RICHARDSON, W. Clay, Donald AVONDOLIO, Joe VITALE, Peter LEN a Kevin T.
SMITH. Professional portal development with open source tools: Java TM Portlet API,
Lucene, James, Side (Wrox Press). Indianapalis, Ind.: Wiley Pub., 2004, 400 p. ISBN 04-
714-6951-3.

ACE (editor). In: Wikipedia: the free encyclopedia [online]. San Francisco (CA): Wikimedia
Foundation, 2001-, 2012-04-12 [cit. 2012-04-19]. from
http://en.wikipedia.org/wiki/ACE_(editor)

Collaborative rea-time editor. In: Wikipedia: the free encyclopedia [onling]. San Francisco
(CA): Wikimedia Foundation, 2001-, 2012-04-11 [cit. 2012-04-18]. from
http://en.wikipedia.org/wiki/Collaborative_real-time_editor

FOWLER, Martin. Destilované UML. 1st ed. Praha: Grada, 2009, Knihovna programétora
(Grada). ISBN 978-80-247-2062-3.

SARANG, Poornachandra. Practical Liferay Java-based portal applications development.
Berkeley, Calif: Apress, 2009. ISBN 978-143-0218-487.

KATZ, Max and llya SHAIKOVSKY. Practical RichFaces. 2nd ed. New York, N.Y.:
Distributed by Springer Science Business Media, c2011, 392 p. Expert's voice in Java
technology. ISBN 978-143-0234-500.

COLLINS-SUSSMAN, Ben, Brian W. FITZPATRICK a C. Michael PILATO. Version
control with subversion. 2nd ed. Beijing: O'Reilly, 2008, 404 p. ISBN 978-0-596-51033-6.

JSR-168. Java™ Portlet Foecification: Version 1.0. 2003. from:
http://jcp.org/aboutJavalcommunity process/review/j sr168/index.html.

JSR-286. Java™ Portlet Soecification: Version 2.0. 2008. from:
http://jcp.org/aboutJavalcommunityprocess/final/jsr286/index.html

59

Figures

Figure 1: User text distinguishing in the Etherpad Lite CE........ccccocceiiiiiininiiniinienieeeieeeiee e 11
Figure 2:Building a document by application of changesets..........cccccevereeceeninsennenrenieneeeeeeeee 14
Figure 3: Users A, B and C are synchronized with a SEIVETr COPY......ccceevvvervirrriieiriiirrieeeerireeeeeveeeeens 15

Figure 4: Example: Production of conflict: 2 managers are writing down the possible scenarios to meet

[T o cTad Nt (T =0 - 1 PSSP 16
Figure 5: Example of conflict solution for a situation denoted on the picture in previous figure.......... 17
Figure 6: Example of a web portal: iGoogle by GOOgIE.........cccceeiiieiieciieieceecreeee e 18
Figure 7: Portal page decomposition. [10]......ccecterrterieniiiniriienienteetenit ettt ettt et ee s 20
Figure 8: Illustration of content and service aggregation within the portal page........ccccccceeevveeeercnnnenn. 21
Figure 9: Illustration of portlet infrastruCtUTe.coceiviieieriiieeeete ettt sttt 23
Figure 10: Portal server and portlet container roles in handling of a portlet request.[1]....................... 24
Figure 11: Portal page generation as described in paragraph above.[9]........cccceviriiniiniiniiinieniieene 25
Figure 12: Example of a portlet.Xml file...........cooeeoiiiieiieeeeeeeeee ettt 27

Figure 13: Sender portlet B generates an event and sends it to portlet container, event is then processed
by the container to receiver portlets C and E...........ccocciiiiiriiiniiiniinieeteetesee ettt e s s 29

Figure 14: Brief illustration of client-server communication within the Etherpad Lite infrastructure.. 34
Figure 15: The illustration of Pad manager deCOMPOSItION.cocuereereerieniersienrieneenreeeeieee e 36
Figure 16: Class diagram denoting core domain objects and relations............ccccccevveerveeieeiiieeeennnneen. 38

Figure 17: Class diagram denoting Pads and Changesets properties providing temporal informations.

... 39
Figure 18: Relationship between Changeset and AttributePool with a new cardinality............cc.......... 40
Figure 19: Class diagram describing the AttributePool entity breakdown as a aggregation of more
ALTIDULEILEIM ODJECES. ..cueiiniieieiieetet ettt ettt et et ettt e st e s bt e bt e bt e sbeete e bt e e eanees 41
Figure 20: User signed into a Pad creates a Session to provide informations specific for the current
1] Y 0] 11 111 TP URURRPSRRRN 41
Figure 21: More sophisticated approach of modeling the preferences in the Session relation.............. 42
Figure 22: Full meta model for our CE implementation...........cc.eccueeeiveesreereeeseeeseeesreesreesnessesvnneeens 42
Figure 23: ERD diagram of the database............ccecueeeiiieieiiiiiiiiccee et seeesvee e e ssreessenaeeeens 45
Figure 24: Base entities inheritance — extending an abstract class BaseEntity.......c.ccceceevveeeviernnnneeen. 47
Figure 25: Temporal entities inheritance - extending an abstract class Temporal Entity........................ 48
Figure 26: Pad-User relation through the joining SeSSioN........ccccceeevierrieinieriiinieeiiee et 48
Figure 27: Pad-Changeset relation — composition of Changesets..........c.ccecuvervveerieenieeceeeciieeeeecvneenn. 49

Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:

Communication through JMS QUEUE..........ccccveiieiiieeiieeeiee et erree e e e srrr e e e e e e e e e e esnens 49

Communication through JIMS TODIC......cccutiriirrieiiieritieiteeieesie et ettt esee e 50
Class diagram of the Session - Sender and Session - Listener relations..........c...cccceeveenn..e. 51
Piece of UserBean class code denoting the logic of loading the User.........ccccccceeveerneennenne. 52
Relationship between the UserObject and PadSubject over the Permission........................ 54
Class diagram describing “Hierarchical” model of UserObject organization...................... 54
Class diagram describing the “Flat” model of UserObjects organization..............ccceveeen.... 55
Hlustration describing extraction of changesets into one initial changeset............cccc.cc...... 56
Class diagram introducing a new entity for initial changeset.........cc.cceceveeveiinseeenseennneen. 57

61

Appendix A: Manual how to set up the
project environment and start the application

To set up the environment from the added sources we need to forward this guideline:

1. Setup local mysgl database server if not already present. This can be done in linux by executing
following list of commands:

1

Sign in as root or use the fakeroot to be allowed to provide installation. Following commands
works in Debian and Debian-based distributions, such as Ubuntu. In other environments there
are also available packages with GUI installation wizards:

linux@cmd:~$ sudo apt-get install mysqgl-server mysgl-client

After successful instalation log in to mysgl database client with previoudy given root
credentials:

linux@cmd:~$ mysqgl -u root -p
linux@cmd:~$ <type your root password>
mysgl> comand prompt should occurs.
Create new database by providing command:
mysgl> CREATE DATABA SE portletepad;
Create new db user for our application; type:
mysgl> CREATE USER portletepad;
Create new db user for our application with al the privileges to created database:

mysgl> GRANT ALL ON portletepad.* TO ‘'portletepad @'localhost’ IDENTIFIED BY
‘portletepad’;

Copy the attached files into file system in to folder with read & write permissions
permissions.

Now run the script placed in the main folder to build a database structure:
mysql> source /path/to/script/database.sql

Now we should have set the database for the application to work. You can now logout from the

62

8.

9.

mysgl console with one of the following commands:

mysgl> quit or mysqgl> bye

We suppose that you have placed the attached files into your file system. The folder consists from
Gateln Portal Container configured with the JBoss AS 6.0 and preconfigured Portal instance.
Then the folder consists Java Development Kit (JDK) 1.7.0 to run the application server on it.
Although, the Gateln Portal Container is configured to use the attached JDK, there is need to
provide one configuration before the execution of the server. However, the JBoss needs to set up
the BBOSS HOME environment variable to point to the actual JBoss (with Gateln) instance to
start properly. This can be done by executing the next dommands:

1. export BOSS HOM E=/path/to/Gatel n\WithJBossAS

next we can start the server providing next steps:

1. Wak into directory GatelnWithJBossAS:
linux@cmd:~$ cd /path/to/Gatel n\WithJBossA S

2. And run the server with next command:
linux@cmd:~$./bin/run.sh

3. The Gateln Portal Container build upon the JBoss AS should be after minute or two started —
you will know this by the line ending with startup time information:

...JB0ssAS [6.0.0.Final "Neo"] Started in 42s:451ms
Now open the browser and navigate to the url: http://localhost:8080/portal
Sign in by clicking on the one predefined account.
Navigate from the top menu to the portlet: Home —> Portlet Etherpad Portal Page
The Portlet is opened and could be used The behaviour isintutive.
From the list of pads select one. The pad will open the editor with content of the pad.

Now you can edit th file and provide basic functionality od the editor.

10. For demonstration of collaborative behavior you must open the another browser and navigate to
the portlet.

11. Signin asanother user.

12. Open the same pad as in the first instance and try if the remote changes are updating.

63

Appendix B: Definition of database structure
and initial testing datain MySQL DDL

-- Table structure for table “Attribute”

DROP TABLE IF EXISTS "Attribute”;
CREATE TABLE “Attribute™ (
“id® int(10) NOT NULL AUTO_INCREMENT,
“name~ varchar(50) NOT NULL,
PRIMARY KEY (~id)
) ENGINE=MyISAM AUTO_INCREMENT=12 DEFAULT CHARSET=latinl;
LOCK TABLES "Attribute”™ WRITE;

INSERT INTO “Attribute” VALUES (1,'bold'), (2, 'strikethrough'), (3, 'italic"'),
(4,'underline'), (5,"'list"),(6,'1list"),(7,'1list"'),(8,'list"), (9, '1list"),
(10, 'insertorder'), (11, 'insertorder"');

UNLOCK TABLES;
-- Table structure for table “AttributeItem”

DROP TABLE IF EXISTS “AttributeItem;
CREATE TABLE “AttributeItem™ (
“id® int(10) NOT NULL AUTO_INCREMENT,
“attribPoolId™ int(10) NOT NULL,
“number” int(3) NOT NULL,
“attrId® int(10) NOT NULL,
“value® varchar(50) NOT NULL,
PRIMARY KEY (~id"),

KEY “attribPoolId”~ (~attribPoolId™),

64

KEY “attrId™ (“attrId™)

) ENGINE=MyISAM AUTO_INCREMENT=3 DEFAULT CHARSET=latinl;

—- Dumping data for table “AttributeItem”

LOCK TABLES “AttributeItem™ WRITE;
INSERT INTO "AttributeItem™ VALUES (1,0,0,3,'true'),(2,2,0,1,'true');

UNLOCK TABLES;

-- Table structure for table “AttributePool”

DROP TABLE IF EXISTS “AttributePool”;
CREATE TABLE “AttributePool™ (
“id> int(10) NOT NULL AUTO_INCREMENT,
PRIMARY KEY (~id")

) ENGINE=MyISAM AUTO_INCREMENT=3 DEFAULT CHARSET=latinl;

-- Dumping data for table “AttributePool”

LOCK TABLES “AttributePool” WRITE;
INSERT INTO “AttributePool> VALUES (1),(2);

UNLOCK TABLES;

—-- Table structure for table “Changeset”

DROP TABLE IF EXISTS ~Changeset”;
CREATE TABLE ~Changeset™ (
“id® int(10) NOT NULL AUTO_INCREMENT,

“number” int(10) NOT NULL,

“rule” varchar(50) NOT NULL,

“charbank™ varchar(50) NOT NULL,

“attribPoolId™ int(10) NOT NULL,

“padId™ int(10) NOT NULL,

“authorId™ int(10) NOT NULL,

“created” timestamp NOT NULL DEFAULT CURRENT_ TIMESTAMP,
PRIMARY KEY (~id"),

KEY “attribPoolId”™ (~attribPoolId™),

KEY “padId” (“padIid),

KEY “authorId”™ (“authorId”)

) ENGINE=MyISAM AUTO_INCREMENT=4 DEFAULT CHARSET=latinl;

—-- Dumping data for table ~Changeset”

LOCK TABLES ~Changeset™ WRITE;

INSERT INTO ~Changeset> VALUES (1,1,'Z:0>7|*0+7', 'Welcome',0,1,0,'2012-05-01
20:41:16'),(2,2,'%Z:7>1|=7*0|1+1','\n',0,1,0,'2012-05-01 20:41:16'),(3,3,'2:8>3|
1=8%0+3','ano',1,1,1,'2012-05-01 20:41:16');

UNLOCK TABLES;

-- Table structure for table “Pad”

DROP TABLE IF EXISTS "Pad;
CREATE TABLE “Pad™ (
“id® int(10) NOT NULL AUTO_INCREMENT,
“name”~ varchar(50) NOT NULL,
“creatorId® int(10) NOT NULL,
“created” timestamp NOT NULL DEFAULT CURRENT TIMESTAMP,
PRIMARY KEY (~id"),

UNIQUE KEY “name~ (name’),

66

KEY “creatorId”™ (creatorId™)

) ENGINE=MyISAM AUTO_INCREMENT=3 DEFAULT CHARSET=latinl;

—- Dumping data for table “Pad”

LOCK TABLES ~Pad™ WRITE;

INSERT INTO Pad” VALUES (1, 'karol pad',1,'2012-05-01 20:41:16'),(2,'alfonz
pad',2,'2012-05-01 20:41:16");

UNLOCK TABLES;

-- Table structure for table “Session”

DROP TABLE IF EXISTS ~“Session;
CREATE TABLE ~Session™ (
“id® int(10) NOT NULL AUTO_INCREMENT,
“padId” int(10) NOT NULL,
“userId” int(10) NOT NULL,
“color”™ varchar(7) DEFAULT '#000000°',
“created” timestamp NOT NULL DEFAULT CURRENT TIMESTAMP,
“lastSeen” timestamp NOT NULL DEFAULT '0000-00-00 00:00:00',
PRIMARY KEY (~id"),
UNIQUE KEY “padId™ (" padId”, color™),
KEY “userId” (“userId’)

) ENGINE=MyISAM AUTO_INCREMENT=12 DEFAULT CHARSET=latinl;

-- Dumping data for table “Session”

LOCK TABLES ~“Session”~ WRITE;

INSERT INTO ~Session™ VALUES (1,1,1,'#123456','2012-05-19 09:33:41','2012-05-19
09:33:41'),(2,1,2,'#654321','2012-05-19 09:33:41','2012-05-19 09:33:41"),

67

(4,2,4,NULL, '2012-05-19 13:08:00','2012-05-20 09:20:21'),(5,1,4,NULL, '2012-05-19
13:10:55','2012-05-20 08:00:05'),(6,1,5,NULL, '2012-05-19 19:17:17','2012-05-20
08:00:15'),(7,2,6,NULL, '2012-05-20 03:03:57','2012-05-20 03:51:47"),
(8,1,6,NULL, '2012-05-20 03:25:30','2012-05-20 06:00:34'),(9,1,7,NULL, '2012-05-20
06:15:39','2012-05-20 07:59:10'),(10,2,7,NULL, '2012-05-20 06:38:18','2012-05-20
07:22:21'),(11,2,5,NULL, '2012-05-20 07:58:34"','2012-05-20 07:59:30");

UNLOCK TABLES;

-- Table structure for table “User”

DROP TABLE IF EXISTS “User ;
CREATE TABLE ~“User (
“id® int(10) NOT NULL AUTO_INCREMENT,
“name”~ varchar(50) NOT NULL,
“externId” varchar(50) DEFAULT NULL,
“created” timestamp NOT NULL DEFAULT CURRENT_ TIMESTAMP,
PRIMARY KEY (~id")

) ENGINE=MyISAM AUTO_INCREMENT=8 DEFAULT CHARSET=latinl;

—- Dumping data for table “User"

LOCK TABLES “User WRITE;

INSERT INTO “User~ VALUES (1,'jonas',NULL,'2012—05—19 09:34:03'),
(2, 'karol' ,NULL, '2012-05-19 09:34:03'), (3, 'alfonz',NULL,'2012-05-19 09:34:03'),
(4, 'root',NULL, '2012-05-19 11:26:45'),(5,'john',NULL, '2012-05-19 19:17:15'),

(6,'demo' ,NULL, '2012-05-20 03:03:39'),(7, 'mary',NULL, '2012-05-20 06:15:34');

UNLOCK TABLES;

68

Appendix C: Object-relational mapping
configuration with Hibernate mapping files

Mapping document version
<?xml version="1.0"7>

<!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD
3.0//EN" "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

Pad.hbm.xml
<hibernate-mapping>
<class name="org.webepad.model.Pad" table="Pad" lazy="false">
<id name="id" type="java.lang.Long">
<column name="id" />
<generator class="identity" />
</id>
<property name="name" type="java.lang.String">
<column name="name" />
</property>
<property name="created" type="java.util.Date">
<column name="created" />
</property>

<many-to-one name="creator" class="org.webepad.model.User"
fetch="jo0in">

<column name="creatorlid" />
</many-to-one>

<bag name="changesets" inverse="false" table="Changeset" lazy="true"
order-by="number asc">

<key column="number" />
<one-to-many class="org.webepad.model.Changeset" />
</bag>

<map name="userSessions" inverse="false" table="Session" lazy="true"
access="field">

<key column="padId" />
<map-key column="userId" type="java.lang.Long"></map-key>
<one-to-many class="org.webepad.model.Session" />

69

</map>
</class>
</hibernate-mapping>
User.hbm.xml
<hibernate-mapping>
<class name="org.webepad.model.User" table="User" lazy="false">
<id name="id" type="java.lang.Long">
<column name="id" />
<generator class="identity" />
</id>

<property name="externId" type="java.lang.String" insert="false"
update="false">

<column name="externId" />
</property>
<property name="name" type="java.lang.String">
<column name="name" />
</property>

<map name="padSessions" inverse="false" table="Session" lazy="true"
access="field">

<key>
<column name="padId" />
</key>
<map-key type="java.lang.Long"></map-key>
<one-to-many class="org.webepad.model.Session" />
</map>
</class>
</hibernate-mapping>
Changeset.hbm.xml
<hibernate-mapping>
<class name="org.webepad.model.Changeset" table="Changeset" lazy="false">
<id name="id" type="java.lang.Long">
<column name="id" />
<generator class="identity" />
</id>
<property name="rule" type="java.lang.String">
<column name="rule" />

70

</property>

<property name="charbank" type="java.lang.String">
<column name="charbank" />

</property>

<property name="number" type="java.lang.Integer">
<column name="number" />

</property>

<property name="created" type="java.util.Date">
<column name="created" />

</property>

<many-to-one name="pad" class="org.webepad.model.Pad" fetch="join">
<column name="padId" />

</many-to-one>

<many-to-one name="author" class="org.webepad.model.User"
fetch="join">

<column name="authorId" />
</many-to-one>

<one-to-one
name="attributePool" class="org.webepad.model.AttributePool">

</one-to-one>
</class>
</hibernate-mapping>
Session.hbm.xml
<hibernate-mapping>
<class name="org.webepad.model.Session" table="Session" lazy="false">
<id name="id" type="java.lang.Long">
<column name="id" />
<generator class="identity" />
</id>
<property name="colorCode" type="java.lang.String">
<column name="color" />
</property>
<property name="created" type="java.util.Date">
<column name="created" />
</property>
<property name="lastSeen" type="java.util.Date">

<column name="lastSeen" />
</property>

<many-to-one name="pad" class="org.webepad.model.Pad" fetch="join">

<column name="padId" />
</many-to-one>

<many-to-one name="user" class="org.webepad.model.User" fetch="join">

<column name="userId" />
</many-to-one>
</class>
</hibernate-mapping>
AttributePool.hbm.xml

<hibernate-mapping>

<class name="org.webepad.model.AttributePool" table="AttributePool"

lazy="false">
<id name="id" type="java.lang.Long">
<column name="id" />
<generator class="identity" />
</id>

<one-to-one name="changeset" class="org.webepad.model.Changeset"></one-

to-one>

<map name="attributeMap" table="AttributeItem" lazy="true"
access="field">

<key>
<column name="number" />
</key>
<map-key type="java.lang.Integer"></map-key>
<one-to-many class="org.webepad.model.AttributeItem" />
</map>
</class>
</hibernate-mapping>
Attributeltem.hbm.xml
<hibernate-mapping>

<class name="org.webepad.model.AttributeItem" table="AttributeItem"
lazy="false">

<id name="id" type="java.lang.Long">
<column name="id" />

72

<generator class="identity" />

</id>

<property name="number" type="java.lang.Integer">
<column name="number" />

</property>

<many-to-one name="attribute" class="org.webepad.model.Attribute"

fetch="join">
<column name="attrId" />
</many-to-one>
<property name="value" type="java.lang.String">
<column name="value" />
</property>

<many-to-one name="attributePool"
class="org.webepad.model.AttributePool" fetch="join">

<column name="attribPoolId" />
</many-to-one>
</class>
</hibernate-mapping>
Attribute.hbm.xml
<hibernate-mapping>
<class name="org.webepad.model.Attribute" table="Attribute"
<id name="id" type="java.lang.Long">
<column name="id" />
<generator class="identity" />
</id>
<property name="name" type="java.lang.String">
<column name="name" />
</property>
</class>
</hibernate-mapping>

lazy="false">

73

