
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

COLLABORATIVE TEXT EDITING IN A PORTAL

DIPLOMOVÁ PRÁCE
MASTER'S THESIS

AUTOR PRÁCE Bc. JÁN KORČÁK
AUTHOR

VEDOUCÍ PRÁCE Ing. RADEK KOČÍ, Ph.D.
SUPERVISOR

BRNO 2012

Abstrakt
V tomto texte sa zameriame na populárnu koncepciu kolaboratívnej tvorby dokumentov.

Predstavíme si myšlienku využitia tohto mechanizmu v rôznych oblastiach rozhodovania, popíšeme si

koncept a princíp fungovania. Následne si predstavíme a rozoberieme portály a portletovú technológiu,

ich výhody a využitie. Cie om práce je implementácia kolaboratívneho editora s využitím knižnice preľ

prácu so zmenami v dokumentoch s perzistentnou a aplika nou logikou na platforme JEE a vytvorenieč

jednoduchého portletu pre túto službu.

Abstract
In this paper we will concern on popular concept of collaborative editing. We will introduce the

idea of leveraging this mechanism in a diverse areas of decision making, we will denote the concept

and principle of work. Then we will introduce and discuss portals and portlet technology, its

advantages and use. The objective of the work is an implementation of collaborative editor leveraging

the library for management of changes on documents with the persistence and application logic based

on JEE platform and creation of simple portlet for this service.

Kľúčové slová
kolaboratívna tvorba dokumentov, portal, portlety, Etherpad, Etherpad lite, Java Portlets, JPA

Keywords
collaborative editing, portal, portlets, Etherpad, Etherpad lite, Java Portlets, JPA

Citace
Ján Kor ák: Collaborative text editing in a portal, diplomová práce, Brno, FIT VUT v Brn , 2012č ě

2

Collaborative text editing in a portal

Declaration
I hereby declare that this thesis is my own work that has been created under the supervision of
Ing. Radek Kočí, Ph.D. Where other sources of informations have been used, they have been duly
acknowledged.

..........................

Ján Korčák

23.5.2012

Acknowledgements
I would like to thank Ing. Radek Kočí for the time he spent during discussions with me. He offered me
valuable advices, consultations, which has helped me a lot. Moreover, I would like to thank
Mgr. Michal Vančo from the Red Hat company for his encouragement and cooperation on project.
Finally, I would like to thank my family for their support during my work on thesis.

© Ján Korčák, 2012

Táto práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakulte informačních
technológií. Práce je chránená autorským zákonem a její užití bez udělení oprávnění autorem je
nezákonné, s výjimkou zákonem definovaných případů .

3

Contents
 1 Introduction...7

 2 Collaborative editing...9

 2.1 Introduction to the concept..9

 2.1.1 Definition of CE..9

 2.1.2 Division of CEs...9

 2.2 Implementations of CE...10

 2.2.1 Google Docs..10

 2.2.2 Real-time collaborative editors..10

 2.3 The Etherpad...11

 2.3.1 Old Etherpad..11

 2.3.2 Etherpad Lite...12

 2.4 Collaborative editing systems vs. revision control systems..13

 2.4.1 Changesets and revisions...13

 2.4.2 Synchronization...14

 2.4.3 Conflict solving...15

 3 Portals and portlet technology..18

 3.1 Portal...18

 3.1.1 Common definition of a Portal..18

 3.1.2 Definition of a Portal by the Java Portlet API's...19

 3.2 Portlets...19

 3.2.1 Definition of a Portlet..19

 3.2.2 Java Portlet API...20

 3.2.3 Aggregation and SOA..20

 3.3 Portlets vs. Servlets...21

 3.3.1 Portlets relationship with servlets..21

 3.3.2 Differences between portlets and servlets...21

 3.4 Portlet infrastructure..22

 3.4.1 Components...23

 3.4.2 Portlet life cycle...24

 3.4.3 Portlet modes...25

 3.4.4 Window states..25

 3.4.5 Portlet deployment descriptor..26

 3.5 Inter-portlet communication..27

4

 3.5.1 Portlet session..27

 3.5.2 Public render parameters...28

 3.5.3 Portlet events...28

 3.6 Portals and portlet frameworks...29

 3.6.1 GateIn Portal..30

 4 Etherpad Lite and EasySync...31

 4.1 EasySync protocol for collaborative editing...31

 4.1.1 Overview...31

 4.1.2 Changeset structure...31

 4.1.3 AttributePool structure...32

 4.2 Etherpad Lite implementation...33

 4.2.1 Server...33

 4.2.2 ACE editor...34

 4.2.3 Pad management..35

 4.2.4 Data storage...36

 5 Persistence tier design...37

 5.1 Domain analysis..37

 5.1.1 Entities...37

 5.1.2 Relations..37

 5.2 Extending the meta model...38

 5.2.1 Temporal entities...39

 5.2.2 Attributes...40

 5.2.3 User session configuration..41

 5.2.4 Final meta model...42

 5.3 Design of the database..43

 5.3.1 Tables...43

 5.4 Persistence logic...45

 5.4.1 Hibernate Session..45

 5.4.2 Data Access Objects (DAO)..46

 6 Application tier design..47

 6.1 Class model...47

 6.1.1 Base entity decomposition...47

 6.1.2 Main relations..48

 6.2 Processing...49

 6.2.1 Client-to-Client communication..49

 6.2.2 Handling local text change..50

5

 6.2.3 Handling remote text change...51

 6.2.4 Session Sender and Session Listener...51

 6.3 Authentication and authorization..51

 6.3.1 Single Sign-On..51

 6.3.2 Retrieving user info from the portal..51

 7 Possible extensions...53

 7.1 Import and export..53

 7.2 Security control and permissions..53

 7.2.1 Permissions..53

 7.2.2 Prioritizing the text – permissions to update or remove..55

 7.3 Data optimization and caching..55

 7.3.1 Lazy submission..55

 7.3.2 Changesets extraction..56

 7.4 Extended features..57

 7.4.1 Non-textual objects..57

 8 Conclusion..58

Bibliography...59

Figures...60

Appendix A: Manual how to set up the project environment and start the application............62

Appendix B: Definition of database structure and initial testing data in MySQL DDL...........64

Appendix C: Object-relational mapping configuration with Hibernate mapping files.............69

6

 1 Introduction
There is a well-known saying that two heads are better than one - this states that when more people are

solving the same problem together, they can be more successful in finding the solution than when the

same problem is being solved by fewer people. This idea can be used in spheres where the focus is put

on a quick decision or where you have to bring out the solution in a short time. When working on a

project within a group of people the complex task is usually decomposed into a number of smaller

tasks. Each of these tasks can be processed by a single person. If the task can be processed in a

parallel, it can speed the processing of whole task; otherwise the process could be slower. However, we

will not talk about a decomposition in this work. The collaborative editing is focusing on the tasks,

when we can provide more quickly and even a better solution when more people are cooperating on

the task in the same time. There can be founded some examples of practical use of this idea even in the

same platform we will talk about later – text editing.

In IT the idea of collaboration on the editing of single document is similar to the concept of

well-known programming method called extreme programming, where mostly a pair of programmers

(therefore also called pair programming) are creating one file together. This kind of work is performed

in a way of currently editing the file by only one programmer, while the second programmer is

watching the process, supporting writer by thinking of the code and control the writer. During the

process the roles can change, so the supervisor programmer may take the role of execution

programmer and former execution programmer may take a watching role. This concept makes

programming more agile as it lets the both of programmers concern on the part of the process more

intensively; this could make the development process more effective.

The objective of the thesis is to examine the field of collaborative editors, especially the product

called Etherpad Lite and provide an implementation of such application with the JEE and portlet

technology.

Chapters 2 and 3 will provide an introduction to the technologies we will work with. First there

will be described concept of collaborative editing, analogy with known technologies and

implementation of Etherpad collaborative editor, resp. Etherpad Lite. Then in third chapter we will

introduce portlet technology and portals. There will be discussed fundamentals of portlets introduced

in Portlet specification.

Chapter 4 will provide an inspection to the Etherpad Lite implementation of collaborative

editor; its domain, main components providing core features and processes performing within the

application.

The analysis and design process of application will be presented in the chapters 5 and 6, where

7

the 6th chapter will discuss the persistence tier and 7th application tier.

Chapter 8 is dedicated to the presentation of analyzed optimizations and extensions for the

application, that could be implemented in the later development.

The last chapter is conclusion of the project.

After the bibliography and figure registry the paper has a 3 appendixes with how to start the

application and descriptions of the database model used.

8

 2 Collaborative editing
In this chapter we will look on the concept of collaborative editing (CE) and introduce actual

implementations. As the site of one from CE implementations, the SubEthaEdit project, says1, the idea

of CE is not so recent since it has been researched during the years. There can be found a number of

applications offering such a functionality that differs in the pack of extensions each of them provides

on behalf the core CE function. However, we will be discussing an implementation of CE, we should

define the term of the collaborative editor first.

 2.1 Introduction to the concept

 2.1.1 Definition of CE

Although, there is not an unified definition of the concept, we need to define the CE for our purposes,

so that we could build upon it. We can start with the definition provided by the Wikipedia Foundation:

A collaborative editor is a form of collaborative software application that allows several people

to edit a computer file using different computers.

It describes the application that enables the editing of the specific file by a group of people each of

them sitting in front of different computer. However, this definition does not specify the time

dimension and thus it can cover wide range of uses - you can surely imagine working with a shared file

using tools such as secure-shell, FTP or even by exchanging the updated file. This is however only

about sharing and there cannot be any talk about an effectiveness; the whole idea is almost a rubbish,

not to mention the complication of distribution within a large group of users.

What the CEs brings is not only the ability to share a document, but also to edit the document

concurrently, during the other people works on it at the same time. Such a behavior must be supported

by the sufficient synchronization mechanisms. We will dive deeper into this problem in the section

concerning the similarities of CE with the revision (version) control systems.

 2.1.2 Division of CEs

To push the description of CE more far, we have to provide a division. The most important attribute

with the very significant matter, as it affects the users, is a way of synchronization; this splits the CEs

into two main subgroups:

Real-time collaborative editor (RTCE). Synchronization is invoked on every change of text. Users

can edit the same file simultaneously and they are provided with the latest version of the document in

their editors in almost every second of work as the editor content is immediately updated when remote

1 More informations can be found on this site: http://www.codingmonkeys.de/subethaedit/

9

change occurs.

Non real-time collaborative editor. Synchronization is triggered with during the saving or on

different action occures, depending on the strategy of concrete editor. Users therefore can edit the

same file simultaneously, however, they are not exposed with the fresh content in such small intervals

as it is in the RTCEs. Its behavior is more like that of revision control systems.

We will discuss the first type of CE, but before providing a deeper description, we will look at

probably more familiar technology to make some intuitive background.

 2.2 Implementations of CE

 2.2.1 Google Docs

One of the most popular collaborative editing programs is probably Google Docs word processor

called Writely. It was founded by the Silicon Valley startup called Upstartle and during its existence

has attracted thousands of users. The main breakthrough, however, came with the Google's acquisition

of Upstartle. Big advantage of the Google here was that the editor was included into the portfolio of

Google services. In a short time from adopting, Writely has made a millions of the Google users.

However, what Writely provides is non real-time collaborative editing - you may cooperate on

writing of the document, but you can not see the state of the document in a real time. The

synchronization is triggered on every save action of the document, so you can not see the real progress

in it. Another thing lacking in comparison to the RTCEs is that the editor does not provide user

distinguishing by color; therefore you can not identify the authorship of the exact slice of text within

the document.

 2.2.2 Real-time collaborative editors

Presentation properties

There are some characteristics that are common for many of these products and by which we could

identify them. Some of them are:

Real-time concurrent editing. The text can be edited by more than one writer in a time which is the

main idea of this concept; the text typed by another co-writer is shown immediately character by

character. The process is non-blocking and all conflicts among the authors currently editing the text

are solved automatically. This behavior is assured by the conflict solving mechanism, which will be

described in the section 2.4.

User distinguishing. Since we can edit the same file with the other person or even a group, we may

want to distinguish the users working on document, so it will be possible to watch the text we are

10

editing and identify text already written by us - otherwise it could be difficult to watch the changes in

text. RTCEs therefore provides each user with a color that distinguishes the text written by himself

from the other.

Unbounded history. The CEs works as a revision control systems in a way it deals with changes.

Every change is encapsulated as an increment to previous state. This encapsulation is called a

changeset. Each changeset is saved and since it exists also an inverse algorithm, it is possible to walk

through the created changesets and provide the history revocation. Storing the every change then

enables an access to even the oldest state of the document.

 2.3 The Etherpad

This work concerns on the concrete RTCE product with motivation of leveraging this technology to

provide an integration within the another platform. We could therefore put down some start

informations about the technologies we will work with.

 2.3.1 Old Etherpad

The Etherpad is a project of AppJet Inc., which was later acquired by Google. It is a web-based

application providing collaborative editing of documents hosted on network. The main functions it

provides are:

• real time collaborative editing of documents,

• distinguished users texts,

• creating and cloning pads,

• import and export to and from a different types of documents,

• inserting and embedding the files into pads,

• uploading images into pads

• and more.

11

Figure 1: User text distinguishing in the Etherpad Lite CE

Distribution and requirements

The Etherpad is an open-source product that can be downloaded and hosted by the user needs. It is

possible to run it on both the external and local server and provided for use in the company or even

within a group of people without any IT infrastructure built. What is needed, are the Internet

connection and the Etherpad installation with a pack of open-source free downloaded packages.

Since the Etherpad was made in collaboration of technologies: Java, Scala, JavaScript and

macro processor M4, required runtime environments and libraries must be installed on the target

machine.

Application needs to run on the Open JDK 6 distribution of Java Virtual Machine (JVM),

therefore this runtime environment must be installed. The application is configured on every startup

with the build script to set the proper paths, so that the JAVA_HOME is targeted to the right

environment.

The server side of application uses the MySQL database to store a content, so the MySQL

database server must be installed too and the MySQL connector must be presented in order to enable

the Java application to connect to database.

EasySync protocol

In a collaborative editing you have a number of editor instances - each for user working on another

computer. The critical task that must be provided by server is maintaining the consistency among the

different document replicas, so the users have the latest version of the document in their editors. This

process must be non-blocking, because the users don not want to wait for the end of synchronization.

That is why the Etherpad is using the protocol named EasySync, which describes identification and

extraction of the changed part of the document and its encapsulation within a changeset object.

EasySync also provides functions for applying a changeset to the document and a strategy for conflict

solving when changesets from different users meet in the same time.

 2.3.2 Etherpad Lite

Disadvantages of Etherpad are that it requires relatively high software and hardware resources. The

installation is not very user-friendly, too. Therefore there was a motivation to make a lighter

implementation of Etherpad that could be more accessible than the original one.

The project named Etherpad Lite got started afterwards. It was successful and has brought even

more invention since it was built only with use of single language - JavaScript and using a number of

JavaScript frameworks helping to build a server-side of the application. The Etherpad foundation

adopted the Etherpad Lite and made it an ancestor of the origin Etherpad since it was practically its

upgrade. Nevertheless, Eteherpad Lite does not cover the whole functionality of old Etherpad.

12

Currently you can see a reference to Etherpad Lite project on the official Etherpad web page

with original inventors encouragement to use it instead of the old one. The in-depth analysis of this

implementation will be presented later in the paper.

 2.4 Collaborative editing systems vs. revision control systems

We have mentioned earlier that a bit of similarity between the collaborative editing systems (CES) and

revision control systems (RCS) used in a software development can be found.

RCS, also known as version control systems are systems which manage changes to documents,

computer programs, or any other editable files. From the view of the software development, RCS

clarifies the development of projects involving more developers by providing tools for maintaining

consistent state of projects and revision control.

For the sake of understanding the concepts used within the CES and collaborative tasks in

general, it is good to look at the RCS familiar processes and describe them briefly.

 2.4.1 Changesets and revisions

It has been already outlined what the changeset is, but we should try to provide more illustrative

description. Changeset definition can diversify among the different RCS and the specific

implementations. The main principle is, nevertheless, quite simple. Basically, the changeset is a set of

changes made on document by concrete user. These changes are packed in one unique named object

that can be applied to a document as a patch. This patch can be then applied to the document in order

to update the state of document and thus provide a new document. The extraction of these changes is

held within the object Changeset. If we look on the whole document from the creation along to the

current state, it can be defined as application of ordered collection of all changesets created on the

document to an empty document. After the application of changeset, the current state of document is

called revision and is identified by a unique revision number. This is illustrated on the next figure.

13

 2.4.2 Synchronization

In the CES the most crucial part of the whole system is the changeset management. It provides

synchronization for the users so they can have the latest state of the document in their editors while

writing. That is why the situation where two users spent an hour writing the same text on the same

document cannot happen. This is a synchronization issue which is one of three things they have in

common with the revision control systems.

However, the synchronization is not working in the same way. In the RCS you have to put a

request every time you want to synchronize your working copy with a server state. ON the other side,

in the CES this must be done when the users work; it must happen automatically and most frequently

to ensure that the writer has the most actual version and therefore he will not produce a different

document as server copy. In a next figure a concept of synchronization in CE is shown.

14

Figure 2:Building a document by application of changesets

 2.4.3 Conflict solving

Second functionality that can be seen in both RCS and CES is conflict solving. This is very important

part of the CES as the whole mechanism must be automatic and the conflicts would occur more

frequently as in a RCS, therefore the must of solving every change manually is almost impossible.

There is even no objective need of it. Resolving this issues automatically provides that the users could

not be blocked from editing and requested to conflict solving because of bad synchronization; concrete

mechanisms will be discussed later in this paper. Now we will provide an example situation when you

need a conflict solving and describe the asset of such mechanism.

Imagine a situation when there are two users editing the same document. If we abstract the

behavior of such editor and say that the synchronization of users editors contents is provided in bigger

intervals or manually at the saving of the document by user and there is no conflict solving

mechanism.

Each of users now have made a different modification on the same file. The users now have

different documents in their editors without knowing of the other ones modifications. The problem

raise when both tries to update the current server copy. As from the algorithmic view there is not

possible that the two updates came in the exactly same time, the server first applies one of them and

tries to update the document on the server. The operation could finish successfully, because the

changeset was made as an increment of the previous state of document which is equal to that stored in

a server. But once it tries to apply the second changeset, he meets the conflict. However, this changeset

was made as increment to the previous state of document, and therefore it cannot be applied because

the update could bring the document not in consistent state. The situation is illustrated on the next

figure.

15

Figure 3: Users A, B and C are synchronized
with a server copy.

However, the conflict solving is present and the specified situations can be solved by merging the

actual state of file with a given changeset. Nevertheless, there may occur situations, when the conflict

solution can not be find automatically by a system. In such situations the changeset can be refused and

user is requested to backup its state, update its copy to the current document and until then apply the

change. But this scenario could be find just in revision systems, so we can suppose that after the

generation of merge its application file in the example could look as follows:

16

Figure 4: Example: Production of conflict: 2 managers are writing down the possible scenarios to
meet the specified goal.

History

Finally, the version systems and CES also provide a history of changes so the user can every time,

when he needs, browse through the revisions and inspect the changes or even dynamically revert to the

specified older version. The file is then put into state of this revision without need to clicking back to

the wanted state.

17

Figure 5: Example of conflict solution for a situation denoted
on the picture in previous figure.

 3 Portals and portlet technology
 3.1 Portal

If we want to discuss portlets and portlet technology, we will not omit a mention about the term portal

which is a main playground for portlets and on which whole technology is built.

 3.1.1 Common definition of a Portal

A portal or a web portal, since we will discuss portals used especially in the ground of web sites and

web applications, is a well-known concept used in the area of graphic user interfaces. There were no

formal definition of it until recently, however, there are some that can describe it sufficiently for us.

On the Wikipedia.org we can find really simple definition of what a web portal is:

A web portal is a web site that brings together information from diverse sources in a unified way.

It can be also described as a collection comprising a number of small web applications each of them

has its own scope and context; the idea is to collect and enable co-existence of multiple applications

within the one web (portal) page. This is rather comfortable solution as compared to standard

approach, where you have to use many different sites to gather all the needed informations. On the next

figure you can see Google's portal iGoogle, which can be referenced as a common portal, as we have

18

Figure 6: Example of a web portal: iGoogle by Google.

just introduced it.

 3.1.2 Definition of a Portal by the Java Portlet API's

The definition provided by Java Portlet Specification2 is little bit different from that commonly used

one. Within the Java portal the mechanisms and principles are more rigorous and therefore we can

surely write down the main characteristics and abilities of Java portal. According to Java Portlet API,

the portal supports features like:

Content aggregation. Each portal page can concentrate the modules or services with a different

functionality – providing different output.

Authentication. User have to submit his credentials to confirm his identity on the portal in order to

get access to the portal content, the advantage of portal is, that it provides single sign-on capability, so

you have to authenticate only once, to have access to all the portlets within the portal page.

Personalization. Portal identifies user within a session or within a whole application scope and

provide him services for him and by his custom preferences.

Customization. Provide user with ability to have different preferences for the view and functionality.

 3.2 Portlets

We have introduced a portal as a content aggregating concept of web application that concentrates on

one web page more applications. These applications are called portlets. In the next topic we will start

with a formal definition of what the portlet is.

 3.2.1 Definition of a Portlet

The definition provided by Sarin in Portlets in Actrion says:

A portlet is a pluggable user interface component that provides a specific content, which could

be a service or information from existing information systems. Portlets provide the user interface of

the portal by accessing distinct applications, systems, or data sources and generating markup

fragments to present their content to portal users.

There we have a portal in role of a container or a platform for the small applications – portlets. Portlets

act as windowed web applications within the portal and each window in a portal web page represents a

portlet. They can be personalized and customized, they supports aggregation of content and also

authentication.[1]

The figure 7. illustrates how can the portal page look like and how the portlets are represented

2 There are 2 Portlet specfications: JSR-168 and JSR-286 (referenced in document as [9] and [10]).

19

within the portal page.

 3.2.2 Java Portlet API

The two specification for Java Portlet API: JSR-168 for Portlet version 1.0 and updated specification

JSR-286 for Portlet version 2.0 were introduced.

The definitions of both portal and portlets was made in the JSR-168 and later upgraded in the

JSR-286, introducing new features for Portlet 2.0. The 2.0 specification addresses most of the

frequently required features of portlets that were missing from the 1.0 specification, such as resource

serving, inter-portlet communication, and portlet filters. However, most portlet containers support both

specifications, and the 2.0 specification is backward compatible with the 1.0 specification; and

therefore we can run Portlet 1.0 applications also within the most new Portlet containers.

 3.2.3 Aggregation and SOA

As the portal provides a container for locating and managing diverse portlets, it enables to concentrate

whole bunch of services or applications into one page. This is one of the main motivations why to

develop with portlets. The second significant advantage of portlets is their ability to interact with other

portlets in the portal. This is provided by the process called inter-portlet communication.

The capability of communication between the portlets in the portal can be very likely used in

Service-oriented architecture (SOA), as it makes it possible to build new applications leveraging the

20

Figure 7: Portal page decomposition. [10]

existing services. In portlets can be seen even an attitude when the applications provides new services

only by composing existing ones; these are known as mashups.

 3.3 Portlets vs. Servlets

In a number of books concerning on the portlet technology, there is often portlets nature described

through the comparison with the fundamental component of all Java web applications, servlet. It is not

a coincidence, as the portlets are in fact extension of the servlet specification and so we will provide

this comparison too. First we will introduce a common attributes for both components and then we

will chronologically pass to the portlet specific ones.

 3.3.1 Portlets relationship with servlets

What have portlets and servlets significantly in common is, that they are both a web components. And

as the web components their life cycles are managed by its containers. The portlets containers

responsibilities are quite the same as the servlet ones, however, the Portlet API is an extension to the

servlet specification, which also means that a portlet container is also, by definition, a web container.

Portlet container's function is loading and instantiating a portlet, initializing portlet instance, directing

requests to it and finally destroying the portlet instance. The second fundamental attribute is that both

of them generates dynamic web content via the request-response paradigm.[2][9][10]

 3.3.2 Differences between portlets and servlets

According to publication from Mr. Richardson and col., there can be found following differences

between portlets and servlets:

Portlets generates only fragments. On oppose to servlets that generates whole web documents,

portlets generates only a markup fragments for a web page.

21

Figure 8: Illustration of content and service aggregation within the portal page.

Not bound directly to the URL. Unlike servlets, portlets are not bound directly to the URL.

Sophisticated request scheme. Portlets have more precise request scheme consisting of 4 types of

requests: action, render, event and resource.

Standardized set of modes and window states. For portlets there are predefined different modes, that

defines their operating context and rendering rules and window states, that defines the portion of space

within the portal page area portlets will take.

Among the differences the portlets differs from servlets by providing some features, that servlets does

not:

Management of configuration informations. Portlets can easily access and store the configuration

data thanks to its sophisticated management.

Access to user profile information. Portlets went beyond the basic user and role information

providing in the servlet specification.

URL rewriting. This means an ability of creating hyperlinks within the portlet context, which are

independent from the portal server implementation.

Two session scopes. Portlets can store a transient data within the two different session scopes:

application-wide scope and portlet private scope. These will be described later in the section

concerning on Portlet Session.

Inter-portlet communication. Portlet can communicate with the other portlets by the sending and

receiving events.

Multiple portlet instances. The same portlet can exists within the same portal page multiple times.

And there are also functionalities that portlets on oppose to servlets does not provide. The functions

that portlets lacks are:

Encoding. Portlet cannot change the charset encoding of the render response.

Access to URL. Portlets does not have access to the URL with which the client initiated the request on

the portal.

 3.4 Portlet infrastructure

This section will describe some portlet basics such as an description of main components of portlet

technology, their responsibilities in managing the life cycle of portlets and finally, portlet options, that

could determine its view or behavior in a portal page.

22

 3.4.1 Components

Portal page

A portal consists of web pages, in portal application called portal pages. These web pages includes

some header, footer and the main content consists of variable number of portlet applications.

Portal server

A portal server handles the contents provided by the portlet container and creates the portal page as a

sequence of HTML code. Portlets are located within the portal page by the portal server that applies

the specified layout to them.

Portlet container

The main component within the portal page is a portlet container. In it a portlets are deployed. This is

similar to servlet container, although, a portlet container is responsible for managing the

communication between portlets and sending generated fragments to the portal server. It invokes life

cycle methods on the portlet instances and provides a runtime environment for them.

The portlet technology builds upon the servlet technology, since it's portlet container is

practically an extension to the base servlet container also known as web container (drawn in the figure

23

Figure 9: Illustration of portlet
infrastructure.

above).

Portlet instances

The instances of portlets are created by the portlet container invoking the life cycle method on the

portlet. The portlet instance is then managed by the portlet container.

 3.4.2 Portlet life cycle

If we put it all together we can describe the life cycle of a portlet. The portal server and portlet

container roles in handling a portlet request. The portlet container creates the portlet instance and

handles over the content to the portal server. The portal server then assembles the content from

different portlets to generate the portal page.[1]

Now we can look on more illustrative scheme of portal page generation respecting the presented life

cycle. On the figure bellow we can see a bit simplified process of portal page generation from an

instantiation to a final result shown that can be seen in a browser.

Portlets A, B, C, D and E are generated and its contents are sent to the portlet container. Container

then handles them to a portal server that have to integrate them within the portal page respecting

defined layout. On the portal page are displayed windows A, B, C, D and E, each for corresponding

portlet.[9]

24

Figure 10: Portal server and portlet container roles in handling of a portlet request.[1]

 3.4.3 Portlet modes

Portlet specifications provides some predefined modes, in which the portlets could be rendered. This

modes defines the use and functionalities the portlets have when rendered.

Specification of the portlet modes

According to the specifications JSR-168 and JSR-286 portlet mode indicates the function portlet is

performing in the render method. It advices the portlet what task it should perform and what content it

should generate.

From the specification there can be found three predefined rendering modes:

View. Generates markup reflecting the current state of the portlet.

Edit. Allows a user to customize the behavior of the portlet.

Help. Provides information to the user as how to use the portlet.

When invoking a portlet, the portlet container provides the current portlet mode to the portlet.

However, portlets can programmaticaly change their mode when processing an action request.

The availability of the portlet modes for a portlet can be restricted to specific user roles by the portal.

 3.4.4 Window states

It has been defined that portlets aggregates within the one portal page, but there was not mentioned

anything about the amount of space in the portal page that portlet occupies. However, the

specifications defines a three types of window states and manner how the portlets shows and behaves

on a page. There are:

Normal. Normal mode indicates that a portlet will be shown in a standard view - it will share the page

25

Figure 11: Portal page generation as described in paragraph above.[9]

with the other portlets.

Maximized. This state declares that the portlet is only one rendered in the page, or it has more space

compared to the other portlets in the page.

Minimized. In this state the portlet should only render minimal output or even no output at all,

nevertheless, there can be defined custom states for the specific purpose.

 3.4.5 Portlet deployment descriptor

Similarly, as for a classical JEE web application there is a deployment descriptor that roles as a form of

a configuration file providing informations used by the application server during deployment of the

application to the web container, in a portlet application there is a portlet descriptor that holds the

informations and settings used by the portlet server during deployment to the portlet container.

Deployment descriptor for a portlet application is an XML structured file named portlet.xml. Next we

will look into descriptor and describe interesting parts of its structure.

Portlet descriptor structure

The root element of the file is <portlet-app> element. Portlet declaration is enclosed within the

<portlet> subelement of the <portlet-app>. There can be even more portlets declarations within one

descriptor. Portlet application will then consists of that many portlets as specified in the descriptor -

all these portlets form a part of one portlet application.[1]

Within the portlet.xml it is a place for declaration of portlet name, used portlet class, enabled portlet

modes or window states. However, there can be set a list of parameters and options, they will be

presented on demand later in the text. For example, the simple portlet.xml can look like this:

<portlet­app>

 <portlet>

 <portlet­name>myPortlet</portlet­name>

 <display­name>My Portlet</display­name>

 <portlet­class>org.portlet.MyPortlet</portlet­class>

 <init­param>

 <name>email</name>

 <value>my@mail.com</value>

 </init­param>

 </portlet>

 <container­runtime­option>

26

 <name>javax.portlet.actionScopedRequestAttributes</name>

 <value>true</value>

 </container­runtime­option>

</portlet­app>

 3.5 Inter-portlet communication

Inter-portlet communication is a process that provides an ability of a portlet to react on changes, events

and actions which take place in the other portlets. An example could be a portal of library where the

reader hove shown within the account portal page both the portlet with the list of available books and

second portlet of his own reservations. When the reader makes a reservation for a book through a

reservation portlet, it is wanted that this reservation instantly occurs in the portlet showing actual

reservation list. This can be done by an inter-portlet communication mechanism. Let's describe its

abilities and functionality.

There are three mechanisms that can be used for the inter-portlet communication:

Portlet session. Portlets are parts of the same portlet application or the portal page enables sharing of

session information over the different portlet application within the portal.

Public render parameters. Communication based on the simple string values sending between the

different portlet applications.

Portlet events. When portlets from the different portlet applications are communicating with each

other by sending and receiving complex objects, known as events.

 3.5.1 Portlet session

This is the most commonly used type of communication between the portlets. It is the one

already exists since the JSR-168 (Portlet 1.0 specification). The main component is a PortletSession

object storing, maintaining and providing an access to session attributes. As it was mentioned earlier,

there are two different contexts, in which the session data can be stored and which defines and limitate

the scopes of access to the attributes stored in:

APPLICATION_SCOPE. It is used to store data that need to be accessible within the whole portlet

application so the portlets of the same portlet application can access them.

PORTLET_SCOPE. This scope provides session data only for use within and for the current portlet

instance. So the the portlet session data cannot be shared even by the duplicate instance of the same

portlet application on the portal page. However, we are not unable to retrieve this data from the other

27

Figure 12: Example of a portlet.xml file.

portlets, as the data are also stored in the application scope, although in a different way, so we can

programmaticaly make an access to them.

 3.5.2 Public render parameters

When the render method is fired, the parameters that are required by the portlet to generate the

appropriate content are handled to it. These are called render parameters and there are two types of

them:

Private render parameters. In the requests that are not visible to other portlets.

Public render parameters. In the requests that are visible to other portlets within a portal page.

The render parameters are received by a portlet in the situations, such as a form submission to a

portlet's render URL. In this situation the form fields are sent as render parameters to the render

method. Although, submitting of a form to the render URL, however, it changes the system state, it's

not recommended in the render phase. In the same way are sent the parameters set in the portlet's

render URL that references the render URL. Finally there can be render parameters sent to the portlet

through the render method call, if they were set in the ActionResponse before.

These parameters are implicitly private. So when there are sent request parameters as in the

previously listed, there are always automatically treat as private. And as private they are visible only

for a current portlet.

If we want to create public request parameters, and therefore visible for the other portlets in the

application, we must also specify the names of the request parameters we want to make public in the

portlet deployment descriptor (we will look in a more detail within the applications in the phase of

analyze). Thus the scope the container knows that the request parameter must be changed in order to

be visible to the other portlets. The public render parameters are additionally available in action,

resource and event methods.

 3.5.3 Portlet events

The portlet events were introduced in the JSR-286 (Portlet 2.0 specification). On oppose to the

previously described mechanisms for inter-portlet communication, the with events the sending portlet

is not responsible for the delivery of the event to the receiver portlet. This responsibility is put on the

container. Let's clarify this:

As there were mentioned, we can call the two sides of inter-portlet communication: sender

portlet (a portlet that invokes or sends event) and receiver portlets (the portlets that listenes or states

they want to receive this event). When sender portlet fire the event, the event is sent to the portlet

container. The container is then responsible for marking the event available to receiver portlet. Portlet

28

container knows the receiver portlet and it handles the event to them as shown on the figure bellow.

Advantages. The advantage of communication through the events is that the event can transmit a

complex information on oppose to the public render parameters, where you can change only String

object information. There is also an ability of event to fire another event from itself, and so there's

possible to create even a more complicated chains of events.

Disadvantages. On the other side a disadvantage of events are that they are a bit clumpy on both sides:

container and code increase. For the use when need to send and receive a primitive data it is better to

use public render parameters.

 3.6 Portals and portlet frameworks

The platform for the portlets is the portlet container that is usually included in the frameworks

providing portal deveoping tools. They also provides Content Management Systems (CMS) to bring

developer more comfort when building a portal. There are number of commercial technologies coming

from the application server vendors as the IBM (WbeSphere Portal), BEA (BEA Portal) or Oracle

Corporation (Oracle Portal). And there are also number of open-source and free technologies that

provides not fewer functionalities.

The most popular from the currently existing open source technologies is the project of the

Liferay, Inc., called Liferay Portal. It is also available with a packed Apache Tomcat web container in

it and provides a simple CMS to build a portal. Many books encourages the beginners in the portal

platform to use this technology and brings a different tutorials that helps to build up a portal without

almost any requirements.

Second, well known open source portal is GateIn Portal, that comes merges the two mature

projects: JBoss Portal, provided by RedHat inc. and Exo Platform developed by the company eXo.

29

Figure 13: Sender portlet B generates an event and sends it
to portlet container, event is then processed by the

container to receiver portlets C and E.

However, the GateIn Portal will be used as implementation technology for the project, we will provide

small introduction to the technology in the next section.

 3.6.1 GateIn Portal

GateIn Portal is one of the key components in the JBoss Enterprise Portal Platform (JBoss EPP). It

provides web portal and also a portal framework to build upon. As the follower of the JBoss Portal it

also includes the JBoss Portlet Bridge that is an implementation of JSR-301 (specification of Portlet

1.0 Bridge for JavaServerTM Faces 1.2) and JSR-329 (Portlet 2.0 Bridge for JavaServerTM Faces 1.2)3;

they also supports JBoss web frameworks such as JBossSeam and RichFaces.

Web Services for Remote Portlets (WSRP). Among the other GateIn Portal technologies integrated

in, there is also a technology called Web Services for Remote Portlets. The aim of WSRP specification

is to define a way how to display remotely-running portlets inside the localy-running portal page. This

is enabled by leveraging the SOAP (Simple Object Access Protocol) and use of the set of predefined

common interfaces. Interaction is then performed through the SOAP messages.

3 The specifications which defines semantics for executing JavaServer Faces (JSF) views within a portlets

30

 4 Etherpad Lite and EasySync
The two main pillars on which the project of a collaborative editor as a portlet will be built are

Etherpad's EasySync library and the referential implementation leveraging the Etherpad libraries,

known as Etherpad Lite.

 4.1 EasySync protocol for collaborative editing

Etherpad uses a protocol, that encapsulates change made on a document by single writer into small

and lightly transmittable form. Although, we are not focusing on reimplementing this protocol, we will

be close enough to that mechanism; therefore it will be usefull to introduce its main principle a bit.

 4.1.1 Overview

The EasySync protocol transmits a changeset as a pair of entities; these are Changeset and Attribute

Pool.

Changeset. Although, we have already described term changeset in common, in this case we will talk

about the specific implementation. Our Changeset is a string-encoded representation of change made

within the document - it carries an information about the most recent changes within the text. Such

informations are: amount of increase or decrease of text amount, whether it is an addition, removal or

change of characters; even a change of its style and the location of this changes. When addition is

submitted, the Changeset holds also the added characters.

AttributePool. Attribute pool is a collection of attributes used within the Changeset. It is a map of

attributes which acts in a current change of text. An attribute is represented as a tuple of attribute name

and its value. These attribute definitions are within the map identified by the number key which is also

referenced from the Changeset string. The Changeset string also defines where it will be applied. The

Attribute Pool also carries an information about the writer that made the change and the timestamp

when the change was made.

 4.1.2 Changeset structure

As it was told, our changeset is a string representation of the most recent change made on the

document. It consists of alphanumeric characters and special reserved characters with defined

meanings. Let's show an example of such string for a more illustrative description; we have this

Changeset string:

Z:9y>1|8=79=2n*1+1$a

The string can be divided onto several main parts; however, we will describe step by step the meaning

31

of current values in respect of order:

Z magic character, it is the first character of the string and it retain practically

unchanged, as it denotes the version of protocol currently used,

:9y this part tells how long (in base 36) was the original text (9y ~ 358 characters),

>1 the manner of change - whether it was extended (>), retained (=), or decreased (<)

and how (>1 ~ increased by (136) character),

|8=79 denotes how many characters will be retained (=), removed (+) or appended (-)

involving newlines, for us (7936) characters will be let unchanged and (836) from

them are newlines,

=2n without the pipe sign (|) the notation says, that the newline characters would not be

involved, so it specifies that number of following characters (2n36) will be retained

(=), removed (-) or inserted (+) (none of them newline),

*1 here we have, mentioned before, reference to the attribute transmitted over in the

Attribute Pool, the number starts at 1 and it is related only to the actual Attribute

Pool, the attribute declaration tells, that followed slice of text would apply this

attribute,

+1 this means an insertion (+), removal (-) or retention (=) of the specified number of

characters (136), however the previous declaration specified the attribute, this

attribute would apply to this (136) characters,

$ this character is a delimiting sign that divides the changeset string into two parts,

the declarative part and the stack of characters (if any inserted),

a this is the last part of the changeset string consisting of a list of characters inserted

into the text within the current change.

Now let's move to the description of the AttributePool's structure.

 4.1.3 AttributePool structure

Attributes within the AttributePool are formed as a JSON-friendly array. The example could look as

following:

{"0":["author","a.5pXEmWfWEIT9cuyv"],

 "1":["underline","true"]}

On the example shown above we can identify the array of two items, each with numeric key and a

32

value, which is a tuple. The key is value that was referenced in the changeset after the *-sign. As was

said in the description of changeset string, it tells that the attribute will be applied on the following

(inserted or retained) character specified in shown example by +1. If we put these facts together we

can tell, that the inserted character a will have the attribute 1 applied on it. With a glance on the

AttributePool, we find out that the number 1 key is assigned to the atribute with name underline and

its value is true. The underline attribute could have only two values, telling whether it is underlined or

not. Therefore the current value means, that the character a will be after application of changeset

underlined.

What we have not mentioned yet is the attribute autor. As you can see it precedes the underline

attribute, although it is not presented in the changeset string. The author attribute denotes the

identification of user, that made a current change and as from the current session could not came a

change made by another user, it is useless to involve it; therefore the attribute is provided only within

the AttributePool.

 4.2 Etherpad Lite implementation

As was already introduced, Etherpad Lite is an open-source project built with a motivation to bring

more light implementation of the project Etherpad. It leverages its EasySync library and JavaScript

version of editor used within Etherpad. It also brings a new management of pads and adding an

interactive chat placed on the pad editor. The project is programmed in JavaScript and built upon a

JavaScript library NodeJS to model the server-side of application.

Although, an original Etherpad is open source project too, it is more complex to compare to its

follower. It is also made with use of different technologies on oppose to clearly JavaScript way that

took the Etherpad Lite. The third argument why to prefer study the later project is that, as it was told,

its practically Etherpad's upgrade and latest referenced revision.

 4.2.1 Server

Although, JavaScript is widely known as a client-side programming language, it can be used also on

the side of the server. In the Etherpad Lite project it is provided with the use of the following

frameworks:

NodeJS. Event-driven I/O server-side JavaScript framework built on V8 JavaScript engine from

Google and several other libraries.

Socket.io. Its API provides bidirectional communication over the web. It is lightweight and therefore

used for a client-server communication between the user pad and the server app.

UeberDB. Database abstraction layer turning the database into a simple key value store, at the

33

moment. Currently, supporting only MySQL and SQLite. ueberDB uses a smart cache and buffer

algorithm to provide faster communication with the datastore. The optimalization is done also on the

side of the read/write operations. However, the reads are cached and writes are done in a bulk, the

overhead of database transactions is reduced.

Async. Utility module that provides functions for working with asynchronous JavaScript. As it was

originally designed for use with node.js, it can also be used directly in the browser. Async provides

functions as map, reduce, filter, forEach… as well as some common patterns for asynchronous flow

control (parallel, series, waterfall…). The functions are close tied with the node.js, so it must be

followed the node.js convention of providing a single callback as the last argument of your async

function.

Express. Lightweight and fast JavaScript server-side web development framework built on Node.js

and Connect (middleware layer library for Node.js).

UglifyJS. This toolkit provides functions of parsing JavaScript code, compressing it, or even

transforming it to nicer code. Within the project it is used mainly for minimization of code and

therefore minimizing the overhead.

 4.2.2 ACE editor

ACE states for a collaborative editor - a project providing functionality for a real-time collaboration on

editing the documents.

34

Figure 14: Brief illustration of client-server communication within the Etherpad Lite
infrastructure.

ACE editor is already leveraged by the both of projects, we are discussing. The Etherpad Lite,

however, a bit overrides the existing API by providing tight integration with the management layer that

encapsulates whole pad functionality of the ACE editor.

 4.2.3 Pad management

The concrete pad is managed by the pad manager object, that is responsible for establishing and

maintaining the connection with the server, retrieving the pad, dispatching the actions within the editor

and delegating them over to the server. It also provides notifiers for the actions held within the remote

collaboration user editor to be able to update the state of local editor with that of collaboration user.

However, the JavaScript environment does not provide session management - there are also

involved subelements which are responsible for all the aspects of the concrete pad:

ACE2Editor. Main module of the pad, holding the ACE editor, that provides the HTML frame

representing the editor. All the needed functions which can be called by pad manager and all the

events, which may take a place within the editor are registered through this module.

PadEditor. The pad editor must prepare the editor before it is initialized, set view options of the

editor, restore a revision text and even disabling or disposal of the current editor.

PadEditBar. It is responsible for maintaining the editor toolbar state and actions made on it.

PadDocBar. Manages the configuration of the toolbars and pad.

PadSavedRevs. Manages the stored revisions of the current pad.

PadUserList. Manages the list of users connected to the current pad.

PadConnectionStatus. Responsible for maintaining the current connection status of user.

PadCookie. Manages the retrieving and storing the cookies for the user session.

PadImpExp. Management of the import and export actions revoked from the pad toolbar.

PadUtils. Auxilliary utilities providing the date formatting, URL escaping and other frequently used

functions.

35

 4.2.4 Data storage

Persistent data of the pads can be stored in Etherpad Lite either in DB or in a file, since used

technology provides support for both the mysql and the sqlite databases. However, in both cases the

data are not normalized at all. As it was mentioned before, the ueberDB data storage stores different

records in a form of a map consisting of two columns: key and value; diverse data is therefore stored in

one database table.

Description of table columns in ueberDB:

Key. This is a primary key column although, it has not ordinal value. Value is provided as a string

concatenating attributes, that are tied with this record. The value could therefore rise fast to the high

lengths. Nevertheless, the algorithm is obviously aware of it, as the declared maximal available length

of key value is 100 characters.

Value. Value is a longtext-typed string in a form of dictionary and it comprises every attribute

significant for current action.

36

Figure 15: The illustration of Pad manager decomposition.

 5 Persistence tier design
 5.1 Domain analysis

For the sake of clarity of the integration process: the presented meta model will be relatively simple

providing no advanced functions. The model will try to cover just the main objectives of such an

application until providing working integration with a portlet technology.

 5.1.1 Entities

There were identified following entities in the implementation of Etherpad:

User. User is a main actor in an application of a collaborative editor. Each user must have unique

identification within the application, which can be either identification number or an unique user

name. Thanks to Single Sign-on mechanism provided by portals, we do not need to store any

additional passwords for users.

Pad. Pad entity stays for a document, that can be created, modified or deleted. The attributes should

include unique identification that can be same as within the User with a restriction on uniqueness of

the names.

Changeset. An essential part of the CE and revision systems s Changeset. It carries changes made on

the Pad. Changeset must includes the changeset string encapsulating the change on the Pad with a use

of the EasySync protocol.

AttributePool. As it was already mentioned, the AttributePool is co-transmitter of Pad modification,

including additional informations for the Changeset.

These are the base entities for modeling of a collaborative editor system. After small introduction to

domain we will look on the relations in it next.

 5.1.2 Relations

To provide a basis for modeling the persistence logic we need to describe also relations between the

entities above. Following class diagram denotes the relationships between the previously described

entities:

37

The important entity within a CE model is a Pad. It is a document, that can and must be created by an

User. However, who is the creator of Pad is not an essential information of core CE functionality, we

should not omit it.

The key to the less importance of relation between the Pad and User is in the next relationship. It is

that between the User and Changeset objects. Changeset is the most significant part of the editing

process since it reflects a change made on a document (in a Pad) and it is made by an User. It can be

therefore created only by the single User. However, the Changesets bears the whole information about

the changes made on the document, it is not needed to provide a Pad with such informations.

As a previous figure denotes, Pad object is formed from the Changeset objects.

The third relation drawn puts together Changeset and AttributePool. Changeset will carry the string

rule defining the current change to a document. If we were building a very simple text editor, where

there is only one available color and no special listing signs and only one style for fonts, we will last

with only Changeset object. It is due to the fact, that the AttributePool carries only such attributes that

needs to be specified by a tuple (key-value). Therefore the decomposition is better, as be could let open

the other options. The AttributePool instance should be, same as a Changeset, unique and the relation

must have cardinality 1:1. However, as we can provide clear decoupling on these two objects, the

relation could be made more effective. We will discuss this issue later in this chapter.

 5.2 Extending the meta model

In this topic we will move the analysis to the classes in the application.

38

Figure 16: Class diagram denoting core domain
objects and relations.

 5.2.1 Temporal entities

Some entities described in the previous topics have a character of temporal entities. We have the Pad

entity, which as a standard document should provide informations about its creation and modification

time. Although, the creation attribute have to be provided within the Pad, the behavior of the changes

made on it brings better solution for the modification time property.

This take us little bit aside of persistence layer, since we must have a look at the Changeset

entity. As we know, every change made on the Pad has a reflection in form of Changeset object.

Therefore, if we provide this entity with a creation time attribute – same as within a Pad, we can reuse

its value also as an information about the time of change on the Pad. Discussed idea is shown below on

the next figure.

According to the previous figure, the getCreationTime()4 method has in both cases role of getter

method, providing the applicable private property creationTime. The second method denoted within a

Pad class - getLastModificationTime() method would provide the desired value revoking the method

getCreationTime() on the latest Pad Changeset object. The method getLastModificationTime() can

look like this (for the sake of simplicity: we are supposing that the appropriate methods are defined

and members presented; also we suppose the list of changesets is not empty and method

getCreationTime provides legitimate value):

public long getLastModificationTime() {

Changeset latest = this.getLatestChangeset();

return latest.getCreationTime();

}

4 Some of the property names may not match with the implemention for sake of description.

39

Figure 17: Class diagram denoting Pads and Changesets properties
providing temporal informations.

 5.2.2 Attributes

Behavior of the application puts a big requirements on the DB resources. If we will build on the base

meta model shown previously in Figure X., the CE could provide dozens of new records during the

user work. This amount would be even raised by the number of users writing. Therefore, the model

should be optimalized in order to provide more effective persistence logic. We will discuss two topics,

depending on the place of the optimalization, where will be provided.

Relationship between Changeset and AttributePool

When the user is writing the text into Pad, he probably will not change the attributes for every single

character he writes. The assumption is even on opose to it, however, the written text would very likely

comprise of continues text chunks, which all have the same attributes. Therefore, we should decrease

the amount of the redundant AttributePools changing the relationship to Many-to-One. Simply,

different continuously submitted Changesets could share the same AttributePools.

Updated class diagram will look like following:

AttributePool

AttributePool object will comprise a set of attributes and their values to perform the additional

configuration for the current Changeset. Although, the attributes within the AttributePool can differ

from instance to instance, there is a certain quantity for both the attributes and the applicable values.

Since storing every attribute with a full name and value could obviously provide also bit of

redundancy, what can be relatively expensive for some aspects:

Storage capacity. The frequency of changes would raise to high values and therefore produce a huge

amount of Changeset and AttributePool objects, that must be stored within the database.

Database operations overhead. The previous aspect also impacts time that the database operations

lasts.

However, the values could be also extracted because there is a limited number of them (for each

attribute), the occurrences probably would not be as frequent as in the case of attributes; therefore, we

could retain them for a now with, maybe, a bit benevolent behavior. Discussed solution is also denoted

on the next figure.

40

Figure 18: Relationship between Changeset and
AttributePool with a new cardinality.

 5.2.3 User session configuration

When User signs into already visited Pad, he should be provided with previously specified preferences.

These preferences could be: text color, information whether to show numbers of lines or not and other

editor settings that could be specific for the each User. A simple Session relationship is illustrated on

the next figure also providing time informations keeping the user evidence.

There will be a small relatively static number of preferences, User could specify; therefore we could

store them within the Session entity in form of attributes. The change made on available preferences

such as e.g. addition of a new preference will require the update of the Session entity. This would not

be problem for the database table, but it could bring complications when updating the application

logic. Thus, we could provide a little different model, that would be more flexible. This approach is

similar to that we made for the attributes within the AttributePool. Next figure shows such model.

41

Figure 20: User signed into a Pad creates a Session to provide informations specific for the
current relationship.

Figure 19: Class diagram describing the
AttributePool entity breakdown as a

aggregation of more AttributeItem objects.

This model of preferences if compared to that of attributes also provides us with specified values

which is preferred, as it assures using only regular ones. Additionally, advantage of this approach is

that it decreases amount of data, as the preference values are only referenced, not duplicated for every

SessionPreference item. Since there will not be many session attributes and since it is also not the most

essential part of the CE, it is not needed to provide such a decomposition and we can stay with the first

diagram.

 5.2.4 Final meta model

In the figure above we can see whole meta model of our application as it was discussed in the previous

sections. The following section will build on this meta model to provide the model of database.

42

Figure 22: Full meta model for our CE implementation.

Figure 21: More sophisticated approach of modeling the preferences in the Session
relation.

 5.3 Design of the database

As the first thing in the development, we need to build up a correct database model, since it is a base

module of application and it can define even the simplicity or complexness of application logic

needed. We have also created a meta model that will very likely fits the actual database model;

therefore we will describe the model by looking on the single tables and their attributes.

 5.3.1 Tables

To reduce the amount of text and to highlight more interesting parts of the structure we will extract

some attributes. They are:

Common attributes

Id. All of the mentioned entities will be provided with the attribute id, which will be used as an

identification of a record and primary key for the table. Definition of the column will be in all cases

the same and in DDL syntax for MySQL should look like this:

`id` integer(10) NOT NULL AUTO_INCREMENT,

primary key(`id`)

CreationTime. This attribute is also common for more than one table. It bears the information about

the time, when the entity object was created. As default value current timestamp on record creation

will be used. The definition of the column will look as following, respecting the syntax of DDL for

MySQL:

`created` timestamp DEFAULT NOW()

User

Within the portlet application we do not need to provide an authentication and authorization of users

since it is already provided by the portal. Although, all the informations about the users are held in the

portal, we can provide our User with just a few informations retrieved from the identity management

system of the concrete portal. We will specifying the name of user, that will be already loaded from

the portal and optional extern User id, that will hold the id of a User in a portal.

Pad

Besides mentioned attributes, Pad table will provide an information about the name of Pad and author

of Pad, that will be also a foreign key referencing the record in User table.

Changeset

Most significant informations provided by Changeset record will be held within the attributes: number,

43

rule and charbank. Attribute number will hold an information about the order of current changes as

they occurred within the Pad. Therefore it is also an information for assembler of Changesets, so it

knows the order, in which the Changesets are applied to the parent Pad. Columns rule and charbank

will hold the information about the text change respecting the EasySync protocol. The changeset string

is, however disjointed into two parts: declaration of change (rule) and the inserted characters

(charbank). Foreign keys will be described in the ERD in the following section.

Session

Session table will provide only some attributes specific for the User – Pad relation. For now it will be

the information about the color used by User within the current Pad and time when he was last seen in

a Pad.

AttributePool

This table roles as a joining table in Many-to-Many relation between the Changeset and AttributeItem.

Therefore the only information providing is its primary key by which it is referenced in a Changeset

record.

AttributeItem

The table consists besides a primary key column from number column, that references the concrete

attribute as it is referenced within the Changeset. Then it holds the reference to Attribute table record

to identify the attribute to define its value and finally the value. Every record of this table belongs to

one record in an AttributePool, that references with foreign key attribPoolId.

Attribute

Table Attribute holds the available attributes, which can be used by the editor – which distinguishes. It

only holds the primary key identification and name identifying the attribute mainly in a browser.

44

All the attributes that was not mentioned can be simply understood by the ERD diagram above. All the

tables provides primary keys in a column named as id and all the foreign keys references joining tables

with name created as shortening of joining table name or role that can be intuitively held by the

current entity suffixing with “Id”. Whole tables definitions can be seen in Appendix A.

 5.4 Persistence logic

 5.4.1 Hibernate Session

Communication with the database is done through the Hibernate Session object. The Hibernate

Session is retrieved from HibernateSessionFactory which uses the configuration provided in

hibernate.cfg.xml file to create Hibernate Session. The work is done as follows:

Create the SessionFactory from hibernate.cfg.xml:

SessionFactory sf =

 new Configuration().configure().buildSessionFactory();

Open the Session on SessionFactory:

Session s = sf.openSession();

45

Figure 23: ERD diagram of the database.

Execute select query:

List<Pad> pads = s.createQuery("from Pad").list();

Or execute a transaction:

s.getTransaction().begin();

s.persist(pad);

s.getTransaction().commit();

 5.4.2 Data Access Objects (DAO)

DAO Factory

All the manipulation with the database data is done through the Data Access Objects. This design

pattern separates the application logic from the database operations by extracting the data

manipulation logic into separate objects.

46

 6 Application tier design
 6.1 Class model

 6.1.1 Base entity decomposition

However, entities described in the previous sections reflects different objects in the application, they

have some attributes with the same semantic. These attributes can be extracted into abstract classes to

provide more unified definition, its behavior and finally, eliminate redundancy of code. We will

describe the extracted super classes and describe its meaning and purpose.

BaseEntity

All the entities we have talked about has one attribute in common. It is id that identifies current object.

Since the semantics of the id attribute is for all the entities the same, we can extract it into new class

that all of them will extends. A class diagram shown below the text describes the inheritance.

TemporalEntity

We have also some entities which need to provide an information about the creation time and who

created them. The touched entities are Pad, Changeset and Session, although, they can be more of

them if we wanted to bring wider evidence. The inheritance is shown in the next class diagram.

47

Figure 24: Base entities inheritance – extending an abstract class BaseEntity.

 6.1.2 Main relations

Pad – Session – User

On the next class diagram it is shown the both Pad and User class relations with Session class.

However, the Session class is just extending of Many-to-Many relation between the two mentioned

classes, they both could provide a collection of related Session objects. In our case the collections of

Session objects is modeled as a map, where the key value is an id attribute of the other one class object

involved in relation with Session. For example in the userSessions map, the concrete Session object

will be referenced by the Pad object id as a key value and vice versa.

The advantage of the model is that we do not need walking through the collection of the Session every

48

Figure 25: Temporal entities inheritance -
extending an abstract class TemporalEntity.

Figure 26: Pad-User relation through the joining Session.

time we want to open the concrete Session.

Pad – Changeset

There has been already told that the Pad object will consists of number of Changesets. However, the

Changesets bears only the information about change, not the text all, the concrete Changesets can be

applied to a Pad text with the exactly the same state in which the Pad was when the Changeset was

made. The Pad therefore must apply the Changesets in a specified order, nevertheless, no Changeset

may miss, as it would be impossible to apply the next ones. Thus, the Pad will comprise an ordered set

of Changeset objects.

 6.2 Processing

 6.2.1 Client-to-Client communication

The behavior of the CE puts the client application to need of synchronizing the actual state with the

other users in the real time. Communication based on storing and retrieving every change into database

would cost very much. Maintaining the communication through the sockets on the otherside could

bring cost of the connection management and building such infrastructure.

In the modern enterprise application servers there can be found a mechanism called Java Message

Service (JMS), that works as a mediator between the clients in the application server. There are two

types of mediators defined in the JMS: queues and topics.

Queue. Queue provides point-to-point communication. There are two sides in the communication: the

sender and the receiver. The message sent by the sender can be retrieved only by the one defined

49

Figure 27: Pad-Changeset relation – composition of Changesets.

Figure 28: Communication through JMS Queue.

receiver. Although, the name seems to predicts the behavior, the order of messages would not be

necessary kept.

Topic. On the other side, the topic represents communication in a way of ether. The message is

published also by one sender (publisher), however, it can be received by the more listeners

(subscribers).

Since in CE application the content in single pad have to be synchronized with all the pad writers,

which are editing the same file. Therefore we will choose a topic.

Topic registration

The topics are registered in the JBoss AS through the administration site of started instance (admin-

console). Both topics and queues are accessible through the JNDI5 lookup.

 6.2.2 Handling local text change

When the user modifies the document locally in his editor, the easysync's JavaScript function is called

for packing the change into changeset string to produce the changeset for the application. Returned

changeset is then propagated to valueChangeListener method of the ManagedBean. Then the changeset

string is parsed into Changeset object, that is appended to the Pad of current Session.

Publishing the Changeset

The second step after the change is locally handled, the Changeset must be published to the topic, so

the collaborating editors could synchronize their states with the modified one. For the sake of

simplicity we will for now suppose that two or more Changesets with the same base6 would not met.

5 Java Naming and Directory Interface – service provided by JEE app. servers for retrieving server resources

6 Base states for the state of document before application of the Changeset.

50

Figure 29: Communication through JMS Topic.

 6.2.3 Handling remote text change

Subscribing to the topic

To be able to watch and react to remote changes, the local Session need to register Listener which will

be watching the changes in remote Sessions. The listener is connected to the concrete topic and hear

for the events that may occur on it. When the event occurs the onMessage method is been triggered

with the TextMessage object as a parameter. This object holds the message from the sender, The

receiver would then parse the message into Changeset and applies it to the Pad.

 6.2.4 Session Sender and Session Listener

Every user editing the Pad is doing it in distinct Session. Thus the Session object is one that represents

the instance of the editor with the Pad concrete opened in it. Therefore the Session object should be

both the Listener and Sender of the changes. However, the Session could not extend more than one

interface, this objects will be provided as Session properties.

 6.3 Authentication and authorization

 6.3.1 Single Sign-On

However, identity management (IDM) is already provided by the portal, portlet does not need to

provide another one. Since portlet will not be accessible bypassing the portal authentication, the only

needed information is identification of the user that can be provided by any information that has a

unique value for all the users. For such purpose we could last with such attributes like id in the portal

IDM or even login name.

 6.3.2 Retrieving user info from the portal

The user credentials can be retrieved from the context above. In portlets there is PortletContext class

for such uses, that provides a method getRemoteUser(). Nevertheless, we can also use FacesContext if

we are implementing with use of JavaServer Faces technology(JSF), that also provides the method.

GetRemoteUser method returns from the application context login name of the User actually logged

in, what is all we need for the sake of users distinction. Bellow code example shows the use in JSF.

PortletRequest req = (PortletRequest)
FacesContext.getCurrentInstance()

51

Figure 30: Class diagram of the Session - Sender and Session - Listener relations.

.getExternalContext()

.getRequest();

String name = req.getRemoteUser();

By the user credentials retrieved from the portal the User of the application is searched in the

database. If the user was not found – he has not been logged into an application yet, new User object

have to be created and stored in the database for the reference of the application.

The responsibility on user retrieving is on UserBean Managed Bean object. First the application start

and questions the user info, the UserBean have to provide the User object. The code for UserBean

looks like this:

public class UserBean {

private User user;

public UserBean() {

 loadLoggedUser();

}

private void loadLoggedUser() {

PortletRequest req =

(PortletRequest)FacesContext

.getCurrentInstance()

.getExternalContext()

.getRequest();

String name = req.getRemoteUser();

user = loadUser(name);

if (user == null) {

user = new User();

user.setName(name);

save(user);

}

}

}

where method loadUser tries to find the User with specified name in the database.

52

Figure 31: Piece of UserBean class code denoting the logic of loading the User.

 7 Possible extensions
Not all of the ideas was implemented this chapter will introduce or propose some interesting

extensions and features that could be later implemented providing better comfort or functionality.

 7.1 Import and export

The import and export are both very important features that should take a place in the most number of

editors - as it enables mobility of documents and makes the documents transferable and reusable

between the many diverse applications.

 7.2 Security control and permissions

For the sake of simplicity and due to the portlet API there was not designed any security system. All

the security was left out for the direction of portal. Therefore every user logged into a portal will have

an access to edit the documents. However, there could be added some kind of system for an access

control; such extended tool could be therefore deployed and integrated within the complex structure of

users and roles providing for them mandatory access control. We will shortly discuss some of the

analyzed models.

 7.2.1 Permissions

Entities

The intended security management system would diversify two entities: UserObject and PadSubject.

UserObject. This entity represents the users, it can be although a single user or a group of users. We

will say that a single user will be called as the User and a group of users as the UserGroup.

PadSubject. A PadSubject states for an editable entity. It can be both a document or a group of

documents. We will call the document as the Pad and a group of documents as the PadGroup.

The UserObject is tied with the PadSubject by the type of permission enabling the UserObject

to use on it certain functionality. Provided permission types could differ depending on the security

model used, however the two main would be the Read&Write (rw) and ReadOnly (ro) permissions.

The next figure shows the relations in the UML notation.

53

Models

There can be designed a number of security models depending on the both UserGroups and

PadGroups management manner, however I will present just two attitudes which can be applied on

both entities:

Hierarchical. Instances of the entity (UserObject or PadSubject) are organized in a hierarchical

structure, where the UserGroup can be a member of another UserGroup and the PadGroup can be a

members of another PadGroup. On the bottom level there are the Users and Pads within applicable

groups. In such arrangement the permissions can be delegated from the higher nodes down to the

bottom nodes. Nevertheless, the closest parent-node's permissions should be applied to the current

node. The model is illustrated on the Figure X.

Flat. Another attitude can be an organization with just one level of aggregation. There are instances

which roles as grouping objects (UserGroup and PadGroup) providing the same permissions for its

members (User and Pad). There can be modeled two types of membership: exclusive and non-

exclusive. In the exclusive model the groups will role as baskets - certain object could reside only

within one group. This model, however, will be not very useful for a UserObjects organization, since it

disallows dynamic assigning of permissions to the different UserGroups. On the other side the

organization of PadSubjects could work in that manner, although it could be rather messy within a

large amount of documents. The second model would allow that one object may reside within a more

groups which is more flexible compared to the first type. On the figure bellow it is shown the “Flat”

54

Figure 32: Relationship between the UserObject and PadSubject over the Permission.

Figure 33: Class diagram describing “Hierarchical” model of UserObject
organization.

UserObject organization.

 7.2.2 Prioritizing the text – permissions to update or remove

Collaboration on the documents within the group of people can bring the situation when there can be

some text or part of the document stated as important and therefore it could be unwanted to remove or

modify this slice of text. This can take a place when working on he same document with the

collaborating users through the different security levels, so the user on the higher level should have a

privilege to put a text that ca not be replaced or removed.

However, this idea also requires addition to the permission types. Although mentioned case suppose

the hierarchical model, this idea can be also provided within the flat security model.

 7.3 Data optimization and caching

When developing a web-based application that tends to use huge amounts of data stored in a database,

you have to deal with the database communication overhead. This is even more critical topic for an

application we are developing.

CE places a rather challenging requirements on data management - it is due to high frequency of

changes, that could occur in CE and also due to a fact that every change is stored within the separate

Changeset (pessimistically with AttributePool for each one) immediately into database. There are two

aspects for a database optimization that should be therefore reflected: communication overhead and

capacity of storage.

 7.3.1 Lazy submission

We have told that the frequency of Changesets generation will be rather big, since the every little

change will immediately produce a changeset. This is the issue that can not be overlapped, however, it

55

Figure 34: Class diagram describing the “Flat” model of UserObjects
organization.

emerges from the concept of a collaborative editor.

What we can override is the number of database submissions. However, we have also implemented a

protocol that serve as a mediator of changes between the currently working users, the users are already

up to date with the current state of actual document. Therefore there is no need to send every change

into a database and we can decrease amount of communication with the database to a minimum by

providing a lazy submission of changes to a database.

Such a behavior would, however, need a more sophisticated synchronization mechanism in the

application logic.

 7.3.2 Changesets extraction

The fact that every little change is processed as a Changeset and then submitted into database can

cause that its capacity will be very quickly cluttering; therefore a Pad with large content will likely

comprise a large number of Changesets. One of the possible solutions for minimizing the number of

Changesets within the Pad could be combination of older Changesets into single initial Changeset as

denotes following picture.

However, in this case the changeset could comprise a text written by different users and we can not

assign an authorship for all of them within a single Changeset object. The solution could be to create

56

Figure 35:
Illustration

describing extraction
of changesets into

one initial changeset.

distinct changeset entity for the initial changeset and enable to provide the authorship of every single

change in the changeset; this could be provided by the AttributePool. This approach, nevertheless,

would not avoid the complications which could be caused just by a different authorship manipulation

in the objects of Changeset and initial (aggregated) changeset. For the addition we can look at a class

diagram in the following figure denoting discussed idea.

On the figure above the AggregatedChangeset states for the initial changeset as discussed, however, the

aggregation between the AggregatedChangeset and Pad tells that this changeset can be also placed

elsewhere as on the Pad's beginning; as was discussed in the previous paragraph.

This extracted changesets, which where placed in the new AggregatedChangeset object could be then

removed from the database and exported possibly into XML file. With this backup, current changeset

could be on demand revoked and provided into origin state for use within the application.

 7.4 Extended features

There can be provided features that can provide for user some added value or enrich the its functions

or usability.

 7.4.1 Non-textual objects

For many uses a plain text documents would not sufficiently fulfill users needs. Many times when

writing different types of documents, we need a help of figures, diagrams or illustrations; therefore an

availability to involve e.g. images could be very helpful. Leveraging enough scalable AttributePool can

make the thing very likely. However, there is need of an addition for the database model in a form of a

new table that extends the Attribute entity providing the information for the injected text.

57

Figure 36: Class diagram introducing a new entity for initial changeset.

 8 Conclusion
As can be seen, the work comprises a number of technologies and concepts which can rise much

inspiration. Rather interesting theme in the paper is the concept of collaborative editing. The idea

brings a big progress into an area of document editing. Collaborative editing can be very useful e.g. in

processes of making analysis, decision making or even in extreme programming. Portlet technology

itself brings to the field of web development many interesting attitudes; starting with the unification of

communication between portlet applications in a portal page and ending with an ability to leverage

existing services to provide new ones, that could fit better user requirements.

Objective of the work was to study the both of technologies in order to bring an implementation of the

collaborative editor built with use of existing library for synchronization and manipulation with

changes provided by the project Etherpad that will be integrated into JEE platform in a form of portlet

application. The analysis brings many findings which sometimes resulted in choosing of another way

of design. Many of these findings was caused by the lack of experiences in an area of both the

technologies. The first task was to breakdown the infrastructure of the Etherpad Lite application. It

was also the most crucial phase, however, it finally emerges the way, how to leverage the existing

libraries to build upon them JEE application.

From the aspect of JEE application logic the theme impresses with many challenges from the

possibilities of extension in a view of user experience, extension of Attributes to enable the inserting

of images and finally, with very crucial topic – optimization.

However, due to lack of experience in the area of JavaScript server-side frameworks and many

problems facing while trying to put together the part of the project with the JEE environment of JBoss

AS, the implementation of the CE tool did not provide sufficient results. Most of the time costs the

misleading analysis of origin objective to leverage more from the Etherpad Lite implementation and

try to identify possible interface for attaching the JEE server side implementation.

The work on this paper brings me more than a wider overview of actually used technologies,

experience with the development of project in the environment of JEE or importance of JavaScript role

in todays web development, but mainly the knowledge that quality analysis needs to build wider

knowledge background.

58

Bibliography
[1] ASHISH SARIN. Portlets in Action. 20 Baldwin Road PO Box 261 Shelter Island, NY

11964: Manning Publications Co., 2012. ISBN 9781935182542.

[2] RICHARDSON, W. Clay, Donald AVONDOLIO, Joe VITALE, Peter LEN a Kevin T.

SMITH. Professional portal development with open source tools: Java TM Portlet API,

Lucene, James, Slide (Wrox Press). Indianapolis, Ind.: Wiley Pub., 2004, 400 p. ISBN 04-

714-6951-3.

[3] ACE (editor). In: Wikipedia: the free encyclopedia [online]. San Francisco (CA): Wikimedia

Foundation, 2001-, 2012-04-12 [cit. 2012-04-18]. from

http://en.wikipedia.org/wiki/ACE_(editor)

[4] Collaborative real-time editor. In: Wikipedia: the free encyclopedia [online]. San Francisco

(CA): Wikimedia Foundation, 2001-, 2012-04-11 [cit. 2012-04-18]. from

http://en.wikipedia.org/wiki/Collaborative_real-time_editor

[5] FOWLER, Martin. Destilované UML. 1st ed. Praha: Grada, 2009, Knihovna programátora

(Grada). ISBN 978-80-247-2062-3.

[6] SARANG, Poornachandra. Practical Liferay Java-based portal applications development.

Berkeley, Calif: Apress, 2009. ISBN 978-143-0218-487.

[7] KATZ, Max and Ilya SHAIKOVSKY. Practical RichFaces. 2nd ed. New York, N.Y.:

Distributed by Springer Science Business Media, c2011, 392 p. Expert's voice in Java

technology. ISBN 978-143-0234-500.

[8] COLLINS-SUSSMAN, Ben, Brian W. FITZPATRICK a C. Michael PILATO. Version

control with subversion. 2nd ed. Beijing: O'Reilly, 2008, 404 p. ISBN 978-0-596-51033-6.

[9] JSR-168. JavaTM Portlet Specification: Version 1.0. 2003. from:

http://jcp.org/aboutJava/communityprocess/review/jsr168/index.html.

[10] JSR-286. JavaTM Portlet Specification: Version 2.0. 2008. from:

http://jcp.org/aboutJava/communityprocess/final/jsr286/index.html

59

Figures
Figure 1: User text distinguishing in the Etherpad Lite CE..11

Figure 2:Building a document by application of changesets...14

Figure 3: Users A, B and C are synchronized with a server copy...15

Figure 4: Example: Production of conflict: 2 managers are writing down the possible scenarios to meet
the specified goal..16

Figure 5: Example of conflict solution for a situation denoted on the picture in previous figure..........17

Figure 6: Example of a web portal: iGoogle by Google...18

Figure 7: Portal page decomposition. [10]..20

Figure 8: Illustration of content and service aggregation within the portal page..................................21

Figure 9: Illustration of portlet infrastructure...23

Figure 10: Portal server and portlet container roles in handling of a portlet request.[1].......................24

Figure 11: Portal page generation as described in paragraph above.[9]..25

Figure 12: Example of a portlet.xml file...27

Figure 13: Sender portlet B generates an event and sends it to portlet container, event is then processed
by the container to receiver portlets C and E..29

Figure 14: Brief illustration of client-server communication within the Etherpad Lite infrastructure.. 34

Figure 15: The illustration of Pad manager decomposition..36

Figure 16: Class diagram denoting core domain objects and relations...38

Figure 17: Class diagram denoting Pads and Changesets properties providing temporal informations.
...39

Figure 18: Relationship between Changeset and AttributePool with a new cardinality........................40

Figure 19: Class diagram describing the AttributePool entity breakdown as a aggregation of more
AttributeItem objects..41

Figure 20: User signed into a Pad creates a Session to provide informations specific for the current
relationship...41

Figure 21: More sophisticated approach of modeling the preferences in the Session relation..............42

Figure 22: Full meta model for our CE implementation...42

Figure 23: ERD diagram of the database..45

Figure 24: Base entities inheritance – extending an abstract class BaseEntity......................................47

Figure 25: Temporal entities inheritance - extending an abstract class TemporalEntity........................48

Figure 26: Pad-User relation through the joining Session..48

Figure 27: Pad-Changeset relation – composition of Changesets...49

60

Figure 28: Communication through JMS Queue..49

Figure 29: Communication through JMS Topic..50

Figure 30: Class diagram of the Session - Sender and Session - Listener relations..............................51

Figure 31: Piece of UserBean class code denoting the logic of loading the User..................................52

Figure 32: Relationship between the UserObject and PadSubject over the Permission........................54

Figure 33: Class diagram describing “Hierarchical” model of UserObject organization......................54

Figure 34: Class diagram describing the “Flat” model of UserObjects organization............................55

Figure 35: Illustration describing extraction of changesets into one initial changeset..........................56

Figure 36: Class diagram introducing a new entity for initial changeset..57

61

Appendix A: Manual how to set up the

project environment and start the application
To set up the environment from the added sources we need to forward this guideline:

1. Setup local mysql database server if not already present. This can be done in linux by executing

following list of commands:

1. Sign in as root or use the fakeroot to be allowed to provide installation. Following commands

works in Debian and Debian-based distributions, such as Ubuntu. In other environments there

are also available packages with GUI installation wizards:

linux@cmd:~$ sudo apt-get install mysql-server mysql-client

2. After successful installation log in to mysql database client with previously given root

credentials:

linux@cmd:~$ mysql -u root -p

linux@cmd:~$ <type your root password>

mysql> comand prompt should occurs.

3. Create new database by providing command:

mysql> CREATE DATABASE portletepad;

4. Create new db user for our application; type:

mysql> CREATE USER portletepad;

5. Create new db user for our application with all the privileges to created database:

mysql> GRANT ALL ON portletepad.* TO 'portletepad'@'localhost' IDENTIFIED BY

'portletepad';

6. Copy the attached files into file system in to folder with read & write permissions

permissions.

7. Now run the script placed in the main folder to build a database structure:

mysql> source /path/to/script/database.sql

8. Now we should have set the database for the application to work. You can now logout from the

62

mysql console with one of the following commands:

mysql> quit or mysql> bye

2. We suppose that you have placed the attached files into your file system. The folder consists from

GateIn Portal Container configured with the JBoss AS 6.0 and preconfigured Portal instance.

Then the folder consists Java Development Kit (JDK) 1.7.0 to run the application server on it.

Although, the GateIn Portal Container is configured to use the attached JDK, there is need to

provide one configuration before the execution of the server. However, the JBoss needs to set up

the JBOSS_HOME environment variable to point to the actual JBoss (with GateIn) instance to

start properly. This can be done by executing the next dommands:

1. export JBOSS_HOME=/path/to/GateInWithJBossAS

3. next we can start the server providing next steps:

1. Walk into directory GateInWithJBossAS:

linux@cmd:~$ cd /path/to/GateInWithJBossAS

2. And run the server with next command:

linux@cmd:~$./bin/run.sh

3. The GateIn Portal Container build upon the JBoss AS should be after minute or two started –

you will know this by the line ending with startup time information:

...JBossAS [6.0.0.Final "Neo"] Started in 42s:451ms

4. Now open the browser and navigate to the url: http://localhost:8080/portal

5. Sign in by clicking on the one predefined account.

6. Navigate from the top menu to the portlet: Home –> Portlet Etherpad Portal Page

7. The Portlet is opened and could be used The behaviour is intutive.

8. From the list of pads select one. The pad will open the editor with content of the pad.

9. Now you can edit th file and provide basic functionality od the editor.

10. For demonstration of collaborative behavior you must open the another browser and navigate to

the portlet.

11. Sign in as another user.

12. Open the same pad as in the first instance and try if the remote changes are updating.

63

Appendix B: Definition of database structure

and initial testing data in MySQL DDL
­­

­­ Table structure for table `Attribute`

­­

DROP TABLE IF EXISTS `Attribute`;

CREATE TABLE `Attribute` (

 `id` int(10) NOT NULL AUTO_INCREMENT,

 `name` varchar(50) NOT NULL,

 PRIMARY KEY (`id`)

) ENGINE=MyISAM AUTO_INCREMENT=12 DEFAULT CHARSET=latin1;

LOCK TABLES `Attribute` WRITE;

INSERT INTO `Attribute` VALUES (1,'bold'),(2,'strikethrough'),(3,'italic'),
(4,'underline'),(5,'list'),(6,'list'),(7,'list'),(8,'list'),(9,'list'),
(10,'insertorder'),(11,'insertorder');

UNLOCK TABLES;

­­

­­ Table structure for table `AttributeItem`

­­

DROP TABLE IF EXISTS `AttributeItem`;

CREATE TABLE `AttributeItem` (

 `id` int(10) NOT NULL AUTO_INCREMENT,

 `attribPoolId` int(10) NOT NULL,

 `number` int(3) NOT NULL,

 `attrId` int(10) NOT NULL,

 `value` varchar(50) NOT NULL,

 PRIMARY KEY (`id`),

 KEY `attribPoolId` (`attribPoolId`),

64

 KEY `attrId` (`attrId`)

) ENGINE=MyISAM AUTO_INCREMENT=3 DEFAULT CHARSET=latin1;

­­

­­ Dumping data for table `AttributeItem`

­­

LOCK TABLES `AttributeItem` WRITE;

INSERT INTO `AttributeItem` VALUES (1,0,0,3,'true'),(2,2,0,1,'true');

UNLOCK TABLES;

­­

­­ Table structure for table `AttributePool`

­­

DROP TABLE IF EXISTS `AttributePool`;

CREATE TABLE `AttributePool` (

 `id` int(10) NOT NULL AUTO_INCREMENT,

 PRIMARY KEY (`id`)

) ENGINE=MyISAM AUTO_INCREMENT=3 DEFAULT CHARSET=latin1;

­­

­­ Dumping data for table `AttributePool`

­­

LOCK TABLES `AttributePool` WRITE;

INSERT INTO `AttributePool` VALUES (1),(2);

UNLOCK TABLES;

­­

­­ Table structure for table `Changeset`

­­

DROP TABLE IF EXISTS `Changeset`;

CREATE TABLE `Changeset` (

 `id` int(10) NOT NULL AUTO_INCREMENT,

 `number` int(10) NOT NULL,

65

 `rule` varchar(50) NOT NULL,

 `charbank` varchar(50) NOT NULL,

 `attribPoolId` int(10) NOT NULL,

 `padId` int(10) NOT NULL,

 `authorId` int(10) NOT NULL,

 `created` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,

 PRIMARY KEY (`id`),

 KEY `attribPoolId` (`attribPoolId`),

 KEY `padId` (`padId`),

 KEY `authorId` (`authorId`)

) ENGINE=MyISAM AUTO_INCREMENT=4 DEFAULT CHARSET=latin1;

­­

­­ Dumping data for table `Changeset`

­­

LOCK TABLES `Changeset` WRITE;

INSERT INTO `Changeset` VALUES (1,1,'Z:0>7|*0+7','Welcome',0,1,0,'2012­05­01
20:41:16'),(2,2,'Z:7>1|=7*0|1+1','\n',0,1,0,'2012­05­01 20:41:16'),(3,3,'Z:8>3|
1=8*0+3','ano',1,1,1,'2012­05­01 20:41:16');

UNLOCK TABLES;

­­

­­ Table structure for table `Pad`

­­

DROP TABLE IF EXISTS `Pad`;

CREATE TABLE `Pad` (

 `id` int(10) NOT NULL AUTO_INCREMENT,

 `name` varchar(50) NOT NULL,

 `creatorId` int(10) NOT NULL,

 `created` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,

 PRIMARY KEY (`id`),

 UNIQUE KEY `name` (`name`),

66

 KEY `creatorId` (`creatorId`)

) ENGINE=MyISAM AUTO_INCREMENT=3 DEFAULT CHARSET=latin1;

­­

­­ Dumping data for table `Pad`

­­

LOCK TABLES `Pad` WRITE;

INSERT INTO `Pad` VALUES (1,'karol pad',1,'2012­05­01 20:41:16'),(2,'alfonz
pad',2,'2012­05­01 20:41:16');

UNLOCK TABLES;

­­

­­ Table structure for table `Session`

­­

DROP TABLE IF EXISTS `Session`;

CREATE TABLE `Session` (

 `id` int(10) NOT NULL AUTO_INCREMENT,

 `padId` int(10) NOT NULL,

 `userId` int(10) NOT NULL,

 `color` varchar(7) DEFAULT '#000000',

 `created` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,

 `lastSeen` timestamp NOT NULL DEFAULT '0000­00­00 00:00:00',

 PRIMARY KEY (`id`),

 UNIQUE KEY `padId` (`padId`,`color`),

 KEY `userId` (`userId`)

) ENGINE=MyISAM AUTO_INCREMENT=12 DEFAULT CHARSET=latin1;

­­

­­ Dumping data for table `Session`

­­

LOCK TABLES `Session` WRITE;

INSERT INTO `Session` VALUES (1,1,1,'#123456','2012­05­19 09:33:41','2012­05­19
09:33:41'),(2,1,2,'#654321','2012­05­19 09:33:41','2012­05­19 09:33:41'),

67

(4,2,4,NULL,'2012­05­19 13:08:00','2012­05­20 09:20:21'),(5,1,4,NULL,'2012­05­19
13:10:55','2012­05­20 08:00:05'),(6,1,5,NULL,'2012­05­19 19:17:17','2012­05­20
08:00:15'),(7,2,6,NULL,'2012­05­20 03:03:57','2012­05­20 03:51:47'),
(8,1,6,NULL,'2012­05­20 03:25:30','2012­05­20 06:00:34'),(9,1,7,NULL,'2012­05­20
06:15:39','2012­05­20 07:59:10'),(10,2,7,NULL,'2012­05­20 06:38:18','2012­05­20
07:22:21'),(11,2,5,NULL,'2012­05­20 07:58:34','2012­05­20 07:59:30');

UNLOCK TABLES;

­­

­­ Table structure for table `User`

­­

DROP TABLE IF EXISTS `User`;

CREATE TABLE `User` (

 `id` int(10) NOT NULL AUTO_INCREMENT,

 `name` varchar(50) NOT NULL,

 `externId` varchar(50) DEFAULT NULL,

 `created` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,

 PRIMARY KEY (`id`)

) ENGINE=MyISAM AUTO_INCREMENT=8 DEFAULT CHARSET=latin1;

­­

­­ Dumping data for table `User`

­­

LOCK TABLES `User` WRITE;

INSERT INTO `User` VALUES (1,'jonas',NULL,'2012­05­19 09:34:03'),
(2,'karol',NULL,'2012­05­19 09:34:03'),(3,'alfonz',NULL,'2012­05­19 09:34:03'),
(4,'root',NULL,'2012­05­19 11:26:45'),(5,'john',NULL,'2012­05­19 19:17:15'),
(6,'demo',NULL,'2012­05­20 03:03:39'),(7,'mary',NULL,'2012­05­20 06:15:34');

UNLOCK TABLES;

68

Appendix C: Object-relational mapping

configuration with Hibernate mapping files
Mapping document version

<?xml version="1.0"?>

<!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD
3.0//EN" "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

Pad.hbm.xml

<hibernate-mapping>

 <class name="org.webepad.model.Pad" table="Pad" lazy="false">

 <id name="id" type="java.lang.Long">

 <column name="id" />

 <generator class="identity" />

 </id>

 <property name="name" type="java.lang.String">

 <column name="name" />

 </property>

 <property name="created" type="java.util.Date">

 <column name="created" />

 </property>

 <many-to-one name="creator" class="org.webepad.model.User"
fetch="join">

 <column name="creatorId" />

 </many-to-one>

 <bag name="changesets" inverse="false" table="Changeset" lazy="true"
order-by="number asc">

 <key column="number" />

 <one-to-many class="org.webepad.model.Changeset" />

 </bag>

 <map name="userSessions" inverse="false" table="Session" lazy="true"
access="field">

 <key column="padId" />

 <map-key column="userId" type="java.lang.Long"></map-key>

 <one-to-many class="org.webepad.model.Session" />

69

 </map>

 </class>

</hibernate-mapping>

User.hbm.xml

<hibernate-mapping>

 <class name="org.webepad.model.User" table="User" lazy="false">

 <id name="id" type="java.lang.Long">

 <column name="id" />

 <generator class="identity" />

 </id>

 <property name="externId" type="java.lang.String" insert="false"
update="false">

 <column name="externId" />

 </property>

 <property name="name" type="java.lang.String">

 <column name="name" />

 </property>

 <map name="padSessions" inverse="false" table="Session" lazy="true"
access="field">

 <key>

 <column name="padId" />

 </key>

 <map-key type="java.lang.Long"></map-key>

 <one-to-many class="org.webepad.model.Session" />

 </map>

 </class>

</hibernate-mapping>

Changeset.hbm.xml

<hibernate-mapping>

 <class name="org.webepad.model.Changeset" table="Changeset" lazy="false">

 <id name="id" type="java.lang.Long">

 <column name="id" />

 <generator class="identity" />

 </id>

 <property name="rule" type="java.lang.String">

 <column name="rule" />

70

 </property>

 <property name="charbank" type="java.lang.String">

 <column name="charbank" />

 </property>

 <property name="number" type="java.lang.Integer">

 <column name="number" />

 </property>

 <property name="created" type="java.util.Date">

 <column name="created" />

 </property>

 <many-to-one name="pad" class="org.webepad.model.Pad" fetch="join">

 <column name="padId" />

 </many-to-one>

 <many-to-one name="author" class="org.webepad.model.User"
 fetch="join">

 <column name="authorId" />

 </many-to-one>

 <one-to-one
name="attributePool" class="org.webepad.model.AttributePool">

 </one-to-one>

 </class>

</hibernate-mapping>

Session.hbm.xml

<hibernate-mapping>

 <class name="org.webepad.model.Session" table="Session" lazy="false">

 <id name="id" type="java.lang.Long">

 <column name="id" />

 <generator class="identity" />

 </id>

 <property name="colorCode" type="java.lang.String">

 <column name="color" />

 </property>

 <property name="created" type="java.util.Date">

 <column name="created" />

 </property>

 <property name="lastSeen" type="java.util.Date">

71

 <column name="lastSeen" />

 </property>

 <many-to-one name="pad" class="org.webepad.model.Pad" fetch="join">

 <column name="padId" />

 </many-to-one>

 <many-to-one name="user" class="org.webepad.model.User" fetch="join">

 <column name="userId" />

 </many-to-one>

 </class>

</hibernate-mapping>

AttributePool.hbm.xml

<hibernate-mapping>

 <class name="org.webepad.model.AttributePool" table="AttributePool"
lazy="false">

 <id name="id" type="java.lang.Long">

 <column name="id" />

 <generator class="identity" />

 </id>

 <one-to-one name="changeset" class="org.webepad.model.Changeset"></one-
to-one>

 <map name="attributeMap" table="AttributeItem" lazy="true"
access="field">

 <key>

 <column name="number" />

 </key>

 <map-key type="java.lang.Integer"></map-key>

 <one-to-many class="org.webepad.model.AttributeItem" />

 </map>

 </class>

</hibernate-mapping>

AttributeItem.hbm.xml

<hibernate-mapping>

 <class name="org.webepad.model.AttributeItem" table="AttributeItem"
lazy="false">

 <id name="id" type="java.lang.Long">

 <column name="id" />

72

 <generator class="identity" />

 </id>

 <property name="number" type="java.lang.Integer">

 <column name="number" />

 </property>

 <many-to-one name="attribute" class="org.webepad.model.Attribute"
fetch="join">

 <column name="attrId" />

 </many-to-one>

 <property name="value" type="java.lang.String">

 <column name="value" />

 </property>

 <many-to-one name="attributePool"
class="org.webepad.model.AttributePool" fetch="join">

 <column name="attribPoolId" />

 </many-to-one>

 </class>

</hibernate-mapping>

Attribute.hbm.xml

<hibernate-mapping>

 <class name="org.webepad.model.Attribute" table="Attribute" lazy="false">

 <id name="id" type="java.lang.Long">

 <column name="id" />

 <generator class="identity" />

 </id>

 <property name="name" type="java.lang.String">

 <column name="name" />

 </property>

 </class>

</hibernate-mapping>

73

