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Abstrakt

Tato praca sa zaobera asymptotickou analyzou linearnej diferencnej rovnice druhého
radu s vyuzitim tedrie Karamatovskych postupnosti. St zhromazdené vlastnosti reguldrne
sa meniacich postupnosti, ktoré si uzitocné v asymtotickej teorii. Pomocou transformécie
diferenc¢nej rovnice na dynamicki rovnicu na vhodni ¢asovu skalu a dokazanim vseobec-
ného vysledku pre dynamicki rovnicu je odvodend podmienka, ktora zaruci regularnu
variaciu priestoru rieseni diferen¢nej rovnice. Kombinaciou roznych technik st odvodené
asymptotické formule a riesenia diferencnej rovnice su klasifikované do istych asymptotic-
kych tried.

Summary

This thesis deals with the asymptotic analysis of a linear second-order difference equa-
tion using the theory of Karamata sequences. Properties of regularly varying sequences
that are useful in asymptotic theory are gathered. Using a transformation of a difference
equation into the dynamic equation on the appropriate time scale and proving a general
result for the dynamic equation, the condition that guarantees a regular variation of the
solution space of a difference equation is obtained. By the combination of the variety
of techniques, asymptotic formulae are established and the solutions of the difference
equation are classified into certain asymptotic classes.

Klicova slova
diferen¢na rovnica, pozitivne rieSenie, regularne sa meniaca postupnost, casova skala,
dynamické rovnica, asymptoticka formula

Keywords
difference equation, positive solution, regularly varying sequence, time scale, dynamic
equation, asymptotic formula
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Rozsireny abstrakt
Téato praca sa zaobera asymptotickou analyzou linearnej diferen¢nej rovnice druhého
radu
A(rrAyr) + pryr+ = 0,

kde r > 0, s roznymi znamienkovymi podmienkami pre p. Tato rovnica je ¢astym objek-
tom zaujmu, nakolko sa casto vyskytuje v roznych aplikaciach.

V préaci st najprv popisané zakladné informacie o tejto diferencnej rovnici a pridruzené
pojmy — oscilacia, Riccatiho rovnica a ista algebraicka rovnica, ktora sa vyskytuje pri
analyze tejto rovnice. St definované asymptotické triedy rieseni vzhladom na ich spravanie
v nekonecne a je ukazana zakladnd klasifikacia rieseni do tychto tried. S predstavené poj-
my Casova skala a kalkulus na ¢asovych skalach, ¢o je zovSeobecnenim (nielen) klasického
diferencialneho kalkulu a diskrétneho kalkulu.

Dalej st v praci zhromazdené vlastnosti reguldrne sa meniacich postupnosti, ktoré
st uzitocné v asymptotickej tedrii diferenénych rovnic. Jednou z najdolezitejsich viet je
Karamatova veta, ktora ukaze, ze pomaly sa meniace postupnosti nasobené mocninnymi
postupnostami a integrované, sa asymptoticky spravaju ako konstanty.

Je diskutovand otazka, za akych predpokladov st vSetky eventudlne pozitivne riesenia
danej rovnice reguldrne sa meniace postupnosti. St odvodené podmienky, na zaklade
ktorych ma vseobecnejsia dynamicka rovnica na ¢asovej skale regularne sa meniace riese-
nia. Vyuzitim tohto vysledku a transformacie diferen¢nej rovnice na vhodnu casovi skalu
ziskame nutni a postacujicu podmienku pre to, aby vsetky eventualne pozitivne riesenia
boli reguldrne sa meniace. Tym, Ze dokdZeme, Ze vSetky riesenia s regularne sa menia-
ce, ziskame, skrz vlastnosti regularne sa meniacich postupnosti, netrivialne informécie o
tychto rieseniach.

V praci su odvodené asymtotické formule pre riesenia danej diferenénej rovnice, ktoré
maju velky vyznam skrz fakt, Ze vSeobecne nie je tato rovnica analyticky riesitelnd. Riese-
nia su klasifikované podla ich spravania v nekonecne do asymptotickych tried. St disku-
tované rozne poznamky o vysledkoch, o moznom dalSom smerovani a je naznacené, ako
sa da inak pozerat na vysledky v tejto praci skrz transformaciu na rekurentni rovnicu.

St demonstrované rozne techniky a postupy, ktoré sa pouzivaju v (nielen) asymp-
totickej tedrii. Transformaciami zavislej, resp. nezavislej premennej prevedieme ,zlozitu*
diferenént rovnicu na (v kontexte aktudlneho skimania rovnice) ,jednoduchsiu® dife-
rencni alebo dynamickt rovnicu. Medzi pouzité transformacie napriklad patri linedrna
transformécia, princip reciprocity alebo transformacia z jednej ¢asovej skaly na int ¢asovi
skalu. Dalej je predvedena Riccatiho technika, ktora je v kontexte neoscilativnych riesent
velmi silnym néstrojom na analyzu kvalitativnych vlastnosti rovnic.

Je ukazand vyuzitelnost tedrie regularne sa meniach postupnosti ich vlastnosti pre
(nielen) asymptoticki tedriu.

Jednym z najpodstatnejSich prinosov tejto prace je cast, kde sa dokazuje reguladrna
variacia vSetkych eventudlne pozitivnych rieseni diferencnej rovnice. St odvodené pod-
mienky, za ktorych ma vsSeobecnejsia dynamicka rovnica na diskrétnej casovej skéle

222(t) + p(t)y’ (t) = 0,

kde r > 0 a p lubovolné, regularne sa meniaci priestor rieseni, ¢o je novy vysledok, ktory
zovseobecnuje zname vysledky z hladiska nepritomnosti znamienkovej podmienky p < 0
a z hladiska vSeobecnejsieho defini¢ného oboru. Dal$im novym vysledkom je dokézanie
pod akymi predpokladmi mé diferencnéd rovnica priestor rieseni tvoreny z regularne sa
meniacich postupnosti. Tento fakt je dokdzany pomocou transformacie diferencnej rovnice



na dynamickt rovnicu a dava navod, ako sa da vysporiadat s réznymi situdciami, ked je
(nielen) diferencné rovnica v ,zlozitom* tvare. Tento vysledok je novy z hladiska r # 1,
resp. z hladiska nepritomnosti znamienkovej podmienky p < 0.

Dalsfm prinosom tejto prace je doplnenie asymptotickych formuli pre p > 0 a ich
unifikacia so zndmymi vysledkami. Okrem asymptotickych formuli je pre pripad p > 0
doplnend klasifikacia rieseni diferencnej rovnice na zaklade ich asymptotického spravania.

Prinosom je ukazka vyuzitelnosti tedérie regularne sa meniach postupnosti a taktiez
spominand demonstracia roznych technik a postupov, ktoré su casto pouzivané.



I hereby declare that I have written my Master’s Thesis Discrete Regular Variation
and Difference Equations independently under the supervision of prof. Mgr. Pavel Rehék,
Ph.D. using literature listed in the bibliography section.

Be. Daniel Caputa,






At this place I would like to express my huge gratitude to my supervisor, doc. Mgr.
Pavel Rehak, Ph.D., for his willingness, consultations, professional guidance and valuable
comments.

Be. Daniel Caputa,






Introduction
1 Second-order linear difference equations

2 Discrete Karamata theory

2.1 Karamata theoryon Z . . . . . ... ... ... .. ...
2.2 Karamata theoryon T . . . . .. .. ... .. ... ...

3 Regular variation of the solution space

4 Discrete Karamata theory and difference equations

4.1  Asymptotic formulae for SV solutions . . . . . . . . . ..
4.2 Asymptotic formulae for RV solutions . . . . . . ... ..
4.3 Classification . . . .. ... ... ... ... ... ...
4.4 Further remarks. . . . . . .. ... ... .. ... . ...

Conclussion

References

13

CONTENTS

15
17

25

.......... 25
.......... 28

29

41

.......... 41
.......... 44
.......... 47
.......... 20

55

57



14




INTRODUCTION

The linear second-order difference equation

A(rAyg) + peyr+1 = 0

is a frequent object of interest. It arises out, for example, from a discretization of a
differential equation, as an Euler-Lagrange equation of a certain quadratic functional or
directly as a discrete model.

In general, this equation is not analytically solvable. Because of that, it is of interest
to study this difference equation from the qualitative point of view. Asymptotic theory,
which is treated in this thesis, forms a large part of qualitative theory.

The Karamata theory of regular variation has been proved to be a very useful tool
in the asymptotic analysis of differential equations, for example, in [8]. The concept of
discrete regular variation has also found applications in the study of qualitative properties
of difference equations. One can mention a paper [10] or works [7] and [6], where difference
equations in relation to theory of regularly varying sequences are studied using different
techniques.

The aim of this thesis is to demonstrate the usefulness of the Karamata sequences
in asymptotic theory of difference equations and to show how a combination of various
techniques including regular variation enables us to make a precise description of the
solutions of the difference equation.

In the first chapter we give basic information about the linear second-order difference
equation and oscillation, we present a basic classification of nonoscillatory solutions and
we introduce a concept of a time scale. In the next chapter we recall a concept of discrete
regular variation on Z and a concept of regular variation on time scales. Chapter 3 is
concerned with the existence of regularly varying solutions and related considerations. The
fact that, under certain assumptions, the solution space of the difference equation consists
of regularly varying sequences is proved via transformation of a difference equation into
the dynamic equation on a suitable time scale. In the last chapter we establish asymptotic
formulae, we discuss the classification of the solutions of the difference equation and lastly,
we present several remarks concerning our results and provide some directions for a future
research.

15



16




CHAPTER 1

L___SECONILORIEH{LHHMU%[HFFERENCE]EQU%JTONS

We consider the linear second-order difference equation

A(rgAyg) + peyres1 =0 (1.1)

on [m, 00)z where r is a positive sequence and p is eventually of one sign. By A we mean
the usual difference operator

AYr = Yrr1 — Ui
by A% = Ao A. Further, we denote [a,00)z = {a,a+1,---} and [a,b]z = {a,a+1,--- ,b}
where a,b € Z. Fundamentals about difference equations can be found in [5].

The equation (1.1) arises out in several contexts. It is the Euler-Lagrange equation of

the quadratic functional
n

Z (ri(A&)* — peéiiq)

k=m
thus it is the Jacobi equation of a general discrete functional. It can serve directly as
a discrete model, e.g. the Fibonacci reccurence relation. It can be understood as the
discretization of the linear second-order differential equation

(r()y'(t))" + p(t)y(t) = 0. (1.2)

The discretization goes on as follows. Let us consider (1.2), where r, p are continuous on
[a,b]. For small h = (b—a)/n, n € N, we have

i L YE) =yt —h)
y'(t) ~ 7

and

(T(t)y/(t))/ ~ % (T’(t + h)(y(th+ h) - y(t» B T(t)(y(t) ;y(t _ h))) |

Let t = a + kh, where k € [0,n]z. If y is solution of (1.2) on [a,b], then

r(a+ (k+ 1)h) [y(a+ (k+ 1)h) —y(a + kh)] — r(a + kh) [y(a + kh) — y(a + (k — 1)h)]
+ h*p(a + kh)y(a + kh) =~ 0.

Denote yi, = y(a + (k — 1)h), . = r(a + kh) and p, = h*p(a + kh). Hence,
Tt (Us2 = Y1) = Te(Yrr1 — Yn) + Peyir1 = 0,

17



18 Chapter 1. Second-order linear difference equations

and so
A(reAyg) + PrYrs1 ~ 0
for k € [0,n — 2|z.

Oscillation

We will work only with nonoscillatory solutions that is solutions which are eventually
of one sign. Since p is eventually monotone, all nonoscillatory solutions are eventually
of one sign. By the discrete Sturm separation theorem, if one solution is nonoscillatory,
then all solutions are nonoscillatory. Therefore we can talk about (non)oscillation of an
equation. For p, < 0 for large k, nonoscillation of the equation (1.1) follows from the
Sturm comparison theorem. For py > 0 for large k, equation (1.1) can be both oscillatory
and nonoscillatory. There exist criteria for determining, whether (1.1) is oscillatory or
not. But, as a matter of fact, nonoscillation of this equation arises out as a by-product
of our considerations.

Basic classification of the solution space

Without loss of generality we can examine only eventually positive solutions. Denote
S = {y : y is a positive solution of (1.1) for large k} .

Since y is eventually monotone, we can divide S into two disjoint classes

IS ={y € S : Ay, > 0 for large k}

and
DS ={y € S: Ay, <0 for large k}.
Denote
IS ={y€IS: klim yp =00} and ZSp ={y € ZS : klim yr € (0,00)}
—00 —00
and

DSoz{yGDS:klim yr = 0} and DSp :{yEDS:klim yr =0 € (0,00)}.
—00 —00

We can further divide these classes into subclasses based on asymptotic behaviour of the
quasidifference r,Ay,. Denote

IS, ={y € IS : lim y, = u, lim ry Ay, = v}
k—00 k—o00
and
DS,, ={y € DS : lim y;, = u, lim ryAy; = v},
k—o0 k—00

where we will write w = B or v = B when the value of the limit is a real nonzero number.
Further, denote
Ssy =8NSV

and

Sry(¥) = SNARV(Y).
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Basic classification when p;, > 0 for large £

Let pr, > 0 for large k. Then quasiderivative rAy eventually decreases. If y € ZS, then
rAy is positive and if y € DS, then rAy is negative. Therefore, only following subclasses
make sense:

IS8, IS0, IS8, ZSB0, DSBB, DSBo0; DS0.B, DS) 00-
Lemma 1.1. Let Z;’ik 1/rj =00. Then S =ZSp o UZSwUZLSw 5.
Proof. Take y € DS. Then there exists a constant —M € (—o0,0) such that
reAyr < —M

and by dividing by r; and summing from n to k — 1

k—1
1

ykgyn—]\/[g ;—>—ooask%oo,
j=n 7

that contradicts y; > 0.
Take y € ZSp g. Then ry Ay has the limit M € (0, 00) and
rly > M

and by dividing by r; and summing from n to k — 1

k—1

1
ykan+MZ;—>ooask—>oo,
J

j=n
that contradicts the finitness of the limit M. O]
Lemma 1.2. Let 72, p; = 00. Then S = DSo 5 UDSp 00 UDSE oo

Proof. Take y € ZS. Then, from (1.1) by summation from n to k — 1,

k-1 k—1
0 < 7kAYk = Ty — > Pitie1 < TnlYn — Y Y pj — —00 as k — 00,
j=n j=n

that contradicts rpyAy, > 0.
Taky y € DSp p. It holds that

k-1

reAyy = 1Ay, — ijyj+1 — —o0 as k — oo,
j=n
that contradicts the finitness of the limit klim e Y. l
—00

Corollary 1.3. Let 3 72 pj =00 = > 2, 1/r;. Then S =0, i.e. the equation (1.1) is
oscillatory.
Basic classification when p; < 0 for large &

Let p < 0 for large k. Then quasiderivative rAy eventually increases. If y € ZS, then
rAy is positive and if y € DS, then rAy is negative. Therefore only following subclasses
make sense:

ISOO,B) ISOQOO? ISB,Ba ISB,ooa DSB,B7 DSB707 DSU,B7 DSO,O'
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Riccati equation

The transformation of (1.1) into the Riccati equation will be one of the tools frequently
used in our proofs. It goes as follows.

Lemma 1.4. Let y be a nonoscillatory solution of (1.1). Set wy = (rpAyx)/yr. Then w
satisfies Riccati equation

A p wl% =0 (1 3)
Wi + -+ = .
k k Tk + Wi

and r, + wg > 0 for large k.

Associated algebraic equation and its properties

Analysis of regular variation of the solution space of (1.1) will lead us to the algebraic
equation
9 — (1 —y)9+A=0, (1.4)

where A < (1_77)2, i.e. (1.4) has two distinct real roots.

As it will turn out, the solution space of (1.1) will consist of regularly varying sequences
of indices corresponding to the roots of this equation. Hence, it is of interest to analyse
properties of this roots.

Lemma 1.5. The next observations about the roots ¥4 < ¥ of (1.4) hold:
’L) 191+192:1—"}/.

ii) Let v < 1. Then

1—
. O<191<Tv<192<1—7prom'dedthat/l>0,
o ¥ <0< 11— <1y provided that A <0,

o ¥ =0,9 =1— 7~ provided that A = 0.

iii) Let v > 1. Then

1—
. 191<77<192<1—7<Opr0mdedthatA>O,

o ¥ <1—7v<0 <y provided that A <0,
o ¥y =1—1,99 =0 provided that A = 0.

w) 1—~v—20; =+/(1—v)2—4A4>0.

Time scales and dynamic equations on time scales

In this section, we will introduce the concept of a time scale. Information concerning the
time scales are drawn from [3]. One of the most important features of time scale calculus
is the unification of differential calculus and calculus of finite differences. It allows us
to study properties of a dynamic equation on a general set — time scale that includes
both real numbers R, integer numbers Z or any other nonempty, closed subset of real
numbers. Then, by choosing a specific time scale, for example R or Z, the result for a
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general dynamic equation yields a result for a differential equation or a difference equation
respectively.

Moreover, the time scale calculus can explain the similarities or the differences between
the results in continuous and discrete settings.

Further, the time scale calculus allows more variability when discretizing in the sense
that it allows the step size to be varied in time.

Another example of the usefulness of time scale calculus is the idea of transformation
of a “difficult” problem on one time scale into the “simpler” problem on another time
scale, which in fact a major use case of the time scale calculus in our theory.

Definition 1.6. A nonempty, closed subset T of the real numbers is called a time scale.
On time scale T we define:

e forward jump operator o : T — T,o(t) =inf{s € T : s > t},
o backward jump operator p: T — T, p(t) =sup{s € T : s < t},
 graininess function p: T — [0,00), u(t) = o(t) —t,

o the set T* as follows. If for maximum m of T it holds that p(m) < m (m is left
scattered), then T# = T — {m}. Else T® =T,

e righ-dense point t € T such that t = o(t),

o left-dense point t € T such that t = p(t),

« the time scale interval BCr[a,b] = [a,b] N T and BCrla, 00) = [a,00) N'T,
e by f? we mean f7 = foo.

Definition 1.7. Let f : T — R be a function. For ¢t € T* we define f2(¢) to be the
number (provided it exists) with the property that given € > 0, there is a neighborhood
U of t such that

[f(a(t)) = f(t) = fAO(a(t) = )] < elo(t) — |
for all s € U. We call f2(t) the delta (or Hilger) derivative.

Theorem 1.8. Let f, g be delta differentiable at t € T*. Then
a) (f+g)2(t) = f2(t) + g2 (1)
b) (af)A(t) = afA(t) for every a € R
c) (f9)2(t) = f2(t)g(t) + f(o(t)g™(t) = f(t)g™(t) + f2(t)g(o(t))

d) (%)A (t) = #2(2)), provided by f(t)f(o(t)) #0

e) <i>A (t) = fA(t%%?j((f)))gA(t), provided by g(t)g(o(t)) # 0
Definition 1.9. A function f : T — R is called rd-continuous provided its right-sided
limits exist at all right-dense points in T and its left-sided limits exist at all left-dense
points in T.

Denote the set of rd-continuous functions f : T — R as C,4 and the set of functions
f: T — R that are delta differentiable and whose derivative is rd-continuous as C},.
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Next, the definition of integral on time scale follows. A time scale integral can be
made under more general setting, but the presented version is sufficient for our purposes.

Definition 1.10. A function ' : T — R is called an antiderivative of f : T — R provided
FA(t) = f(t) for all t € T*.
Definition 1.11. Define the delta integral on a time scale T for f € C,4 by
/ F(t) AL = F(s) — F(r) for all 1,5 € T.
Theorem 1.12. Let a,b,c € T, « € R and f,g € C,q. Then
a) f;f(s) +g(s) As = ff f(s)As+ ffg(s) As
b) f:af(s) As = afabf(s) As
c) fbf(s) As = [Cf(s)As+ [ f(s) As
d) [, F()9°(s) As = (fg)(b) = (f9)(a) = [} J2(s)g(o(s)) As

Theorem 1.13. Let f € C,q andt € T®. Then

o(t)
l £(s) As = p(t) £ (1)

Example 1.14. Let T = R. Then o(t) =t, u(t) =0,
f@t) = f(s)

P20 =i 2O =L gy (15
and
/abf(s) As = /bf(s) ds (1.6)
Example 1.15. Let T = Z. Then o(f) = t + 1, u(t) = 1,
fA) = FE+1) = f(t) = Afy (1.7)
and -
[ r9as=31, (18)

Definition 1.16. A time scale T is said to be discrete if for every t € T p(t) <t < o(t).
Theorem 1.17. Let T be a discrete time scale. Then for every f: T — R
f7@) — ()

u(t)
Theorem 1.18. Let T be a discrete time scale, a,b € T, a < b. Then

F2) = (1.9)

/f S (o) f(s).

s€la,b)r
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Definition 1.19. Let T be a time scale and p function satisfying 1 + u(t)p(t) # 0 for all
t € T". A solution to the initial value problem

y2 (1) = p(t)y(t), y(to) =1
on T is called a generalized exponential function e,(t,t).
Consider the dynamic self-adjoint equation of a second order
(r(t)z® (1) 4+ p(t)z7 (t) = 0 (1.10)

on time scale T, where r > 0 and 1/r,p € C,5. A solution z of (1.10) is called
nonoscillative, if x(t)z?(t) > 0 for all ¢ € T.

Theorem 1.20. Let x be a nonoscillatory solution of (1.10). Then z(t) =

satisfies the dynamic Riccati equation

(1) + plt) + -

with r(t) + p(t)z(t) > 0 for all t € T".
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CHAPTER 2

DISCRETE KARAMATA THEORY

Before proceeding to discrete Karamata theory of regularly varying sequences, let us
present asymptotic notation.

Definition 2.1. Sequences y and x are said to be asymptotically equivalent, denoted by
x ~ vy, if

kll_)rrolox—k = 1. (2.1)
By
x = o(yx) as k — o0,
we mean .
lim ~* = 0
k—oo Y
By

k-1
T, Z(l +o0(1))y; as k — o0
j=m

we mean that there exists sequence € such that lim ¢, = 0 and

k—o0
k—1
rp =Y _(1+¢)y; (2.2)
j=m

2.1 Karamata theory on Z

In this section we will deal with basics of Karamata theory of regular variation on Z. In
particular, we will provide several theorems about Karamata sequences that will be useful
in analysing asymptotic properties of the solutions of difference equations. Information
in this section are drawn from [2], [4] and [1].

Definition 2.2. A positive sequence y = {yi},—, , is said to be regularly varying of index
9, if there is a positive sequence « satisfying

. k . kAOék
lim Yk _ C, lim
k—o0 Odk k—o0 Oék

=1, (2.3)
where C' > 0 is a constant. If ¥ = 0, y is said to be slowly varying sequence.
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Definition 2.3. A positive sequence y, is said to be normalized reqularly varying of index
9, if it satisfies
. kAyy
lim
k—oo  Yp

= 1. (2.4)
If 9 = 0, y is said to be normalized slowly varying sequence.

Definition 2.4. Denote (N)RV(9) a set of all (normalized) regularly varying sequences
of index ¥ and (INV)SV a set of all (normalized) slowly varying sequences.

Example 2.5. It holds that In” £ € NSV and £ Ink € NRV(¥) for every 9,7 € R and
1+ (=1%)/k € SV/NSV. A sequence 2F is not regularly varying.

Definition 2.6. A “falling factorial power” sequence k(?) is defined as,

poy _ L1
I'(k—9+1)

where I' is usual Gamma function.
Remark 2.7. It holds that I'(k + 1) = k['(k) and T'(k +9) ~ T'(k)k’. Hence,
k” ~ k™) as k — oo
and k) € NRV(9).
Theorem 2.8. The following statements are equivalent:
a) y € RV(Y),

b)

where L € NSV,
¢)
k-1
) Y,
yr =k QOkeXp{ZT}, (2.6)
j=m

k > m, where g, — C € (0,00) and Y, — 0 as k — oo,

d)
kol s
ykzgokexp{z 7]}, (2.7)
j=m
k> m, where o, — C € (0,00) and § — ¥ as k — oo,
e)

k—1
we =Ko || (1 + %) , (2.8)

j=m

k > m, where pr — C € (0,00) and 1y — 0 as k — oo,
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f)
k-1 5.
v =i || (1 + —?) , (2.9)
j=m J
k > m, where ¢, — C € (0,00) and 6 — 0 as k — oo.

9)
e = k" Ly, (2.10)

where L € SV and k) is “falling factorial power” sequence defined in Definition
2.6.
Theorem 2.9. A sequence y belongs to NRV(9) if and only if
yk = k" Ly, (2.11)

or
e = k" Ly, (2.12)

where L € NSV. Moreover, y € NRV(¥) if and only if y satisfies any of (2.6), (2.7),
(2.8) or (2.9) with ¢ = C, where C is a positive constant.

In view of Theorem 2.8 b), we can denote a “slowly varying component” L<Y~ of a
regularly varying sequence y as
> YUk
LV = ik (2.13)

Theorem 2.10. Let x € RV(Y4), y € RV(V2). Then x +y € RV(max{th,Vs}), zy €
RV (0 +¥2) and 1/x € RV(—11). The same holds if RV is replaced by NRV .

Theorem 2.11. Let y € RV(9). Then ypi1/yx ~ 1 as k — oo.
Theorem 2.12. Let y € RV(9). Then Alnyy, ~ Ayg/yx as k — oc.
The next theorem plays a very important role in our theory.

Theorem 2.13 (Karamata type theorem). Let L € SV. Then

ZJ”L ~ kzﬂ“Lk (2.14)
as k — oo, provided that ¥ > —1, and
ZﬁL ~ k“lL (2.15)

as k — oo, provided that ¥ < —1.
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2.2 Karamata theory on T

In this section, we will outline Karamata theory on time scales and provide several defini-
tions and theorems that will be used to get condition that guarantees the regular variation
of the solution space of (1.10). We omit many details as Kamarata theory on time scales
is not the main subject of this thesis. Information in this section are drawn from [12].

Definition 2.14. Let pu(t)/t = 0 ast — oo. A f € C}, is said to be normalized reqularly
varying of index ¥ € R, if
Lf2(1)

tlg?o f(t)
and we write f € NRVr(9). If ¥ = 0, then f is said to be normalized slowly varying
function and we write f € NSVr.

Theorem 2.15. Let u(t)/t — 0 as t — oo. Then f € C}, belongs to NRVy(9) if and
only if
f(t) = en(ta a)?

where e,(t,a) is a generalized exponential function and tn(t) — ¥ as t — 0.

Theorem 2.16. Function [ belongs to NRVr(9) if and only if

f(t) = t"L(t),
where L € NSVr.

Theorem 2.17. Let u(t)/t — 0 ast — oo and f € NRVr(9). Then f(t) ~ fo(t) as
t — oo.

Theorem 2.18 (Karamata integration theorem on time scales). Let u(t)/t — 0 ast — oo
and L € NSVrt. Then

* 1
VL(s) As ~ ———t" T L(¢
|0 s~ e

as t — oo, provided by ¥ < —1, and

t
1
/a () s ~ L)

as t — oo, provided by ¥ > —1.



CHAPTER 3

LREGULAR VARIATION OF THE SOLUTION SPACE

We want to establish the condition, under which the solution space of (1.1) consists of
regularly varying sequences. In order to have the difference equation (1.1) in a suffi-
ciently general setting, we use the idea of transformation of a difference equation into a
dynamic equation on a time scale and prove that this dynamic equation has, under certain
assumptions, the solution space formed by regularly varying functions (on time scales).
The regular variation of all solutions of (1.1) will follow from the inverse transformation
and properties of regularly varying sequences. This chapter contains new results and
improvements over existing results.
Consider the equation

2% 4+ p(t)2” =0 (3.1)

on a discrete time scale T, where p(t) is an arbitrary function. We want to show that,
under certain assumptions, this equation has only regularly varying solutions. Let us
emphatize that there is no sign condition on p.

The regular variation of solutions of

Ay + pryrsr = 0,

where p is an arbitrary sequence, is discussed in [9]. The next theorem generalizes this
result to the dynamic equation (3.1).

Theorem 3.1. Let T be a discrete time scale satisfying p(t)/t — 0 and u(t) ~ po(t) as
S

t — oo. Then there exists a fundamental system of solutions of (3.1) y € NRVr (), x
NRVr(9s) if and only if

t/ p(s)As — C € (—o00,1/4) fort — oo,
t
where 91 < Yy are the real roots of the algebraic equation

9 -9+ C=0. (3.2)

Moreover, every eventually positive solution z of (3.1) is normalized regqularly varying,

with z € NRV']T(I%) U NRV']T(I%)
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Proof. ,=": Let y € NRVr(9;) be a solution of the equation (3.1) and set w = y*/y.
Then w satisfies the dynamic Riccati equation

w?(t)
L+ p(t)w(t)

and in view of tw(t) — ¥ as t — oo and pu(t)w(t) — 0 as t — oo, we get that w(t) — 0
as t — oo and 1+ p(t)w(t) > 0.

We want to integrate the equation (3.3) from ¢ to co. We need to show that the
integrals exist. It holds that 1 — u(t)w(t) > 1 — ¢ for ¢ € (0,1) and |w(t)| < M/t for

w(t) + p(t) + =0 (3.3)

(A t t t
sufficiently large ¢t. Also, in view of — +:( ) ~ 1 ast — oo we have n < N for
~1\* 1
sufficiently large ¢. Further, since | — | = ——, we obtain
t to(t)

[ aas= [ s asen|F <
0 S . So(s) s t ],
00 2 1 00 MZ © 1
/ w—@Asg / wQ(s)Asg / — As < 00.
o 1+ p(s)w(s) 1—¢/, 1—¢/, ¢

Integrating (3.3) from ¢ to co and multiplying by t we get

' /t " p(s) As = tw(t) — 1 /t h #SL(S)AS. (3.4)

Then

Time scale analogue of the L’Hospital rule yields

oo w(s) —w?(t)
lim J; TraG)u(s) D8 — i Eeew®) g —thQ(t) = 92
o0 I oo —to(t)  imoo 1+ p(Hw(t)

Hence,

. = . = w?(s) 2
lim ¢ p(s) As = hm tw(t) — lim —————As =1, —v; =C. (3.5)
t ¢ 14p

t—o0 —00 t—o0 (S)U)(S)
“=7: Set Y(t) =t [ p(s) As — C. We search for a solution of (3.1) in the form

U1 +9(t) + w(t)
t

y(t) = eu(t,a), where u(t) = and a € T. (3.6)

In order that y if a solution of (3.1), we need to determine w(t) such that u(t) is a solution
of the dynamic Riccati equation

u?(t)
1+ p(t)u(t)

and u(t) satisfies 1 + p(t)u(t) > 0 for large ¢. If, moreover, w(t) — 0 as t — oo, then
y € NRV1(%) by Theorem 2.15. Because of the definition of u

ul(t) + p(t) + =0 (3.7)

A () = / ") As — o(B)p(t)
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and

we can write (3.7) in terms of w as

2 —w(t) o)+ p(t) +w(t))?

w0 + t 12 () (0) + () + w(t)) " (38)

that is
WA (t) + 29, — 1t+ 2¢(t) Lw (t) + (;ﬁ) + 2019(t) Gl =0, (3.9)

where

oW ) Fw()? (0 b() +w(h))?
2+ () (01 + () + (D) t
(01 + () + w(t)) = (91 + (1) + w(t)*

L5 (01 + (1) + w(t))

Set h(t) = e,(t,a), where v(t) = (207 — 1 + 2¢(t))/t. From Theorem 2.15 we get h €
NRV1(29; — 1) and h is decreasing towards zero, as 299; — 1 < 0 by Theorem 1.5 iii).
Multiply (3.9) by A to obtain

+ ¢2(t) + 2019(t)
t

B (1) + hAw(t) + hit)

what we can rewrite using the identity (hw)®(t) = h®(#)w(t)+h(t)w (t)+u(t)h> (t)w?(t)
as

(hw)2(t) + @(wQ(t) + P2 (t) 4+ 2019()) + h(H)Gw] — p(t)h>(Hw™(t) = 0. (3.11)

If h(t)w(t) — 0 for t — oo, then integration from t to oo of (3.11) yields

wlt) = oo [P0+ 0200) + 200006 B+ s [T Gl 8
1

- — p(t)h? (s)w™(s) As. (3.12)
h(t) /t
We want to apply the contraction mapping theorem on the equation (3.12). We will work

in the Banach space BCr[a, 00) — bounded, continuous functions on [a, 00)r, endowed
with the supremum norm. Introduce the set () as

Q= {w € BCrla,o00) : |w(t)] <0 for t > a},

where the values of ¢, a will be determined later and define the operator 7 : Q — BCr[a, 00)

Tlwl(t) = 1 /too @(uﬂ(s) +2(s) + 2019(s)) As + % /too h(s)Glw](s) As

- % /t () ()P (s) As.
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We need to show that 7jw] € Q for w € Q and ||7[w] — 7[v]|| < v]|w — v||, where v <
1,w,v € €. Before proceeding to proof, let us show some properties of h that will be used
in the proof. It holds that

1 * h(s) = 1
Y As = 1i t — 0 3.13
) el ()P T T o

and for sequence «, tlim a(t) =0,
—00

—h(?)

1 [ h(s) B 7alt) Coat)
t&%o%/t T afs) As = tlgcr}o h(t (207 — 1+ 20(¢)) N tlggo 20, —1 0 (3.14)

where the time scale analogue of the L‘Hospital rule was used. The next property is a
consequence of the time scale analogue of the L‘Hospital rule, the assumption u(t) ~ p(t)
as t — 0o, h® € NRVp(29; — 2) and of Theorem 2.17:

1 —(u()h2 (1)

e / (u(s)h2(s))" As = Jim —=505

= lim
o hA(t)( (3.15)

= lm N0

= W0 A

Denote

W(t) = sup [v(s)|

s>t

Since u(t)/t — 0 as t — oo and conditions (3.13), (3.15) holds, we can choose ¢ > 0 and
a € R such that the following inequalities are satisfied:

iggﬁ/ﬁ@&sﬁ 1_22191, (3.16)
126

g < (3.17)
V2 (a) + 2 [0 ¥(a) < 07, (3.18)
(’791|‘HZ( ) 9)? (‘791’+¢( ) +9)° < (1—2191)7 (3.19)

S oty — (101] + 9(a) +0) 6
sup "S% ~ 20, + 20(a)) < ¢ (3.20)
sup i [ | 9)* as< (3.21)

45 ) (L[] + $(a) + )2 (55 + 9] + Bla) + )

v = sup — 5

2T (ﬁ — ([01] + ¥ (a) + 5)) (3.22)

—i—sup@(l—Qﬁl—irZw)—l—sup%/tw’( (s)h™(s) ’As<1

t>a t>a
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Let us show that 7[w] € Q holds for every w € Q. Let w € Q. Then
[Tlw](t)] < Ky () + Ka(t) + Ks(?) (3.23)

for t € T,t > a, where

:‘MtZth )+ 62(s) + 2010(s)) As

o0 3.16),(3.18 3.16 (3'24)
< [Pk P 2wy as T e S
e Wi (s) Hw(s)? — (91 +(s) +w(s))’?
Halt) = h(t)/t M) S (01 + () + () o
o1 /°° h(s) (191] + 0(a) + 8 + ([61] + $(a) +8)* (3.25)
I sty — (191] +0(a) +9)
(3.16)<,(3.19) 2 5(1 — 2191) B )
= 1-20, 6 3
and
K3(t) = % toou(s)hA(s)wA(s) As
Thm 1.12—d) ¢ 1 o o
< gt Lo+ [ Gems e as
o LD unna -2, + 20 >>\ i | P s
< M50 90, + 2(a)) + 50 / o) o] s < 24D =8
(3.26)
0 o0 0

Overall, |T]w](t)| < 3+3+§ = 0. It remains to prove the fact that 7[w](t) — 0 as t — oo.

It is the consequence of w(t) — 0, ¥(t) — 0, p(t)/t — 0 as t — oo, (3.14) and (3.15).
Hence, 7[w] € Q for every w € Q. Next, we need to show that ||7w — 7v| < 7 ||lw — ||
for w,v € Q, where v < 1. Let w,v € 2. Then

|[7[w](t) — T[] ()] < Hi(t) + Ha(t) + Hj(t), (3.27)
where . “hs) 2
H(t) = ‘m/t T(w (s) —v*(s)) As|,
H(t) = 'ﬁ/ﬁ (s)(Gw](s) — Glv](s)) As
and
) =[5 [ HOA )~ o9 s
It holds that . ~ 15
Hi(t) < |lw =] W/t (s >25A 1_—2191 (3.28)
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Before we examine Hs(t), let us observe that

0G[u] ) _ 20 (0 + (1) + w(t)) + (0 + (1) + w(t))?
ou [ 10+ () + (0]
N —3m(191 +(t) +w(t))? — 2t(I + ¢§t) +w(t)) (3.29)
55 W+ 0 () + w(0)]
Therefore, the mean value theorem yields
Halt) < s [ s 52 O lu(e) - (9] s
ey L@ + 0P Gl + B+ @ +8) 1 7 h(s)
= | o s = (|01] + 9 (a) +0) h(t)/t -
(3.30)

where min{w(t),v(t)} < ¢ < max{w(t),v(t)} for t > a and lastly, Theorem 1.12 yields

Hi(t) < \i lim [(w(s) — v(s))u(s)h> ()]

h(t) e—o0
o | ) w9 = o7 (s)) As
ol 220 = 2020000 + = ol s [ (6% ]

(3.31)

Overall, ||T[w] — T[v]|| < v|Jw — v]|| for w,v € Q, where v satisfies v < 1 by the virtue of
(3.22). So, T is a contraction and the assumptions of the contraction mapping theorem
are satisfied. Therefore, there exists an unique function w € €2 that is a solution of (3.12)
and also of (3.8) with w positive, decreasing towards zero. Then u defined in (3.6) is a
solution of Riccati equation (3.7) and 1+ u(t)u(t) > 0 for large enough ¢. Thus, y defined
in (3.6) is a nonoscillatory solution of (3.1) and y € NRVr (1) by Theorem 2.15.

Dynamic Riccati Difference Integral
equation (3.1) equation (3.7) equation (3.8) equation (3.12

contraction

mapping
theorem
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Next, we find a linearly independent solution x. We achieve that by using the reduction

of order formula
1

x(t) = y(t)/ IO As. (3.32)

Denote z(t) = 1/y*(t). Then z € NRVp(—29,) and z(t) ~ 1/(y(t)y’(t)) as t — oc.
Hence, by the discrete L’Hospital rule,

tz(t
lim (t = lim Z()

t—oo (t) t—o0 t

2 T As i MOPEO) fmree 2(t)

A
— lim <1+t2 (t)) —1-20,,

t—00 Z(t)
and so
to_tn (3.33)
x(t) (1 —20) ~ — = as t — oo, .
that is B
z(t) ~ 71 L(t) as t — oo,
where )
L[=— 3.34
(1—-20)L ( )
and z € RV7(1 — 1) = RVr(92). Let us show that x € NRVr(ds). Indeed,
tr () (t) [y y(s)y7(s) As + =5
im = lim
ty® (¢ t :
y()+ (3:53)1914-1—2’191:1—191:192,

T ox y(t) oy

and so © € NRVr(s).

It remains to prove that every eventually positive solution z of (3.1) is normalized
regularly varying. Since (3.1) is linear, we can write z in form z(t) = c1y(t) + cou(t). If
¢1 =0 or ¢ = 0, then (as z is eventually positive) ¢; > 0 or ¢; > 0 and 2 € NRVp(V);) or
z € NRVr(9;) respectively. Since y(t)/z(t) — oo (as V1 < ) for t — oo, it holds that

tz®(t)

2(t) y(t)

t22(t)  eaty®(t) + cota®(t) at oy i T e tat ()
20 eyl +eanll) ot 1o, 0
as t — 0o, hence z is normalized regularly varying function. [

Let us return to the difference equation (1.1). Next, we establish conditions that
guarantee the fact that solution space of this equation consists only of regularly varying
sequences. Theorem 3.2 and Theorem 3.3 generalizes result of [9] in case r, # 1.

Theorem 3.2. Let r € NRVz(v), v < 1. Then equation (1.1) has a fundamental system
of solutions yl € NRVz(9,(1 — 7)), y! € NRVz(02(1 — 7)) if and only if

1 1
kh—>r§oz T—ijj =C< 7 (3.36)

where 91 < Uy are the real roots of the algebraic equation (3.2).
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Proof. We want to transform the equation (1.1) to the equation on time scale and then
apply Theorem 3.1. Let y be a solution of (1.1). Set

u(t) = u(r(k)) = u(me) = yr,

where 75, > 0 and A7, > 0. Then

u(t)=o(t) —t=o(r(k)) — 7(k) = Thr1 — T = ATy, (3.37)
WA (t) = u"(ti(;)u(t) _ ?/k+i7_—k Ye _ ii: (3.38)
and
AlrAye) = ut) (r (7 (8) (). (3.39)
and so u satisfies
(?(t)uA(t))A +p(t)u’(t) =0, (3.40)
where
) =r(77'(1)) p(t) (3.41)
e )
N D(T

Set 7, = Zf;; 1/rj. Since v < 1, we have Z;’ik 1/r; = oo, and so 7, — 00 as k — 00,
i.e. T is unbounded. Further, pu(t) = A7, > 0 and T is discrete. We have A7, = 1/r and
in view of u(t) = A7, we get

oy T(TTN()
)= ——F==1. 4
= W) 349
It holds that 0 A . .
w(t Tk Thm 2.18
e = ) (3.44)
k kD iem - Ty
1 Thm 2. 1
pt) = Ary=— """ = A =0 (1) (3.45)
Tk Tk+1

as t — 0o. Theorem (1.18) yields

- * p(r'(s)) SNy !
t/t p(s)As:T(k)/T TAS:Tijkpj:ZF]kpj:O<1 (3.46)

k) M 7

j=m

Hence, the equation (3.40) satisfies the assumptions of Theorem 3.1, and so (3.40) has a
fundamental system of solutions u; € NRVr(¥;), i = 1,2. It holds that

tud(t)  T(k)ud(m) The Ay,[j] T kAy,[j]

Uy = L _ _ 547
PTGl T wG k) An T kAn ) (3.47)
ast — oo (i.e. k — oo) and since 7 € NRVz(7),
k—1
Ty = i ~ S E as k — oo, (3.48)
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therefore N N
kA " "
Tk _ e e =1—-yask — oo. (3.49)
Tk Tk EE

and 7, € NRVz(1 — ~). From (3.47) and (3.49) we get, as k — oo,

EA (1]

I S =),
(1]
Yy

from what we get y'! € NRVz(91(1 —7)). Similarly, we get that y2 € NRVz(95(1 —
7)) O

Remark 3.3. The relation (3.46) is, in fact, an improvement of [11] in case 0 < C' < 1/4.

Theorem 3.4. Let r € NRVz(v), v > 1. Then equation (1.1) has a fundamental system
of solutions y! € NRVz(n (1 — 7)), y& € NRVz(no(1 — 7)) if and only if

1

1 2
Jim o kaij =C< (3.50)
j:
where
=1
Ry = —
j=k 7
and n; are the roots of algebraic equation
n”+n+C=0. (3.51)

Proof. First note that thanks to vy > 1, we have Z;’ik 1/r; < oo, and so Ry, is well-defined.
Let y be a solution of (1.1). Set y = hz, h # 0. Then z satisfies the difference equation

A(?kAZk) + ﬁkzk+l = 0, (352)
where

Te = rrhghii (3.53)

and
Pk = Per1 [A(reAhy) + prhiga] - (3.54)

Set

=1

hy = — = R;. 3.55
k J:Zk v k (3.55)

kAR, ko
Rkk e =1—yask— o, (3.56)
y—1rg
and so Ry € NRVz(1 — ~). Hence,
?k = TkRkRk+1 S NRVZ<”Y +1-— v+ 1-— ’y) = NRVZ(2 — ’y) (357)

and

e = Ri[A(riARy) + prRiy1] = prRiRita. (3.58)
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It holds that

’“i 11 1 Lo
- == — 5~ — as 00,
i 7°J Rk Rm Rk
therefore
k-1 1 0o 1 e’} 1
li — 5= lim — R:. . =C<= 3.59
kggo;mzkpy lim Rk;py = 1 (3.59)

and since 2 —7 < 1, we can apply Theorem 1.2 to obtain 2l € NRVy(9;(1—7)),i = 1,2,
where ©J; are solutions of (3.2). Combining this with h = R € NRVz(1 —7), s = —th
and191+1:1—n2:n1 we get

W =holl = Ryl € NRVZ(01(1 =) + (1 = 9)) = NRVz(m(1 - 7). (3.60)
Similarly, we get that 4 € NRVz(1n2(1 —7)). O

The next corollary is a direct consequence of the previous theorem with a special
setting that will be used in the next chapters.

Corollary 3.5. Let 1, € NRVyz(v) and pr € NRVy(y — 2) with v # 1. Then (1.1) has
a fundamental set of solutions {y1,y2}, where y; € NRVz(9;) if and only if

2 _
lim MPE 4 < (Ll) : (3.61)

k—oo T 2
where 91 # Yo are the reals roots of the algebraic equation
9 — (1 =)+ A=0. (3.62)
Moreover, all eventually positive solutions are regularly varying sequences.

Proof. Let v < 1. The Karamata theorem yields

1 — k k k2 1
3y~ Pk _ E Pk 5 as k — oo. (3.63)
4 re(—y+1) —y+1 e (1—=7)

1 « (Y — = j%p; k>, k2 py, 1
_ R2 .~ I . = .
Rka:;p] JH k -1 2; r2 1) Ay =1 . (1—7)?
(3.64)
as k — oo.

The relationship between equations (3.2) and (3.62) is given by following linear trans-
formation. Let ¢ the root of (3.2). Then ¥ = ((1 — ) is the root of (3.62) and it holds
that A = C(1 — )%

Hence, (3.61) ensures that (3.36) and (3.50) holds and the assumptions of Theorem
3.2 or Theorem 3.4, respectively, are satisfied and (1.1) has a fundamental set of solutions
formed by regularly varying sequences. The indices of regular variation of y; follow from
those theorems.

In general, the existence of the (finite) limit (3.61) implies the existence of the (finite)
limit of (3.36) or (3.50), but the converse does not hold. However, under conditions
p € RV(6),r € RV(d+2),6 # —1, the sufficient condition (3.61) becomes necessary as
(3.61) is equivalent with (3.36) or (3.50) based on § < —1 respectively. O
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Difference ] z(7(k)) = ykr Dynamic

equation (1.1 ;

S ( )J Lequatlon (3.1)
%

Difference

equation (1.1)

v>1

We have proved that all elements of the solution space of (1.1) are regularly varying
sequences via transforming this equation to the equation (3.1) on a time scale. For this
dynamic equation, we established conditions, under which all of its solutions are regularly
varying functions. Both results, regular variation of solutions of (1.1) and regular variation
of solutions of (3.1), are new and an improvement over the known results.

Alternatively, instead of transforming (1.1) into a dynamic equation, we could proceed
“more directly” and using Riccati equation

2

w
A k_ — 3.65
wk+pk+rk+wk (3.65)

to construct a regularly varying solution. But such an approach would require more strict
assumptions. The next theorem shows the neccesity part of this alternative approach.

Theorem 3.6. Let r € NRVz(7) and y € SN (Uyer NRVz(V)) # 0. Then
i)

where A satisfies

m casey < 1.

i)

where A satisfies

im casey > 1.
Proof. Let v <1 and y € NRVz(?9) be a solution of (1.1). Set

rEAY
Wy = .
Yk
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Then w,, satisfies )

Awg + pr + = 0. (3.66)

T + W

It holds that (kwy)/ri — ¥, wi/r — 0, wx, — 0 as k — oo and ry + wy > 0. Summing
(3.66) from k to oo and multiplying by k/r, we get

kwp ko k= w?

e p ) =0
k ki kTR T j

The discrete L’Hospital rule yields
w? 2
Dk T k k+ 1)kw?
lim —Z— ’ikﬁ . = lim —Tk:’fw’“rk = lim (k+1) wkkm

, (k + 1)kw? 1 ¥?

= 1 =
e e (- B T T,

Hence,
2

b — ¥
—ij—>19— = A as k — oo.
Tkj:k 1 -

Let v > 1 and y, wy be as in the previous part. By summing (3.66) from n to k — 1
and multiplying by k/r, we get

k—1 k—1
kw, kw, k k w?
—_— = + — E P+ — E =0
TR T Tk Tk i T3 T W)
j=m j=m
It holds that
2 2
k-1 2 Wy wg
k w -
e D L T
k—o0 T, et T+ w; k—o0 R
k(k+1)wp k(k+1)wy 92
_ llm T +Wg _ Tn+Wn _ B
— P <kArk _ 1)T (kATk _ 1)’]" - 1 _ ’y
Tk k Tk k
Hence,
k-1 9
hm—E pj — —U — =Aas k — oo.
k—o0 TE “ -
j=m



CHAPTER 4

LDISCRETE KARAMATA THEORY AND DIFFERENCE
EQUATIONS

4.1 Asymptotic formulae for SV solutions

The following conditions play an important role in the investigation of the asymptotic
behauvior of the solutions of (1.1):

p € RV(0), reRV(+2) (4.1)
and )
2
lim ~PE _ 4 c (—oo, (ﬂ) > , (4.2)
k—oo Tp 2
Denote .
G, — e
Tk

and note that G € RV(—1) and in general, Z;’ik G; may converge on diverge.

Lemma 4.1 ([10]). Let p < 0, |[p| € RV(6) andr € RV(6+2). Then Ssyy C DS provided
that 0 < —1 and Ssy C IS provided that 6 > —1.

Lemma 4.2. Let [p| € RV(9), r € RV(6 +2) with § # 1. Ify € Ssy, then

7 a8 kE — oo. (4.3)

Proof. Let p>0and 0 < —1. Then § = ZSp g UZS 000 UZS 5. Suppose ryAy, — B €
(0,00) as k — oco. Then, since rAy is decreasing, for k > m it holds that

rAyy > B
and the division by 7, and the summation from n to k — 1 yields

k—lB k—lB
ezt ) =) — €RV(=0—1).
—n

j=n 7 j=

41
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Since —d — 1 > 0, y, can not be slowly varying sequence and so klim relAy, = 0.
—00

Take y € Ssy. By summing (1.1) from k to oo and applying the Karamata theorem
we get

—reAy, = — ijyj+l ~ = ijijrl ~ —— ask — oo (4.4)

, , 0—1
ij=k j=k

Let p>0and 6 > —1. Then § = DSy g UDS( 0 UDSp . Take y € DSp . Then
rrAyy is decreasing with limit —B € (—o0,0), so

riAy, > —B

and by dividing by r; and by the summation from £ to oo we get

~Yr = Z_T—B
j=k 7

Hence,
k—1

1
yk<BZ—eRV( 5 —1).

j =n
Since —0 — 1 < 0, yx can not be slowly varying sequence and so khm Ay = 00.

Take y € Ssy. By summing (1.1) from n to k — 1 and applying the Karamata theorem
we get

k—1 k—1
Z —kpryx

TeAY, = 1Ay, — PiYj+1 ~ — E PiYj+1 ~ as k — oo. (4.5)
Jj=n j=n

Let p < 0 and 0 < —1 and take y € Ssy. Then Zj‘;k 1/ry = 00, rayg is negative
increasing and y € DS by Lemma 4.1. Suppose Ay has limit —B € (—o0,0). Then

rAy, < —B

and by dividing by 7, and by summing from n to kK — 1 we obtain

k—1
Ui < Yp — MZ — —o0 as k — oo,

i=n

that contradicts y, > 0, and so klim relAy, = 0.
—00

Take y € Ssy. By summing (1.1) from ¢ to oo and proceeding similarly as in case
p>0,0 < —1we get (4.4).

Let p < 0 and 6 > —1 and take y € Ssy. Then Z‘;‘;k p; = oo and y € ZS by Lemma
4.1. Summation of (1.1) from n to oo yields

k—1 k—1
Ay = 1Ay, — ijyj+1 > — ijyjﬂ — o0 as k — oo
Jj=n j=n

and so, klim reAy, = oo. By proceeding similarly as in case p > 0, § > —1 we get
—00
(4.5). [
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Theorem 4.3. Let |p| € RV(5), r € RV(6+2), 6 # —1 and klim kf% = 0. Then
—00
_ _ J

Yr = exp { j:m(l + 0(1))5 n 1} as k — oo (4.6)
provided that Y 7°, G = oo, and

yp = Aexp EOO (1+0(1)) G, as k — oo (4.7)

p d+1 ’

where A = A(y) = klim Yk, provided that 377, Gj < 0.
— 00

Proof. From Corollary 3.5 and Lemma 1.5 (with v = §+2) we have S = SspUSgyp(—0—1).

Take y € Ssy. Then by Lemma 4.2 we have

and Theorem 2.12 yields

A
Alnyg ~ L Wi as k — oo.

Yk (—5 — 1)7’k

Let 277, Gj = oo. By summing (4.8) from n to k — 1 we get

k—1

lnz—:wz_filask%oo

Jj=n

and

k-1
Yk = Yn €XD {Z(l + 0(1))_5Gi 1} as k — oo

j=n

. [e'e) .
and since 7, G; = o0,

J

—1
Yr = €xp {— :m(l + 0(1))%} as k — oo.

Let >, Gj < co. By summing (4.8) from k to oo we get

Yk —k —0—1
and
k-1 a
yr = Aexp {;(1—'—0(1))54—]1} as k — oo,

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)
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From Corollary 3.5 and Lemma 1.5 we know that, under the assummptions of Theorem
4.3, the solution space of (1.1) is formed by slowly varying sequences and regularly varying
sequences with index — — 1. The next remark shows a possible way to obtain asympotic
formulae for the other half of the solution space using so-called reciprocity principle, which
allow us to use the previous theorem.

Remark 4.4. Let the assumptions of Theorem 4.3 hold. Take y € Sgy(—9d — 1). Set
ur = rpAy,. Then u satisfies

A(TkAug) + prttggr = 0, (4.14)

where 7, = 1/pg and py = /141 If p € RV(6),7 € RV(6 + 2), then p € RV(0),7 €
RV(6 4 2) with & = —§ — 2. It holds that
Kpe K (/i) Kpi

—— = ~ —0as k — oo. 4.15
Tk 1/pk Tk ( )

Since y € RV(—6 — 1), Ay € RV(—0 —2) and r € RV(J + 2), we get u € SV. Denote
Gk = kﬁk/?k It holds that

—k(l/rkﬂ) Fpi as k — oo.

S
G D/ Tk /s o

Hence, if Z;’ik G = o0, then also Z‘;’;k éj = oo and we can apply Theorem 4.3 to obtain

1
Gj
5+1} as k — oo

re Ay, = up = exp {— i(l + 0(1)),5?_3.1 } = exp {(1 +0(1)) Z
~ (4.16)

j=n

and a formula for y follows. N
If 7% G < oo, then also 322, G; < 0o and we can apply Theorem 4.3 to obtain

0+1

TeAyr = u, = M exp {Z(l + 0(1))~Gj }

j=n

(4.17)
k—1 G
:Mexp{ Zl+o 1} as k — 0o
j=n
and a formula for y follows.
4.2 Asymptotic formulae for RV solutions
Theorem 4.5. Let r € NRV(7v),v # 1,
2
lim ~PE _ 4 (4.18)
k—o00 7"k
and , A
.k k
L= 2P 5, 22k g0, — 1) (4.19)
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with |L[i]‘ € SV and 9; # 0 the real root of (1.4), i =1,2. Then
(1] (9;) — L
Yy~ k'Y exp 1+o0(1 J - 5> as k — o 4.20
k >+ o T g, (4.20)
provided that 77, Lg.i] = oo and
i ) N L}
Yt ~ DEY) exp 1+ o0(1 J - > as k — oo, 4.21
: > 1+ ) (4.21)

where D = kll_{go yr/ kWD), provided that Z;’ik ng‘] <o00,i=1,2.

Proof. Let 0 # ¥ < U5 # 0 be the roots of (1.4). From Theorem 3.3, Theorem 3.5

and the relationship between (1.4) and (3.2) we have S C NRV(¢1) UNRV(s).

Take

y € Spy(;), i = 1,2. Set y = hu, where h;, = k"), i = 1,2. Then ul! satisfies (3.52)

with (3.53) and (3.54) and
T = 7“;[;] _ Tkkwi)(k‘ + 1)(%‘)

A(rpAhy) = Ak D) = Ard kY o 00;(0; — DV,

From the properties of the Gamma function we have

E(0i—1)
oy k+2—1;
and (1))
N (k+1)(k+2-17,).
Further,

Br=pp = (k+ 1O [Ardk @D 4 195 (95 — DY 4 p(k + 1))

E@i=D9.  Ary, i (k+1)(19

i)

= (k+ D)0y, +0;(9; — 1) + -

k=2 p Tppr kW2

= (1{7 + 1)(ﬁi)k(ﬁi72)7’k+lzk,

where

~i I A
I = (k42— 0)22 49,00 — 1)+ L (b + 1) (k+2— 0)).
Tk+1 Tk+1
We want to show that /[:Z] ~ L%] as k — o0o. It holds that
~ = kA %A
Do=L0 = ZP8 o PE e p 1) (42— ) — O—® e (ko + 2 — 1)

Tk Tka1 Tk Tk+1
=i 4 Al 4 B,

where

kA A
- rk+(k+2—19i)ﬂ}
Tk Tk41

kAT‘k (k‘+2—191 Tk

Tk

Al :ﬁil

=

—1)—>Oask—>oo
Tk Tk+1
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and
i k? k+1)(k+2—1, k?
BY = P (k42— 0, — p’f:pk(( +1)( >__>
Tk4+1 Tk Tk4+1 Tk
k2 —
o <<k+1)(k+2 L _1>—>0ask:—>oo.
Tk k?2 Tk+1
Hence - A
Lg]NLEz] as k — oo

and ‘ZM € SV. Further, we have |p| € RV(3), 7 € RV(8+2) with 6 = v+ 20, — 2. From

— ) i) ) )
Lemma 1.5 we obtain § # —1. Denote GZ} = =& Then GZ} ~ LE]/k as k — oo.
Tk

Let Zf;ln Ly] /7 = oo. By applying Theorem 4.3 we obtain the asymptotic formula
for ul’

—5—1

. Aol Gl
qu] = exp {Z(l +o(1))—=2 } as k — oo

j=m

and the asymptotic formula for yl? follows

k-1 [i]

) Lt

[ _ 7.95) J
Yy = kY exp g 1+o0(1 - » as k — oo. 4.22

Let Zf;ln ng‘] /7 < oo. By applying Theorem 4.3 we obtain the asymptotic formula
for ul’

. . 00 G[-i]
ULZ} _ plil exp {Z(l +0(1)) =2 } as k — oo,

where DI = klim y,[ﬁ /K1) and the asymptotic formula for yl? follows
—00

. > L
@ _ (9:) J
Y, = DE'Y exp { g (1+ 0(1))(7 Y- 1)j} as k — oo. (4.23)

j=k
O

Example 4.6.

1
=k (1——|,
" ( lnck‘)

1
= A2 (1
Pk k (+ln”k)’

¢,n€(0,00),y€Rand A € (—0, (”’771)2) Then

2 n
KDk :A1+1/(1n k) — Aas k — .
r) 1-1/(In°k

Further,
~ k2 1 1
Lk: pk_A:A(l—i-O(l))( W]{;—i_T)

Tk
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and L € SV. It holds that - R
L= (14 o(1)E,

i =1,2 with sgnz = sgnA. The integral criterion yields that

j=m

i
J

< 00,7 = 1,2 if and only if minn,( > 1.

4.3 Classification

In this section we establish asymtotic formulae for regularly varying solutions of (1.1)
under certain conditions. We complete the results of [10] in case p > 0 and we unify these
results. Aside from that, asymptotic formulae established in Theorem 4.7 and Theorem
4.8 can be used to complete classification in [10].

2

k
Theorem 4.7. Let p € RV(6), r € RV(0 +2), 6 # —1, and lim Pr

k—o0 Tk

=0.

(i) If 6 < =1 and 3372, Gj = 00, then

S = ISoo,O == SSV U SR])(—(S - 1)

(it) If 6 < =1 and 322, G; < oo, then
S =Ssy USrp(—d — 1),

Ssy = LSpy,
Spv(—6 — 1) = TS 1.

(iii) If 6 > —1 and 377, G; = oo, then

S = DSp 0 = Ssy USry(—0 — 1).

(iv) If 6 > =1 and 372, Gj < oo, then
S =S5y USry(—d — 1),

Ssy = DSp o,
Sry(—6 — 1) = DSos.

Proof. Let 6 < —1. Then } 7%, 1/r; = 0o and
S§=I8p0ULSoULS B
by Lemma 1.1. Take y € Ssy. From proof of Theorem 4.3 we know that
fm 1 =0

Let 3 77, Gj = 0o. Then y satisfies (4.6) by Theorem 4.3 and since G > 0 and § +1 < 0,
we get

lim y, = oc.

k—o0
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Overall, we have y, € ZS 0.
Let >, Gj < oo. Then y satisfies (4.7) by Theorem 4.3 and since G' > 0 and
0+1<0, we get
lim g € (0, 00),

k—o0
thus y € ZSpy.
Take y € Sgy(—d — 1). Since —6 — 1 > 0, lﬁlg}g@ yr = 00. Let > 7, G; = oo. Then,
Remark 4.4 yields that rAy satisfies (4.16) and

lim r, Ay, = 0,
k—o0

thus y € ZS -
Let > 72, Gj < co. Then, by Remark 4.4, rAy satisfies (4.17) and

lim rpAy, =€ (0, 00).
k—o0

Hence, y € ZS .
Let § > —1. Then 3 7, p; = oo and

S =DSypUDSy UDSE «
by Lemma 1.2. Take y € Ssy. From proof of Theorem 4.3 we know that

lim r Ay, = —oc.
k—o0

Let >, Gj = 0o. Then y satisfies (4.6) by Theorem 4.3 and since G > 0 and 6 +1 > 0,
we get
lim y = 0.

k—o0

Overall, y € DSy oo-
Let >°72, Gj < oo. Then y satisfies (4.7) by Theorem 4.3 and since G' > 0 and
0+1>0, we get
lim y; =€ (0, 00)
k—o0

and we have y € DSp .
Take y € Sry(—6—1). Let 372, G = oo. Then, Remark 4.4 yields that rAy satisfies
(4.16) and
lim rp Ay, = —oc.
k—o0

From —§ — 1 < 0 we get that
lim y, =0,

k—o0
and y € DS oo.
Let > 2, Gj < oo. Then, by Remark 4.4, rAy satisfies (4.17) and

lim Ay, =€ (—00,0).
k—o0

Since —d — 1 < 0, we get
lim y, =0

k—o00
and y € DSy p.

Take case (i). We have proved that Ssy U Sgy(() — 6 — 1) € IS+ 5. The relation
IS0 C Ssy USgry(() — 6 — 1) results from the fact that we are, by Corrolary 3.5,
dealing with all regularly varying solutions. Thus there cannot be a regularly varying
solution that belongs to another class. This observation hold for all other cases and also
for Theorem 4.8, Theorem 4.9 and Theorem 4.10. [
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kP
Theorem 4.8 ([10]). Let —p € RV(4), r € RV(6 +2), 0 # —1, and khm = 0.
—o0  T'L
(i) If 6 < =1 and 3372, Gj = 0o, then
S = 8sp USpy(—d — 1),
SSV - DS - DS0,0,
Sry(—=0—1)=Z8 = IS -
(it) If § < =1 and 3272, G < oo, then
S = Ssy USpyp(—06 — 1),
Ssy = DS = DSpy,
Sry(—6 — 1) = I8 = IS 1.
(iti) If § > —1 and Y72, G = oo, then
S =Ssy USry(—0 — 1),
Ssy =I8 = I8 00,
SR];(—(S — ].) =DS = DSQQ.
(iv) If 6 > =1 and 372, G < oo, then
S = 8sp USpy(—d — 1),
Ssy =18 =18p .,
Sry(—0 — 1) =DS = DS, 5.
Theorem 4.9. Let p € RV(3), 1 € RV(9+2), 6 £ 1, lim &2 — A ¢ (o, (5;—1)2) and

Y1 < Uy be the real roots of (1.4). Then
S =78 = Sry(th) USry(1s)

provided 6 < —1 and
S =DS 00 = Sry(Vh) USry(V2)

provided § > —1.

Proof. From Corollary 3.5 we know that

S = Sry(V1) U Sy (V).

Let § < —1 and by Lemma 1.5 we have 0 < ¥ < 5. Take y € Sgy(¥1). Then, clearly,

y € ZS and

lim y, = oo.
k—o00

Further, rAy € RV(0 +2+ v, — 1) = RV(—12) and so

lim r, Ay, =0
k—o0
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, since —Jy < 0. Thus, y € ZS+ 0. The same holds for y € Sgy(92).
Let 6 > —1 and by Lemma 1.5 we have ¥; < ¥5 <. Take y € Sgy(¥1). Then, clearly,
y € DS and

lim y, = 0.
k—o0

Moreover, rAy € RV(d + 2+ 191 — 1) = RV(—9s) and from —vJy < 0 we get

lim rp Ay, = —oc.
k—o0
Hence, y € DS . The same holds for y € Sgy(02). O

Theorem 4.10. Let —p € RV(8), r € RV(§+2), § # ~1, lim E2e — A € (—00,0) and
— 00
V1 < Vg be the real roots of (1.4). Then

S = Sry (Y1) USry(V2),
Sry(V1) = DS = DS,
Sry(V2) =Z8 =TS o 0
Proof. From Corollary 3.5 we know that
S = Sry(th) USgy(Ys)
and by Lemma 1.5 we have ©; < 0 < ¥5. Take y € Sgy(t1). Then, clearly, y € DS and

lim y, = 0.

k—oo

Further rAy € RV(6 + 2 + 91 — 1) = RV(—12) and since —y < 0, we get
lim r. Ay, = 0.
k—o0

Hence, y € DSy .
Take y € Sgy(¥2). Then, clearly, y € ZS and

fm e =
Moreover rAy € RV(§ + 2+ 19, — 1) = RV(—) and so

lim r, Ay, = oo.
k—o00

as —U2 < 0. Hence, y € ZS o - O

4.4 Further remarks

In this section we present several remarks concerning our results and provide some direc-
tions for a future research.
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Relation between the indices of regular variation of r and p

In Theorem 4.3, Theorem 4.7 and Theorem 4.8 we have assumed that p € RV(J) and
r € RV(6 + 2). Let us show that this relation between indices of regular variation is
natural when one deals with slowly varying solutions which tend to zero or infinity.

Let |p| € RV(0),r € RV(y) and y € Ssy. Assume, for instance, 6 > —1. Then
> pj = oo and summing (1.1) from n to k — 1 yields

k—1 k—1
rAyr = 1Ay, — ijyj+1 ~ = ijijrl as k — oo.
j=n Jj=n

Since pryr+1 € RV(J), we get |Ayg| € RV(d + 1 — ). Combining that with y, — oo or
yr — 0as k — oo yields y € RV(0 + 2 — 7). Now, if v # § + 2, then y € SV.

In general, one can study asymptotic properties of RV solutions of (1.1) under condi-
tion v > d + 2. But allowing v > 6 + 2 would require many other nontrivial computations.
Analysis of regularly varying solutions of (1.1) under condition v < ¢ + 2 is meaningless,
as under this condition, by Corollary 3.5, (1.1) has no regularly varying solution, since
|k?py /15| — o0 as k — oo.

Recessive and dominant solutions

A concept of recessive and dominant solutions plays an important role in qualitative
theory of difference equations. For nonoscillatory (1.1) there exists a positive solution v,
called recessive solution, such that for any linearly independent solution x, called dominant

solution, one has

lim Y _ 0.
k—o0 ,T,'k

Other characterizations of are for example the summation characterization

= 1
—— =0
ik T5Y5Yj+1
and
- 1
— <
o T
or A A
x
Yk < k
Yk L
for large k.

In Chapter 3, we have established that (1.1) has a fundamental set of solutions y €
NRV(91), 2 € NRVz(92), 91 < J9. It can be proved that

y is a recessive solution and x is a dominant solution.

Indeed, take y € Sgy(¥1). Then

1
S /\/'RV(—W — 2191).
TEYEYk+1



52 Chapter 4. Discrete Karamata theory and difference equations

From Lemma 1.5 we have 299, > —1 + v, and so —y — 2¢y > —y — 1 + v = —1. Hence,

e e}
]2; T3Y; yj—i—l
and y is recessive. The same idea holds for x € Sgy(¥)2), only this time we Lemma 1.5

yields 215 < —1 + v and consequently

o0

1
= 00
ik 7’] iL'j.I'jJrl
and x is dominant.
“Critical case” 6 = —1.
We have not considered a case 6 = —1 (or v = 1) in our analysis. This case corresponds

to the double root of (1.4) that results in the fact that two linearly independent solutions
of (1.1) will be of the same index of regular variation. A slight change in the approach in
the proof of the existence theorem should result in the regular variation of the solution
space also in the double root case. Asymptotic formulae and the classification can be
obtained via the transformation into a “noncritical” (in the sense of § # —1) equation on
a suitable time scale.

Three term recurrence equation
In the literature the three term recurrence equation

apYrt2 + buyp+1 + cryr = 0. (4.24)

on [m, 00)z is frequently discussed. If ¢ # 0, (4.24) can be be written as (1.1) with

k=1
Ty = Ck &
e Cit1
and
k—1
pr = (ag + b + cx) H&

o, Citl

Using this relation between (4.24) and (1.1), it is apparent how our results can be applied
0 (4.24). For example, some of our conditions that were important in the analysis of
(1.1) for (4.24) read as follows

]{72pk . k:Q(ak + by, + Ck>
m

li =1
k—o0 Tk k—oo Ck
and from
k-1 a
Ary, = H ij(ak — Ck)
j=m IH1
we have
/{:(ak — Ck)

rr € RV(y) if and only if — v as k — oo

Ck
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and asymptotic formula (4.6) yields

o 1+o(1) ja;+b+¢)

=A

j=m

as k — oo.

}
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CONCLUSSION

The main aim of this thesis was to demonstrate the usefulness of the Karamata sequences
in asymptotic theory and to derive new results.

We have given a basic information about the difference equation (1.1), we have high-
lighted the importance of this equation and we have discussed a basic classification of its
solutions. We have also introduced a concept of a time scale and time scale calculus.

We have recalled the concept of a discrete regular variation and a concept of a regular
variation on time scales. We have gathered properties of regularly varying sequences that
are useful in asymptotic theory of difference equations.

Next, the regular variation of the solution space of the difference equation (1.1) has
been discussed and the new results were proved. By means of Theorem 3.1 we have
obtained the condition under which (3.1) has a regularly varying solution space. This
theorem generalizes [12] for arbitrary p, relaxing the sign condition p < 0, and [9] in the
sense of generalized domain. By means of a transformation of independent variable, we
have transformed a “difficult” difference equation (1.1) into a “simpler” dynamic equation
(3.1). This allowed us to apply (new) Theorem 3.1 and we acquired the condition, under
which the solution space of (1.1) consists of regularly varying sequences. This fact, pre-
sented in Theorem 3.2 and Theorem 3.4, generalize [9] in case r # 1. The relation (3.46)
is an improvement over [11] in case p > 0.

We have established asymptotic formulae for solutions of (1.1). These formulae are of
great value, since, in general, (1.1) is not analytically solvable. Paper [10] is concerned
with asymptotic formulae for case p < 0. Theorem 4.3 and Theorem 4.5 unify and
complete this results. By means of Theorem 4.7 and Theorem 4.9 we have discussed the
classification of the solutions of (1.1) and we have completed [10] in case p > 0.

The main contributions of this thesis are the demonstration of usefulness of discrete
theory of regularly varying sequences, the examinations of difference equations under
new settings, the completion and generalization of abovementionted results and the pre-
sentation of useful techniques, such as Riccati technique, reciprocity principle, linear
transformation or transformation from one time scale to another.

It is possible to build upon our results using the directions for a future research
mentioned at the end of the last chapter.
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