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Abstrakt
Táto práca sa zaoberá asymptotickou analýzou lineárnej diferenčnej rovnice druhého

rádu s využitím teórie Karamatovských postupností. Sú zhromaždené vlastnosti regulárne
sa meniacich postupností, ktoré sú užitočné v asymtotickej teórii. Pomocou transformácie
diferenčnej rovnice na dynamickú rovnicu na vhodnú časovú škálu a dokázaním všeobec-
ného výsledku pre dynamickú rovnicu je odvodená podmienka, ktorá zaručí regulárnu
variáciu priestoru riešení diferenčnej rovnice. Kombináciou rôznych techník sú odvodené
asymptotické formule a riešenia diferenčnej rovnice sú klasifikované do istých asymptotic-
kých tried.

Summary
This thesis deals with the asymptotic analysis of a linear second-order difference equa-

tion using the theory of Karamata sequences. Properties of regularly varying sequences
that are useful in asymptotic theory are gathered. Using a transformation of a difference
equation into the dynamic equation on the appropriate time scale and proving a general
result for the dynamic equation, the condition that guarantees a regular variation of the
solution space of a difference equation is obtained. By the combination of the variety
of techniques, asymptotic formulae are established and the solutions of the difference
equation are classified into certain asymptotic classes.

Klíčová slova
diferenčná rovnica, pozitívne riešenie, regulárne sa meniaca postupnosť, časová škála,

dynamická rovnica, asymptotická formula
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Rozšírený abstrakt
Táto práca sa zaoberá asymptotickou analýzou lineárnej diferenčnej rovnice druhého

rádu
∆(rk∆yk) + pkyk+1 = 0,

kde r > 0, s rôznymi znamienkovými podmienkami pre p. Táto rovnica je častým objek-
tom záujmu, nakoľko sa často vyskytuje v rôznych aplikáciách.

V práci sú najprv popísané základné informácie o tejto diferenčnej rovnici a pridružené
pojmy — oscilácia, Riccatiho rovnica a istá algebraická rovnica, ktorá sa vyskytuje pri
analýze tejto rovnice. Sú definované asymptotické triedy riešení vzhľadom na ich správanie
v nekonečne a je ukázaná základná klasifikácia riešení do týchto tried. Sú predstavené poj-
my časová škála a kalkulus na časových škálach, čo je zovšeobecnením (nielen) klasického
diferenciálneho kalkulu a diskrétneho kalkulu.

Ďalej sú v práci zhromaždené vlastnosti regulárne sa meniacich postupností, ktoré
sú užitočné v asymptotickej teórii diferenčných rovníc. Jednou z najdôležitejších viet je
Karamatova veta, ktorá ukáže, že pomaly sa meniace postupnosti násobené mocninnými
postupnosťami a integrované, sa asymptoticky správajú ako konštanty.

Je diskutovaná otázka, za akých predpokladov sú všetky eventuálne pozitívne riešenia
danej rovnice regulárne sa meniace postupnosti. Sú odvodené podmienky, na základe
ktorých má všeobecnejšia dynamická rovnica na časovej škále regulárne sa meniace rieše-
nia. Využitím tohto výsledku a transformácie diferenčnej rovnice na vhodnú časovú škálu
získame nutnú a postačujúcu podmienku pre to, aby všetky eventuálne pozitívne riešenia
boli regulárne sa meniace. Tým, že dokážeme, že všetky riešenia sú regulárne sa menia-
ce, získame, skrz vlastnosti regulárne sa meniacich postupností, netriviálne informácie o
týchto riešeniach.

V práci sú odvodené asymtotické formule pre riešenia danej diferenčnej rovnice, ktoré
majú veľký význam skrz fakt, že všeobecne nie je táto rovnica analyticky riešiteľná. Rieše-
nia sú klasifikované podľa ich správania v nekonečne do asymptotických tried. Sú disku-
tované rôzne poznámky o výsledkoch, o možnom ďalšom smerovaní a je naznačené, ako
sa dá inak pozerať na výsledky v tejto práci skrz transformáciu na rekurentnú rovnicu.

Sú demonštrované rôzne techniky a postupy, ktoré sa používajú v (nielen) asymp-
totickej teórii. Transformáciami závislej, resp. nezávislej premennej prevedieme „zložitú“
diferenčnú rovnicu na (v kontexte aktuálneho skúmania rovnice) „jednoduchšiu“ dife-
renčnú alebo dynamickú rovnicu. Medzi použité transformácie napríklad patrí lineárna
transformácia, princíp reciprocity alebo transformácia z jednej časovej škály na inú časovú
škálu. Ďalej je predvedená Riccatiho technika, ktorá je v kontexte neoscilatívnych riešení
veľmi silným nástrojom na analýzu kvalitatívnych vlastností rovníc.

Je ukázaná využiteľnosť teórie regulárne sa meniach postupností ich vlastností pre
(nielen) asymptotickú teóriu.

Jedným z najpodstatnejších prínosov tejto práce je časť, kde sa dokazuje regulárna
variácia všetkých eventuálne pozitívnych riešení diferenčnej rovnice. Sú odvodené pod-
mienky, za ktorých má všeobecnejšia dynamická rovnica na diskrétnej časovej škále

x∆∆(t) + p(t)yσ(t) = 0,

kde r > 0 a p ľubovoľné, regulárne sa meniaci priestor riešení, čo je nový výsledok, ktorý
zovšeobecňuje známe výsledky z hľadiska neprítomnosti znamienkovej podmienky p < 0
a z hľadiska všeobecnejšieho definičného oboru. Ďalším novým výsledkom je dokázanie
pod akými predpokladmi má diferenčná rovnica priestor riešení tvorený z regulárne sa
meniacich postupností. Tento fakt je dokázaný pomocou transformácie diferenčnej rovnice



na dynamickú rovnicu a dáva návod, ako sa dá vysporiadať s rôznymi situáciami, keď je
(nielen) diferenčná rovnica v „zložitom“ tvare. Tento výsledok je nový z hľadiska r 6≡ 1,
resp. z hľadiska neprítomnosti znamienkovej podmienky p < 0.

Ďalším prínosom tejto práce je doplnenie asymptotických formulí pre p > 0 a ich
unifikácia so známymi výsledkami. Okrem asymptotických formulí je pre prípad p > 0
doplnená klasifikácia riešení diferenčnej rovnice na základe ich asymptotického správania.

Prínosom je ukážka využiteľnosti teórie regulárne sa meniach postupností a taktiež
spomínaná demonštrácia rôznych techník a postupov, ktoré sú často používané.
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INTRODUCTION

The linear second-order difference equation

∆(rk∆yk) + pkyk+1 = 0

is a frequent object of interest. It arises out, for example, from a discretization of a
differential equation, as an Euler-Lagrange equation of a certain quadratic functional or
directly as a discrete model.

In general, this equation is not analytically solvable. Because of that, it is of interest
to study this difference equation from the qualitative point of view. Asymptotic theory,
which is treated in this thesis, forms a large part of qualitative theory.

The Karamata theory of regular variation has been proved to be a very useful tool
in the asymptotic analysis of differential equations, for example, in [8]. The concept of
discrete regular variation has also found applications in the study of qualitative properties
of difference equations. One can mention a paper [10] or works [7] and [6], where difference
equations in relation to theory of regularly varying sequences are studied using different
techniques.

The aim of this thesis is to demonstrate the usefulness of the Karamata sequences
in asymptotic theory of difference equations and to show how a combination of various
techniques including regular variation enables us to make a precise description of the
solutions of the difference equation.

In the first chapter we give basic information about the linear second-order difference
equation and oscillation, we present a basic classification of nonoscillatory solutions and
we introduce a concept of a time scale. In the next chapter we recall a concept of discrete
regular variation on Z and a concept of regular variation on time scales. Chapter 3 is
concerned with the existence of regularly varying solutions and related considerations. The
fact that, under certain assumptions, the solution space of the difference equation consists
of regularly varying sequences is proved via transformation of a difference equation into
the dynamic equation on a suitable time scale. In the last chapter we establish asymptotic
formulae, we discuss the classification of the solutions of the difference equation and lastly,
we present several remarks concerning our results and provide some directions for a future
research.
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CHAPTER 1

SECOND-ORDER LINEAR DIFFERENCE EQUATIONS

We consider the linear second-order difference equation

∆(rk∆yk) + pkyk+1 = 0 (1.1)

on [m,∞)Z where r is a positive sequence and p is eventually of one sign. By ∆ we mean
the usual difference operator

∆yk = yk+1 − yk
by ∆2 = ∆◦∆. Further, we denote [a,∞)Z = {a, a+1, · · · } and [a, b]Z = {a, a+1, · · · , b}
where a, b ∈ Z. Fundamentals about difference equations can be found in [5].

The equation (1.1) arises out in several contexts. It is the Euler-Lagrange equation of
the quadratic functional

n∑
k=m

(
rk(∆ξk)

2 − pkξ2k+1

)
,

thus it is the Jacobi equation of a general discrete functional. It can serve directly as
a discrete model, e.g. the Fibonacci reccurence relation. It can be understood as the
discretization of the linear second-order differential equation

(r(t)y′(t))′ + p(t)y(t) = 0. (1.2)

The discretization goes on as follows. Let us consider (1.2), where r, p are continuous on
[a, b]. For small h = (b− a)/n, n ∈ N, we have

y′(t) ≈ y(t)− y(t− h)
h

and
(r(t)y′(t))′ ≈ 1

h

(
r(t+ h)(y(t+ h)− y(t))

h
− r(t)(y(t)− y(t− h))

h

)
.

Let t = a+ kh, where k ∈ [0, n]Z. If y is solution of (1.2) on [a, b], then

r(a+ (k + 1)h) [y(a+ (k + 1)h)− y(a+ kh)]− r(a+ kh) [y(a+ kh)− y(a+ (k − 1)h)]

+ h2p(a+ kh)y(a+ kh) ≈ 0.

Denote yk = y(a+ (k − 1)h), rk = r(a+ kh) and pk = h2p(a+ kh). Hence,

rk+1(yk+2 − yk+1)− rk(yk+1 − yk) + pkyk+1 ≈ 0,

17



18 Chapter 1. Second-order linear difference equations

and so
∆(rk∆yk) + pkyk+1 ≈ 0

for k ∈ [0, n− 2]Z.

Oscillation
We will work only with nonoscillatory solutions that is solutions which are eventually
of one sign. Since p is eventually monotone, all nonoscillatory solutions are eventually
of one sign. By the discrete Sturm separation theorem, if one solution is nonoscillatory,
then all solutions are nonoscillatory. Therefore we can talk about (non)oscillation of an
equation. For pk < 0 for large k, nonoscillation of the equation (1.1) follows from the
Sturm comparison theorem. For pk > 0 for large k, equation (1.1) can be both oscillatory
and nonoscillatory. There exist criteria for determining, whether (1.1) is oscillatory or
not. But, as a matter of fact, nonoscillation of this equation arises out as a by-product
of our considerations.

Basic classification of the solution space
Without loss of generality we can examine only eventually positive solutions. Denote

S = {y : y is a positive solution of (1.1) for large k} .

Since y is eventually monotone, we can divide S into two disjoint classes

IS = {y ∈ S : ∆yk > 0 for large k}

and
DS = {y ∈ S : ∆yk < 0 for large k}.

Denote

IS∞ = {y ∈ IS : lim
k→∞

yk =∞} and ISB = {y ∈ IS : lim
k→∞

yk ∈ (0,∞)}

and

DS0 = {y ∈ DS : lim
k→∞

yk = 0} and DSB = {y ∈ DS : lim
k→∞

yk = ϑ ∈ (0,∞)}.

We can further divide these classes into subclasses based on asymptotic behaviour of the
quasidifference rk∆yk. Denote

ISu,v = {y ∈ IS : lim
k→∞

yk = u, lim
k→∞

rk∆yk = v}

and
DSu,v = {y ∈ DS : lim

k→∞
yk = u, lim

k→∞
rk∆yk = v},

where we will write u = B or v = B when the value of the limit is a real nonzero number.
Further, denote

SSV = S ∩ SV
and

SRV(ϑ) = S ∩RV(ϑ).
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Basic classification when pk > 0 for large k

Let pk > 0 for large k. Then quasiderivative r∆y eventually decreases. If y ∈ IS, then
r∆y is positive and if y ∈ DS, then r∆y is negative. Therefore, only following subclasses
make sense:

IS∞,B, IS∞,0, ISB,B, ISB,0, DSB,B, DSB,∞, DS0,B, DS0,∞.

Lemma 1.1. Let
∑∞

j=k 1/rj =∞. Then S = ISB,0 ∪ IS∞,0 ∪ IS∞,B.

Proof. Take y ∈ DS. Then there exists a constant −M ∈ (−∞, 0) such that

rk∆yk ≤ −M

and by dividing by rk and summing from n to k − 1

yk ≤ yn −M
k−1∑
j=n

1

rj
→ −∞ as k →∞,

that contradicts yk > 0.
Take y ∈ ISB,B. Then rk∆yk has the limit M ∈ (0,∞) and

rk∆yk ≥M

and by dividing by rk and summing from n to k − 1

yk ≥ yn +M
k−1∑
j=n

1

rj
→∞ as k →∞,

that contradicts the finitness of the limit M .

Lemma 1.2. Let
∑∞

j=k pj =∞. Then S = DS0,B ∪ DS0,∞ ∪ DSB,∞.

Proof. Take y ∈ IS. Then, from (1.1) by summation from n to k − 1,

0 < rk∆yk = rn∆yn −
k−1∑
j=n

pjyj+1 ≤ rn∆yn − yn
k−1∑
j=n

pj → −∞ as k →∞,

that contradicts rk∆yk > 0.
Taky y ∈ DSB,B. It holds that

rk∆yk = rn∆yn −
k−1∑
j=n

pjyj+1 → −∞ as k →∞,

that contradicts the finitness of the limit lim
k→∞

rk∆yk.

Corollary 1.3. Let
∑∞

j=k pj = ∞ =
∑∞

j=k 1/rj. Then S = ∅, i.e. the equation (1.1) is
oscillatory.

Basic classification when pk < 0 for large k

Let p < 0 for large k. Then quasiderivative r∆y eventually increases. If y ∈ IS, then
r∆y is positive and if y ∈ DS, then r∆y is negative. Therefore only following subclasses
make sense:

IS∞,B, IS∞,∞, ISB,B, ISB,∞, DSB,B, DSB,0, DS0,B, DS0,0.
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Riccati equation
The transformation of (1.1) into the Riccati equation will be one of the tools frequently
used in our proofs. It goes as follows.

Lemma 1.4. Let y be a nonoscillatory solution of (1.1). Set wk = (rk∆yk)/yk. Then w
satisfies Riccati equation

∆wk + pk +
w2
k

rk + wk
= 0 (1.3)

and rk + wk > 0 for large k.

Associated algebraic equation and its properties
Analysis of regular variation of the solution space of (1.1) will lead us to the algebraic
equation

ϑ2 − (1− γ)ϑ+ A = 0, (1.4)

where A <
(
1−γ
2

)2, i.e. (1.4) has two distinct real roots.
As it will turn out, the solution space of (1.1) will consist of regularly varying sequences

of indices corresponding to the roots of this equation. Hence, it is of interest to analyse
properties of this roots.

Lemma 1.5. The next observations about the roots ϑ1 < ϑ2 of (1.4) hold:

i) ϑ1 + ϑ2 = 1− γ.

ii) Let γ < 1. Then

• 0 < ϑ1 <
1− γ
2

< ϑ2 < 1− γ provided that A > 0,

• ϑ1 < 0 < 1− γ < ϑ2 provided that A < 0,
• ϑ1 = 0, ϑ2 = 1− γ provided that A = 0.

iii) Let γ > 1. Then

• ϑ1 <
1− γ
2

< ϑ2 < 1− γ < 0 provided that A > 0,

• ϑ1 < 1− γ < 0 < ϑ2 provided that A < 0,
• ϑ1 = 1− γ, ϑ2 = 0 provided that A = 0.

iv) 1− γ − 2ϑ1 =
√

(1− γ)2 − 4A > 0.

Time scales and dynamic equations on time scales
In this section, we will introduce the concept of a time scale. Information concerning the
time scales are drawn from [3]. One of the most important features of time scale calculus
is the unification of differential calculus and calculus of finite differences. It allows us
to study properties of a dynamic equation on a general set — time scale that includes
both real numbers R, integer numbers Z or any other nonempty, closed subset of real
numbers. Then, by choosing a specific time scale, for example R or Z, the result for a
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general dynamic equation yields a result for a differential equation or a difference equation
respectively.

Moreover, the time scale calculus can explain the similarities or the differences between
the results in continuous and discrete settings.

Further, the time scale calculus allows more variability when discretizing in the sense
that it allows the step size to be varied in time.

Another example of the usefulness of time scale calculus is the idea of transformation
of a “difficult” problem on one time scale into the “simpler” problem on another time
scale, which in fact a major use case of the time scale calculus in our theory.

Definition 1.6. A nonempty, closed subset T of the real numbers is called a time scale.
On time scale T we define:

• forward jump operator σ : T→ T, σ(t) = inf {s ∈ T : s > t},

• backward jump operator ρ : T→ T, ρ(t) = sup {s ∈ T : s < t},

• graininess function µ : T→ [0,∞), µ(t) = σ(t)− t,

• the set Tκ as follows. If for maximum m of T it holds that ρ(m) < m (m is left
scattered), then Tκ = T− {m}. Else Tκ = T,

• righ-dense point t ∈ T such that t = σ(t),

• left-dense point t ∈ T such that t = ρ(t),

• the time scale interval BCT[a, b] = [a, b] ∩ T and BCT[a,∞) = [a,∞) ∩ T,

• by fσ we mean fσ = f ◦ σ.

Definition 1.7. Let f : T → R be a function. For t ∈ Tκ we define f∆(t) to be the
number (provided it exists) with the property that given ε > 0, there is a neighborhood
U of t such that ∣∣f(σ(t))− f(t)− f∆(t)(σ(t)− t)

∣∣ ≤ ε |σ(t)− t|

for all s ∈ U . We call f∆(t) the delta (or Hilger) derivative.

Theorem 1.8. Let f, g be delta differentiable at t ∈ Tκ. Then

a) (f + g)∆(t) = f∆(t) + g∆(t)

b) (αf)∆(t) = αf∆(t) for every α ∈ R

c) (fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t) = f(t)g∆(t) + f∆(t)g(σ(t))

d)
(

1
f

)∆
(t) = −f∆(t)

f(t)f(σ(t))
, provided by f(t)f(σ(t)) 6= 0

e)
(
f
g

)∆
(t) = f∆(t)g(t)−f(t)g∆(t)

g(t)g(σ(t))
, provided by g(t)g(σ(t)) 6= 0

Definition 1.9. A function f : T → R is called rd-continuous provided its right-sided
limits exist at all right-dense points in T and its left-sided limits exist at all left-dense
points in T.

Denote the set of rd-continuous functions f : T → R as Crd and the set of functions
f : T→ R that are delta differentiable and whose derivative is rd-continuous as C1

rd.
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Next, the definition of integral on time scale follows. A time scale integral can be
made under more general setting, but the presented version is sufficient for our purposes.

Definition 1.10. A function F : T→ R is called an antiderivative of f : T→ R provided

F∆(t) = f(t) for all t ∈ Tκ.

Definition 1.11. Define the delta integral on a time scale T for f ∈ Crd by∫ s

r

f(t)∆t = F (s)− F (r) for all r, s ∈ T.

Theorem 1.12. Let a, b, c ∈ T, α ∈ R and f, g ∈ Crd. Then

a)
∫ b
a
f(s) + g(s)∆s =

∫ b
a
f(s)∆s+

∫ b
a
g(s)∆s

b)
∫ b
a
αf(s)∆s = α

∫ b
a
f(s)∆s

c)
∫ b
a
f(s)∆s =

∫ c
a
f(s)∆s+

∫ b
c
f(s)∆s

d)
∫ b
a
f(s)g∆(s)∆s = (fg)(b)− (fg)(a)−

∫ b
a
f∆(s)g(σ(s))∆s

Theorem 1.13. Let f ∈ Crd and t ∈ Tκ. Then∫ σ(t)

t

f(s)∆s = µ(t)f(t)

Example 1.14. Let T = R. Then σ(t) = t, µ(t) ≡ 0,

f∆(t) = lim
t→s

f(t)− f(s)
t− s

= f ′(t). (1.5)

and ∫ b

a

f(s)∆s =

∫ b

a

f(s) ds (1.6)

Example 1.15. Let T = Z. Then σ(t) = t+ 1, µ(t) ≡ 1,

f∆(t) = f(t+ 1)− f(t) = ∆ft (1.7)

and ∫ b

a

f(s)∆s =
b−1∑
j=a

fj (1.8)

Definition 1.16. A time scale T is said to be discrete if for every t ∈ T ρ(t) < t < σ(t).

Theorem 1.17. Let T be a discrete time scale. Then for every f : T→ R

f∆(t) =
fσ(t)− f(t)

µ(t)
. (1.9)

Theorem 1.18. Let T be a discrete time scale, a, b ∈ T, a < b. Then∫ b

a

f(s)∆s =
∑

s∈[a,b)T

µ(s)f(s).



Chapter 1. Second-order linear difference equations 23

Definition 1.19. Let T be a time scale and p function satisfying 1 + µ(t)p(t) 6= 0 for all
t ∈ Tκ. A solution to the initial value problem

y∆(t) = p(t)y(t), y(t0) = 1

on T is called a generalized exponential function ep(t, t0).

Consider the dynamic self-adjoint equation of a second order

(r(t)x∆(t))∆ + p(t)xσ(t) = 0 (1.10)

on time scale T, where r > 0 and 1/r, p ∈ Crd. A solution x of (1.10) is called
nonoscillative, if x(t)xσ(t) > 0 for all t ∈ T.

Theorem 1.20. Let x be a nonoscillatory solution of (1.10). Then z(t) =
r(t)x∆(t)

x(t)
satisfies the dynamic Riccati equation

z∆(t) + p(t) +
z2(t)

r(t) + µ(t)z(t)
= 0 (1.11)

with r(t) + µ(t)z(t) > 0 for all t ∈ Tκ.
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CHAPTER 2

DISCRETE KARAMATA THEORY

Before proceeding to discrete Karamata theory of regularly varying sequences, let us
present asymptotic notation.

Definition 2.1. Sequences y and x are said to be asymptotically equivalent, denoted by
x ∼ y, if

lim
k→∞

yk
xk

= 1. (2.1)

By
xk = o(yk) as k →∞,

we mean
lim
k→∞

xk
yk

= 0.

By

xk

k−1∑
j=m

(1 + o(1))yj as k →∞

we mean that there exists sequence ε such that lim
k→∞

εk = 0 and

xk =
k−1∑
j=m

(1 + εj)yj. (2.2)

2.1 Karamata theory on Z
In this section we will deal with basics of Karamata theory of regular variation on Z. In
particular, we will provide several theorems about Karamata sequences that will be useful
in analysing asymptotic properties of the solutions of difference equations. Information
in this section are drawn from [2], [4] and [1].

Definition 2.2. A positive sequence y = {yk}∞k=m, is said to be regularly varying of index
ϑ, if there is a positive sequence α satisfying

lim
k→∞

yk
αk

= C, lim
k→∞

k∆αk
αk

= ϑ, (2.3)

where C > 0 is a constant. If ϑ = 0, y is said to be slowly varying sequence.

25
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Definition 2.3. A positive sequence y, is said to be normalized regularly varying of index
ϑ, if it satisfies

lim
k→∞

k∆yk
yk

= ϑ. (2.4)

If ϑ = 0, y is said to be normalized slowly varying sequence.

Definition 2.4. Denote (N)RV(ϑ) a set of all (normalized) regularly varying sequences
of index ϑ and (N)SV a set of all (normalized) slowly varying sequences.

Example 2.5. It holds that lnγ k ∈ NSV and kϑ ln k ∈ NRV(ϑ) for every ϑ, γ ∈ R and
1 + (−1k)/k ∈ SV/NSV . A sequence 2k is not regularly varying.

Definition 2.6. A “falling factorial power” sequence k(ϑ) is defined as,

k(ϑ) =
Γ(k + 1)

Γ(k − ϑ+ 1)
,

where Γ is usual Gamma function.

Remark 2.7. It holds that Γ(k + 1) = kΓ(k) and Γ(k + ϑ) ∼ Γ(k)kϑ. Hence,

kϑ ∼ k(ϑ) as k →∞

and k(ϑ) ∈ NRV(ϑ).

Theorem 2.8. The following statements are equivalent:

a) y ∈ RV(ϑ),

b)
yk = kϑLk, (2.5)

where L ∈ NSV,

c)

yk = kϑϕk exp

{
k−1∑
j=m

ψj
j

}
, (2.6)

k ≥ m, where ϕk → C ∈ (0,∞) and ψk → 0 as k →∞,

d)

yk = ϕk exp

{
k−1∑
j=m

δj
j

}
, (2.7)

k ≥ m, where ϕk → C ∈ (0,∞) and δk → ϑ as k →∞,

e)

yk = kϑϕk

k−1∏
j=m

(
1 +

ψj
j

)
, (2.8)

k ≥ m, where ϕk → C ∈ (0,∞) and ψk → 0 as k →∞,
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f)

yk = ϕk

k−1∏
j=m

(
1 +

δj
j

)
, (2.9)

k ≥ m, where ϕk → C ∈ (0,∞) and δk → ϑ as k →∞.

g)
yk = k(ϑ)Lk, (2.10)

where L ∈ SV and k(ϑ) is “falling factorial power” sequence defined in Definition
2.6.

Theorem 2.9. A sequence yk belongs to NRV(ϑ) if and only if

yk = kϑLk, (2.11)

or
yk = k(ϑ)Lk, (2.12)

where L ∈ NSV. Moreover, y ∈ NRV(ϑ) if and only if y satisfies any of (2.6), (2.7),
(2.8) or (2.9) with ϕk ≡ C, where C is a positive constant.

In view of Theorem 2.8 b), we can denote a “slowly varying component” L<y> of a
regularly varying sequence y as

L<y>k =
yk
kϑ
. (2.13)

Theorem 2.10. Let x ∈ RV(ϑ1), y ∈ RV(ϑ2). Then x + y ∈ RV(max{ϑ1, ϑ2}), xy ∈
RV(ϑ1 + ϑ2) and 1/x ∈ RV(−ϑ1). The same holds if RV is replaced by NRV .

Theorem 2.11. Let y ∈ RV(ϑ). Then yk+1/yk ∼ 1 as k →∞.

Theorem 2.12. Let y ∈ RV(ϑ). Then ∆ ln yk ∼ ∆yk/yk as k →∞.

The next theorem plays a very important role in our theory.

Theorem 2.13 (Karamata type theorem). Let L ∈ SV. Then

k−1∑
j=m

jϑLj ∼
1

ϑ+ 1
kϑ+1Lk (2.14)

as k →∞, provided that ϑ > −1, and

∞∑
j=k

jϑLj ∼
1

−ϑ− 1
kϑ+1Lk (2.15)

as k →∞, provided that ϑ < −1.
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2.2 Karamata theory on T
In this section, we will outline Karamata theory on time scales and provide several defini-
tions and theorems that will be used to get condition that guarantees the regular variation
of the solution space of (1.10). We omit many details as Kamarata theory on time scales
is not the main subject of this thesis. Information in this section are drawn from [12].

Definition 2.14. Let µ(t)/t→ 0 as t→∞. A f ∈ C1
rd is said to be normalized regularly

varying of index ϑ ∈ R, if

lim
t→∞

tf∆(t)

f(t)
= ϑ

and we write f ∈ NRVT(ϑ). If ϑ = 0, then f is said to be normalized slowly varying
function and we write f ∈ NSVT.

Theorem 2.15. Let µ(t)/t → 0 as t → ∞. Then f ∈ C1
rd belongs to NRVT(ϑ) if and

only if
f(t) = eη(t, a),

where eη(t, a) is a generalized exponential function and tη(t)→ ϑ as t→∞.

Theorem 2.16. Function f belongs to NRVT(ϑ) if and only if

f(t) = tϑL(t),

where L ∈ NSVT.

Theorem 2.17. Let µ(t)/t → 0 as t → ∞ and f ∈ NRVT(ϑ). Then f(t) ∼ fσ(t) as
t→∞.

Theorem 2.18 (Karamata integration theorem on time scales). Let µ(t)/t→ 0 as t→∞
and L ∈ NSVT. Then ∫ ∞

t

sϑL(s)∆s ∼ 1

−ϑ− 1
tϑ+1L(t)

as t→∞, provided by ϑ < −1, and∫ t

a

sϑL(s)∆s ∼ 1

ϑ+ 1
tϑ+1L(t)

as t→∞, provided by ϑ > −1.



CHAPTER 3

REGULAR VARIATION OF THE SOLUTION SPACE

We want to establish the condition, under which the solution space of (1.1) consists of
regularly varying sequences. In order to have the difference equation (1.1) in a suffi-
ciently general setting, we use the idea of transformation of a difference equation into a
dynamic equation on a time scale and prove that this dynamic equation has, under certain
assumptions, the solution space formed by regularly varying functions (on time scales).
The regular variation of all solutions of (1.1) will follow from the inverse transformation
and properties of regularly varying sequences. This chapter contains new results and
improvements over existing results.

Consider the equation
x∆∆ + p(t)xσ = 0 (3.1)

on a discrete time scale T, where p(t) is an arbitrary function. We want to show that,
under certain assumptions, this equation has only regularly varying solutions. Let us
emphatize that there is no sign condition on p.

The regular variation of solutions of

∆2yk + pkyk+1 = 0,

where p is an arbitrary sequence, is discussed in [9]. The next theorem generalizes this
result to the dynamic equation (3.1).

Theorem 3.1. Let T be a discrete time scale satisfying µ(t)/t → 0 and µ(t) ∼ µσ(t) as
t→∞. Then there exists a fundamental system of solutions of (3.1) y ∈ NRVT(ϑ1), x ∈
NRVT(ϑ2) if and only if

t

∫ ∞

t

p(s)∆s→ C ∈ (−∞, 1/4) for t→∞,

where ϑ1 < ϑ2 are the real roots of the algebraic equation

ϑ2 − ϑ+ C = 0. (3.2)

Moreover, every eventually positive solution z of (3.1) is normalized regularly varying,
with z ∈ NRVT(ϑ1) ∪NRVT(ϑ2).

29
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Proof. „⇒”: Let y ∈ NRVT(ϑ1) be a solution of the equation (3.1) and set w = y∆/y.
Then w satisfies the dynamic Riccati equation

w∆(t) + p(t) +
w2(t)

1 + µ(t)w(t)
= 0 (3.3)

and in view of tw(t) → ϑ1 as t →∞ and µ(t)w(t) → 0 as t →∞, we get that w(t) → 0
as t→∞ and 1 + µ(t)w(t) > 0.

We want to integrate the equation (3.3) from t to ∞. We need to show that the
integrals exist. It holds that 1 − µ(t)w(t) ≥ 1 − ε for ε ∈ (0, 1) and |w(t)| ≤ M/t for

sufficiently large t. Also, in view of t
σ

t
=
t+ µ(t)

t
∼ 1 as t → ∞ we have tσ

t
≤ N for

sufficiently large t. Further, since
(
−1
t

)∆

=
1

tσ(t)
, we obtain

∫ ∞

a

1

s2
∆s =

∫ ∞

a

1

sσ(s)

σ(s)

s
∆s ≤ N

[
−1
t

]∞
a

<∞.

Then ∫ ∞

a

w2(s)

1 + µ(s)w(s)
∆s ≤ 1

1− ε

∫ ∞

a

w2(s)∆s ≤ M2

1− ε

∫ ∞

a

1

s2
∆s <∞.

Integrating (3.3) from t to ∞ and multiplying by t we get

t

∫ ∞

t

p(s)∆s = tw(t)− t
∫ ∞

t

w2(s)

1 + µ(s)w(s)
∆s. (3.4)

Time scale analogue of the L’Hospital rule yields

lim
t→∞

∫∞
t

w2(s)
1+µ(s)w(s)

∆s
1
t

= lim
t→∞

−w2(t)
1+µ(s)w(t)

−tσ(t)
= lim

t→∞

t2w2(t)

1 + µ(t)w(t)
= ϑ2

1.

Hence,

lim
t→∞

t

∫ ∞

t

p(s)∆s = lim
t→∞

tw(t)− lim
t→∞

∫ ∞

t

w2(s)

1 + µ(s)w(s)
∆s = ϑ1 − ϑ2

1 = C. (3.5)

“⇐”: Set ψ(t) = t
∫∞
t
p(s)∆s− C. We search for a solution of (3.1) in the form

y(t) = eu(t, a), where u(t) = ϑ1 + ψ(t) + w(t)

t
and a ∈ T. (3.6)

In order that y if a solution of (3.1), we need to determine w(t) such that u(t) is a solution
of the dynamic Riccati equation

u∆(t) + p(t) +
u2(t)

1 + µ(t)u(t)
= 0 (3.7)

and u(t) satisfies 1 + µ(t)u(t) > 0 for large t. If, moreover, w(t) → 0 as t → ∞, then
y ∈ NRVT(ϑ1) by Theorem 2.15. Because of the definition of u

ψ∆(t) =

∫ ∞

t

p(s)∆s− σ(t)p(t)
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and
u∆(t) = −p(t) + tw(t)∆ − ϑ2

1 − w(t)
tσ(t)

we can write (3.7) in terms of w as

w∆(t) +
−ϑ2

1 − w(t)
t

+
σ(t)(ϑ1 + ψ(t) + w(t))2

t2 + tµ(t)(ϑ1 + ψ(t) + w(t))
= 0, (3.8)

that is

w∆(t) +
2ϑ1 − 1 + 2ψ(t)

t
+
w2(t) + ψ2(t) + 2ϑ1ψ(t)

t
+G[w](t) = 0, (3.9)

where

G[w](t) =
σ(t)(ϑ1 + ψ(t) + w(t))2

t2 + tµ(t)(ϑ1 + ψ(t) + w(t))
− (ϑ1 + ψ(t) + w(t))2

t

=
(ϑ1 + ψ(t) + w(t))2 − (ϑ1 + ψ(t) + w(t))3

t2

µ(t)
+ t(ϑ1 + ψ(t) + w(t))

.

Set h(t) = ev(t, a), where v(t) = (2ϑ1 − 1 + 2ψ(t))/t. From Theorem 2.15 we get h ∈
NRVT(2ϑ1 − 1) and h is decreasing towards zero, as 2ϑ1 − 1 < 0 by Theorem 1.5 iii).
Multiply (3.9) by h to obtain

h(t)w∆(t) + h∆w(t) + h(t)
w2(t) + ψ2(t) + 2ϑ1ψ(t)

t
+ h(t)G[w](t) = 0, (3.10)

what we can rewrite using the identity (hw)∆(t) = h∆(t)w(t)+h(t)w∆(t)+µ(t)h∆(t)w∆(t)
as

(hw)∆(t) +
h(t)

t
(w2(t) + ψ2(t) + 2ϑ1ψ(t)) + h(t)G[w]− µ(t)h∆(t)w∆(t) = 0. (3.11)

If h(t)w(t)→ 0 for t→∞, then integration from t to ∞ of (3.11) yields

w(t) =
1

h(t)

∫ ∞

t

h(s)

s
(w2(s) + ψ2(s) + 2ϑ1ψ(s))∆s+

1

h(t)

∫ ∞

t

h(s)G[w](s)∆s

− 1

h(t)

∫ ∞

t

µ(t)h∆(s)w∆(s)∆s. (3.12)

We want to apply the contraction mapping theorem on the equation (3.12). We will work
in the Banach space BCT[a,∞) — bounded, continuous functions on [a,∞)T, endowed
with the supremum norm. Introduce the set Ω as

Ω = {w ∈ BCT[a,∞) : |w(t)| ≤ δ for t ≥ a},

where the values of δ, a will be determined later and define the operator τ : Ω→ BCT[a,∞)
by

τ [w](t) =
1

h(t)

∫ ∞

t

h(s)

s
(w2(s) + ψ2(s) + 2ϑ1ψ(s))∆s+

1

h(t)

∫ ∞

t

h(s)G[w](s)∆s

− 1

h(t)

∫ ∞

t

µ(s)h∆(s)w∆(s)∆s.
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We need to show that τ [w] ∈ Ω for w ∈ Ω and ‖τ [w]− τ [v]‖ ≤ γ ‖w − v‖, where γ <
1, w, v ∈ Ω. Before proceeding to proof, let us show some properties of h that will be used
in the proof. It holds that

lim
t→∞

1

h(t)

∫ ∞

t

h(s)

s
∆s = lim

t→∞

−h(t)
t

h(t)2ϑ1−1+2ψ(t)
t

=
1

1− 2ϑ1

> 0 (3.13)

and for sequence α, lim
t→∞

α(t) = 0,

lim
t→∞

1

h(t)

∫ ∞

t

h(s)

s
α(s)∆s = lim

t→∞

−h(t)
t
α(t)

h(t)
t

(2ϑ1 − 1 + 2ψ(t))
= lim

t→∞

α(t)

2ϑ1 − 1
= 0, (3.14)

where the time scale analogue of the L‘Hospital rule was used. The next property is a
consequence of the time scale analogue of the L‘Hospital rule, the assumption µ(t) ∼ µσ(t)
as t→∞, h∆ ∈ NRVT(2ϑ1 − 2) and of Theorem 2.17:

lim
t→∞

1

h(t)

∫ ∞

t

(µ(s)h∆(s))∆∆s = lim
t→∞

−(µ(t)h∆(t))∆

h∆(t)

= lim
t→∞

1
µ(t)

(µσ(t)h∆σ(t)− µ(t)h∆(t))
h∆(t)

= lim
t→∞

µσ(t)
µ(t)

h∆σ(t)− h∆(t)
h∆(t)

= lim
t→∞

µσ(t)

µ(t)

h∆σ(t)

h∆(t)
− 1 = 1− 1 = 0.

(3.15)

Denote
ψ̃(t) = sup

s≥t
|ψ(s)|

Since µ(t)/t→ 0 as t→∞ and conditions (3.13), (3.15) holds, we can choose δ > 0 and
a ∈ R such that the following inequalities are satisfied:

sup
t≥a

1

h(t)

∫ ∞

t

h(s)

s
∆s ≤ 2

1− 2ϑ1

, (3.16)

12δ

1− 2ϑ1

≤ 1, (3.17)

ψ̃2(a) + 2 |ϑ1|ψ(a) ≤ δ2, (3.18)
(|ϑ1|+ ψ̃(a) + δ)2 + (|ϑ1|+ ψ̃(a) + δ)3

supt≥a t
µ(t)
− (|ϑ1|+ ψ̃(a) + δ)

≤ δ(1− 2ϑ1)

6
, (3.19)

sup
t≥a

µ(t)

t
(1− 2ϑ1 + 2ψ̃(a)) ≤ 1

6
, (3.20)

sup
t≥a

1

h(t)

∫ ∞

t

∣∣∣(µ(s)h∆(s))∆∣∣∣ ∆s ≤ 1

6
, (3.21)

γ =
4δ

1− 2ϑ1

+
2

1− 2ϑ1

sup
t≥a

(1 + |ϑ1|+ ψ̃(a) + δ)2
(

t
µ(t)

+ |ϑ1|+ ψ̃(a) + δ
)

(
t

µ(t)
− (|ϑ1|+ ψ̃(a) + δ)

)2
+ sup

t≥a

µ(t)

t
(1− 2ϑ1 + 2ψ) + sup

t≥a

1

h(t)

∫ ∞

t

∣∣∣(µ(s)h∆(s))∆∣∣∣ ∆s < 1.

(3.22)
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Let us show that τ [w] ∈ Ω holds for every w ∈ Ω. Let w ∈ Ω. Then

|τ [w](t)| ≤ K1(t) +K2(t) +K3(t) (3.23)

for t ∈ T, t > a, where

K1(t) =

∣∣∣∣ 1

h(t)

∫ ∞

t

h(s)

s
(w2(s) + ψ2(s) + 2ϑ1ψ(s))∆s

∣∣∣∣
≤ 1

h(t)

∫ ∞

t

h(s)

s
(δ2 + ψ̃2(a) + 2 |ϑ1| ψ̃(a))∆s

(3.16),(3.18)
≤ 2

1− 2ϑ1

2δ2
(3.16)
≤ δ

3
,

(3.24)

K2(t) =

∣∣∣∣∣ 1

h(t)

∫ ∞

t

h(s)
(ϑ1 + ψ(s) + w(s))2 − (ϑ1 + ψ(s) + w(s))3

s
µ(s)

+ t(ϑ1 + ψ(s) + w(s))
∆s

∣∣∣∣∣
≤ 1

h(t)

∫ ∞

t

h(s)

s

(|ϑ1|+ ψ̃(a) + δ)2 + (|ϑ1|+ ψ̃(a) + δ)3

s
µ(s)
− (|ϑ1|+ ψ̃(a) + δ)

∆s

(3.16),(3.19)
≤ 2

1− 2ϑ1

δ(1− 2ϑ1)

6
=
δ

3

(3.25)

and

K3(t) =

∣∣∣∣ 1

h(t)

∫ ∞

t

µ(s)h∆(s)w∆(s)∆s

∣∣∣∣
Thm 1.12−d)
≤

∣∣∣∣ 1

h(t)
lim
ξ→∞

[
w(s)µ(s)h∆(s)

]ξ
t

∣∣∣∣+ ∣∣∣∣ 1

h(t)

∫ ∞

t

(µ(s)h∆(s))∆wσ(s)∆s

∣∣∣∣
(3.15)
=

∣∣∣∣0− 1

h(t)

µ(t)

t
w(t)h(t)(1− 2ϑ1 + 2ψ(t))

∣∣∣∣+ ∣∣∣∣ 1

h(t)

∫ ∞

t

(µ(s)h∆(s))∆wσ(s)∆s

∣∣∣∣
≤ µ(t)

t
δ(1− 2ϑ1 + 2ψ̃(a)) +

δ

h(t)

∫ ∞

t

∣∣(µ(s)h∆(s))∆wσ(s)∣∣ ∆s (3.20),(3.21)
≤ δ

6
+
δ

6
=
δ

3
.

(3.26)

Overall, |τ [w](t)| ≤ δ

3
+
δ

3
+
δ

3
= δ. It remains to prove the fact that τ [w](t)→ 0 as t→∞.

It is the consequence of w(t) → 0, ψ(t) → 0, µ(t)/t → 0 as t → ∞, (3.14) and (3.15).
Hence, τ [w] ∈ Ω for every w ∈ Ω. Next, we need to show that ‖τw − τv‖ ≤ γ ‖w − v‖
for w, v ∈ Ω, where γ < 1. Let w, v ∈ Ω. Then

|τ [w](t)− τ [v](t)| ≤ H1(t) +H2(t) +H3(t), (3.27)

where
H1(t) =

∣∣∣∣ 1

h(t)

∫ ∞

t

h(s)

s
(w2(s)− v2(s))∆s

∣∣∣∣ ,
H2(t) =

∣∣∣∣ 1

h(t)

∫ ∞

t

h(s)(G[w](s)−G[v](s))∆s
∣∣∣∣

and
H3(t) =

∣∣∣∣ 1

h(t)

∫ ∞

t

µ(s)h∆(s)(w(s)− v(s))∆ ∆s

∣∣∣∣ .
It holds that

H1(t) ≤ ‖w − v‖
1

h(t)

∫ ∞

t

h(s)

s
2δ∆s ≤ 4δ

1− 2ϑ1

. (3.28)
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Before we examine H2(t), let us observe that

∂G[w]

∂w
(t) =

2t2

µ(t)
(ϑ1 + ψ(t) + w(t)) + t(ϑ1 + ψ(t) + w(t))2[

t2

µ(t)
+ t(ϑ1 + ψ(t) + w(t))

]2
+
−3 t2

µ(t)
(ϑ1 + ψ(t) + w(t))2 − 2t(ϑ1 + ψ(t) + w(t))3[

t2

µ(t)
+ t(ϑ1 + ψ(t) + w(t))

]2 (3.29)

Therefore, the mean value theorem yields

H2(t) ≤
1

h(t)

∫ ∞

t

h(s)

s
s

∣∣∣∣sup ∂G
∂w

(ζ)

∣∣∣∣ |w(s)− v(s)| ∆s
≤ ‖w − v‖ sup

t≥a

(1 + |ϑ1|+ ψ̃(a) + δ)2( t
µ(t)

+ |ϑ1|+ ψ̃(a) + δ)

t
µ(t)
− (|ϑ1|+ ψ̃(a) + δ)

1

h(t)

∫ ∞

t

h(s)

s
∆s,

(3.30)

where min{w(t), v(t)} ≤ ζ ≤ max{w(t), v(t)} for t ≥ a and lastly, Theorem 1.12 yields

H3(t) ≤
∣∣∣∣ 1

h(t)
lim
ξ→∞

[
(w(s)− v(s))µ(s)h∆(s)

]ξ
t

∣∣∣∣
+

∣∣∣∣ 1

h(t)

∫ ∞

t

(µ(s)h∆(s))∆(wσ(s)− vσ(s))∆s
∣∣∣∣

(3.15)
≤ ‖w − v‖ µ(t)

t
(1− 2ϑ1 + 2ψ̃(a)) + ‖w − v‖

∣∣∣∣ 1

h(t)

∫ ∞

t

(µ(s)h∆(s))∆ ∆s

∣∣∣∣ .
(3.31)

Overall, ‖τ [w]− τ [v]‖ ≤ γ ‖w − v‖ for w, v ∈ Ω, where γ satisfies γ < 1 by the virtue of
(3.22). So, τ is a contraction and the assumptions of the contraction mapping theorem
are satisfied. Therefore, there exists an unique function w ∈ Ω that is a solution of (3.12)
and also of (3.8) with w positive, decreasing towards zero. Then u defined in (3.6) is a
solution of Riccati equation (3.7) and 1+µ(t)u(t) > 0 for large enough t. Thus, y defined
in (3.6) is a nonoscillatory solution of (3.1) and y ∈ NRVT(ϑ1) by Theorem 2.15.

Dynamic
equation (3.1)

Riccati
equation (3.7)

Difference
equation (3.8)

Integral
equation (3.12)

contraction
mapping
theorem
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Next, we find a linearly independent solution x. We achieve that by using the reduction
of order formula

x(t) = y(t)

∫ t

a

1

y(s)yσ(s)
∆s. (3.32)

Denote z(t) = 1/y2(t). Then z ∈ NRVT(−2ϑ1) and z(t) ∼ 1/(y(t)yσ(t)) as t → ∞.
Hence, by the discrete L’Hospital rule,

lim
t→∞

t
y(t)

x(t)
= lim

t→∞

tz(t)∫ t
a

1
y(s)yσ(s)

∆s
= lim

t→∞

z(t)σ + tz∆(t)
1

y(t)yσ(t)

= lim
t→∞

z(t) + tz∆(t)

z(t)

= lim
t→∞

(
1 +

tz∆(t)

z(t)

)
= 1− 2ϑ1,

and so
x(t)(1− 2ϑ1) ∼

t

y(t)
=
t1−ϑ1

L(t)
as t→∞, (3.33)

that is
x(t) ∼ t1−ϑ1L̃(t) as t→∞,

where
L̃ =

1

(1− 2ϑ1)L
(3.34)

and x ∈ RVT(1− ϑ1) = RVT(ϑ2). Let us show that x ∈ NRVT(ϑ2). Indeed,

lim
t→∞

tx∆(t)

x(t)
= lim

t→∞

ty∆(t)
∫ t
a
y(s)yσ(s)∆s+ t

y(t)

x(t)

= lim
t→∞

ty∆(t)

y(t)
+

t

x(t)y(t)

(3.33)
= ϑ1 + 1− 2ϑ1 = 1− ϑ1 = ϑ2,

(3.35)

and so x ∈ NRVT(ϑ2).
It remains to prove that every eventually positive solution z of (3.1) is normalized

regularly varying. Since (3.1) is linear, we can write z in form z(t) = c1y(t) + c2x(t). If
c1 = 0 or c2 = 0, then (as z is eventually positive) c2 > 0 or c1 > 0 and z ∈ NRVT(ϑ2) or
z ∈ NRVT(ϑ1) respectively. Since y(t)/x(t)→∞ (as ϑ1 < ϑ2) for t→∞, it holds that

tz∆(t)

z(t)
=
c1ty

∆(t) + c2tx
∆(t)

c1y(t) + c2x(t)
=
c1t

y∆(t)
y(t)

y(t)
x(t)

+ c2
tx∆(t)
x(t)

c1
y(t)
x(t)

+ c2
∼ tx∆(t)

x(t)

as t→∞, hence z is normalized regularly varying function.

Let us return to the difference equation (1.1). Next, we establish conditions that
guarantee the fact that solution space of this equation consists only of regularly varying
sequences. Theorem 3.2 and Theorem 3.3 generalizes result of [9] in case rk 6≡ 1.

Theorem 3.2. Let r ∈ NRVZ(γ), γ < 1. Then equation (1.1) has a fundamental system
of solutions y[1] ∈ NRVZ(ϑ1(1− γ)), y[1] ∈ NRVZ(ϑ2(1− γ)) if and only if

lim
k→∞

k−1∑
j=m

1

rj

∞∑
j=k

pj = C <
1

4
, (3.36)

where ϑ1 < ϑ2 are the real roots of the algebraic equation (3.2).
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Proof. We want to transform the equation (1.1) to the equation on time scale and then
apply Theorem 3.1. Let y be a solution of (1.1). Set

u(t) = u(τ(k)) = u(τk) = yk,

where τk > 0 and ∆τk > 0. Then

µ(t) = σ(t)− t = σ(τ(k))− τ(k) = τk+1 − τk = ∆τk, (3.37)

u∆(t) =
uσ(t)− u(t)

µ(t)
=
yk+1 − yk

∆τk
=

∆yk
∆τk

(3.38)

and
∆(rk∆yk) = µ(t)

(
r
(
τ−1(t)

)
µ(t)u∆(t)

)∆
, (3.39)

and so u satisfies
(r̃(t)u∆(t))∆ + p̃(t)uσ(t) = 0, (3.40)

where
r̃(t) = r

(
τ−1(t)

)
µ(t) (3.41)

and
p̃(t) =

p (τ−1(t))

µ(t)
. (3.42)

Set τk =
∑k−1

j=m 1/rj. Since γ < 1, we have
∑∞

j=k 1/rj = ∞, and so τk → ∞ as k → ∞,
i.e. T is unbounded. Further, µ(t) = ∆τk > 0 and T is discrete. We have ∆τk = 1/rk and
in view of µ(t) = ∆τk we get

r̃(t) =
r (τ−1(t))

r (τ−1(t))
≡ 1. (3.43)

It holds that
µ(t)

t
=

∆τk
τk

=
1

rk
∑k−1

j=m
1
rj

Thm 2.18∼ 1

rk
k
rk

→ 0, (3.44)

µ(t) = ∆τk =
1

rk

Thm 2.17∼ 1

rk+1

= ∆τk+1 = µσ(t) (3.45)

as t→∞. Theorem (1.18) yields

t

∫ ∞

t

p̃(s)∆s = τ(k)

∫ ∞

τ(k)

p (τ−1(s))

µ(s)
∆s = τk

∞∑
j=k

pj =
k−1∑
j=m

1

rj

∞∑
j=k

pj = C <
1

4
. (3.46)

Hence, the equation (3.40) satisfies the assumptions of Theorem 3.1, and so (3.40) has a
fundamental system of solutions ui ∈ NRVT(ϑi), i = 1, 2. It holds that

ϑ1 ←
tu∆1 (t)

u1(t)
=
τ(k)u∆1 (τk)

u1(τ(k))
=

τk
∆τk

∆y
[1]
k

y
[1]
k

=
τk

k∆τk

k∆y
[1]
k

y
[1]
k

(3.47)

as t→∞ (i.e. k →∞) and since r ∈ NRVZ(γ),

τk =
k−1∑
j=m

1

rj
∼ 1

1− γ
k

rk
as k →∞, (3.48)
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therefore
k∆τk
τk

=
k
rk

τk
∼

k
rk
1

1−γ
k
rk

= 1− γ as k →∞. (3.49)

and τk ∈ NRVZ(1− γ). From (3.47) and (3.49) we get, as k →∞,

k∆y
[1]
k

y
[1]
k

→ ϑ1(1− γ),

from what we get y[1] ∈ NRVZ(ϑ1(1 − γ)). Similarly, we get that y[2] ∈ NRVZ(ϑ2(1 −
γ)).

Remark 3.3. The relation (3.46) is, in fact, an improvement of [11] in case 0 < C < 1/4.

Theorem 3.4. Let r ∈ NRVZ(γ), γ > 1. Then equation (1.1) has a fundamental system
of solutions y[1] ∈ NRVZ(η1(1− γ)), y[2] ∈ NRVZ(η2(1− γ)) if and only if

lim
k→∞

1

Rk

∞∑
j=k

pjR
2
j+1 = C <

1

4
, (3.50)

where

Rk =
∞∑
j=k

1

rj

and ηi are the roots of algebraic equation

η2 + η + C = 0. (3.51)

Proof. First note that thanks to γ > 1, we have
∑∞

j=k 1/rj <∞, and so Rk is well-defined.
Let y be a solution of (1.1). Set y = hz, h 6= 0. Then z satisfies the difference equation

∆(r̃k∆zk) + p̃kzk+1 = 0, (3.52)

where
r̃k = rkhkhk+1 (3.53)

and
p̃k = hk+1 [∆(rk∆hk) + pkhk+1] . (3.54)

Set

hk =
∞∑
j=k

1

rj
= Rk. (3.55)

The Karamata theorem for Rk yields

k∆Rk

Rk

∼
k−1
rk

1
γ−1

k
rk

= 1− γ as k →∞, (3.56)

and so Rk ∈ NRVZ(1− γ). Hence,

r̃k = rkRkRk+1 ∈ NRVZ(γ + 1− γ + 1− γ) = NRVZ(2− γ) (3.57)

and
p̃k = Rk[∆(rk∆Rk) + pkRk+1] = pkRkRk+1. (3.58)
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It holds that
k−1∑
j=m

1

r̃j
=

1

Rk

− 1

Rm

∼ 1

Rk

as k →∞,

therefore

lim
k→∞

k−1∑
j=m

1

r̃j

∞∑
j=k

p̃j = lim
k→∞

1

Rk

∞∑
j=k

pjR
2
j+1 = C <

1

4
(3.59)

and since 2−γ < 1, we can apply Theorem 1.2 to obtain z[i] ∈ NRVZ(ϑi(1−γ)), i = 1, 2,
where ϑi are solutions of (3.2). Combining this with h = R ∈ NRVZ(1 − γ), η2 = −ϑ1

and ϑ1 + 1 = 1− η2 = η1 we get

y[1] = hz[1] = Rkz
[1]
k ∈ NRVZ(ϑ1(1− γ) + (1− γ)) = NRVZ(η1(1− γ)). (3.60)

Similarly, we get that y[2] ∈ NRVZ(η2(1− γ)).

The next corollary is a direct consequence of the previous theorem with a special
setting that will be used in the next chapters.

Corollary 3.5. Let rk ∈ NRVZ(γ) and pk ∈ NRVZ(γ − 2) with γ 6= 1. Then (1.1) has
a fundamental set of solutions {y1, y2}, where yi ∈ NRVZ(ϑi) if and only if

lim
k→∞

k2pk
rk

= A <

(
γ − 1

2

)2

, (3.61)

where ϑ1 6= ϑ2 are the reals roots of the algebraic equation

ϑ2 − (1− γ)ϑ+ A = 0. (3.62)

Moreover, all eventually positive solutions are regularly varying sequences.

Proof. Let γ < 1. The Karamata theorem yields
k−1∑
j=m

1

rj

∞∑
j=k

pj ∼
k

rk(−γ + 1)
· kpk
−γ + 1

=
k2pk
rk
· 1

(1− γ)2
as k →∞. (3.63)

Let γ > 1. Using the Karamata theorem, we get

1

Rk

∞∑
j=k

pjR
2
j+1 ∼

rk(γ − 1)

k
· 1

(γ − 1)2

∞∑
j=k

j2pj
r2j
∼ rk
k(γ − 1)

· k3pk
r2k(γ − 1)

=
k2pk
rk
· 1

(1− γ)2

(3.64)
as k →∞.

The relationship between equations (3.2) and (3.62) is given by following linear trans-
formation. Let ζ the root of (3.2). Then ϑ = ζ(1 − γ) is the root of (3.62) and it holds
that A = C(1− γ)2.

Hence, (3.61) ensures that (3.36) and (3.50) holds and the assumptions of Theorem
3.2 or Theorem 3.4, respectively, are satisfied and (1.1) has a fundamental set of solutions
formed by regularly varying sequences. The indices of regular variation of yi follow from
those theorems.

In general, the existence of the (finite) limit (3.61) implies the existence of the (finite)
limit of (3.36) or (3.50), but the converse does not hold. However, under conditions
p ∈ RV(δ), r ∈ RV(δ + 2), δ 6= −1, the sufficient condition (3.61) becomes necessary as
(3.61) is equivalent with (3.36) or (3.50) based on δ ≶ −1 respectively.
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y = hu

x(τ(k)) = ykDifference
equation (1.1)
γ < 1

Difference
equation (1.1)
γ > 1

Dynamic
equation (3.1)

Theorem 3.1

We have proved that all elements of the solution space of (1.1) are regularly varying
sequences via transforming this equation to the equation (3.1) on a time scale. For this
dynamic equation, we established conditions, under which all of its solutions are regularly
varying functions. Both results, regular variation of solutions of (1.1) and regular variation
of solutions of (3.1), are new and an improvement over the known results.

Alternatively, instead of transforming (1.1) into a dynamic equation, we could proceed
“more directly” and using Riccati equation

∆wk + pk +
w2
k

rk + wk
= 0 (3.65)

to construct a regularly varying solution. But such an approach would require more strict
assumptions. The next theorem shows the neccesity part of this alternative approach.

Theorem 3.6. Let r ∈ NRVZ(γ) and y ∈ S ∩
(⋃

ϑ∈RNRVZ(ϑ)
)
6= ∅. Then

i)

lim
k→∞

k

rk

∞∑
j=k

pj = A ∈
(
−∞, 1− γ

4

)
,

where A satisfies

ϑ− A− ϑ2

1− γ
= 0

in case γ < 1 .

ii)

lim
k→∞

k

rk

k−1∑
j=m

pj = A ∈
(
−∞, γ − 1

4

)
,

where A satisfies

ϑ+ A− ϑ2

1− γ
= 0

in case γ > 1 .

Proof. Let γ < 1 and y ∈ NRVZ(ϑ) be a solution of (1.1). Set

wk =
rk∆yk
yk

.
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Then wk satisfies
∆wk + pk +

w2
k

rk + wk
= 0. (3.66)

It holds that (kwk)/rk → ϑ, wk/rk → 0, wk → 0 as k → ∞ and rk + wk > 0. Summing
(3.66) from k to ∞ and multiplying by k/rk we get

kwk
rk
− k

rk

∞∑
j=k

pj −
k

rk

∞∑
j=k

w2
j

rj + wj
= 0.

The discrete L’Hospital rule yields

lim
k→∞

∑∞
j=k

w2
j

rj+wj

rk
k

= lim
k→∞

−w2
k

rk+wk
rk+1

k+1
− rk

k

= lim
k→∞

(k + 1)kw2
k

rk(rk + wk)(1− k∆rk
rk

)

= lim
k→∞

(k + 1)kw2
k

r2k
= lim

k→∞

1

(1 + wk

rk
)(1− k∆rk

rk
)
=

ϑ2

1− γ
.

Hence,
k

rk

∞∑
j=k

pj → ϑ− ϑ2

1− γ
= A as k →∞.

Let γ > 1 and y, wk be as in the previous part. By summing (3.66) from n to k − 1
and multiplying by k/rk we get

kwk
rk
− kwn

rn
+
k

rk

k−1∑
j=m

pj +
k

rk

k−1∑
j=m

w2
j

rj + wj
= 0.

It holds that

lim
k→∞

k

rk

k−1∑
j=m

w2
j

rj + wj
= lim

k→∞

w2
k

rk+wk
− w2

n

wn+rn
k∆rk−rk
k(k+1)

= lim
k→∞

 k(k+1)w2
k

rk+wk

(k∆rk
rk
− 1)rk

−
k(k+1)w2

n

rn+wn

(k∆rk
rk
− 1)rk

 =
−ϑ2

1− γ
.

Hence,

lim
k→∞

k

rk

k−1∑
j=m

pj → −ϑ−
ϑ2

1− γ
= A as k →∞.



CHAPTER 4

DISCRETE KARAMATA THEORY AND DIFFERENCE
EQUATIONS

4.1 Asymptotic formulae for SV solutions
The following conditions play an important role in the investigation of the asymptotic
behauvior of the solutions of (1.1):

p ∈ RV(δ), r ∈ RV(δ + 2) (4.1)

and

lim
k→∞

k2pk
rk

= A ∈

(
−∞,

(
δ + 1

2

)2
)
. (4.2)

Denote
Gk =

kpk
rk

and note that G ∈ RV(−1) and in general,
∑∞

j=kGj may converge on diverge.

Lemma 4.1 ([10]). Let p < 0, |p| ∈ RV(δ) and r ∈ RV(δ+2). Then SSV ⊆ DS provided
that δ < −1 and SSV ⊆ IS provided that δ > −1.

Lemma 4.2. Let |p| ∈ RV(δ), r ∈ RV(δ + 2) with δ 6= 1. If y ∈ SSV , then

rk∆yk ∼
kpkyk
−δ − 1

as k →∞. (4.3)

Proof. Let p > 0 and δ < −1. Then S = ISB,0 ∪ IS∞,0 ∪ IS∞,B. Suppose rk∆yk → B ∈
(0,∞) as k →∞. Then, since r∆y is decreasing, for k ≥ m it holds that

rk∆yk ≥ B

and the division by rk and the summation from n to k − 1 yields

yk ≥ yn +
k−1∑
j=n

B

rj
≥

k−1∑
j=n

B

rj
∈ RV(−δ − 1).

41
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Since −δ − 1 > 0, yk can not be slowly varying sequence and so lim
k→∞

rk∆yk = 0.
Take y ∈ SSV . By summing (1.1) from k to ∞ and applying the Karamata theorem

we get

−rk∆yk = −
∞∑
j=k

pjyj+1 ∼ −
∞∑
j=k

pjyj+1 ∼
−kpkyk
−δ − 1

as k →∞. (4.4)

Let p > 0 and δ > −1. Then S = DS0,B ∪ DS0,∞ ∪ DSB,∞. Take y ∈ DSB,∞. Then
rk∆yk is decreasing with limit −B ∈ (−∞, 0), so

rk∆yk ≥ −B

and by dividing by rk and by the summation from k to ∞ we get

−yk ≥
∞∑
j=k

−B
rj

.

Hence,

yk ≤ B
k−1∑
j=n

1

rj
∈ RV(−δ − 1).

Since −δ − 1 < 0, yk can not be slowly varying sequence and so lim
k→∞

rk∆yk =∞.
Take y ∈ SSV . By summing (1.1) from n to k−1 and applying the Karamata theorem

we get

rk∆yk = rn∆yn −
k−1∑
j=n

pjyj+1 ∼ −
k−1∑
j=n

pjyj+1 ∼
−kpkyk
δ + 1

as k →∞. (4.5)

Let p < 0 and δ < −1 and take y ∈ SSV . Then
∑∞

j=k 1/rk = ∞, r∆yk is negative
increasing and y ∈ DS by Lemma 4.1. Suppose rk∆yk has limit −B ∈ (−∞, 0). Then

rk∆yk ≤ −B

and by dividing by rk and by summing from n to k − 1 we obtain

yk ≤ yn −M
k−1∑
j=n

1

rj
→ −∞ as k →∞,

that contradicts yk > 0, and so lim
k→∞

rk∆yk = 0.
Take y ∈ SSV . By summing (1.1) from t to ∞ and proceeding similarly as in case

p > 0, δ < −1 we get (4.4).
Let p < 0 and δ > −1 and take y ∈ SSV . Then

∑∞
j=k pj =∞ and y ∈ IS by Lemma

4.1. Summation of (1.1) from n to ∞ yields

rk∆yk = rn∆yn −
k−1∑
j=n

pjyj+1 ≥ −
k−1∑
j=n

pjyj+1 →∞ as k →∞

and so, lim
k→∞

rk∆yk = ∞. By proceeding similarly as in case p > 0, δ > −1 we get
(4.5).
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Theorem 4.3. Let |p| ∈ RV(δ), r ∈ RV(δ + 2), δ 6= −1 and lim
k→∞

k2pk
rk

= 0. Then

yk = exp

{
−

k−1∑
j=m

(1 + o(1))
Gj

δ + 1

}
as k →∞ (4.6)

provided that
∑∞

j=kGj =∞, and

yk = A exp

{
∞∑
j=k

(1 + o(1))
Gj

δ + 1

}
as k →∞, (4.7)

where A = A(y) = lim
k→∞

yk, provided that
∑∞

j=kGj <∞.

Proof. From Corollary 3.5 and Lemma 1.5 (with γ = δ+2) we have S = SSV∪SRV(−δ−1).
Take y ∈ SSV . Then by Lemma 4.2 we have

rk∆yk ∼
kpkyk
−δ − 1

as k →∞

and Theorem 2.12 yields

∆ ln yk ∼
∆yk
yk
∼ kpk

(−δ − 1)rk
as k →∞. (4.8)

Let
∑∞

j=kGj =∞. By summing (4.8) from n to k − 1 we get

ln yk
yn
∼

k−1∑
j=n

Gj

−δ − 1
as k →∞ (4.9)

and

yk = yn exp

{
k−1∑
j=n

(1 + o(1))
Gj

−δ − 1

}
as k →∞ (4.10)

and since
∑∞

j=kGj =∞,

yk = exp

{
−

k−1∑
j=m

(1 + o(1))
Gj

δ + 1

}
as k →∞. (4.11)

Let
∑∞

j=kGj <∞. By summing (4.8) from k to ∞ we get

ln A

yk
∼

∞∑
j=k

Gj

−δ − 1
as k →∞ (4.12)

and

yk = A exp

{
k−1∑
j=m

(1 + o(1))
Gj

δ + 1

}
as k →∞, (4.13)

where A = lim
k→∞

yk.
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From Corollary 3.5 and Lemma 1.5 we know that, under the assummptions of Theorem
4.3, the solution space of (1.1) is formed by slowly varying sequences and regularly varying
sequences with index −δ− 1. The next remark shows a possible way to obtain asympotic
formulae for the other half of the solution space using so-called reciprocity principle, which
allow us to use the previous theorem.

Remark 4.4. Let the assumptions of Theorem 4.3 hold. Take y ∈ SRV(−δ − 1). Set
uk = rk∆yk. Then u satisfies

∆(r̃k∆uk) + p̃kuk+1 = 0, (4.14)

where r̃k = 1/pk and p̃k = 1/rk+1. If p ∈ RV(δ), r ∈ RV(δ + 2), then p̃ ∈ RV(δ̃), r̃ ∈
RV(δ̃ + 2) with δ̃ = −δ − 2. It holds that

k2p̃k
r̃k

=
k2(1/rk+1)

1/pk
∼ k2pk

rk
→ 0 as k →∞. (4.15)

Since y ∈ RV(−δ − 1), ∆yk ∈ RV(−δ − 2) and r ∈ RV(δ + 2), we get u ∈ SV . Denote
G̃k = kp̃k/r̃k. It holds that

G̃k = kp̃k/r̃k =
k(1/rk+1)

1/pk
∼ kpk

rk
as k →∞.

Hence, if
∑∞

j=kGj =∞, then also
∑∞

j=k G̃j =∞ and we can apply Theorem 4.3 to obtain

rk∆yk = uk = exp

{
−

k−1∑
j=n

(1 + o(1))
G̃j

δ̃ + 1

}
= exp

{
(1 + o(1))

k−1∑
j=n

Gj

δ + 1

}
as k →∞

(4.16)
and a formula for y follows.

If
∑∞

j=kGj <∞, then also
∑∞

j=k G̃j <∞ and we can apply Theorem 4.3 to obtain

rk∆yk = uk =M exp

{
k−1∑
j=n

(1 + o(1))
G̃j

δ̃ + 1

}

=M exp

{
−

k−1∑
j=n

(1 + o(1))
Gj

δ + 1

}
as k →∞

(4.17)

and a formula for y follows.

4.2 Asymptotic formulae for RV solutions
Theorem 4.5. Let r ∈ NRV(γ), γ 6= 1,

lim
k→∞

k2pk
rk

= A (4.18)

and
L
[i]
k =

k2pk
rk

+ ϑi
k∆rk
rk

+ ϑi(ϑi − 1) (4.19)
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with
∣∣L[i]

∣∣ ∈ SV and ϑi 6= 0 the real root of (1.4), i = 1, 2. Then

y
[1]
k ∼ k(ϑi) exp

{
k−1∑
j=m

(1 + o(1))
L
[i]
j

(1− γ − 2ϑi)j

}
as k →∞ (4.20)

provided that
∑∞

j=k L
[i]
j =∞ and

y
[i]
k ∼ Dk(ϑi) exp

{
∞∑
j=k

(1 + o(1))
L
[i]
j

(γ + 2ϑi − 1)j

}
as k →∞, (4.21)

where D = lim
k→∞

yk/k
(ϑi), provided that

∑∞
j=k L

[i]
j <∞, i = 1, 2.

Proof. Let 0 6= ϑ1 < ϑ2 6= 0 be the roots of (1.4). From Theorem 3.3, Theorem 3.5
and the relationship between (1.4) and (3.2) we have S ⊆ NRV(ϑ1) ∪ NRV(ϑ2). Take
y ∈ SRV(ϑi), i = 1, 2. Set y = hu, where hk = k(ϑi), i = 1, 2. Then u[i] satisfies (3.52)
with (3.53) and (3.54) and

r̃k = r
[i]
k = rkk

(ϑi)(k + 1)(ϑi)

∆(rk∆hk) = ∆(rkϑik
(ϑi−1)) = ∆rkϑik

(ϑi−1) + rk+1ϑi(ϑi − 1)k(ϑi−2).

From the properties of the Gamma function we have

k(ϑi−1)

k(ϑi−2)
= k + 2− ϑi

and
(k + 1)(ϑi)

k(ϑi−2)
= (k + 1)(k + 2− ϑi).

Further,

p̃k = p
[i]
k = (k + 1)(ϑi)[∆rkϑik

(ϑi−1) + rk+1ϑi(ϑi − 1)k(ϑi−2) + pk(k + 1)(ϑi)]

= (k + 1)(ϑi)k(ϑi−2)rk+1

[
k(ϑi−1)ϑi
k(ϑi−2)

· ∆rk
rk+1

+ ϑi(ϑi − 1) +
pk
rk+1

· (k + 1)(ϑi)

k(ϑi−2)

]
= (k + 1)(ϑi)k(ϑi−2)rk+1L̂k,

where
L̂
[i]
k = (k + 2− ϑi)

ϑi∆rk
rk+1

+ ϑi(ϑi − 1) +
pk
rk+1

(k + 1)(k + 2− ϑi).

We want to show that L̂[i]
k ∼ L

[i]
k as k →∞. It holds that

L̂k = L
[i]
k −

k2pk
rk

+
pk
rk+1

(k + 1)(k + 2− ϑi)− ϑi
k∆rk
rk

+ (k + 2− ϑi)
ϑi∆rk
rk+1

= L
[i]
k + A

[i]
k +B

[i]
k ,

where

A
[i]
k = ϑi

[
−k∆rk

rk
+ (k + 2− ϑi)

∆rk
rk+1

]
= ϑi

k∆rk
rk

(
k + 2− ϑi

rk
· rk
rk+1

− 1

)
→ 0 as k →∞
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and

B
[i]
k =

pk
rk+1

(k + 1)(k + 2− ϑi)−
k2pk
rk

= pk

(
(k + 1)(k + 2− ϑi)

rk+1

− k2

rk

)
=
k2pk
rk

(
(k + 1)(k + 2− ϑi)

k2
· rk
rk+1

− 1

)
→ 0 as k →∞.

Hence
L̂
[i]
k ∼ L

[i]
k as k →∞

and
∣∣∣L̂[i]

∣∣∣ ∈ SV . Further, we have |p̃| ∈ RV(δ̃), r̃ ∈ RV(δ̃+2) with δ̃ = γ+2ϑ1−2. From

Lemma 1.5 we obtain δ̃ 6= −1. Denote G[i]
k =

kp̃
[i]
k

r̃
[i]
k

. Then G
[i]
k ∼ L

[i]
k /k as k →∞.

Let
∑k−1

j=m L
[i]
j /j = ∞. By applying Theorem 4.3 we obtain the asymptotic formula

for u[i]

u
[i]
k = exp

{
k−1∑
j=m

(1 + o(1))
G

[i]
j

−δ̃ − 1

}
as k →∞

and the asymptotic formula for y[i] follows

y
[i]
k = k(ϑi) exp

{
k−1∑
j=m

(1 + o(1))
L
[i]
j

(1− γ − 2ϑi)j

}
as k →∞. (4.22)

Let
∑k−1

j=m L
[i]
j /j < ∞. By applying Theorem 4.3 we obtain the asymptotic formula

for u[i]

u
[i]
k = D[i] exp

{
∞∑
j=k

(1 + o(1))
G

[i]
j

δ̃ + 1

}
as k →∞,

where D[i] = lim
k→∞

y
[i]
k /k

(ϑ1) and the asymptotic formula for y[i] follows

y
[i]
k = Dk(ϑi) exp

{
∞∑
j=k

(1 + o(1))
L
[i]
j

(γ + 2ϑi − 1)j

}
as k →∞. (4.23)

Example 4.6.

rk = kγ
(
1− 1

lnζ k

)
,

pk = Akγ−2

(
1 +

1

lnη k

)
,

ζ, η ∈ (0,∞), γ ∈ R and A ∈ (−∞,
(
γ−1
2

)2
). Then

k2pk
rk

= A
1 + 1/(lnη k)
1− 1/(lnζ k

→ A as k →∞.

Further,

L̂k =
k2pk
rk
− A = A(1 + o(1))

(
1

lnη k
+

1

lnζ k

)
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and L̂ ∈ SV . It holds that
L̂
[i]
k = (1 + o(1))L̂k,

i = 1, 2 with sgnL̂ = sgnA. The integral criterion yields that

∞∑
j=m

∣∣∣L̂[i]
k

∣∣∣
j

<∞, i = 1, 2 if and only if min η, ζ > 1.

4.3 Classification
In this section we establish asymtotic formulae for regularly varying solutions of (1.1)
under certain conditions. We complete the results of [10] in case p > 0 and we unify these
results. Aside from that, asymptotic formulae established in Theorem 4.7 and Theorem
4.8 can be used to complete classification in [10].

Theorem 4.7. Let p ∈ RV(δ), r ∈ RV(δ + 2), δ 6= −1, and lim
k→∞

k2pk
rk

= 0.

(i) If δ < −1 and
∑∞

j=kGj =∞, then

S = IS∞,0 = SSV ∪ SRV(−δ − 1).

(ii) If δ < −1 and
∑∞

j=kGj <∞, then

S = SSV ∪ SRV(−δ − 1),

SSV = ISB,0,
SRV(−δ − 1) = IS∞,B.

(iii) If δ > −1 and
∑∞

j=kGj =∞, then

S = DS0,∞ = SSV ∪ SRV(−δ − 1).

(iv) If δ > −1 and
∑∞

j=kGj <∞, then

S = SSV ∪ SRV(−δ − 1),

SSV = DSB,∞,

SRV(−δ − 1) = DS0,B.

Proof. Let δ < −1. Then
∑∞

j=k 1/rj =∞ and

S = ISB,0 ∪ IS∞,0 ∪ IS∞,B

by Lemma 1.1. Take y ∈ SSV . From proof of Theorem 4.3 we know that

lim
k→∞

rk∆yk = 0

Let
∑∞

j=kGj =∞. Then y satisfies (4.6) by Theorem 4.3 and since G > 0 and δ+1 < 0,
we get

lim
k→∞

yk =∞.
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Overall, we have yk ∈ IS∞,0.
Let

∑∞
j=kGj < ∞. Then y satisfies (4.7) by Theorem 4.3 and since G > 0 and

δ + 1 < 0, we get
lim
k→∞

yk ∈ (0,∞),

thus y ∈ ISB,0.
Take y ∈ SRV(−δ − 1). Since −δ − 1 > 0, lim

k→∞
yk = ∞. Let

∑∞
j=kGj = ∞. Then,

Remark 4.4 yields that r∆y satisfies (4.16) and

lim
k→∞

rk∆yk = 0,

thus y ∈ IS∞,0.
Let

∑∞
j=kGj <∞. Then, by Remark 4.4, r∆y satisfies (4.17) and

lim
k→∞

rk∆yk =∈ (0,∞).

Hence, y ∈ IS∞,0.
Let δ > −1. Then

∑∞
j=k pj =∞ and

S = DS0,B ∪ DS0,∞ ∪ DSB,∞
by Lemma 1.2. Take y ∈ SSV . From proof of Theorem 4.3 we know that

lim
k→∞

rk∆yk = −∞.

Let
∑∞

j=kGj =∞. Then y satisfies (4.6) by Theorem 4.3 and since G > 0 and δ+1 > 0,
we get

lim
k→∞

yk = 0.

Overall, y ∈ DS0,∞.
Let

∑∞
j=kGj < ∞. Then y satisfies (4.7) by Theorem 4.3 and since G > 0 and

δ + 1 > 0, we get
lim
k→∞

yk =∈ (0,∞)

and we have y ∈ DSB,∞.
Take y ∈ SRV(−δ−1). Let

∑∞
j=kGj =∞. Then, Remark 4.4 yields that r∆y satisfies

(4.16) and
lim
k→∞

rk∆yk = −∞.

From −δ − 1 < 0 we get that
lim
k→∞

yk = 0,

and y ∈ DS0,∞.
Let

∑∞
j=kGj <∞. Then, by Remark 4.4, r∆y satisfies (4.17) and

lim
k→∞

rk∆yk =∈ (−∞, 0).

Since −δ − 1 < 0, we get
lim
k→∞

yk = 0

and y ∈ DS0,B.
Take case (i). We have proved that SSV ∪ SRV(() − δ − 1) ⊆ IS∞,B. The relation

IS∞,B ⊆ SSV ∪ SRV(() − δ − 1) results from the fact that we are, by Corrolary 3.5,
dealing with all regularly varying solutions. Thus there cannot be a regularly varying
solution that belongs to another class. This observation hold for all other cases and also
for Theorem 4.8, Theorem 4.9 and Theorem 4.10.
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Theorem 4.8 ([10]). Let −p ∈ RV(δ), r ∈ RV(δ + 2), δ 6= −1, and lim
k→∞

k2pk
rk

= 0.

(i) If δ < −1 and
∑∞

j=kGj =∞, then

S = SSV ∪ SRV(−δ − 1),

SSV = DS = DS0,0,

SRV(−δ − 1) = IS = IS∞,∞.

(ii) If δ < −1 and
∑∞

j=kGj <∞, then

S = SSV ∪ SRV(−δ − 1),

SSV = DS = DSB,0,

SRV(−δ − 1) = IS = IS∞,B.

(iii) If δ > −1 and
∑∞

j=kGj =∞, then

S = SSV ∪ SRV(−δ − 1),

SSV = IS = IS∞,∞,

SRV(−δ − 1) = DS = DS0,0.

(iv) If δ > −1 and
∑∞

j=kGj <∞, then

S = SSV ∪ SRV(−δ − 1),

SSV = IS = ISB,∞,

SRV(−δ − 1) = DS = DS0,B.

Theorem 4.9. Let p ∈ RV(δ), r ∈ RV(δ + 2), δ 6= −1, lim
k→∞

k2pk
rk

= A ∈
(
0,
(
δ+1
2

)2) and
ϑ1 < ϑ2 be the real roots of (1.4). Then

S = IS∞,0 = SRV(ϑ1) ∪ SRV(ϑ2)

provided δ < −1 and
S = DS0,∞ = SRV(ϑ1) ∪ SRV(ϑ2)

provided δ > −1.

Proof. From Corollary 3.5 we know that

S = SRV(ϑ1) ∪ SRV(ϑ2).

Let δ < −1 and by Lemma 1.5 we have 0 < ϑ1 < ϑ2. Take y ∈ SRV(ϑ1). Then, clearly,
y ∈ IS and

lim
k→∞

yk =∞.

Further, r∆y ∈ RV(δ + 2 + ϑ1 − 1) = RV(−ϑ2) and so

lim
k→∞

rk∆yk = 0
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, since −ϑ2 < 0. Thus, y ∈ IS∞,0. The same holds for y ∈ SRV(ϑ2).
Let δ > −1 and by Lemma 1.5 we have ϑ1 < ϑ2 <. Take y ∈ SRV(ϑ1). Then, clearly,

y ∈ DS and
lim
k→∞

yk = 0.

Moreover, r∆y ∈ RV(δ + 2 + ϑ1 − 1) = RV(−ϑ2) and from −ϑ2 < 0 we get

lim
k→∞

rk∆yk = −∞.

Hence, y ∈ DS0,∞. The same holds for y ∈ SRV(ϑ2).

Theorem 4.10. Let −p ∈ RV(δ), r ∈ RV(δ + 2), δ 6= −1, lim
k→∞

k2pk
rk

= A ∈ (−∞, 0) and
ϑ1 < ϑ2 be the real roots of (1.4). Then

S = SRV(ϑ1) ∪ SRV(ϑ2),

SRV(ϑ1) = DS = DS0,0,

SRV(ϑ2) = IS = IS∞,∞.

Proof. From Corollary 3.5 we know that

S = SRV(ϑ1) ∪ SRV(ϑ2)

and by Lemma 1.5 we have ϑ1 < 0 < ϑ2. Take y ∈ SRV(ϑ1). Then, clearly, y ∈ DS and

lim
k→∞

yk = 0.

Further r∆y ∈ RV(δ + 2 + ϑ1 − 1) = RV(−ϑ2) and since −ϑ2 < 0, we get

lim
k→∞

rk∆yk = 0.

Hence, y ∈ DS0,0.

Take y ∈ SRV(ϑ2). Then, clearly, y ∈ IS and

lim
k→∞

yk =∞.

Moreover r∆y ∈ RV(δ + 2 + ϑ2 − 1) = RV(−ϑ1) and so

lim
k→∞

rk∆yk =∞.

as −ϑ2 < 0. Hence, y ∈ IS∞,∞.

4.4 Further remarks
In this section we present several remarks concerning our results and provide some direc-
tions for a future research.
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Relation between the indices of regular variation of r and p

In Theorem 4.3, Theorem 4.7 and Theorem 4.8 we have assumed that p ∈ RV(δ) and
r ∈ RV(δ + 2). Let us show that this relation between indices of regular variation is
natural when one deals with slowly varying solutions which tend to zero or infinity.

Let |p| ∈ RV(δ), r ∈ RV(γ) and y ∈ SSV . Assume, for instance, δ > −1. Then∑∞
j=k pj =∞ and summing (1.1) from n to k − 1 yields

rk∆yk = rn∆yn −
k−1∑
j=n

pjyj+1 ∼ −
k−1∑
j=n

pjyj+1 as k →∞.

Since pkyk+1 ∈ RV(δ), we get |∆yk| ∈ RV(δ + 1 − γ). Combining that with yk → ∞ or
yk → 0 as k →∞ yields y ∈ RV(δ + 2− γ). Now, if γ 6= δ + 2, then y 6∈ SV .

In general, one can study asymptotic properties of RV solutions of (1.1) under condi-
tion γ ≥ δ+2. But allowing γ > δ+2 would require many other nontrivial computations.
Analysis of regularly varying solutions of (1.1) under condition γ < δ + 2 is meaningless,
as under this condition, by Corollary 3.5, (1.1) has no regularly varying solution, since
|k2pk/rk| → ∞ as k →∞.

Recessive and dominant solutions

A concept of recessive and dominant solutions plays an important role in qualitative
theory of difference equations. For nonoscillatory (1.1) there exists a positive solution y,
called recessive solution, such that for any linearly independent solution x, called dominant
solution, one has

lim
k→∞

yk
xk

= 0.

Other characterizations of are for example the summation characterization

∞∑
j=k

1

rjyjyj+1

=∞

and
∞∑
j=k

1

rjxjxj+1

<∞

or
∆yk
yk

<
∆xk
xk

for large k.
In Chapter 3, we have established that (1.1) has a fundamental set of solutions y ∈

NRV(ϑ1), x ∈ NRVZ(ϑ2), ϑ1 < ϑ2. It can be proved that

y is a recessive solution and x is a dominant solution.

Indeed, take y ∈ SRV(ϑ1). Then

1

rkykyk+1

∈ NRV(−γ − 2ϑ1).
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From Lemma 1.5 we have 2ϑ1 > −1 + γ, and so −γ − 2ϑ1 > −γ − 1 + γ = −1. Hence,
∞∑
j=k

1

rjyjyj+1

<∞

and y is recessive. The same idea holds for x ∈ SRV(ϑ2), only this time we Lemma 1.5
yields 2ϑ2 < −1 + γ and consequently

∞∑
j=k

1

rjxjxj+1

=∞

and x is dominant.

“Critical case” δ = −1.

We have not considered a case δ = −1 (or γ = 1) in our analysis. This case corresponds
to the double root of (1.4) that results in the fact that two linearly independent solutions
of (1.1) will be of the same index of regular variation. A slight change in the approach in
the proof of the existence theorem should result in the regular variation of the solution
space also in the double root case. Asymptotic formulae and the classification can be
obtained via the transformation into a “noncritical” (in the sense of δ 6= −1) equation on
a suitable time scale.

Three term recurrence equation

In the literature the three term recurrence equation

akyk+2 + bkyk+1 + ckyk = 0. (4.24)

on [m,∞)Z is frequently discussed. If c 6= 0, (4.24) can be be written as (1.1) with

rk = ck

k−1∏
j=m

aj
cj+1

and

pk = (ak + bk + ck)
k−1∏
j=m

aj
cj+1

.

Using this relation between (4.24) and (1.1), it is apparent how our results can be applied
to (4.24). For example, some of our conditions that were important in the analysis of
(1.1) for (4.24) read as follows

lim
k→∞

k2pk
rk

= lim
k→∞

k2(ak + bk + ck)

ck

and from

∆rk =
k−1∏
j=m

aj
cj+1

(ak − ck)

we have
rk ∈ RV(γ) if and only if k(ak − ck)

ck
→ γ as k →∞
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and asymptotic formula (4.6) yields

yk = A exp

{
k−1∑
j=m

1 + o(1)

δ + 1
· j(aj + bj + cj)

cj

}

as k →∞.
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CONCLUSSION

The main aim of this thesis was to demonstrate the usefulness of the Karamata sequences
in asymptotic theory and to derive new results.

We have given a basic information about the difference equation (1.1), we have high-
lighted the importance of this equation and we have discussed a basic classification of its
solutions. We have also introduced a concept of a time scale and time scale calculus.

We have recalled the concept of a discrete regular variation and a concept of a regular
variation on time scales. We have gathered properties of regularly varying sequences that
are useful in asymptotic theory of difference equations.

Next, the regular variation of the solution space of the difference equation (1.1) has
been discussed and the new results were proved. By means of Theorem 3.1 we have
obtained the condition under which (3.1) has a regularly varying solution space. This
theorem generalizes [12] for arbitrary p, relaxing the sign condition p < 0, and [9] in the
sense of generalized domain. By means of a transformation of independent variable, we
have transformed a “difficult” difference equation (1.1) into a “simpler” dynamic equation
(3.1). This allowed us to apply (new) Theorem 3.1 and we acquired the condition, under
which the solution space of (1.1) consists of regularly varying sequences. This fact, pre-
sented in Theorem 3.2 and Theorem 3.4, generalize [9] in case r 6≡ 1. The relation (3.46)
is an improvement over [11] in case p > 0.

We have established asymptotic formulae for solutions of (1.1). These formulae are of
great value, since, in general, (1.1) is not analytically solvable. Paper [10] is concerned
with asymptotic formulae for case p < 0. Theorem 4.3 and Theorem 4.5 unify and
complete this results. By means of Theorem 4.7 and Theorem 4.9 we have discussed the
classification of the solutions of (1.1) and we have completed [10] in case p > 0.

The main contributions of this thesis are the demonstration of usefulness of discrete
theory of regularly varying sequences, the examinations of difference equations under
new settings, the completion and generalization of abovementionted results and the pre-
sentation of useful techniques, such as Riccati technique, reciprocity principle, linear
transformation or transformation from one time scale to another.

It is possible to build upon our results using the directions for a future research
mentioned at the end of the last chapter.
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