
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

SUPPORT FOR RADIUS PROTOCOL IN SSSD

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE ONDŘEJ HUJŇÁK
AUTHOR

BRNO 2013

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

PODPORA RADIUS PROTOKOLU V SSSD
SUPPORT FOR RADIUS PROTOCOL IN SSSD

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE ONDŘEJ HUJŇÁK
AUTHOR

VEDOUCÍ PRÁCE Ing. JAN ZELENÝ
SUPERVISOR

BRNO 2013

Abstrakt
Moderní trendy ve správě uživatelů ve firemních prostředích směřují k centralizovaným
řešením jako je LDAP či Active Directory. Ověřování uživatelů vůči těmto úložištím v
Unix-like systémech je dostupné buď přes PAM moduly, nebo nově i přes bezpečnostní
démon SSSD. Tato práce analyzuje využití RADIUS protokolu pro ověřování uživatelů a v
rámci práce byl vyvinut modul do SSSD umožňující využití tohoto protokolu.

Abstract
Modern trends in user management in enterprise solutions makes use of centralized solutions
such as LDAP or Active Directory. User validation against those resources in Unix-like
systems is available via PAM modules or via new security daemon SSSD. This work analyses
the use of RADIUS protocol for user validation and as a part of this work was developed
SSSD module which uses this protocol.

Klíčová slova
SSSD, RADIUS, PAM, NSS, přihlašování, autentizace, bezpečnost

Keywords
SSSD, RADIUS, PAM, NSS, login, authentication, security

Citace
Ondřej Hujňák: Support for RADIUS protocol in SSSD, bakalářská práce, Brno, FIT VUT
v Brně, 2013

Support for RADIUS protocol in SSSD

Prohlášení
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením Ing. Jana
Zeleného a že jsem uvedl veškeré literární prameny a publikace, ze kterých jsem čerpal.

. .
Ondřej Hujňák

May 15, 2013

Poděkování
Chtěl bych poděkovat Ing. Janu Zelenému za cenné rady ohledně tématu jak po stránce
technické, tak i po stránce obsahové a odborné. Dále bych chtěl poděkovat komunitě
vývojářů podílejících se na vývoji SSSD za pomoc při vývoji a konstruktivní připomínky,
zejména pak panu Ing. Jakubovi Hrozkovi.

c© Ondřej Hujňák, 2013.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3

2 Use case 4

3 Linux user login 5
3.1 History . 5
3.2 Name Service Switch . 6
3.3 Pluggable Authentication Modules . 6

4 RADIUS 8
4.1 Overview . 8
4.2 Protocol . 8

4.2.1 Code . 9
4.2.2 Identifier . 10
4.2.3 Authenticator . 10
4.2.4 Attributes . 10

4.3 Library . 11
4.3.1 Libradius . 11
4.3.2 FreeRADIUS . 11
4.3.3 Conclusion . 11

5 SSSD 12
5.1 Overview . 12
5.2 Architecture . 12

5.2.1 Clients . 13
5.2.2 Responders . 13
5.2.3 Providers . 14

5.3 Configuration . 14

6 Design 15
6.1 Environment . 15
6.2 Architecture . 15

6.2.1 Interfaces . 16
6.3 Talloc and Tevent . 17

6.3.1 Talloc . 17
6.3.2 Tevent . 17

7 Implementation 18

1

7.1 Configuration options . 18
7.2 Initialization orientated processes . 19
7.3 Request handling processes . 20
7.4 Source codes . 21

8 Testing 22
8.1 Test case 1 . 22

8.1.1 Description . 22
8.1.2 Test progress . 23
8.1.3 Test results . 24

8.2 Test case 2 . 24
8.2.1 Description . 24
8.2.2 Test progress . 25
8.2.3 Test results . 25

8.3 Test case 3 . 25
8.3.1 Description . 25
8.3.2 Test progress . 26
8.3.3 Test result . 27

8.4 Test case 4 . 27
8.4.1 Description . 27
8.4.2 Test progress . 27
8.4.3 Test result . 27

9 Evaluation 28
9.1 Future directions . 29

10 Conclusion 30

A Setting up the Environment 32
A.1 Installation of Fedora . 32
A.2 Installation of SSSD . 32
A.3 Installation of LDAP . 33
A.4 Installation of RADIUS server . 34

B Attached disc structure 35

2

Chapter 1

Introduction

RADIUS (Remote Authentication Dial In User Service) server is often used to manage
access to various services such as internet access (PPP) [6], tunnels etc. It grants or denies
access based on user credentials stored in data backend which can vary depending on the
configuration. SSSD (System Security Services Daemon) is service that authenticates users
against different sources called providers which currently cannot use RADIUS server as a
provider to authenticate users and the target of this work is to allow SSSD use RADIUS
server to do so.

That will allow users to come to a computer with configured SSSD, type in their
RADIUS username and password and be granted access to system in the same way as if
they have been using system credentials. Having all users stored in one database makes it
easier for system administrators to manage users in enterprise solutions, because they only
have to take care of a single user database, which is used by RADIUS server and control
access to all computers with SSSD and all other services that can make use of RADIUS.

The resulting module will be able to authenticate users on Linux machines with run-
ning SSSD. For proper functionality RADIUS server with data backend compatible with
SSSD must be present in production environment and data backend have to be able to
supply all user account data needed by system directly to SSSD, because resulting module
do not provide this functionality.

The use case of this module is described in chapter 2 together with diagram of entities
that take part in user login and communication between them. The process of user login
in operating system Linux is then outlined in chapter 3. Analysis of RADIUS protocol and
SSSD is stated in chapters 4 and 5. Chapters 6, 7 and 8 describes development of SSSD
module for RADIUS protocol from the design part to testing of implemented module.

3

Chapter 2

Use case

Typical use case of this module consists of some user database that stores remote user
accounts, RADIUS server and SSSD. SSSD is configured to fetch identity information from
user database and authenticate against RADIUS server. RADIUS server is configured to
use user database as data backend. RADIUS server might be standalone or a part of
some more advanced deployment that uses RADIUS protocol to communicate with clients
(e.g. some OTP1 solutions).

When correctly set up, every authentication of user stored in user database is trans-
parently passed to RADIUS server and response is returned back in the same way as local
authentication.

Figure 2.1: Use case architecture

1One-time Password

4

Chapter 3

Linux user login

This chapter describes processes during user login in operating system Linux. The aim of
this work is to create a module, which will allow remote user login, thus understanding
those processes is essential for further advancenment.

User login can be divided into four phases – identity, authentication, authorization
and session. The task of the first phase is to check, whether a user exists and load all
available information about the user. In the second phase user prooves (usually by typing
password), that he owns the user account loaded in the first phase. When authenticated,
system checks if the user has sufficient rights for the requested action (i.e. login to host).
If the user has passed all three phases, login is allowed and new session is created for the
user.

3.1 History

It is well known for the Unix-like systems, that they store user data in special file /etc/passwd.
This file originally contained everything needed to login user such as login, password hash,
identifiers etc. and every program that needed to validate user or fetch user data read it
directly from this file [8]. This file had to be public, so that everyone could pair IDs to
logins and other user information, but exposed password hashes caused security riscs. That
is why passwords were moved to different file – /etc/shadow, which is readable only by root
(administrator).

This change with the change of cryptographic function meant rewrite and recompile
every single program that used user validation. To abstract access to these information
and allow easy changes in password storage was developed PAM (Pluggable Authentication
Modules). Not only PAM provides interface to access user passwords and rights, but it is
also highly configurable which allows better access management.

With the spread of information technology enterprise productions started to use cen-
tralized user storage. To unify access to these storages was created NSS (Name Service
Switch), which abstract different sources of information and present them over single inter-
face.

5

3.2 Name Service Switch

The Name Service Switch (NSS) provides access to different nameservices over unified
interface. It can be configured to return data from local files, database, remote resource
or even multiple sources combined. NSS was originally developed by Sun Microsystems for
their Unix operating system – Solaris, later was developed the same service for Linux [3].

NSS groups information to 11 basic internal databases [3], every database is designed
to contain specific information and can be configured with different sources. Information
for the identity services is covered by three of them – passwd database contains the same
information as in /etc/passwd file (i.e. login, IDs, shell . . .), shadow database contains
user passwords and group database contains information about groups (name, ID). Apart
from databases designed for login services, NSS provides databases for network services
(services), host names (hosts), networks (networks) etc.

As was stated before, every database can have specified multiple sources. Available
sources depends on system configuration, but files source is always present. This source
reads data from local files such as /etc/passwd, /etc/hosts etc. Another common sources
are db which reads information from database, dns loads data from Domain Name Service
servers and nis uses Network Information Service. Source using SSSD to obtain data is
called sss.

NSS uses /etc/nsswitch.conf as its configuration file. Configuration settings of one
database is written on exactly one line, that consists of database name followed by list of
sources in the order in which they should be used. Example of configuration (just a part):

passwd: files sss

shadow: files sss

group: files sss

hosts: files dns

3.3 Pluggable Authentication Modules

Pluggable Authentication Modules (PAM) is service that abstracts login oriented proce-
dures and provides unified interface to access them. PAM is highly configurable and mod-
ular, which means that PAM consists of multiple parts that are loaded ad hoc in the
runtime. PAM allows to set different configuration schemes for various programs, which
grants administrator full control over login processes in the system.

PAM provides four separate tasks – authentication management (auth), account man-
agement (account), session management (session) and password management (password)
[10].

auth Purpose of this module is to authenticate user. It verifies user by some mean
of identification (e.g. password) and it can grant some privileges or group
memberships to the user.

account This module is designed for authorization, it permits (or restricts) access
based on some rules (e.g. system resources, access control list).

session This module processes all things that precedes and follows after the given
service such as logging etc.

6

password This module is used to update authentication token, usually every challenge-
response authentication method have password module. This module is also
used to change user password.

PAM configuration files are stored in /etc/pam.d/ directory, every PAM aware program
can have its own PAM configuration file stored there. Besides that there are some special
configuration files – system-auth used for system login and other, which is used when no
program specific configuration is found. PAM configuration files consists of settings for
different modules, where every module is specified on one line. The order in which are
modules entered in configuration file is preserved when processing given tasks. Each line
keeps the following form [10]:

type control module-path module-arguments

Where type is type of task (auth, account . . .), control specifies how should PAM
handle this module (what should happen if the module fails, succeeds). For more descriptive
list of control attributes see [10]. Module-path specifies path to the module and module-
arguments are module specific settings.

In the figure 3.1 is shown PAM architecture during authentication process. Application
requires authentication and asks PAM to authenticate user. PAM reads configuration and
loads desired modules, then passes authentication to loaded modules in the order they are
present in configuration file. The result of authentication is returned to the application.
PAM provides separated way to exchange textual information by the use of conversation
function.

Figure 3.1: PAM architecture

7

Chapter 4

RADIUS

4.1 Overview

RADIUS (Remote Authentication Dial In User Service) is networking protocol used for
AAA (Authentication, Authorization, Accounting) services. Despite having many issues
[9] it became de-facto standard for remote authentication and is used in many production
environments. RADIUS protocol is an integral part of port security standard IEEE802.1X
used by ISP’s1 to control network access.

RADIUS protocol is based on client-server model, which means, that subjects can
take one of two roles – client requests some service and contacts server to provide it, server
provides some service to one or many clients. RADIUS protocol does not define any server-
initiated messages, which means that every action have to be initiated by client. Server only
waits and when there is some client request it processes it and return requested information
(e.g. configuration settings).

Client can be directly some host, or it can be a NAS (Network Access Server), which
acts as a gateway to some resource. When host wants to access this resource it connects to
NAS, NAS validates it against RADIUS server and grants/denies access.

RADIUS can be divided into two independent parts — one covers authentication and
authorization and other one accounting. In this document I will focus on the first part
described by RFC2865 [12] as this part is used in the resulting module, if you are interested
in RADIUS accounting you can find it in RFC2866 [11].

4.2 Protocol

As I have mentioned before RADIUS is client-server based protocol. In the beginning server
used UDP2 port number 1645 for authorization requests and 1646 for accounting requests.
Because those ports were unofficial and caused conflicts with diametrics, IANA3 officially
registered UDP 1812 for RADIUS authentication and UDP 1813 for accounting. The use of
UDP suggests that RADIUS is connectionless protocol which is right, moreover RADIUS
is also sessionless which means, that every request is handled as a new one and no data
about connected clients are stored.

1Internet Service Provider
2User Datagram Protocol
3Internet Assigned Numbers Authority

8

RADIUS messages are always encapsulated in exactly one UDP packet. You can see
structure of that packet in the figure 4.1.

Figure 4.1: RADIUS packet

4.2.1 Code

Code specifies type of the packet. Access part of RADIUS protocol uses these 4 codes:

1 Access-Request

2 Access-Accept

3 Access-Reject

11 Access-Challenge

Every RADIUS action begins with client sending Access-Request packet to RADIUS
server. Server validates user against data backend and returns Access-Accept in case the
validation is successful, or Access-Reject otherwise. Or server can send Access-Challenge
packet which requests additional information. In that case client have to generate another
Access-Request with the proper answer. You can see the flow diagram in the figure 4.2.

Figure 4.2: RADIUS flow

9

4.2.2 Identifier

Identifier is a number used for matching requests with replies and detecting duplicates.
Client generates identifier number when sending request either randomly, or from some
counter and server sends reply with exactly the same identifier.

4.2.3 Authenticator

This field is used to encrypt user password and authenticate reply from RADIUS server.
It contains completely different information in request and response packets. In request
packets it contains random number which is used to encrypt user password and should be
unique to prevent anyone decrypting it. In response packets it contains MD5 hash of the
message which ensures integrity of the message.

4.2.4 Attributes

List of attributes that can vary in length and in response packets can be even omitted. I
will mention only some attributes related to this work, full specification is available in rfc
[12]. Every attribute is represented by type number and have similar structure which you
can see in the figure 4.3.

Figure 4.3: General RADIUS attribute

User-Name [1]

In data part is stored a string with user name which is to be validated by server.

User-Password [2]

Data part contains string with encrypted user password. The cipher is counted from shared
secret S, RADIUS authenticator RA and user password p by the following algorithm:

b1 = MD5(S +RA) c(1) = p1 xor b1
b2 = MD5(S + c(1)) c(2) = p2 xor b2

...
...

bi = MD5(S + c(i− 1)) c(i) = pi xor bi

Where + denotes concatenation and c(1) · · · c(i) are characters of encrypted string.

Service-Type [6]

Contains number representing a requesting service such as:

1 Login – user tries to connect to host

8 Authenticate only – do not try to authorize user

10

NAS-Identifier [32]

String in data part identifies NAS that sent Access-Request. When sending Access-Request
NAS have to identify itself either by this identifier or by IP address stored in NAS-IP-
Address attribute.

4.3 Library

The constant problem of RADIUS protocol is its implementation. Unfortunately it’s com-
mon that every project implements this protocol from scratch instead of using some library
which leads to frequent flaws in different implementations. Even if the protocol is rather
simple I decided to use a library to enforce safety of this module. There are two major
libraries for RADIUS protocol – libradius and freeRADIUS.

4.3.1 Libradius

This library was developed by Juniper Networks Inc. that holds copyright, but the use is
permitted if the copyright is preserved. It is synchronous library for developing RADIUS
clients with simple API4 and short documentation covered in one man page. However in
Fedora this library is packed only as libxradius, which is version adjusted for use with
Apache and needs to link with Apache libraries (APR) which is unacceptable.

4.3.2 FreeRADIUS

FreeRADIUS is open source project that covers RADIUS server, server library, client library,
PAM and apache modules. Development of freeRADIUS is sponsored by Network RADIUS
Inc. which offers its own proprietary libraries and server as well. Client library is available
under BSD license so that everyone can use it, it is synchronous library with more complex
API than libradius, but the documentation is rather missing. Links on the project page
[1] leads to nonexistent pages, so the only source of information are examples packed with
library and header file. In Fedora there is only a fork of this library available – radiusclient-
ng. This fork is newer that original freeradius-client and unlike the original one it’s still
maintained, so according to [1] FreeRADIUS project adopts this fork. Unfortunatelly this
fork completely omits all functions to set configuration programmatically and leaves only
one function rc read config that loads configuration from file, which is unpleasant because
I need different style of configuration file.

4.3.3 Conclusion

As we can see, both libraries are unsuitable for this module in the packages that are available
for Fedora. Libradius requires another libraries which would cause unwanted dependencies
and the only way to use FreeRADIUS is to create temporary file with configuration. Another
option is to write RADIUS client communication directly without any library or bundle
whole library in source codes which would cause problems in maintaince.

4Application Programming Interface

11

Chapter 5

SSSD

5.1 Overview

System Security Services Daemon (SSSD) [2] is a system daemon that provides identity,
authentication and authorization of local and remote users via common framework. SSSD
allows you to transparently connect to your system with your credentials stored in LDAP1,
Active Directory or different identity resource. Even more, thanks to caching of user data,
SSSD is able to provide services even if remote resource is currently unreachable. SSSD is
developed since September 2008 by community led by Red Hat Inc. together with FreeIPA2

project that covers complementary services to SSSD (mainly identity management).

SSSD connects to system over NSS and PAM modules, every request sent to those
modules is forwarded to SSSD, processed internally and the result is sent back over the
same interface. Besides that, since version 1.8 SSSD integrates with some third party
applications as well. SSSD allows administrator to set multiple identity resources called
domains. Every domain consists of three service groups that corresponds with login phases
described in chapter 3 – identity oriented services, authentication services and authorization
services.

The main advantages of using SSSD instead of various PAM modules are easy and
powerfull configuration stored in one file – /etc/sssd/sssd.conf, that allows to configure mul-
tiple domains, good server oriented functions and unique use of SysDB database. Thanks
to SysDB SSSD allows to cache user data from remote resources and in case of resource
unreachebility use SysDB to provide services (including authentication). SSSD detects if
remote servers are available and reacts to change of its status dynamically.

5.2 Architecture

SSSD architecture is modular and multiprocess. Main process called monitor is responsible
for spawning modules that are needed and restarting them, if they are unexpectedly ended.
Modules can be divided into three groups — clients, responders and providers. In the figure
5.1 is visible this division and communication between modules. Communication between
SSSD modules is ensured by Unix pipes. Communication between monitor and modules is

1Lightweight Directory Access Protocol
2IPA stands for Identity Policy Audit

12

encapsulated into the subset of DBus messages, but other communication uses only very
simple binary protocol.

Figure 5.1: SSSD architecture

5.2.1 Clients

Clients create entry point to SSSD as they are modules, which contain interface for com-
municating with desired application on one side and are connected to SSSD on the other
one. Task of every client is to work closely with its application, receieve its requests, con-
verts them into SSSD data structures and forward them to their responders. Clients and
responders work very closely, which is why every client ususally have its own responder,
which is designated exclusively for that client. SSSD contains client modules for PAM and
NSS and some third party applications like sudo or ssh.

5.2.2 Responders

Responders provide SSSD services to clients. When there is any type of request, it comes to
responder which acts upon the request and tries to solve it. Responders can use two types
of data sources – SysDB database and providers. Responder gets the data from those data
sources, processes it and transforms it to data structures that can be sent back to clients.
Every responder works with different data according to client that is paired with it and
performs different operations to satisfy the client needs.

PAM responder

Because PAM responder handles all requests from PAM service, which includes authoriza-
tion of users, this is the responder that will be using RADIUS provider as data backend.
PAM responder gets data from PAM client that loads them from internal PAM struc-
ture into pam items structure. PAM responder repacks those data to different structure –
pam data, which contains a few other items like pam status to detect state of action and

13

offline auth to detect offline authentication. Because authentication and authorization
tasks are highly dependant on the type of auth resource, PAM responder can’t solve it on
its own and calls provider which gets pam data structure. Response from provider is then
sent back to PAM client.

5.2.3 Providers

Finally there are providers that create the backend of SSSD. Providers acts as data resources
and provides services for responders. Every provider can provide services from one or more
groups mentioned in overview chapter 5.1 and every provider is specific for one type of
remote resource (currently are present providers for Active Directory, IPA, Kerberos, LDAP
and local one called simple). When provider gets a request from responder it consults it
with remote resource over specific protocol and returns results back to resolver repacked in
internal structures.

5.3 Configuration

As was mentioned in overview section 5.1 configuration file is stored in /etc/sssd/sssd.conf.
This file contains all configuration options for SSSD divided into sections, where main
section is called sssd. Section sssd have to contain enumeration of services (corresponds
with responders) and domains. Every domain has also its own section, where are defined
domain specific configurations including providers that should be used for given domain.
Every domain have to contain id provider, which provides identity services, but all other
providers are optional. Another one is called auth provider and handles authentication
tasks. If there is no auth provider set, SSSD will try to use id provider. Last provider I will
mention is access provider that is used for authorization and if it is not set it will permit
every user.

Sample configuration could look like this:

[sssd]

domains = my.domain

services = nss, pam

config_file_version = 2

[my.domain]

id_provider = ldap

ldap_uri = ldaps://ldap.my.domain

ldap_search_base = dc=my,dc=domain

14

Chapter 6

Design

6.1 Environment

Production environment for RADIUS provider consists of SSSD capable machine running
operating system Linux, RADIUS server and LDAP server. For develepmnet purposes
was chosen Fedora distribution in current version (18) installed as virtual host, bacause it
supports SSSD in default configuration. Fedora repositories contain FreeRADIUS server,
this server was installed and configured to use LDAP server for user database. For LDAP
server was chosen OpenLDAP, which is also present in Fedora repositories. For description
of installation of production environment see appendix A.

For RADIUS client part was finally chosen krad library [7], which is short of Kerberos
RADIUS. It was not mentioned in section 4.3, because it is not a standalone library, but a
part of Kerberos project. This library provides needed functionality plus it is asynchronous
library, which is big advantage. Drawbacks are that this library is a part of the Kerberos
project and therefore depends on Kerberos. Another disadvantage is that this library is
brand new and API and ABI1 are still unstable, but I was assured that ABI compatibility
will be preserved. However those drawbacks were discussed and acknowledged by SSSD
project leader. This library is written with the use of verto library, which is library that
abstracts asynchronous event loop and allows users to use different event loop module in
the runtime.

6.2 Architecture

Module gets request from data provider backend, processes it and sends Access-Request
packet to RADIUS server. When module gets response from server, it checks the packet
code and when it is Access-Accept returns PAM OK to back to data provider backend, in
other cases it returns PAM PERM DENIED. Challenge-response authentication is not supported
by this module.

1Application Binary Interface

15

6.2.1 Interfaces

SSSD-side

SSSD-side interface consists of three functions – init function for RADIUS provider initial-
ization, handler function that handles requests and terminating function that returns result
of current request to data provider backend.

Init function is first function to be called and its purpose is to initialize all provider struc-
tures. This function creates RADIUS provider context that holds all important in-
formation for this provider.

Handler is internal module function that have to be reqistered to data backend during
provider initialization. This function takes request packed in be req structure as its
parameter. In be req is stored context of whole data provider context and pam data
which were sent from responder.

Terminating function is one of the data provider backend functions available for mod-
ules. This function finalizes request and sends back to data provider information
about errors and authentication status. Those information is later forwarded to the
responder.

RADIUS-side

RADIUS-side interface consists of protocol messages desribed in section 4.2. This interface
is covered by the use of krad library. This library provides krad client send function to
send Access-Request packet and allows to define callback which is called when response
is received or if the request timeouts.

krad client send takes all needed data such as RADIUS server address, attributes, time-
out and callback that should be called once reply is received.

Callback gets both request and response packet that was received from the server and
allows module to check values in both of them and react accordingly.

Figure 6.1: Architecture of RADIUS provider module

16

6.3 Talloc and Tevent

SSSD is designed to be event based program. It means that program consists of event
handlers that are associated with particular events. When that event occures, handler is
triggered to react to the situation. In the meantime, when there are no events, program
waits in the main loop.

Because SSSD is written mainly in programming language C which doesn’t support
event based scheme by default, SSSD uses two libraries that originally comes from Samba
project - talloc and tevent. Talloc is library for memory management and Tevent is an
event system based on Talloc library.

6.3.1 Talloc

Talloc is library for memory management, that uses hierarchical memory pool [4]. Keeping
all allocations in a tree structure allows programs to easily free complex structures at once.
Another advantage of Talloc is support for destructors.

Talloc uses contexts to keep internal data about allocations and for every allocation
talloc must be given context to which could be allocation added (in a tree structure it will
be parent node). The main difference between malloc and talloc is that after allocation
talloc does not return just a memory pointer, but returns talloc context, that can be used
as a parent node in next allocation. When freeing allocated memory, talloc frees all child
nodes as well.

Figure 6.2: Example of talloc usage

6.3.2 Tevent

Tevent is a library for event based programming that uses talloc for memory management
[5]. This library provides many event types such as timers and file descriptors and allows
to create asynchronous requests.

To create asynchronous request tevent provides tevent req structure, which can be
created with function tevent req create(). Every request can have state structure that
holds local variables for whole request and for every request can be set callback that will be
called when request is done. Because asynchronous requests are often hierarchical and can
make code really confusing, some conventions were stated. Every asynchronous request has
a name that describes the aim of the request, then starting function is called $name$ send,
state structure is called $name$ state and callback is called $name$ done.

17

Chapter 7

Implementation

The module was named rad, which is short of RADIUS and rad prefix is used for module
specific objects. Whole module is divided into three source files – rad auth.c contains
functions to handle authorization requests, rad common.c is intended for general use and
rad init.c ensures provider initialization. Source files are connected by two header files –
rad auth.h with authorization specific functions and rad common.h with general purpose
functions and one header file with default options – rad opts.h.

7.1 Configuration options

Module is configerd in common configure file for whole SSSD - /etc/sssd/sssd.conf and all
RADIUS specific options contain prefix rad. To use RADIUS for remote authentication is
needed to specify rad as provider of authentication service by setting for domain:

auth_provider = rad

This will load rad module and every authentication requests will be passed to this
module.

Every rad provider have to contain some options to determine where is running RA-
DIUS server against which should be users authenticated and shared secret between this
server and your host. They are entered in those options:

rad server contains server which should be used for RADIUS authentication. Can be
defined either by IP, by hostname or even by Unix socket.

rad secret is shared secret between host and server. This have to be the same in the
server configuration, or authentication requests will be discarded.

Other options are just optional and can specify some aspects of module behaviour.

rad port defines port on which is server listening. Can be set by port number, or by name
of service (from /etc/services). Default value is “radius”.

rad timeout sets timeout for single response from server in mikroseconds. If server does
not reply in time, duplicate request is sent. Default value is 10000.

rad conn retries contains number of connection retries. Provider sends up to this number
requests and if it doesn’t get any reply, authentication is rejected. Default value is 3.

rad identifier can set an identification that should be sent to server as NAS-Identifier.
Default value is determined from hostname.

18

7.2 Initialization orientated processes

Initialization in SSSD is handled by special init function, where name of the function de-
pends on type of provider and its name. Template of the function is sssm $name$ $type$ init,
because this module provides only authentication, there is only authentication init function
– sssm rad auth init. In the figure 7.1 is shown callgraph of initializaton of this module,
where green function is entry point to initialization, blue functions are implemented in this
module and other functions are external.

Figure 7.1: Initialization callgraph

Description of functions and structures used for module initialization:

int sssm rad auth init(struct be ctx *bectx, struct bet ops **ops,

void **pvt auth data)

This is the main function for initialization, its task is to prepare this module to handle
authentication requests. The most important part of this function is creating RADIUS
provider context and registering rad auth handler as a handler for authentication
requests. This function gets be ctx structure as a parameter, this structure contains
context of whole SSSD domain with all information about it (such as id provider,
auth provider etc.). Structure bet ops allows module to register new handler and in
pvt auth data can be stored any data that should be included in every request. In
this function is in pvt auth data stored RADIUS context with important provider-
oriented information.

struct rad ctx

This structure holds provider context, that contains all provider-specific information.
This structure have to be available for every request in this module. Because RADIUS
protocol is stateless, it currently holds only provider-specific configuration options.

int rad get options(TALLOC CTX *memctx, struct confdb ctx *cdb,

const char *conf path, struct dp option ** opts)

This function loads options, checks its validity and return loaded options in opts

parameter. Memctx is structure allocated with talloc that will be used as reference
point in other allocations. Cdb and conf path are information stored in be ctx that
are used to load options.

enum rad opts

Enumeration of RADIUS provider options, that is used to access specific option. Last
number RAD OPTS is used as a counter of all options.

struct rad options

This structure is accessible only within rad init.c file and is used to prevent multiple
loading of options. Options are loaded into this structure and next time are reused
from this structure instead of redundant option loading.

19

7.3 Request handling processes

Every request is passed to function set in initialization phase (section 7.2) and ends with the
call of the function be req terminate. In this module, handler function is rad auth handler.
When terminating request, result of operation, pam status and error message (if any) are
returned back. In the figure 7.2 si callgraph of an authentication request, where entry and
exit points are green, blue functions are implemented by module and other functions are
extern.

Figure 7.2: Request processing callgraph

Description of functions and structures used for handling authentication requests:

void rad auth handler(struct be req *be req)

This is the function that gets called if any request appears and its purpose is to check
if it is possible to process this request, create RADIUS request structure rad req and
call rad auth send to create subrequest for inner processing. It takes as a parameter
be req structure, which contains data about the request and it sets rad auth done
as a subrequest callback that is called when the subrequest is done.

static struct rad ctx *get rad ctx(struct be req *be req)

This function extracts provider context from request and returns pointer to this con-
text. Because location of provider context in the request depends on the type of PAM
command, it also checks if this type of PAM command is supported by rad provider.

struct rad req

This structure holds all information needed to process request by rad provider.

static int rad auth send(struct rad ctx *ctx, struct pam data *pd,

struct be req *be req)

This function creates subrequest with rad state state structure and sets wakeup func-
tion. Wakeup is set to call rad auth wakeup as soon as possible, which allows program
to finish this function and set callback to new subrequest before rad auth wakeup is
called.

struct rad state

This is state structure for radius subrequest and contains variables to detect current
state of subrequest and all other information needed by subrequest such as kerberos
and verto contexts for krad library.

20

static void rad auth wakeup(struct tevent req *req) Only purpose of this func-
tion is to call rad server send. The reason for this solution is need to set a callback
before rad server send is called.

static int rad server send(struct rad state *state) This function assembles RA-
DIUS packet with user data and sends it to server for authentication. This function
initializes verto and kerberos contexts, creates RADIUS client with the use of krad
library and fills it up with user data. Then it passes created client to krad library,
sets rad server done to be called once there is an answer from the server and starts
verto event loop.

static krb5 error code add str attr(krad attrset *attrs, const char *attr name,

const char *attr val) This helper function adds string attr val to attribute list
attrs. Parameter attr name defines what RADIUS attribute should be associated
with given string.

static inline krb5 data string2data(const char *str)

Because krad library needs data to be entered packed in Kerberos data structure, this
function takes string and packs it so. Because it makes duplicates of every string, it
is needed to explicitly free memory after use.

static void rad server done(krb5 error code retval, const krad packet *req pkt,

const krad packet *rsp pkt, void *data)

This function gets called if there is response from server or if counter timeouts. It
quits verto, sets request status according to the response and finishes request. Retval
variable contain return value from internal krad function that receives and processes
reply from the server, req pkt and rsp pkt are structures containing request and
response packets and in data part is stored radius request. If response packet code is
Access-Accept status is set to PAM SUCCESS, otherwise is set to PAM PERM DENIED.

static void rad auth done(struct tevent req *req) This function finishes the re-
quest. It gets called when subrequest is done and finishes the request by calling
be req terminate with the state of subrequest. This state is loaded by calling
rad auth recv function.

static int rad auth recv(struct tevent req *req, int *pam status, int *dp err)

This is just a helper function that loads state of subrequest passed as argument req
into pam status and dp err.

7.4 Source codes

Whole SSSD project is included on attached disc in the directory sssd. Because type of
this module is provider, its situated among other providers in src/providers subdirectory
under its name – rad. To compile sssd with this module is needed to configure makefile
with --with-radius or alternatively with all experimental features
(--enable-all-experimental-features).

21

Chapter 8

Testing

SSSD allows to specify verbosity of logs for every section of sssd.conf and thanks to using
masks it is possible to define exactly what should be logged. Allowed value for the mask
is in range from 0x0010, which means only fatal failures and is default, to 0xFFF0 which
means to log everything. Masks are created by logical OR of possible values that can be
found in manpages for SSSD configuration file (man 5 sssd.conf). Example value then
could be:

[domains/DOMAIN]

debug_level = 0x05f0

This mask sets all failures (0x0010 - 0x0080), configuration settings (0x0100) and
function trace messages (0x0400). Every section is set separately, so configuration for
section [sssd] does not apply for any other sections. This allows more precise configuration
of what should be logged and it also corresponds with log files, because every section has
its own log file placed in /var/log/sssd.

8.1 Test case 1

8.1.1 Description

This test verifies, whether user is successfully logged in, when he enters correct user cre-
dentials.

Prerequisites LDAP server running with at least one Posix account stored in its database
(user test was used in this test). RADIUS server configured to answer requests from
testing computer and using LDAP server for user validation. SSSD configured with
domain that uses LDAP as id provider and rad as auth provider.

Procedure In shell run su command to change user to that one defined in LDAP and
enter password for LDAP user.

Expected results User should be changed to LDAP user and should be given his default
shell.

22

8.1.2 Test progress

In the figure 8.1 is shown output of terminal, where first command shows, that there is no
user test in local file /etc/passwd. Then is user test logged in, gets its default shell – bash
and with command whoami is verified, that it’s really user test who is logged in.

Figure 8.1: Successfull login in shell

In the figure 8.2 is shown network communication during this login. Firstly SSSD
tries to connect to IPv6 address of given server, after three unsuccessfull attempts it goes
to another IP address of the target, which is IPv4. Server is running on this address and
returns Access-Accept answer, which means that the user is authenticated.

Figure 8.2: Network packet preview from Wireshark

In the preview of packet data is shown User-Name of the user (test), its encrypted
password, service which we demand is Login and hostname of computer that sent this
request - phredie.ondra.hujnak.cz. Beside that we can see random generated Authenticator
and Packet identifier. In IPv6 requests we can observe, that Packet identifier is constant,
which means that those requests are duplicate and if server receives more packets with the
same identifier, it handles only first one and dismiss all others.

Now we examine log file for domain RAD that was configured to use rad as an
auth provider. Logs for this domain are stored in /var/log/sssd/sssd RAD.log and in the
figure 8.3 is shown authentication part of log. First there is PAM request to authenticate
user test, then we can observe that callback is set before rad server send is called. When

23

there is an answer, rad server done breaks verto loop and grants permission for the user
test to login (because it received Access-Accept as can be seen in figure 8.2). After result
of this operation is sent, request is freed and finished.

Figure 8.3: Part of sssd RAD.log file with successfull login

8.1.3 Test results

Test was successfull, user from LDAP was successfully logged in. Login took longer than
local login, because this provider is IPv6 ready and RADIUS server was defined by hostname
– localhost. This hostname resolves as IPv6 address ::1 and IPv4 address 127.0.0.1, where
IPv6 has priority. Because RADIUS server is listening only at IPv4 first connection fails
and server tries second address which succeeds.

8.2 Test case 2

8.2.1 Description

This test is focused on denial of not authenticated users. It checks, whether user is not
logged in with invalid credentials.

Prerequisites LDAP server running with at least one Posix account stored in its database
(user test was used in this test). RADIUS server configured to answer requests from
testing computer and using LDAP server for user validation. SSSD configured with
domain that uses LDAP as id provider and rad as auth provider.

Procedure In shell run su command to change user to that one defined in LDAP and
enter intentionally wrong password.

Expected results User should be denied to change user and error message should be
printed. User should remain unchanged.

24

8.2.2 Test progress

In the figure 8.4 is shown output from the terminal, where is seen that login was really
refused.

Figure 8.4: Failed login in shell

In network preview in the figure 8.5 are two packets – Access-Request which is sent
to the server and Access-Reject which indicates failed authentication request. IPv6 packets
sent to the server before IPv4 communication are ommited from the figure as they didn’t
change from test 1.

Figure 8.5: Network packet preview from Wireshark

The log file now says “Permission denied” instead of “Permission granted” and re-
turned values are 0, which means that there was no error and 6, which means that user was
not authenticated.

Figure 8.6: Part of sssd RAD.log file with permission denied

8.2.3 Test results

User was denied to change to LDAP user and “incorrect password” message was displayed.
This covers expected results by 100%. Unsuccessfull login took a long time from the same
reasons as in test 1.

8.3 Test case 3

8.3.1 Description

In this test prooves correct behaviour of rad provider in case that RADIUS server does not
reply.

25

Prerequisites LDAP server running with at least one Posix account stored in its database
(user test was used in this test). SSSD configured with domain that uses LDAP as
id provider and rad as auth provider.

Procedure Make sure, that RADIUS server is not running or doesn’t answer requests
from testing host. Then run in shell command su to change user to that one defined
in LDAP and enter password.

Expected results User should be denied to change user and error message should be
printed. User should remain unchanged.

8.3.2 Test progress

In the output from shell in the figure 8.7 is seen, that user was not logged in and error
message says “incorrect password”.

Figure 8.7: Timeout login in shell

Network analyser whose output is captured in figure 8.8 shows 3 packets to IPv6 server
address and 3 packets to IPv4, no response from RADIUS server is returned, only ICMP
messages.

Figure 8.8: Network packet preview from Wireshark

Finally in the log (figure 8.9) is stated “Request timeout” and returned error state.
Number 2 means that request was not completed, because of a timeout and number 4 tells
PAM that there was system error during authentication.

Figure 8.9: Part of sssd RAD.log file with server timeout

26

8.3.3 Test result

User was indeed refused access, but before error message was printed user had to wait for a
fairly long time. This is caused by waiting for response from server that would never come.
This can be adjusted by setting shorter timeout, in the future there should be some state
of server present in rad provider, so that user did not have to wait.

8.4 Test case 4

8.4.1 Description

This test case proves that no unknown users can be logged in to the system.

Prerequisites Running LDAP server. SSSD configured with domain that uses LDAP as
id provider and rad as auth provider.

Procedure In shell run su command to change user to non-existent one.

Expected results User should be denied to change user and error message should be
printed. User should remain unchanged.

8.4.2 Test progress

In the figure 8.10 is captured output from shell. Error message was printed even before
prompt for password, because error was encountered in the first phase of login – identifica-
tion.

Figure 8.10: Login of non-existent user

Because login failed before authentication phase, rad provider is not called at all and
there are no packets sent at all.

8.4.3 Test result

This test successfully showed that unknown users cannot login to the system.

27

Chapter 9

Evaluation

The implementation of RADIUS provider uses pretty straightforward architecture and di-
vison described in chapters 6 and 7, which allows easy orientation in code for everyone who
knows tevent library. The structures and functions are designed for good readability and
extendability to make it easier to maintain.

For the RADIUS protocol implementation was chosen krad libray, which has an ad-
vantage, because unlike other libraries mentioned in section 4.3 it is asynchronous library.
Synchronous actions in SSSD are solved by moving them to different process and using pipes
to communicate between asynchronous and synchronous processes, but use of asynchronous
library allows to include this library directly into main process and use it as a part of SSSD,
which means lower system requirements. This library have many drawbacks stated in sec-
tion 6.1 caused mainly because this library is brand new and is a part of kerberos project,
but still it was chosen as the best option.

During implementation was discovered a problem in verto library which is used in
krad, that after use of this library context could not be freed, because free function would
destroy main event loop and cause provider stop responding to any actions. This problem
was discussed with verto developers and should be fixed in the next version of the library.
Until this is done, verto context cannot be freed and causes minor memory leaks.

Currently it is possible to authenticate against RADIUS via PAM modules, one is a
part of the FreeRADIUS project [1]. This module provides basically the same functionality
as SSSD with this provider and it uses RADIUS accounting to register user login at server-
side. The advantage of using SSSD is in better configuration, because everything is stored in
one readable file, and great extendibility. Unlike FreeRADIUS, SSSD allows to set specific
configuration for every RADIUS server thanks to diversion into domains and can easily
combine different account data resources.

RADIUS provider is really minimalistic in coparison with other providers in SSSD.
Unlike other providers it provides only one task – authentication and it doesn’t have pos-
sibility to store user data in cache for offline use. On the other hand this provider is brand
new and makes use of current features of SSSD such as specific debug levels, that allows
users to define exactly what messages to log and internal error codes that make it easier
for programmers to locate the origin of an error.

28

9.1 Future directions

In the tests was mentioned, that login procedure can in some cases take a long time. To
prevent this it would be much more convenient to periodically check server availability and
store its status in provider context. When the server is unreachable, provider could act
immediatelly and wouldn’t have to wait till the request timeouts.

It would be also pleasant if it was possible to store user credentials with server response
in SSSD cache, like it does in some other providers. This would allow provider to check
cache instead of remote server once there is an entry, which would reduce network traffic
and allow users to login with remote credentials even if server is not reachable.

The addition most wanted by upstream is possibility to map users between RADIUS
users and local ones. Having some map would allow users to connect to the computer with
RADIUS account that does not have to be in any other resource for identity. For example
there will be map, that every RADIUS user is to be connected as guest account. User
than logs in with RADIUS credentials, but in the system is logged as user guest with all
permissions and restrictions defined for user guest and system does not need to know about
RADIUS user.

Another possibility is adding RADIUS accounting to the provider if it is desirable. This
enables to log user logins on server side, which could be used for example for monitoring
usage of different computers.

29

Chapter 10

Conclusion

This work analysed the use of RADIUS protocol for remote user login in Unix-like systems.
Only one part of RADIUS was prooved to be useful and is used only for user authentication.
As a result of this work was developed module for SSSD that allows users from some remote
resource to be authenticated against RADIUS server.

The main feature of SSSD for a programmer is definitelly an event-based concept of
whole program. That is, because asynchronous programming is not typical for programming
language C in which is SSSD mainly written. However this schema is very convenient for
this service, because it corresponds with its use, when daemon waits till it gets request for
some task (either from NSS, PAM or different client), solves it and after task is solved it
returns answer and waits for another requests. To use this feature in C, which is known
as a lower level language (in comparison with object oriented and other very high level
languages) SSSD uses tevent library, which is described in section 6.3.

The biggest problem showed up to be the lack of documentation for many open source
projects. For example SSSD project have only user-targeted documentation that describes
how to install and configure SSSD, but programmer-oriented documentation about internal
interfaces and essential objects for writing modules is completely missing. Problem can
cause outdated documentation as well, for example LDAP recently moved from slapd.conf
configuration file to directory of ldif files but documentation and many manuals are written
for configuration file. Big difference is that in new config style, ldif files shouldn’t be manu-
ally edited, but should be changed in the same way as LDAP internal database (programs
like ldapmodify). Use of bleeding edge software causes problems not only with the lack of
information about it, but can also change its API or contain some bugs.

Unpleasant surprise was a really unsatisfactory situation in RADIUS client libraries.
Although there are some, they are not present in target system in an usable way and it
seems that they are declining. Thanks to community of SSSD developers I have found brand
new RADIUS library, which was developed for Kerberos OTP and used it, but because it’s
brand new and uses verto library, which is pretty new as well, it caused some problems
mentioned in chapter 9.

Despite the obstacles the module was successfully developed and is able to authenticate
users as requested. Moreover this module is written with regard to current principles in
SSSD and is readible and easily extendible. The module was named rad, which is short of
RADIUS and its source code resides in src/providers directory in its own subdirectory rad.
The module is loaded dynamically by SSSD monitor when it is requested in configuration,
description of configuration can be found in section 7.1.

30

Bibliography

[1] The freeradius project. http://freeradius.org/, [quoted 2013-04-28].

[2] Sssd - system security services daemon. https://fedorahosted.org/sssd/,
[quoted 2013-04-30].

[3] System databases and name service switch. https:
//www.gnu.org/software/libc/manual/html_node/Name-Service-Switch.html,
[quoted 2013-05-02].

[4] talloc documentation. http://talloc.samba.org/talloc/doc/html/index.html,
[quoted 2013-05-05].

[5] tevent. https://tevent.samba.org/, [quoted 2013-05-05].

[6] How Does RADIUS Work? http://www.cisco.com/en/US/tech/tk59/
technologies_tech_note09186a00800945cc.shtml, [quoted 2013-05-13].

[7] npmccallum/krb5. https://github.com/npmccallum/krb5/commits/otp-master/,
[quoted 2013-05-13].

[8] Peter Hernberg. User authentication howto.
http://www.faqs.org/docs/Linux-HOWTO/User-Authentication-HOWTO.html,
2000-02-05 [quoted 2013-05-02].

[9] Joshua Hill. An analysis of the radius authentication protocol.
http://www.untruth.org/~josh/security/radius/radius-auth.html, 2001
[quoted 2013-04-24].

[10] Andrew G. Morgan and Thorsten Kukuk. The linux-pam system administrators’
guide. http://www.linux-pam.org/Linux-PAM-html/Linux-PAM_SAG.html,
2010-08-31 [quoted 2013-05-02].

[11] C. Rigney and Livingston. Radius accounting.
https://tools.ietf.org/html/rfc2866, June 2000 [quoted 2013-05-04].

[12] C. Rigney, S. Willens, Livingston, A. Rubens, Merit, W. Simpson, and Daydreamer.
Remote authentication dial in user service (radius).
https://tools.ietf.org/html/rfc2865, June 2000 [quoted 2013-04-24].

31

http://freeradius.org/
https://fedorahosted.org/sssd/
https://www.gnu.org/software/libc/manual/html_node/Name-Service-Switch.html
https://www.gnu.org/software/libc/manual/html_node/Name-Service-Switch.html
http://talloc.samba.org/talloc/doc/html/index.html
https://tevent.samba.org/
http://www.cisco.com/en/US/tech/tk59/technologies_tech_note09186a00800945cc.shtml
http://www.cisco.com/en/US/tech/tk59/technologies_tech_note09186a00800945cc.shtml
https://github.com/npmccallum/krb5/commits/otp-master/
http://www.faqs.org/docs/Linux-HOWTO/User-Authentication-HOWTO.html
http://www.untruth.org/~josh/security/radius/radius-auth.html
http://www.linux-pam.org/Linux-PAM-html/Linux-PAM_SAG.html
https://tools.ietf.org/html/rfc2866
https://tools.ietf.org/html/rfc2865

Appendix A

Setting up the Environment

A.1 Installation of Fedora

There are multiple ways to install Fedora, but the most common is to use compact disc
and boot from that disc. You can download image of Fedora 18 disc from http://

fedoraproject.org/cs/get-fedora and then burn the image onto disc or mount it into
virtual CD reader in our case. Now boot from that CD and when context menu of boot-
loader GRUB comes up choose Install. After a while graphical installer Anaconda should
show up, follow instructions on the screen and after reboot you should get to fresh instal-
lation of Fedora 18.

A.2 Installation of SSSD

Firstly install SSSD package from repository by typing (as a root) yum install sssd, that
will install sssd and all the dependencies. Now we need to ensure, that system passes pam
and nss requests to SSSD. In the config file /etc/pam.d/system-auth there should be lines
containing pam sss.so, if they are missing, add to correct sections following entries (always
on the last but one line):

auth sufficient pam_sss.so use_first_pass

account [default=bad success=ok user_unknown=ignore] pam_sss.so

password sufficient pam_sss.so use_authtok

session sufficient pam_sss.so

This will ensure, that pam requests are processed by SSSD. Now check nss configura-
tion in file /etc/nsswitch.conf, if it doesn’t contain sss add it as follows:

passwd: files sss

shadow: files sss

group: files sss

Now add a simple configuration to /etc/sssd/sssd.conf if it is not present. Here you
can see example of the simplest configuration:

32

http://fedoraproject.org/cs/get-fedora
http://fedoraproject.org/cs/get-fedora

[sssd]

domains = local

services = nss, pam

config_file_version = 2

[domain/local]

id_provider=local

And set correct rights to the file by chmod 0600 /etc/sssd/sssd.conf. You should
be able to start sssd by typing systemctl start sssd by now. If there is no error, SSSD
is running correctly, but this setting is rather useless, because it uses the same user resource
as standard unix files that are used with higher priority. You can find example of my SSSD
configuration that uses new RADIUS provider on the attached disc in config directory.

This gives us SSSD up and running, but for development there are another packages
needed. That can be installed by typing:

yum install openldap-devel gettext libtool pcre-devel c-ares-devel

dbus-devel libxslt docbook-style-xsl krb5-devel nspr-devel libxml2

pam-devel nss-devel libtevent python-devel libtevent-devel libtdb

libtdb-devel libtalloc libtalloc-devel libldb libldb-devel popt-devel

c-ares-devel check-devel doxygen libselinux-devel libsemanage-devel

bind-utils libnl3-devel gettext-devel glib2-devel

yum install libcollection-devel libdhash-devel libini config-devel

libpath utils-devel libref array-devel

Radius provider depends on kerberos libraries and verto library, which needs at least
one verto-module installed. To install verto type:

yum install libverto libverto-tevent

Kerberos libraries that are currently present in Fedora repositories are obsolete and
use a different API, that is why kerberos libraries needs to be installed from koji:
http://koji.fedoraproject.org/koji/buildinfo?buildID=410384

A.3 Installation of LDAP

OpenLDAP server can be easily obtained from repository by typing yum install openldap
openldap-servers. OpenLDAP recently switched its configuration options from file
/etc/openldap/slapd.conf to directory of ldif files /etc/openldap/slapd.d/. Those files are
not meant to be modified directly, but have to be configured on the fly, that’s why first
step is to start OpenLDAP server by typing systemct start slapd. When the server is
running its time to make some configuration. Because in standard configuration there is
only base schema loaded, first thing we have to do is to add a schema with support of
POSIX accounts:

ldapadd -Y EXTERNAL -H ldapi:/// -f /etc/openldap/schema/nis.ldif

33

http://koji.fedoraproject.org/koji/buildinfo?buildID=410384

Configuration of slapd now consists of adding ldif files to LDAP database. Two exam-
ple files with configuration are present on the attached disc in config directory. File db.ldif
contains basic setting with new suffix, new root DN and new root password. File base.ldif
then creates root node and two sub nodes — one called People for user accounts and one
for groups. Add those files by typing following commands, second one will prompt for root
password that was set in db.ldif.

ldapadd -Y EXTERNAL -H ldapi:/// -f db.ldif

ldapadd -xWD "cn=admin,dc=ondra,dc=hujnak,dc=cz" -f base.ldif

After that LDAP is ready to load users and groups. Easiest way to transfer users and
groups is to use migrationtools to convert /etc/passwd and /etc/groups contents to ldif
files and add them to LDAP database. Another option is to write ldif files manually which
allows better control over users and groups that are stored in LDAP. It is also possible to
change ldif files generated by migrationtools to contain only specific accounts and groups.

A.4 Installation of RADIUS server

Finally we can install FreeRADIUS server with LDAP as data backend. In Fedora this is
divided into two packages that can be installed by:

yum install freeradius freeradius-ldap

Configuration files of RADIUS server are located in directory /etc/raddb/ and setting
of LDAP module is in subdirectory modules/ldap. The configuration to set up module to
communicate with LDAP directory server running on local machine looks similar to this:

ldap {

server = "127.0.0.1"

identity = "cn=admin,dc=ondra,dc=hujnak,dc=cz"

password = testing

basedn = "ou=People,dc=ondra,dc=hujnak,dc=cz"

filter = "uid=%u"

...

}

LDAP module have to be enabled by uncommenting ldap entry in /etc/raddb/sites-
enabled/default. After this we should be able to start RADIUS server with systemctl
start radiusd.

34

Appendix B

Attached disc structure

The disc attached to this thesis contains source codes of rad provider as well as this thesis.

• config/ – contains examples of configuration files

– base.ldif – creates root node and two subnodes - People and Groups

– db.ldif – contains basic setting of LDAP with new suffix and root DN

– sssd.conf – example of configuration file for SSSD

• scripts/ – contains helper scripts for environment preparation

– add sssd to nss.sh – adds sssd to NSS configuration file

– add sssd to pam.sh – adds sssd to PAM configuration file

– install.sh – this is wrapper that runs all other scripts in order to prepare whole
environment

– install packages.sh – install needed packages from repository

– set ldap server.sh – installs OpenLDAP and modifies its setting to contain
POSIX accounts and adds user test with password test

– set radius server.sh – installs FreeRADIUS and modifies its settings to verify
users against LDAP

• sssd/ – contains complete SSSD project repository, the rad provider is situated in
src/providers/rad subdirectory

• tex/ – contains source files for this report

– Changelog – changelog of template for thesis from FIT VUTBR

– Makefile – makefile for this thesis

– appendix.tex – contains all appendixes of this thesis

– body.text – contains main body of this thesis

– cover.tex – is used only to generate cover of this thesis

– czechiso.bst – czech bibliography style

– fig/ – this folder contains all figures used in this thesis

– fitthesis.cls – document style from FIT VUTBR

– literature.bib – list of all sources used for this thesis

– thesis.tex – the main file for compiling, it contains definitions of packages and
structure of document

• thesis.pdf – this report
35

	Introduction
	Use case
	Linux user login
	History
	Name Service Switch
	Pluggable Authentication Modules

	RADIUS
	Overview
	Protocol
	Code
	Identifier
	Authenticator
	Attributes

	Library
	Libradius
	FreeRADIUS
	Conclusion

	SSSD
	Overview
	Architecture
	Clients
	Responders
	Providers

	Configuration

	Design
	Environment
	Architecture
	Interfaces

	Talloc and Tevent
	Talloc
	Tevent

	Implementation
	Configuration options
	Initialization orientated processes
	Request handling processes
	Source codes

	Testing
	Test case 1
	Description
	Test progress
	Test results

	Test case 2
	Description
	Test progress
	Test results

	Test case 3
	Description
	Test progress
	Test result

	Test case 4
	Description
	Test progress
	Test result

	Evaluation
	Future directions

	Conclusion
	Setting up the Environment
	Installation of Fedora
	Installation of SSSD
	Installation of LDAP
	Installation of RADIUS server

	Attached disc structure

