SECURE BOOTLOADER FOR ARM MICROCONTROLLERS

Pavol Pritel
Doctoral Degree Programme (1), FEEC BUT
E-mail: xprite00@stud.feec.vutbr.cz

Supervised by: Radimir Vrba

E-mail: vrbar@feec.vutbr.cz

Abstract: Embedded systems are single purpose devices, where software updates are often omitted
or very limited in comparison with personal computer systems. Such systems are typically using
microcontrollers with limited memory and computing power. Enabling software updates on an em-
bedded system brings some security issues that need to be taken into account. As soon as there is a
possibility of software update, the device is exposed to risk of malicious or not original applications
being executed on the device. In this paper a reference implementation of bootloader with security
features is described. As a result of using asymmetric cryptography, the memory footprint and start-
up time is increased significantly. The contribution of this work is in finding the right algorithm that
will offer trade-off between level of security and used resources of targeted microcontroller.

Keywords: elliptic curve cryptography, cipher, bootloader, microcontroller, embedded

INTRODUCTION

Security took place in today’s personal computer world. Confidential data is stored on everyone’s
computer and is protected by passwords, biometry, encryption and other security mechanisms. Se-
curity is a standard that end user expects from the device. Different situation is in the domain of
embedded systems, where lack of security is significant. Embedded systems are often single pur-
pose devices executing specific application that does not need an update for a longer period of time
during the product life cycle. Firmware is rarely without any bugs, even worse, these bugs are often
found after the device is already deployed in the field. Such a bug can be fixed by factory recall
of all devices. Another solution, economically more acceptable is the integration of bootloader into
system. By separating application itself from boot process, the system is enriched with possibility
of software updates. On the other side, the system is exposed to malicious and non original appli-
cations, which can be intentionally loaded by an attacker. Therefore, security is a key parameter of
any bootloader. Bootloader is a piece of software responsible for loading applications. Bootloader
typically establishes a communication with host expecting an application image to be sent and then
hands over the execution to the final application. The most valuable feature of bootloader is the capa-
bility of downloading an application using communication protocol that fits the specific application.
In other words, the bootloader logic is separated from the communication protocol used to download
the application image. Any of well-known protocols can be used depending on the field of operation.
Industrial embedded systems will most likely use protocols specific for industrial area such as CAN,
Ethernet. Simple standalone devices will most likely use USB, UART, SPI, I’C or any other inter-
face. Bootloader described in this paper is targeting ARM Cortex-M microcontrollers. As a result of
possible attacks analysis, several security features were implemented. The key security feature of the
bootloader is authentication of downloaded application using asymmetric cryptography.

The chapter 2 describes the basic boot process of microcontroller and security recommendations for
bootloader. Chapter 3 introduces the key algorithm in the bootloader security chain, chapter 4 shows
the result of the digital signature algorithm benchmark.

410

2 BACKGROUND

After the reset of Cortex-M microcontroller, the interrupt vector table is located at address 0x00000000.
The first two entries in the interrupt vector table contain initial value of stack pointer and reset vector.
After the reset, processor sets up MSP (Main Stack Pointer) and PC (Program Counter) registers with
these values and starts executing the first instruction on the address pointed by PC register. This boot
sequence is shown in figure 1 and is common for all ARM Cortex-M processors [2].

Value at 0x00000000 to Stack Pointer
Reset 1st Instruction
Value at 0x00000004 to Program Counter

Figure 1: Boot sequence on reset

As the after reset location of interrupt vector table is at address 0x00000000, the bootloader must
have IVT at this location. This ensures the bootloader is the first application executed by the micro-
controller. Reset boot sequence is shown in figure 1.

Unused Memory

Application

Load Application

Bootloader

A
Communication Protocol

Reset Event

Y

Application
Image

Figure 2: Bootloader functionality in general

From bootloader point of view the application is just stream of bytes that needs to be loaded at the
right memory address. The information of hand over address is missing in the application image itself.
ARM microcontrollers can relocate the IVT location at run-time using VTOR register. Typically,
applications have their own interrupt vector table stored in RAM. The location of the table needs
to be known to the bootloader, therefore the table contains entry point (Reset Handler) of the final
application. Passing corrupted application IVT location is a security breach that can lead to undefined
behavior of boot process if not detected. The simplest solution is to require the applications to be
linked with fixed IVT location. This prevents from executing code that was not authenticated. Another
solution is that the host sends the IVT location for each application separately. In this case, the
IVT location needs to be included in digital signature so the bootloader can fully authenticate the
application.

2.1 SECURITY RECOMMENDATIONS
2.1.1 DEBUG INTERFACE

In order to protect the data stored in the processor, debug access should be always disabled once
the device is operational in the field. ARM Cortex-M microcontrollers use JTAG or SWD debug

411

interface that can be disabled. By disabling debug interface permanently, an attacker loses the ability
of modifying the code stored in internal memory.

2.1.2 MEMORY PROTECTION

The application image is serialized and sent to the bootloader using communication protocol. The
bootloader has full read/write access to all on-chip memory. The host sending an application to
bootloader may request a write to memory which is used by bootloader itself. Allowing this write
command could cause the bootloader corruption, which is a security issue. Before any data is written,
the memory protection checks whether the address range is accessible by external write commands.
Commands addressing protected memory must be rejected. For security reasons, the memory access
to memory mapped peripheral registers and bootloader memory space is protected. As a result, boot-
loader only accepts memory write commands to memory reserved for application. Logic of memory
protection is shown in figure 3. An invalid application image may use a memory that should not be
used. For example memory in which the bootloader is stored. Any access to memory mapped pe-
ripheral should also be restricted. Bootloader must perform a memory range check before any write
operation is executed. All memory write operations to restricted memory space must be rejected.

Write |Address Size | Payload Bootloader Data
Application
Data(R/W)

Memory Allowed

Protection Restricted
Application
Code(R/W)

Discard
Command

Bootloader Code

Figure 3: Memory protection in write command

2.1.3 PuBLIC KEY TABLE

Asymmetric encryption algorithm is used for authentication of application image. Bootloader should
only use public keys that are trusted. This can be achieved by storing the keys in memory that cannot
be overwritten by an attacker [3]. Reference implementation uses a key table. The key matching is
done before any authentication of application is performed. In case of key mismatch, the authentica-
tion process is interrupted and evaluated as unsuccessful.

DIGITAL SIGNATURE ALGORITHM

Asymmetric cryptosystems are widely used for digital signatures. The most popular algorithm is
RSA, which relies on the hardness of factoring of large integers. RSA keys are prime numbers with
recommended size at least 2048 bits [4]. The keys used by RSA are large in comparison with keys
used by cryptography algorithms based on elliptic curves, which is the crucial parameter for embed-
ded systems with limited memory resources. ECDSA significantly reduces the key size, while the
same level of security is achieved. Figure 4 shows the authentication chain, where the application
provider owns secret private key used to sign an application image. Application and generated sig-
nature are delivered over the communication channel to the target microcontroller, where bootloader
is in charge of authenticating and executing the application. Bootloader owns well-known public
key that is used to authenticate the application image delivered by application provider. Signature

412

generation and verification are time critical operations, where only verification is executed on the
resources limited microcontroller. Many large integer multiplication operations are involved in ellip-
tic curve cryptography algorithms and these operations are not supported as a native instructions on
microcontrollers. In the bootloader implementation, the microECC open source library was used for
ECDSA.[1].

Application Provider

Bootloader

H 3

Communication Channel

|

E‘i
), iF’ i'“v
o iu.v Signature Signature
rivate key ;

Signature
9 + Authenticate
SHA256
n Public key
Application code Application code SHA256

+ Application code
(N
(— 0

Application Descriptor

! Application Descriptor

®7

! Application Descriptor

Figure 4: Application authentication using digital signature

4 ECDSA BENCHMARK

There are basically two time critical operations in authentication process. Majority of Cortex-M
microcontrollers are not equipped with hardware cryptography accelerators. As a result, even simple
hashing function like SHA256 can take a significant processor time, especially when hashing a large
payload. The absence of hardware cryptography accelerator block results in increased boot time
of final application. Another time critical operation is signature verification. Microcontrollers with
hardware accelerator for elliptic curve cryptography are rare. As a result, most of the embedded
applications are using the software implementation. Very large integer multiplication was found as
the main bottleneck of elliptic curve cryptography, as long as these operations cannot be computed
by native instructions. The performance evaluation was executed on three different microcontrollers.

Testing the ECDSA library built with different level of optimization show the advantages of using
highly optimized assembly language code. Pure C implementation of the VLI multiplication is up
to 4 times slower than implementation with optimized assembly code. Signature verification is the
most time consuming operation in the authentication chain. Therefore, the benchmark is focused on
this procedure. Table 1- 3 shows the result of benchmark, where the same algorithm was built with
different level of optimization. All processors are running at their maximum frequency, which is a
typical use case.

Table 1: Cortex-M0 24 MHz Verification Time
Optimization Level Signature Verification Time [ms]

C Language - None 2466
C Language - Low 2144
C Language - Medium | 1669
C Language - High 1219

Assembly Language 733

413

Table 2: Cortex-M3 48 MHz Verification Time
Optimization Level Signature Verification Time [ms]

C Language - None 1588
C Language - Low 1430
C Language - Medium | 1014
C Language - High 638
Assembly Language 489

Table 3: Cortex-M4 144 MHz Verification Time
Optimization Level Signature Verification Time [ms]

C Language - None 298
C Language - Low 273
C Language - Medium | 187
C Language - High 108
Assembly Language 92

5 CONCLUSION

Reference bootloader for Cortex-M microcontrollers was developed considering several security risks.
The key security feature is ECDSA for authentication of loaded applications. Results from bench-
mark show that ECDSA is suitable for targeted processors in context of bootloader, where the time-
consuming authentication is performed only once during boot time. The open source library mi-
croECC offers highly optimized assembly language implementation of the most time critical opera-
tions used by ECDSA. As a result, processors without hardware cryptography accelerators can use
this algorithm with a reasonable processor time. Bootloader prevents from malicious software to be
executed on target processor, but the application image data transfer between host and bootloader is
not encrypted. With additional security level, the boot time would be increased as well. Encryption
requires a mechanism of generating shared secret key such as Diffie-Hellman. Therefore implemen-
tation of this feature is being prepared as a future work.

ACKNOWLEDGEMENT

The author would like to thank Ministry of Industry and Trade of the Czech Republic in project
FV10562 SYMONPRO Systems for Process Monitoring using modern tools for optimization.

REFERENCES

[1] K. MacKay, ECDH and ECDSA for 8-bit, 32-bit, and 64-bit processors, Available online:
https://github.com/kmackay/micro-ecc

[2] J. Yiu, The Definitive Guide to ARM R Cortex-M3 and Cortex-M4 Processors,
ISBN:9780124080829

[3] M. Hunter, Using the Kinetis Security and Flash Protection Features,
http://www.nxp.com/assets/documents/data/en/application-notes/AN4507.pdf

[4] E. Barker and Q. Dang, Recommendation for Key Management,
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.pdf

414

