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Abstract
The paper is concerned with a four-dimensional nonlinear difference system with
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1 Introduction
In the paper, we consider a nonlinear four-dimensional neutral difference system of equa-
tions being a particular case of a general system of the form

�
(
X(n) + P(n)X(n – δ)

)
= A(n)F

(
X(n – τ )

)
, n ≥ n, ()

where n ∈N, δ, and τ are nonnegative integers,

X(n) =
(
x(n), x(n), x(n), x(n)

)T : Z∞
n–η →R



is an unknown vector, Z∞
n–η := {n – η, n – η + , . . .}, η = max{δ, τ }, � is the forward

difference operator, �X(n) = X(n + ) – X(n),

P(n), A(n) : Z∞
n →R

 ×R


are squared matrices and F(n) : Z∞
n–η →R

. The particular case is specified in the follow-
ing way:

P(n) := diag
(
p(n), , , 

)
, A(n) := diag

(
a(n), a(n), a(n), a(n)

)
,

F(n) :=
(
f
(
x(n)

)
, f

(
x(n)

)
, f

(
x(n)

)
, f

(
x(n)

))T
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and fi : R → R, i = , . . . , . Throughout the paper, we assume that the sequence {p(n)}
satisfies

lim
n→∞ p(n) = p̄ ∈R and |p̄| �= . ()

When formulating and proving statements, we understand that () is valid without men-
tioning this property.

Obviously, system () can be written as

�
(
x(n) + p(n)x(n – δ)

)
= a(n)f

(
x(n – τ )

)
, ()

�x(n) = a(n)f
(
x(n – τ )

)
, ()

�x(n) = a(n)f
(
x(n – τ )

)
, ()

�x(n) = a(n)f
(
x(n – τ )

)
. ()

Throughout the paper, we assume

ai : Z∞
n →R+ ∪ {}, R+ := (,∞),

∞∑

n=

ai(n) = ∞, i = , , , ()

a : Z∞
n →R

 →R+. ()

Moreover, let a constant M >  exist such that

fi(u)
u

≥ M, u ∈R \ {}, i = , . . . , . ()

This property implies ufi(u) >  for u �= , i = , . . . , .
The properties of solutions to second-order difference equations (such as oscillatory or

non-oscillatory behavior) have been the subject of intensive studies in the last  years.
Considerably less attention received the study of similar properties to special classes of

fourth-order nonlinear difference equations. Some interesting results concerning asymp-
totic and oscillatory properties of the fourth-order nonlinear difference equations can be
find in [, ]. A systematic investigation of the behavior properties of solutions of some
classes of fourth-order nonlinear difference equations can be found in []. The authors
presented sufficient conditions for the oscillation of solutions via comparison with the
first and second-order difference equations whose oscillatory behavior is well known. The
study of various kinds of fourth-order nonlinear difference equations are brought to the
attention of many authors (see, e.g., [–] and the references therein).

A four-dimensional system of difference equations, which can be understood as a gen-
eralization of fourth-order difference equations, was investigated, e.g., in [–]. The
boundedness and oscillation of nonlinear three-dimensional difference systems with de-
lays were considered in [, ].

Provided that functions fi are invertible and ai(n) �=  for i = , , , n ∈ Z
∞
n–η , system ()

can be rewritten as a fourth-order difference equation,

�
(
f –


(
b(n)�

(
f –


(
b(n)�

(
f –


(
b(n)�

(
x(n) + p(n)x(n – δ)

)))))))

= b(n)f
(
x(n – τ )

)
, n ∈ Z

∞
n , ()
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where b(n) = /a(n), b(n) = /a(n – τ ), b(n) = /a(n – τ ), and b(n) = /a(n – τ ).
The special case of () with power-type functions fi, i = , . . . ,  was considered in []
where the authors, among others, stated a new oscillation theorem for what is called the
sublinear case. Their approach was based on regarding the equation as a four-dimensional
difference system and on the cyclic permutation of the coefficients in the difference equa-
tions. The equation

�
(
b(n)�

(
b(n)�

(
b(n)�

(
x(n) + p(n)x(n – δ)

))))
= b(n)f

(
x(n)

)
()

is considered in [] as a special case of () where fi(t) = t, i = , , , and f(x(n – τ )) =
f (x(n)). Conditions under which every eventually positive solution belongs to one of three
mutually distinct sets are derived. Also, necessary and sufficient conditions for the exis-
tence of asymptotically constant solutions and maximal solutions are given. The proper-
ties of non-oscillatory solutions of () are investigated in [] where the necessary and
sufficient conditions for the existence of minimal and maximal solutions are given as well.

By a solution of () we mean a vector X = X(n), n ∈ Z
∞
n–η such that, for every n ∈ Z

∞
n ,

() is fulfilled. A solution X = X(n), n ∈ Z
∞
n–η of () is said to be non-oscillatory if each of

its components is non-oscillatory (i.e. it is always positive or is always negative) on Z
∞
n–η .

A solution X = X(n), n ∈ Z
∞
n–η of () is said to be eventually non-oscillatory if all its com-

ponents are non-oscillatory for all sufficiently large n. Otherwise (if a solution is neither
non-oscillatory nor eventually non-oscillatory), it is called oscillatory. A solution X = X(n),
n ∈ Z

∞
n–η of () is said to be bounded if all its components are bounded, otherwise, it is

called unbounded. In the paper, we often assume or state that a property holds ‘eventu-
ally’ meaning that such property is valid for all sufficiently large values of the independent
variable n. The rest of the paper is organized as follows. In Section , some auxiliary re-
sults are introduced. The main results are proved in Section  and, in the last Section ,
we illustrate selected results by examples.

2 Auxiliary results
For convenience, in our investigation we denote

z(n) = x(n) + p(n)x(n – δ), n ∈ Z
∞
n . ()

We will employ some auxiliary results to prove the main results of the paper. First, recall
two lemmas, which can be found in [] and in [], respectively.

Lemma  Let {x(n)}, n ∈ Z
∞
n–η , {p(n)}, n ∈ Z

∞
n , be real sequences and {z(n)} be the se-

quence defined by (). If {x(n)} is bounded, and

lim
n→∞ z(n) = l ∈R, ()

then {x(n)} is convergent and

lim
n→∞ x(n) =

l
 + p̄

.

Remark  If conditions of Lemma  hold when l �= , then the sequences {x(n)} and {z(n)}
are both eventually non-oscillatory.
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Lemma  Let {x(n)}, n ∈ Z
∞
n–η , {p(n)}, n ∈ Z

∞
n be real sequences and {z(n)} be a sequence

defined by (). Assume also that

|p̄| < . ()

If the sequence {z(n)} defined by () is bounded, then the sequence {x(n)} is bounded as
well.

Remark  If conditions of Lemma  hold, then the sequence {z(n)} is bounded if and only
if the sequence {x(n)} is bounded. Thus, the sequence {z(n)} is unbounded if and only if
the sequence {x(n)} is unbounded.

Next, we will prove some properties of the solutions concerning sign, monotonicity and
convergence to zero, formulating them as lemmas.

Lemma  If conditions () and () are satisfied and l �= , then the sequences {x(n)} and
{z(n)} have the same sign for all sufficiently large n.

Proof Since the sequence {z(n)} has a finite limit, it is bounded. By Lemma , the sequence
{x(n)} is also bounded. By Lemma , using the usual rules for computing limits, we have

lim
n→∞ x(n) =


 + p̄

· lim
n→∞ z(n).

Since |p̄| < , both x(n) and z(n) have the same sign if n is sufficiently large. This implies
the lemma’s assertion. �

The following lemma can be immediately proved if, in the system () written by ()-(),
single equations are analyzed separately (starting with ()).

Lemma  Let X = X(n), n ∈ Z
∞
n–η be a solution of the system () such that the sequence

{x(n)} is non-oscillatory. If conditions ()-() are satisfied, X is eventually non-oscillatory
and the sequences {xi(n)}, i = , , , are monotonic for all sufficiently large n. Moreover, the
sequence {z(n)} defined by () is also monotonic for all sufficiently large n.

Lemma  Let X = X(n), n ∈ Z
∞
n–η be a solution of the system (), and conditions ()-() be

satisfied. If {x(n)} is non-oscillatory and limn→∞ x(n) is finite, then

lim
n→∞ xi(n) = , i = , , .

Proof Set limn→∞ x(n) = c. Hence, limn→∞ z(n) = c( + p̄) is finite, too. By Lemma , the
sequence {x(n)} is monotonic. Hence, there exists a limit

lim
n→∞ x(n) = c ∈ R∪ {–∞, +∞}.

Without loss of generality, assume that c ≥ . If c = , then the statement of the lemma is
valid for i = . Inequality c >  yields x(n) >  for all sufficiently large n. Then there exists
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an integer n ∈ Z
∞
n–η such that x(n – τ ) ≥ c/ for all n ≥ n + τ . From (), we derive

f(x(n – τ )) ≥ Mx(n – τ ) > . Thus, from (), we have

�z(n) = a(n)f
(
x(n – τ )

) ≥ Ma(n)x(n – τ ) ≥ Ma(n)
c


> 

for n ≥ n + τ . Summing the above inequality from n + τ to n – , we get

z(n) ≥ z(n + τ ) + M
c



n–∑

i=n+τ

a(i).

Taking n → ∞, by (), the right-hand side of the above inequality tends to infinity. So,
the left-hand side also tends to infinity. This contradicts the fact that limn→∞ z(n) is finite.
Therefore, limn→∞ x(n) = . In a similar way, using the equations of system (), we obtain
limn→∞ x(n) =  and limn→∞ x(n) = . �

3 Main results
We focus on the study of boundedness and unboundedness of non-oscillatory solutions
of system (). Before we state sufficient conditions for the solutions to be bounded or un-
bounded, we give a classification of non-oscillatory solutions of system (). Investigation
of properties of solutions to difference equations and systems relates to the signs of their
solutions. Many authors use, e.g., auxiliary results based on the well-known Kiguradze
theorem, useful in the theory of functional differential equations. Although our approach
is different, it is also based on the signs of solutions.

3.1 Classification of non-oscillatory solutions
In the following theorem, we give all possibilities for the signs of components of every
eventually non-oscillatory solution X = X(n), n ∈ Z

∞
n–η of the system (). Define the fol-

lowing cases related to the eventually non-oscillatory solution X = X(n), n ∈ Z
∞
n–η of the

system ():

(I) sgn x(n) = sgn x(n) = sgn x(n) = sgn x(n),

(II) sgn x(n) = sgn x(n) = sgn x(n) �= sgn x(n),

(III) sgn x(n) = sgn x(n) �= sgn x(n) = sgn x(n)

for all sufficiently large n.

Theorem  Let conditions ()-() and () be satisfied. Then the coordinates of every even-
tually non-oscillatory solution X = X(n), n ∈ Z

∞
n–η of the system () satisfy exactly one of

the cases (I)-(III) for all sufficiently large n.

Proof Let X = X(n), n ∈ Z
∞
n–η be an eventually non-oscillatory solution of system ().

Without loss of generality, assume that x(n) >  for all sufficiently large n. There are eight
possible cases of the signs of components of X:

() x(n) > , x(n) > , x(n) > ,

() x(n) > , x(n) > , x(n) < ,
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() x(n) > , x(n) < , x(n) > ,

() x(n) > , x(n) < , x(n) < ,

() x(n) < , x(n) > , x(n) > ,

() x(n) < , x(n) > , x(n) < ,

() x(n) < , x(n) < , x(n) > ,

() x(n) < , x(n) < , x(n) < 

for all sufficiently large n.
First, we exclude cases () and (). For the sake of contradiction, suppose that

x(n) <  and x(n) > 

for all sufficiently large n. Hence, the sequence {x(n)} is eventually positive and increasing
(by ()). Then there exists n ∈ Z

∞
n–η such that x(n – τ ) ≥ x(n) >  for all n ≥ n + τ .

From (), we obtain

�x(n) ≥ Ma(n)x(n – τ ) ≥ Ma(n)x(n) for n ≥ n + τ .

Summing up the above inequalities from n + τ to n – , we have

x(n) – x(n + τ ) ≥ Mx(n)
n–∑

i=n+τ

a(i).

Letting n tend to infinity, the right-hand side of the above inequality tends to +∞. Thus,
the left-hand side does so, too. Hence, limn→∞ x(n) = +∞. This means that the sequence
{x(n)} is eventually positive. This contradiction excludes both cases () and ().

Case (). Assume that

x(n) > , x(n) <  and x(n) < 

for all sufficiently large n. Then the sequence {x(n)} is eventually negative and nonin-
creasing (by ()), and there exists n ∈ Z

∞
n–η such that x(n – τ ) ≤ x(n) for all n ≥ n + τ .

From (), we get

�x(n) ≤ Ma(n)x(n – τ ) ≤ Ma(n)x(n) for n ≥ n + τ .

Summing up the above inequalities from n + τ to n – , we have

x(n) – x(n + τ ) ≤ Mx(n)
n–∑

i=n+τ

a(i).

Letting n tend to infinity, the right-hand side of the above inequality tends to –∞. Hence,
limn→∞ x(n) = –∞. This means that the sequence {x(n)} is eventually negative. This con-
tradiction excludes the considered case.
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Cases () and (). Suppose that x(n) <  for all sufficiently large n. Hence, using (), we
can prove that the sequence {z(n)} is eventually nonincreasing. Since {z(n)} is eventually
positive, there exists a finite limit of this sequence. By Lemma , the sequence {x(n)} is
bounded and, by Lemma , {x(n)} has a finite limit. Thus, by Lemma , limn→∞ x(n) = .
We conclude that the sequence {x(n)} is nondecreasing. By (), the sequence {x(n)} is
eventually positive. This statement excludes the case ().

Finally, we show that case () is not possible either. Suppose that it holds. Then x(n)
is eventually positive and, by (), the sequence {x(n)} is eventually nondecreasing, i.e.,
�x(n) ≥  eventually.

By Lemma , limn→∞ x(n) = . Since the sequence {x(n)} is assumed to be eventually
positive, it implies �x(n∗

k) < , k = , , . . . , for a sequence of indices n < n∗
 < n∗

 < · · · such
that limk→∞ n∗

k = ∞. This contradicts not only the above derived inequality �x(n) ≥  for
all sufficiently large n but, in the end, case (), too. �

Remark  As shown by Examples - below, the sets of solutions satisfying conditions
(I)-(III) of Theorem  are nonempty.

3.2 Bounded and unbounded solutions
In this part, we give sufficient conditions for the boundedness or unboundedness of non-
oscillatory solutions of system ().

Theorem  Assume that conditions ()-() and () are satisfied. Let X = X(n), n ∈ Z
∞
n–η

be an eventually non-oscillatory solution of system (). If

lim
n→∞ xi(n) �=  for some i ∈ {, , }, ()

then X is unbounded.

Proof Since X = X(n), n ∈ Z
∞
n–η is an eventually non-oscillatory solution of (), by

Lemma , the sequences {x(n)}, {x(n)}, and {x(n)} are eventually monotonic. Then there
exist limits

lim
n→∞ xi(n) = ci �= , ci ∈R∪ {–∞, +∞}, i = , , .

First, we take i = . Without loss of generality, assume that c > . Hence, the sequence
{x(n)} is eventually positive. Then there exists an index n such that x(n – τ ) > c/ for
n ≥ n + τ . Using (), we obtain

�z(n) = a(n)f
(
x(n – τ )

) ≥ Ma(n)x(n – τ ) ≥ Mc


a(n)

for every n ≥ n + τ . Summing up the above inequalities from n + τ to n – , we have

z(n) ≥ z(n + τ ) + M
c



n–∑

j=n+τ

a(j).

Letting n → ∞, by (), we obtain limn→∞ z(n) = ∞. Then, by Remark , we obtain
limn→∞ x(n) = ∞. This means that X is an unbounded solution of system ().
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If we take i =  or i = , as above, we get limn→∞ x(n) =  or limn→∞ x(n) = , respec-
tively. �

Theorem  If conditions ()-() and () are satisfied, then every eventually non-oscil-
latory solution X = X(n), n ∈ Z

∞
n–η of () fulfilling one of conditions (I), (II) is un-

bounded.

Proof Let X = X(n), n ∈ Z
∞
n–η be an eventually non-oscillatory solution of (). Without

loss of generality, assume that the sequence {x(n)} is eventually positive.
If (I) or (II) hold, then x(n) >  and x(n) >  eventually. From (), since the sequence

{x(n)} is eventually positive, the sequence {x(n)} is eventually nondecreasing. Thus,
limn→∞ x(n) > . By Theorem  again, we get the assertion. �

Theorem  If conditions ()-() and () are satisfied, every eventually non-oscillatory
solution X = X(n), n ∈ Z

∞
n–η of () fulfilling condition (III) is bounded.

Proof Let X = X(n), n ∈ Z
∞
n–η be an eventually non-oscillatory solution of (). Without

loss of generality, assume that {x(n)} is eventually positive. By Lemma , the sequences
{z(n)} and {x(n)} are eventually monotonic. From (), we deduce that {z(n)} is nonin-
creasing. If {z(n)} is bounded, then, by Lemma , {x(n)} is bounded as well and, therefore,
there exists a finite limn→∞ x(n). In that case, by Lemma , we obtain the assertion. If
{z(n)} is unbounded, then, by Remark , {x(n)} is unbounded. The sequence {x(n)} is
nondecreasing and limn→∞ x(n) = +∞. Therefore,

lim
n→∞ z(n) = –∞, lim

n→∞ x(n) = +∞.

This is a contradiction with () since

z(n) = x(n) + p(n)x(n – δ) ≥ x(n – δ) + p(n)x(n – δ) =
(
 + p(n)

)
x(n – δ)

and

lim
n→∞ z(n) = lim

n→∞
(
x(n) + p(n)x(n – δ)

) ≥ lim
n→∞

(
 + p(n)

)
x(n – δ) = +∞. �

4 Examples
The following examples illustrate Theorem  and Theorem . Among others, the examples
demonstrate that the sets of solutions (I)-(III) defined in Theorem  are nonempty.

Example  Let n > . In system (), we set

p(n) =



–

n

, a(n) =


n + 
, a(n) =


n + 

,

a(n) =


√n + ( 
√

(n + ) + √(n + )(n + ) + 
√

(n + ))
,

a(n) =
√n +  – √n + 

(n + ) + 
.
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Moreover, we set

f(t) =



t + sgn t, f(t) = t +  sgn t, f(t) = t,

f(t) = t + sgn t, δ = , τ = .

All assumptions of Theorem  are satisfied. The solution X = X(n) with

x(n) = n + , x(n) = n + , x(n) = √n + , x(n) = √n + 

is one of the unbounded solutions of system (). It fulfills condition (I), defined in Theo-
rem .

Example  Let n > . In system (), we take

p(n) = –
√
n

,

a(n) =


(
√

n –  + )(
√

n +  +
√

n + )
,

a(n) =
√

(n – )

( +
√

(n – ))(
√

n +  +
√

n)
,

a(n) =
√

n(
√

n +  +
√

n)
,

a(n) =


( +
√

(n – ))(
√

n +  +
√

n + )
√

(n + )(n + )

and

f(t) = t + sgn t, f(t) = t + sgn t, f(t) = t,

f(t) = t +  sgn t, δ = , τ = .

All assumptions of Theorem  are satisfied. The solution X = X(n) with

x(n) =
√

n + , x(n) =
√

n, x(n) =
√
n

, x(n) =
–√
n + 

is one of the unbounded solutions of system (). This solution fulfills condition (II), defined
in Theorem .

Example  We put n > ,

p(n) =



, a(n) = , a(n) =




, a(n) = , a(n) =




and

f(t) = f(t) = f(t) = f(t) = t, δ = , τ = 
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in system (). All assumptions of Theorem  are satisfied. The solution X = X(n) with

x(n) =


n , x(n) =
–

n+ , x(n) =


n+ , x(n) =
–

n+ ,

is one of the bounded solutions of system (). This solution belongs to the class (III), de-
fined in Theorem .

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors have made equivalent contributions. All authors read and approved the final manuscript.

Author details
1Brno University of Technology, Brno, Czech Republic. 2University of Białystok, Białystok, Poland. 3University of Žilina,
Žilina, Slovakia.

Acknowledgements
The first author has been supported by the project No. LO1408, AdMaS UP-Advanced Materials, Structures and
Technologies, (supported by Ministry of Education, Youth and Sports of the Czech Republic under the National
Sustainability Programme I). The third author was supported by the project KEGA 004ŽU-4/2014 of the Cultural and
Educational Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic.

Received: 2 June 2015 Accepted: 7 October 2015

References
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