
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY

DEPARTMENT OF INTELLIGENT SYSTEMS

STATICKÁ ANALÝZA MOŽNÝCH HODNOT
PROMĚNNÝCH V PROGRAMECH V C
STATIC VALUE ANALYSIS OVER C PROGRAMS

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. DANIELA ĎURIČEKOVÁ
AUTHOR

VEDOUCÍ PRÁCE prof. Ing. TOMÁŠ VOJNAR, Ph.D.
SUPERVISOR

BRNO 2013

Static Value Analysis over C Programs

Prohlášení
Prohlašuji, že jsem tuto diplomovou práci vypracovala samostatně pod vedením prof. Tomáše
Vojnara. Uvedla jsem všechny literární prameny a publikace, ze kterých jsem čerpala.

. .
Daniela Ďuričeková

May 18, 2013

Poděkování
Na tomto místě bych ráda poděkovala mému vedoucímu prof. Tomáši Vojnarovi za odborné
vedení, za poskytnutou literaturu a za ochotu a čas, který mi při tvorbě práce věnoval.
Také bych chtěla poděkovat Ing. Kamilu Dudkovi za jeho rady týkající se prostředí Code
Listener, které bylo využito k implementaci analyzátoru. V neposlední řadě bych ráda
poděkovala svému příteli za podporu během práce a závěrečnou kontrolu angličtiny.

c© Daniela Ďuričeková, 2013.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

3

Abstrakt
Analýza rozsahu hodnot (anglicky value-range analysis) je metoda statické analýzy založená
na zjišťování hodnot, kterých může daná proměnná nabývat v určitém místě v programu.
Tato technika může být použita k dokázání, že se v programu nevyskytují chyby za běhu,
jako například přístup za hranici pole. Jelikož analýza rozsahu hodnot získává informace o
každém místě v programu, lze k její implementaci využít analýzu toku dat (anglicky data-
flow analysis). Cílem této diplomové práce je návrh a implementace funkčního nástroje
provádějícího analýzu rozsahu hodnot. Práce začíná úvodem do problematiky, vysvětlením
analýz toku dat a hodnot proměnných a popisem abstraktní interpretace, která tvoří for-
mální základ analyzátoru. Následuje seznámení s prostředím Code Listener, které bylo
využito k implementaci analyzátoru. Jádro práce tvoří návrh, implementace a otestování
analyzátoru. V závěru jsou shrnuty nabyté zkušenosti a diskutovány možnosti budoucího
vývoje vytvořeného nástroje.

Abstract
Value-range analysis is a static analysis technique based on arguing about the values that
a variable may take on a given program point. It can be used to prove absence of run-time
errors such as out-of-bound array accesses. Since value-range analysis collects information
on each program point, data-flow analysis can be used in association with it. The main
goal of this work is designing and implementing such a value-range analysis tool. The work
begins with an introduction into the topic, an explanation of data-flow and value-range
analyses and a description of abstract interpretation, which provides the formal basis of the
analyser. The core of this work is the design, implementation, testing and evaluation of the
analyser. In the conclusion, our personal experience obtained in the area of the thesis is
mentioned, along with a discussion of a possible future development of the designed tool.

Klíčová slova
analýza toku dat, analýza rozsahu hodnot, abstraktní interpretace, Code Listener, intrapro-
cedurální analýza, graf toku řízení, částečně uspořádaná množina, svaz

Keywords
data-flow analysis, value-range analysis, abstract interpretation, intraprocedural analysis,
Code Listener, control-flow graph, partially ordered set, lattice

Citace
Daniela Ďuričeková: Static Value Analysis over C Programs, diplomová práce, Brno, FIT
VUT v Brně, 2013

Contents

1 Introduction 3

2 Data-Flow Analysis 6

2.1 Introduction to Data-Flow Analysis . 6

2.2 Two Examples . 10

2.3 Mathematical Background . 15

2.4 Intraprocedural Analysis . 21

3 Value-Range Analysis 24

3.1 A Motivating Example . 25

3.2 Approaches . 26

3.2.1 Abstract Interpretation . 26

3.2.2 Other Approaches . 30

3.3 Existing Tools . 31

3.3.1 The Frama-C Platform . 31

3.3.2 Other Tools . 33

4 Code Listener Infrastructure 34

4.1 Intermediate Source Code Representation 35

4.2 Architecture . 37

4.3 Code Listener API . 38

5 Design of the Analyser 40

5.1 High-Level View . 40

5.2 Unified Representation of Numbers . 41

5.3 Interval Ranges and Their Representation 42

5.4 Memory Places and Conversion of Operands To Them 44

1

5.5 Value-Range Analysis . 45

5.6 Global Variables Analysis . 49

5.7 Analysis of Loops . 50

5.8 Limitations . 51

6 Implementation 53

6.1 Number: Unified Representation of Numbers 53

6.2 Range: Representation of Ranges . 55

6.3 MemoryPlace: A Representation of Memory Places 57

6.4 OperandToMemoryPlace: From Operands To Memory Places 58

6.5 ValueAnalysis: Value-Range Analysis . 58

6.6 GlobAnalysis: Analysis of Global Variables 59

6.7 LoopFinder: Analysis of Loops . 60

6.8 Utilities: Various Auxiliary Functions . 60

6.9 Interface and Output Format of the Analyser 60

6.10 Metrics . 61

7 Testing and Evaluation 62

7.1 Unit Tests . 62

7.2 Overall Tests . 64

7.3 Evaluation . 65

8 Conclusion 66

A Example of Analysis 68

B Contents of the Enclosed CD 71

2

Chapter 1

Introduction

Arguably, one of the most well-known type of software vulnerabilities is a situation called
buffer overflow. A buffer overflow occurs when data are written into a memory buffer that
is not large enough to store these data. Buffer overflows may be exploited by a malicious
person to gain control over a computer system. For example, in November 1988, an infamous
Morris worm infected approximately 6000 network-connected hosts which represented 5–
10 % of the Internet at that time [7]. One of the primary replication mechanisms of the
Morris worm was based on exploiting a buffer overflow in the fingerd daemon. However, in
many cases, buffer-overflow vulnerabilities do not need to be exploited by malicious persons
to have disastrous consequences. Indeed, probably the best-known case of a buffer overflow
is the Ariane 5 failure from 1996 where the catastrophe was caused by a program trying to
store a 64-bit number into a 16-bit space [35].

Since both mentioned cases took place more than a decade ago, one might think that at
present, buffer overflows are no longer an issue because programmers are well aware of
them. However, the opposite is true. In the graph from Figure 1.1, the number of buffer-
overflow-related errors in recent years is shown. Data for this graph are obtained from [40].
Of course, only reported errors are included. From this graph, it is obvious that the number
of buffer overflow vulnerabilities is increasing.

Buffer overflows and other run-time errors, especially in software-critical systems, may cause
not only a loss of huge amounts of money but even worse—a loss of human lives. So, a need
for a precise verification of the systems before their usage is consistently increasing. This
need caused an emergence of formal verification methods. In summary, formal verification is
the use of rigorous methods to ensure that a system conforms to some precisely expressed
notion of functional correctness. There are several methods of formal verification and
each of them is based on a different mathematical apparatus. Model checking, abstract
interpretation, theorem proving and static analysis belong to the best known representatives
of these methods [34].

To prove the absence of buffer overflows and other run-time errors, an analysis called value-
range analysis in collaboration with data-flow analysis can be used. Both of them belong to
static analysis techniques. Value-range analysis is based on arguing about the values that
a variable may take on a given program point. For example, it may tell us that a variable i
in the statement a[i] = x; can be from the interval 〈0, 10〉.

3

 0

 100

 200

 300

 400

 500

 600

 700

 800

2
0
0

2

2
0
0

3

2
0
0

4

2
0
0

5

2
0
0

6

2
0
0

7

2
0
0

8

2
0
0

9

2
0
1

0

2
0
1

1

2
0
1

2

N
u
m

b
er

 o
f

R
ep

o
rt

ed
 B

u
ff

er
 E

rr
o

rs

Year

Figure 1.1: Number of reported buffer-overflow-related errors in recent years

The goal of this work is to design and implement an intraprocedural value-range analyser
built on top of the Code Listener infrastructure (see [17]). Code Listener is a completely
open-source infrastructure intended to simplify construction of tools for static analysis of
C programs. At present, Code Listener provides a unified, object-oriented and easy to use
Application Programming Interface (API) over the GCC front-end (see [51]) as well as over
the Sparse front-end (see [53]). Our value-range analyser receives the intermediate source
code representation from Code Listener and computes ranges of variables used in the anal-
ysed source code. Presently, it is able to handle all variables of primitive data types in the
C language, namely char, short, int, long, float, double and long double. Moreover,
our analyser is able to calculate ranges for items in structures and statically allocated ar-
rays. However, at present, it does not manage anything stored on the heap (dynamically
allocated by the malloc() function or other related functions, such as calloc()). If the
analyser is used on programs that fulfill the above conditions, it provides a sound analysis,
meaning that all computed ranges are safe over-approximation of the real ones.

There exist several approaches to value-range analysis. From all of them, abstract inter-
pretation was chosen for our analyser because probably the most successful value-range
analyser deployed in industry, namely the Value Analysis plug-in [15] from the Frama-C
platform, is based on this approach. Informally, abstract interpretation is a static analy-
sis technique that executes analysed programs in an abstract way related to the concrete
semantics via links based on the theory of Galois connections [13]. During this execution,
abstraction is used to preserve only important program properties and abstracts away all
irrelevant details. This is done to speedup the execution and make it converge on infinite
data domains, thus making the analysis computationally feasible.

We believe that our analyser will be useful for detecting buffer overflows and related errors
in critical software systems.

4

Chapter Survey

This work is divided into eight chapters. In Chapter 2, data-flow analysis is introduced,
a mathematical background needed for constructing a general data-flow framework is stud-
ied, intraprocedural data-flow analysis is explained, and the so-called work list algorithm
is presented. Chapter 3 deals with value-range analysis. A motivating example for using
a value-range analysis is presented in there. Moreover, different approaches to value-range
analysis with the emphasize on abstract interpretation and tools implementing value-range
analysis are also introduced. The Code Listener infrastructure is described in Chapter 4. It
presents the intermediate source code representation used by Code Listener, its architecture
and the provided API. Chapter 5 explains the proposed design of our value-range analyser.
This is followed by a description of its implementation in Chapter 6. Then, in Chapter 7,
the testing process is described and the tool is evaluated. Finally, Chapter 8 summarizes
the work and outlines its possible further development. In Appendix A, a complete example
of an analysis by using the developed tool is given. Appendix B lists the contents of the
enclosed CD.

5

Chapter 2

Data-Flow Analysis

This chapter provides a brief introduction to data-flow analysis. The fundamentals of
data-flow analysis are provided in Section 2.1. In Section 2.2, two simplified examples of
data-flow analyses are given, namely live variables analysis and available expressions anal-
ysis. Section 2.3 deals with the mathematical background needed for developing a general
data-flow framework. For example, partially ordered sets and different kinds of lattices
are studied there. Finally, Section 2.4 describes intraprocedural data-flow analysis. This
chapter is based on [3, 29, 33].

2.1 Introduction to Data-Flow Analysis

Data-flow analysis is a static analysis technique that is used to discover relevant properties
for each program point in the program being analysed. Unlike dynamic analyses, static
analyses, including data-flow analysis, are performed without direct program execution.
Therefore, static analysis techniques are appropriate if the run-time overhead is a matter
of concern. Moreover, when directly executing a program, there is no guarantee of covering
all its behaviour. Information discovered during data-flow analysis represents the run-time
behaviour of a program.

Data-flow analysis has found many useful applications. Originally, it was introduced in
the context of transformations performed by compilers that are aimed at optimizing the
programs for space, time or power consumption. Usage in optimizations still remains its
most dominant application. Another example of application of data-flow analysis is soft-
ware verification used for determining the validity of programs with respect to some desired
properties of interest. Information discovered during analysis is also helpful for understand-
ing the behaviour of a program that can be used for debugging, testing and maintenance.
Finally, reverse engineering also utilizes a data-flow analysis approach.

The following part briefly describes the most relevant properties of data-flow analysis, like
flow sensitivity, context sensitivity, program representation and the like.

6

Types of Data-Flow Analysis

Data-flow analysis can be performed on different types of program representations, such as
control-flow graphs (CFGs), abstract syntax trees (ASTs), program-flow graphs (PFGs),
call graphs (CGs), program dependence graphs (PDGs) and static single assignment (SSA)
forms. CFGs represent a typical internal program representation used in textbooks on
data-flow analysis for the purposes of clarification. Since CFGs are also utilized in our
examples, a more detailed explanation is provided later.

The most common representations of data-flow information are sets whose elements can be
program entities that satisfy the given constraints (e.g. variables whose values are within
certain ranges), or program states that satisfy the given formulae or facts that hold at
a given program point. The sets of variables or expressions are typical for most familiar
analyses and these sets tend to be implemented by bit vectors. Another approach to
represent data-flow information is to use access paths.

With respect to granularity, there are two versions of data-flow analysis, namely exhaustive
analysis and incremental analysis. An exhaustive analysis starts discovering information
from scratch, whereas incremental analysis must be preceded by the corresponding exhaus-
tive analysis in the initialization part, and after that, it updates the information derived in
the previous step whenever there is a change in the code.

Another property of data-flow analysis is its sensitivity. It comes in two different flavors,
specifically flow sensitivity and context sensitivity. The analysis is flow-sensitive if it takes
into account the control flow of the program. Otherwise, it is a flow-insensitive analysis.
A context-sensitive analysis distinguishes between different calling contexts of a function.
So, context-sensitive analysis ensures that information discovered by the analysis could vary
from one calling context of the function to another. Otherwise, it is a context-insensitive
analysis.

With regard to the scope of data-flow analysis, three kinds of data-flow analyses are recog-
nized:

• local data-flow analysis,

• global (intraprocedural) data-flow analysis,

• interprocedural data-flow analysis.

Local data-flow analysis is performed within a basic block. Basic blocks are covered in the
following part, but for now, we only need to know that a basic block is a maximal group of
consecutive statements that are always executed together with a rigorously sequential con-
trol flow between them. Intraprocedural analysis is performed across basic blocks restricted
to a function or procedure and interprocedural analysis is accomplished across functions
and procedures. A more detailed description of intraprocedural analysis is provided in
Section 2.4.

Basic Blocks and Control-Flow Graphs

As mentioned in the previous part, a control-flow graph (CFG) is a frequently used program
representation on which data-flow analysis is performed. It is a graph representation that

7

consists of basic blocks and edges between these blocks. A basic block is a maximal sequence
of consecutive statements1. The first instruction in the basic block serves as the only entry
point into that block. Similarly, the last instruction of the basic block is the only exit point
from the block. Thus, there are no jumps into the middle of the block or from the middle
of the block.

Given an input program, its CFG can be constructed in two steps. Firstly, the source code is
partitioned into basic blocks. This partitioning process starts with the first statement of the
given source code and consecutive statements are added until a jump or label, designating
the end of a jump, is reached. Thus, the first basic block is created. In a similar way, the
remaining basic blocks are generated. Secondly, the set of basic blocks are connected by
edges that represent the control flow. It means that there is an edge from a basic block B1
to a block B2 if the first statement from block B2 can immediately follow the last statement
in block B1. This is true if there is a jump from the last statement of block B1 to the first
statement of block B2 or if the first statement of block B2 follows the last statement of
block B1 in the given source code. In simple terms, the B1 basic block is a predecessor of
the B2 block, and the B2 block is a successor of the B1 block. In Figure 2.1, a fragment of
a source code with its corresponding CFG can be seen.

sum = 0;
i = 0;
L1:
if (i >= n)
goto L2;

sum = sum + a[i];
i = i + 1;
goto L1;
L2:
result = sum;

 sum = 0;
 i = 0;

 L1:
 if (i >= n)
 goto L2;

 sum = sum + a[i];
 i = i + 1;
 goto L1;

 L2:
 result = sum;

Figure 2.1: A fragment of a source code and its corresponding CFG

Therefore, a CFG is an oriented graph where nodes are basic blocks, and edges follow the
transfer of control. For the purposes of data-flow analysis, in this text, it is assumed that
two unique blocks, called Start and End, are in every CFG. The Start block is the first
block of the CFG and it has no predecessors whereas the End block is the last block of
a CFG and has no successors. Without any loss of generality, these blocks can be added if
they do not exist.

Data-Flow Analysis Scheme

A data-flow analysis scheme is constructed in two granularity levels, from a simpler level to
a more complex one but also a more effective one. In the first level, two data-flow variables
are associated to each statement whereas in the second level, two data-flow variables are
associated to a block of statements. In the following text, a more precise description of
both granularity levels is provided.

1In compiler terminology, three-address instructions are used instead of statements. For simplicity,
statements are used in this text.

8

Let us start with a clarification of the term data-flow variable. A data-flow variable repre-
sents an abstraction of the set of all possible program states that are observed at the given
program point. For the reasons of efficiency, only relevant track of information is kept. In
the first level of granularity, there are two data-flow variables for each statement s in the
given source code. The first data-flow variable is associated with the point before state-
ment s and it is denoted by Ins. The second data-flow variable is associated with the point
immediately after statement s and it is labeled as Outs. The goal of data-flow analysis is to
find a solution to a set of constraints that satisfies Ins and Outs for all statements s. For
the subsequent explanation, consider an arbitrary statement s. In the first place, data-flow
variables Ins and Outs belonging to statement s are influenced by the semantics of s. The
term transfer function, denoted by fs, is often used to represent relationship between vari-
ables Ins and Outs based on the semantics of the statement s. Since in data-flow analysis,
two types of direction with respect to control flow are recognized (forward and backward
analysis), the transfer function fs can take two different forms. If the information is prop-
agated forward along execution paths, the function fs takes the data-flow variable before
statement s as a parameter, and the output is a new data-flow variable immediately after
the following statement:

Outs = fs(Ins).

In case that information is propagated backwards up the execution paths, the fs function
takes a data-flow variable after statement s as a parameter, and the output is a new data-
flow variable before s:

Ins = fs(Outs).

In the second place, data-flow variables are influenced by the control-flow constraints. This
makes sense, for example, when dealing with the second level of granularity whose expla-
nation is provided in a few lines further. As shown in this section, by data-flow analysis,
a constraint resolution system based on equalities is used to find a solution to a set of
constraints on Ins and Outs. This system consists of a constraints storage and a logic for
solving constraints. These constraints are also known as data-flow equations.

Let us continue with the second granularity level that is aimed to save space and time by
using basic blocks. In this case, the first data-flow variable is associated with the point
before a basic block b and it is denoted by Inb. The second data-flow variable is associated
with the point immediately after basic block b and it is denoted by Outb. Therefore, it
is necessary to reformulate the previous schema in terms of data-flow variables entering
and leaving basic blocks. The data-flow equations of block b are derived from data-flow
equations involving variables Ins and Outs for all statements s in the given basic block b.
Without any loss of generality, we can suppose that b consists of n statements s1, s2, . . . , sn
in that order, where s1 is the first statement in block b and sn is the last statement in
block b. And so, it must hold that Inb = Ins1 and Outb = Outsn . Let fsi be the transfer
function for statement si, where 1 ≤ i ≤ n. The transfer function for block b is constructed
by composing the transfer functions of the individual statements:

fb = fsn ◦ fsn−1 ◦ · · · ◦ fs1 .

Taking into account a CFG, its basic blocks influence each other according to the edges
in the CFG. This influence depends on the direction of the control flow. The forward-flow
problem can be expressed by the following data-flow equations:

Outb = fb(Inb),

9

Inb =
⋃
p∈P

Outp or Inb =
⋂
p∈P

Outp,

where P is the set of all predecessors of block b. As can be seen from the previous equations,
there are two alternatives for computing Inb, one based on using the union of predecessors’
output and the second based on using the intersection of the predecessors’ output. The
choice between these two possibilities depends on the given problem. A better understand-
ing of the differences between these two alternatives is demonstrated in Section 2.2.

The backward data-flow equations can be defined as follows:

Inb = fb(Outb),

Outb =
⋃
s∈S

Ins or Outb =
⋂
s∈S

Ins,

where S is the set of all successors of the block b.

Since there is usually no unique solution to data-flow equations, the goal of data-flow
analysis is to find the most precise solution that satisfies transfer constraints and control-
flow constraints.

In textbooks dealing with data-flow problems, the usage of data-flow information can be
often seen expressed in terms of the Genb and Killb sets for each basic block b. The
variable Genb represents the data-flow information which is generated in basic block b and
the variable Killb denotes the data-flow information which becomes invalid in basic block
b. For computing data-flow variables Genb and Killb, it is necessary to identify operations
that are exposed in the direction of the performed analysis. An operation is exposed if
it is not followed by an inverse operation in the direction of the performed analysis. For
forward data-flow problems, downwards exposed operations are interesting. In contrast, for
backward problems, upwards exposed operations are the center of interest.

2.2 Two Examples

In this section, two data-flow problems are presented. The first introduced problem is
live variables analysis and the second one is available expressions analysis. Live variables
analysis is a representative of backward data-flow problems whereas available expressions
analysis belongs to forward problems. Both problems are illustrated on a sample program
that uses a set of variables V ar and a set of expressions Expr:

V ar = {a, b, c, d}

Expr = {a ∗ b, a+ b, a− b, a− c, b+ c}

The structure of a sample program represented as a CFG that is used for illustrating data-
flow problems is shown in Figure 2.2. Both presented examples are from [33].

At the end of this section, a comparison of the considered two data-flow problems and their
solutions is presented. The similarities between provided solutions are also pointed out
there.

10

b = 4;
a = b + c;
d = a * b;

h(a - c);
f(b + c);

b = a - c;

c = b + c;

d = a + b;

f(b + c);

g(a + b);

c = a * b;
f(a - b);

b1

b2 b4

b8

b7

b6

b5

b3

Figure 2.2: The CFG of the sample program

Live Variables Analysis

A simplified version of live variables analysis is presented here. This simplification lies in
using only scalar variables. Pointer variables are not considered. Firstly, the definitions of
a live variable and general data-flow equations are provided. Secondly, an application of
data-flow equations on the given sample program is performed.

Definition 2.1. [33] A variable x ∈ V ar is live at a program point u if some path from u
to End contains a use of x which is not preceded by its definition.

Data-flow equations for live variables analysis are defined in the following way [33]:

Inb = (Outb −Killb) ∪Genb (2.1)

Outb =

BI b is End⋃

s∈succ(b)

Ins otherwise,
(2.2)

where

Inb is the set of live variables on the input of block b,

Outb is the set of live variables on the output of block b,

Killb is the set of variables whose liveness is killed within b,

Genb is the set of variables whose liveness is generated within b and

BI is the empty set ∅.

11

The use of ∪ in Equation 2.2 is worth noting. It points out that using a variable along
a single path is sufficient to make a variable live and it is consistent with Definition 2.1.
It can also be seen that data-flow information at a block b is dependent on the successor
blocks. Therefore, live variables analysis is an example of a backward data-flow problem.
In Table 2.1, a trace of liveness analysis for the sample program presented in Figure 2.2
is shown. In the first phase of the analysis, local information represented by variables
Genb and Killb is computed. Then, in the second phase, global information is obtained by
traversing the CFG of the sample program.

Table 2.1: The values computed by live variables analysis

Block Genb Killb
1st Iteration 2nd Iteration
Outb Inb Outb Inb

b8 {a, b, c} ∅ ∅ {a, b, c} ∅ {a, b, c}
b7 {a, b} ∅ {a, b, c} {a, b, c} {a, b, c} {a, b, c}
b6 {b, c} ∅ {a, b, c} {a, b, c} {a, b, c} {a, b, c}
b5 {a, b} {d} {a, b, c} {a, b, c} {a, b, c} {a, b, c}
b4 {a, b} {c} {a, b, c} {a, b} {a, b, c} {a, b}
b3 {b, c} {c} {a, b, c} {a, b, c} {a, b, c} {a, b, c}
b2 {a, c} {b} {a, b, c} {a, c} {a, b, c} {a, c}
b1 {c} {a, b, d} {a, b, c} {c} {a, b, c} {c}

From Table 2.1, it is apparent that the values computed in the first iteration are identical
to the values computed in the second iteration. This identity indicates convergence that
means the end point of the analysis. We can see that after the second iteration, variables
from the set {a, b, c} are live on the output of block b1. However, only the c variable is
live on the input of block b1 because in this block, assignments to variables a and b are
performed.

The primary use of live variables analysis lies in dead code elimination and register al-
location. In the first one, if a variable x is not live immediately after the assignment to
x, it implies that it is not used after the assignment. Hence, it can be safely deleted. It
is important to note that the removal of an unused assignment may result in a fact that
variables used on the right hand side of this assignment cease to be live. A simple but
ineffective solution is based on repeating the live variables analysis followed by dead code
elimination until there is no change. A more reasonable solution is to design an analysis
which takes this transitive effect into account. Such analysis is faint variables analysis that
is not described here. More information and an example of faint variables analysis is given
in [33].

Available Expressions Analysis

In this part, available expression analysis is explained. Firstly, definition of an available
expression and general data-flow equations are provided. Secondly, an application of these
equations on a given sample program from Figure 2.1 is performed.

Definition 2.2. [33] An expression e ∈ Exp is available at a program point u if all paths
from Start to u contain a computation of e which is not followed by an assignment to any
of its operands.

12

Data-flow equations for available expressions analysis are defined in the following way [33]:

Inb =

BI b Start⋂

p∈pred(b)

Outp otherwise
(2.3)

Outb = (Inb −Killb) ∪Genb (2.4)

where

Inb is the set of expressions that are available on the input of block b,

Outb is the set of expressions that are available on the output of block b,

Killb is the set of expressions whose operands are modified in block b,

Genb is the set containing all expressions in block b which are not followed by modi-
fications of their operands in the forward direction (downwards exposed expressions),

BI is the set of all expressions.

Unlike the live variables analysis, in available expressions analysis, ∩ is used in Equation 2.3.
The usage of ∩ expresses that an expression e is available at the given point u only if all paths
from Start to u contain a still valid computation of e. Consequently, it is consistent with
Definition 2.2. Data-flow information in a block b is dependent on the predecessor blocks.
Thus, available expressions analysis is a representative of a forward data-flow problem.

For the purpose of saving space needed for writing a set of all expressions used in a program,
this set is represented by a bit vector in the following description. Figure 2.3 shows the
representation. For the sake of clarity, the bit string 11111 represents the set {a ∗ b, a +
b, a− b, a− c, b+ c} whereas the bit string 00000 represents ∅.

a - ca - ba + b b * ca * b

Figure 2.3: The representation for a set of expressions

In Table 2.2, the values computed by available expressions analysis are shown. As in the
case of live variables analysis, local information represented by variables Genb and Killb is
computed in the first iteration. Then, in the second phase, global information is obtained by
traversing the CFG of the sample program. The values computed in the second iteration are
identical to the values computed in the third iteration. This identity indicate convergence.
For example, we can see that expressions a ∗ b and a+ b are available on the input of block
b6 after the third iteration.

A widespread optimization known as common subexpression elimination is based on the
availability information. The task of this optimization is finding redundant expressions. An
expression is marked as redundant at point u if the expression is available at that point.
For the purposes of computing redundant expressions, two new variables are established,
namely AntGenb and Redundantb. The set AntGenb contains all expressions in the block
b which are not preceded by modifications of their operands in the backward direction in

13

Table 2.2: The values computed by available expressions analysis

Block Genb Killb
1st Iteration 2nd Iteration 3rd Iteration
Inb Outb Inb Outb Inb Outb

b1 10001 11111 00000 10001 00000 10001 00000 10001

b2 00010 11101 10001 00010 10001 00010 10001 00010

b3 00000 00011 10001 10000 10000 10000 10000 10000

b4 10100 00011 10000 10100 10000 10100 10000 10100

b5 01000 00000 10000 11000 10000 11000 10000 11000

b6 00001 00000 11000 11001 11000 11001 11000 11001

b7 01000 00000 10000 11000 10000 11000 10000 11000

b8 00011 00000 00000 00011 00000 00011 00000 00011

block b. They are also called downwards exposed expressions. The variable Redundantb
denotes expressions that can be eliminated in block b. Thus, the following equation holds:

Redundantb = AntGenb ∩ Inb (2.5)

In Table 2.3, the values computed for expression elimination are provided. Note that
expression a ∗ b is redundant in block b4. Therefore, it can be eliminated. In practice,
a value of the previous expression computation is stored in a temporary variable and that
temporary variable is used instead of redundant expression computation. For example, this
form of optimization can be found in the gcc compiler.

Table 2.3: The values computed for expression elimination

Block AntGenb Redundantb
b1 00000 00000

b2 00010 00000

b3 00001 00000

b4 10100 10000

b5 01000 00000

b6 00001 00000

b7 01000 00000

b8 00011 00000

Concluding Remarks

The final part of this section summarizes the information gained in the previous two ex-
amples. From these examples, it is obvious that data-flow frameworks used to solve the
presented data-flow problems have a common form that can be customized for each analy-
sis. Generally, a data-flow problem is specified in terms of the domain, the direction of flow
(forward or backward direction), the confluence operator (∩ or ∪) and data-flow functions
defined on the Genb and Killb components. In Table 2.4, the differences and similarities
between the two presented data-flow problems are summarized.

From Table 2.4, there is a striking resemblance between both of the presented analyses.
The domain of live variables analysis is defined over sets of variables from V ar whereas the

14

Table 2.4: Comparison of live variables analysis and available expressions analysis

Live variables analysis Available expressions analysis

Domain 2V ar 2Expr

Confluence
operator

∪ ∩

Control-flow
direction

backward forward

Data-flow
equations Inb = (Outb −Killb) ∪Genb Inb =

BI b is Start⋂

p∈pred(b)

Outp otherwise

Outb =

BI b is End⋃

s∈succ(b)

Ins otherwise
Outb = (Inb −Killb) ∪Genb

Initial value ∅ Expr

Start block b8 b1

domain of available expressions analysis is specified over sets of expressions from Expr. The
confluence operator is used for collecting values from predecessor or successor blocks. In
the live variables analysis, operation ∪ is used as the confluence operator because according
to Definition 2.1, this analysis has the “any path” nature. On the other hand, operation ∩
is used in the available expressions analysis because Definition 2.2 requires the “all path”
nature. The control-flow direction of live variables analysis is backward that is consistent
with the start block b8 and also with the definition of the data-flow equations because the
Out set of the blocks depends on the successor block. On the contrary, available expressions
analysis is based on forward direction of control flow. Therefore, the In set of the blocks
depends on predecessor blocks and the start block is b1.

The study of two examples of data-flow problems suggests that both analyses have similar
features in terms of their specifications, formulation of data-flow equations and solution
methods. These similarities can be used to design a general framework appropriate for
both presented data-flow problems and many other ones. Some of them can be found
in [33]. In the next section, a mathematical background is provided for constructing such
a general framework.

2.3 Mathematical Background

As follows from the previous section, there are many similarities between specifications
and solution methods of data-flow problems. These similarities can be used to design
a general framework and specific data-flow problems can be viewed as instances of this
framework. For this generalization, some underlying mathematical background is required,
namely partially ordered sets and latices. This part deals with lattice-theoretic modeling
of data-flow frameworks. The generalization is a mathematical abstraction that includes
data-flow values, data-flow functions, confluence operators and so on. Firstly, partially
ordered sets and lattices are introduced. Then, modeling data-flow values using lattices

15

is presented. Subsequently, modeling data-flow functions is explained. After that, the
definitions of data-flow frameworks and data-flow assignments are given. The important
mathematical terms are presented on the examples provided in Section 2.2.

Modeling Data-Flow Values

From the previous part, it follows that approximations amongst data-flow values and merg-
ing these values is the basis for data-flow analysis. Since many similarities in the speci-
fications and solution methods between data-flow problems have been found, it would be
appropriate to try to wrap data-flow problems in mathematics to simplify and automate
the analysis. In this part, mathematical structures capable to capture the relationships
between the data-flow values are defined.

Definition 2.3. [33] A partial order v on a set S is a relation over S × S that is

• reflexive: for all elements x ∈ S : x v x;

• transitive: for all elements x, y, z ∈ S : x v y and y v z implies that x v z;

• anti-symmetric: for all elements x, y ∈ S : x v y and y v x implies that x = y.

A partially ordered set (abbreviated as poset), denoted by (S,v), is a set S with a partial
order v.

In Table 2.5, the interpretation of the relation v is shown. The partial order v is interpreted
as a “conservative or safe approximation of” in terms of data-flow analysis. Thus, notation
x v y means that data-flow value x can be used instead of data-flow value y without
influencing the correctness of computation. The use of data-flow value y instead of x is
more exhaustive but it could lead to a loss of safety. For the purposes of data-flow analysis
in this text, it is given preference to safety from exhaustiveness as is usual in the literature.

Table 2.5: The interpretation of relation v

Notation Interpretation
x v y x is weaker than y

x @ y x is strictly weaker that y
y w x y is stronger than x

y A x y is strictly stronger than x

In posets representing data-flow values, there are often two unique elements. The first one
is weaker than any other element in the poset. It is called the least element and it is denoted
as ⊥. The second element is stronger than any other element in the poset. It is known
as the greatest element and it is denoted as >. For defining the confluence operator, it is
necessary to understand the terms from the two following definitions.

Definition 2.4. [33] Let (L,v) be a poset and let S ⊆ L. An element x ∈ L is an upper
bound of S iff for all y ∈ S, y v x. Similarly, an element x ∈ L is a lower bound of S iff for
all y ∈ S, x v y.

16

Definition 2.5. [33] The least upper bound (lub) of a set S is an element x such that

(i) x is an upper bound of S and

(ii) for all other upper bounds y of S, x v y.

The greatest lower bound (glb) of a set S is an element x such that

(i) x is a lower bound of S and

(ii) for all other lower bound y of S, y v x.

In Table 2.6, a different widely used notation for lub and glb is presented. Both elements,
lub and glb, satisfy the idempotence, commutativity and associativity properties. The lub
(glb) of a set, if it exists, is unique. From our point of view, the meet operator is more
interesting because in data-flow analysis, it is used to merge data-flow values along different
paths and it provides the most exhaustive safe approximation of data-flow values.

Table 2.6: Different widely used notation for lub and glb

lub glb
join meet
tS uS

From the two examples presented in Section 2.2, it may not be obvious that posets repre-
senting data-flow values may be countably infinite. However, there are cases of data-flow
problems defined on countably infinite posets. Thus, it seems reasonable to impose sup-
plementary condition on these posets to ensure termination of the algorithms. Firstly, the
definition of a chain is given. Secondly, the condition of a descending chain is defined
and applied to posets. The descending chain condition is a guarantee that the meets of
countably infinite sets exist.

Definition 2.6. [33] A chain S is a subset of a poset which is totally ordered, i.e., ∀x, y ∈
S : x v y or y v x. A descending chain is a sequence of elements {x1, x2, . . . } from a poset
such that i ≤ j implies that xi w xj .

Definition 2.7. [33] A descending chain {x1, x2, . . . } eventually stabilizes iff ∃n, ∀m > n :
xm = xn.

In [33], it is proved that a poset satisfies the descending chain condition iff every descending
chain in the poset eventually stabilizes. However, this condition does not guarantee that
the meet of each subset in a poset exists in this poset. Since this is required for analysis,
there is a need to use a more restricted mathematical structure, namely a lattice.

Definition 2.8. [33] A poset (L,v) is a lattice iff for each non-empty finite subset S of L,
both tS and uS are in L. L is a complete lattice iff for each subset S of L, both tS and
uS are in L.

The top element of the lattice, tL, is in a complete lattice denoted as > whereas the bottom
element of the lattice, uL, is denoted as ⊥. Even though the guarantee of the existence

17

of the meet for each subset in a poset is solved by using the lattice structure, there is
also a problem with some data-flow analyses whose data-flow values cannot be modeled as
a lattice or complete lattice. This problem can be solved by using a less restrictive kind
of lattice, specifically a meet semilattice. The meet semilattice is a poset in which subsets
have a glb but do not need to have a lub. It means that the ⊥ element is present in these
lattices whereas the > element may not be present.

Definition 2.9. [33] A poset (L,v) is a meet semilattice iff for each non-empty finite subset
S of L, uS is in L.

Now, we need to move to a higher level needed for developing a general data-flow framework
and it is modeling data-flow functions.

Modeling Data-Flow Functions

Data-flow equations from Section 2.2 are modified in this section. First, we recall these
equations:

Live variables analysis Available expressions analysis

Inb = (Outb −Killb) ∪Genb Inb =

BI b is Start⋂

p∈pred(b)

Outp otherwise

Outb =

BI b is End⋃

s∈succ(b)

Ins otherwise
Outb = (Inb −Killb) ∪Genb

Note that both analyses are unidirectional and hence, it is not essential to have two sets of
variables. Thus, in the live variables analysis equations, Inb is substituted in the equation of
Outb by the right-hand side of equation of Inb whereas in the available expressions analysis
equations, Outb is substituted in the equation of Inb by the right-hand side of equation of
Outb. For brevity, new functions fs and fp are introduced.

Live variables analysis Available expressions analysis
fs(Outs) = (Outs −Kills) ∪Gens fp(Inp) = (Inp −Killp) ∪Genp

Outb =

BI b is End⋃

s∈succ(b)

fs(Outs) otherwise
Inb =

BI b is Start⋂

p∈pred(b)

fp(Inp) otherwise

Instead of ∪ and ∩, the merge operator u is used to merge data-flow information along
different paths:

Suppose that the set of data-flow values is L. A function fb : L 7→ L is a transformation of
the data-flow values that reach the basic block b performed by the statements in block b.
In the case of live variables analysis, block b is reached through the paths outgoing from

18

Live variables analysis Available expressions analysis

Outb =

BI b is End

l

s∈succ(b)

fs(Outs) otherwise
Inb =

BI b is Start

l

p∈pred(b)

fp(Inp) otherwise

block b (backward analysis) whereas in the case of available expressions analysis, block b is
reached through the paths ingoing to b (forward analysis). These functions are known as
flow functions and they must satisfies two important properties:

• monotonicity and

• distributivity.

The monotonicity of the flow function ensures that the order of approximations is pre-
served. In addition to the preservation of this order, the distributivity of the flow function
guarantees that merging information before applications of the functions does not cause
any loss of precision. The definitions of the aforementioned properties of the flow functions
are provided in the following text.

Definition 2.10. [33] A function f : L 7→ L is called monotonic iff

∀x, y ∈ L : x v y ⇒ f(x) v f(y).

Definition 2.11. [33] A function f : L 7→ L is called distributive iff

∀x, y ∈ L : f(x u y) = f(x) u f(y).

A set of flow functions F is admissible in the context of data-flow analysis if the following
four properties are satisfied [33]:

• id ∈ F ,

• if f ∈ F and g ∈ F , then f ◦ g ∈ F ,

• the functions in F are monotonic and

• for every x ∈ L, there is a finite set of flow functions {f1, f2, . . . , fm} such that

x =
l

1≤i≤m
fi(BI).

Data-Flow Frameworks

Until now, the fundamental steps needed for developing a general data-flow framework have
been discussed. Now, we have enough knowledge to model data-flow values and data-flow
functions. Therefore, the general data-flow framework can be introduced.

19

Definition 2.12. [33] A data-flow framework is a tuple (LG ,uG , FG), where G is a symbol
standing for an unspecified CFG and:

• LG is a description of a meet semilattice that represents the data-flow values relevant
to the problem. LG must satisfy the descending chain condition.

• uG is a description of the meet operator of the semilattice. uG is, of course, derivable
from LG .

• FG is a description of the set of admissible flow functions from LG to LG . Each
flow function has an associated direction which can be along the control flow in the
unspecified CFG G or against it.

Data-flow frameworks defined in this way are also known as monotone data-flow frameworks,
which follow from the property of monotonicity required for admissible functions. If the
property of distributivity is satisfied, a framework is called distributive data-flow framework.
For solving a real data-flow problem, an instance of a general data-flow framework must be
defined, which we do next.

Definition 2.13. [33] An instance of a data-flow framework is an instantiation of a frame-
work to a particular CFG. It is a pair (G,MG), where

• G = (Nodes,Edges) is an instance of G. This yields concrete values LG, uG and FG
for LG , uG and FG .

• MG is a mapping from blocks in G to FG.

Table 2.7 shows two instances of a general data-flow framework for our presented data-flow
problems. For completeness, the direction of the analysis, > and ⊥, is also presented.

Table 2.7: Two instances of a data-flow framework

Live variables analysis Available expressions analysis
G CFG presented in Figure 2.2
LG 2V ar 2Expr

vLG ⊇ ⊆
uG ∪ ∩

direction backward forward
⊥ V ar ∅
> ∅ Expr

Data-Flow Assignments

A data-flow assignment is a mapping from each data-flow variable Inb to a data-flow value.
In the context of data-flow analysis, a safe (also called conservative) data-flow assignment
is required in most cases. Before the definition of a safe assignment, a set paths(p) and
a function fρ are necessary to be defined. The set paths(p) represents all paths from the
Start node to the program point p. The function fρ denotes the composition of functions
belonging to the blocks {b1, b2, . . . , bi} in a path ρ. Thus, fρ = fni−1 ◦ · · · ◦ f2 ◦ f1. Now, we
can proceed to the definition of a safe assignment.

20

Definition 2.14. [33] An assignment represented by the values of data-flow variables Inb
is safe iff

∀b ∈ Nodes : Inb v
l

ρ∈paths(b)

fρ(BI).

Two data-flow assignments are briefly covered in the following part, namely a meet over
paths assignment and a maximum fixed point assignment.

Definition 2.15. [33] A meet over paths assignment, denoted as MOP, is the maximum
safe assignment:

∀b ∈ Nodes :MOPb =
l

ρ∈paths(b)

fρ(BI).

As can be seen from the definition of MOP, it is a path-based assignment. However,
many data-flow problems are edge-based (like those presented in Section 2.2). For some
problems, the MOP assignment is not algorithmically computable. Thus, another approach
is required. The solution of this problem is called a maximum fixed point assignment
(also denoted as MFP). The MFP assignment is based on computing a fixed point whose
definition follows.

Definition 2.16. [33] A fixed point of a function f : L 7→ L is a value v ∈ L that satisfies
f(v) = v.

For the fixed point assignment, the value of variable Inb is denoted by FPb. The maximum
point assignment is denoted by MFPb, and it must hold that

∀b ∈ Nodes : FPb vMFPb.

To illustrate, consider a simple example of a CFG in Figure 2.4. The first tree next to the
CFG depicts an expression tree for MFP whereas the second tree displays an expression tree
for MOP. From this figure, it is obvious that MOP does not merge values at intermediate
points. In contrast, MFP performs the merging of information at all the intermediate
points.

f1

f2

f4

f3

f5

f4

f2 f3

f1

f1 f3

In3BI

BI

U

U

f4

f3

BIBI

U

BI

BI

f4 f4 f4

f3 f3f2

f1 f1 f3

f1

f3

f3

f1

...

Figure 2.4: The illustration of the MOP and MFP assignment [33]

2.4 Intraprocedural Analysis

Everything that was said in the previous parts can be applied to intraprocedural analysis.
Hence, in this part, only an explanation of the term intraprocedural analysis is provided.

21

Also, an algorithm for computing intraprocedural data-flow analysis is given, namely the
round-robin algorithm. However, before the introduction of the algorithm, we define the
scope for intraprocedural analysis. In particular, intraprocedural analysis is restricted to
a single function and ignores function calls. However, there are several improvements of
intraprocedural analysis that approximate the results from the called functions. Now, we
can proceed to the round-robin algorithm.

Round-Robin Algorithm

In this part, the round-robin algorithm for performing intraprocedural data-flow analysis
is introduced. From the following pseudocode of this algorithm, it is obvious that it is
determined for forward data-flow problems because it starts computation from the Start
block and the data-flow information depends on the predecessor blocks. However, it is not
hard to modify this source code to perform backward analysis. Since the merging of the
data-flow information is computed at the intermediate points, the algorithm computes the
MFP assignment. It is intended for frameworks with a complete lattice.

Algorithm 1: Round-Robin Algorithm For Intraprocedural Data-Flow Analysis
Input: An instance (G,MG) of a monotone data-flow framework (LG ,vG , FG). The

function to which MG maps a node b is denoted as fb. The Start node is
numbered by 0. The rest of the nodes are ordered from 1 to N − 1.

Output: Data-flow values Inb for each block b.
// Initialization part.

1 In0 = BI;
2 foreach j ∈ {1, 2, . . . , N − 1} do
3 Inj = >;
4 end
5 change = true;
// Iterative part

6 while change do
7 change = false;
8 foreach j ∈ {1, 2, . . . , N − 1} do
9 temp = up∈pred(j)fp(Inp);
10 if temp 6= Inj then
11 Inj = temp;
12 change = true;
13 end
14 end
15 end

In the initialization part, we initialize the value of all input blocks to >, except for the Start
node, which we initialize to the empty set. Then, in the iterative part, we keep iterating
over the nodes. In every iteration, we re-compute the input value of all blocks based on
the input value of all the predecessors. We repeat this process until we reach the fixed
point—that is, the values do not change anymore.

22

Improving the Algorithm By Using a Work List

A classical way of improving the above algorithm is to use a so-called work list of nodes
which need to be processed. This approach is based on the observation that the input of
a block will not change if the input blocks of its predecessors do not change.

The modified algorithm works as follows. Instead of a boolean flag change, we use a list
of nodes, todo. We initialize it by putting In0 into it. Then, we keep iterating until todo is
empty—that is, everything that needed to be processed has been processed. During a single
iteration, we remove the first node from todo, and re-compute its input. If the input has
changed, we put all of its successors into todo. Such a modified version of the Round-Robin
algorithm is called a work list algorithm.

From a practical viewpoint, it may be desirable to use a queue or a set instead of a list.
Moreover, for efficiency, a block should not be in the work list more than once.

23

Chapter 3

Value-Range Analysis

As mentioned in Chapter 1, value-range analysis is a static analysis technique based on
arguing about the values that a variable may take at a given program point. In other
words, it tries to deduce bounds on the ranges of values that a variable may have at various
program points during the program execution. Since it belongs to static analyses like data-
flow analysis, it operates solely on the source code and neither modifies nor executes the
program directly. However, there are approaches used for implementing value-range analysis
that can execute the program in an abstract way. Among these approaches belongs abstract
interpretation, which is discussed later in this chapter.

Value-range analysis found extensive applications in many compiler optimizations. In [42],
it is utilized to predict the likelihood of a particular branch being taken at compile time. The
result provides useful information for several optimizations. Among the most interesting
optimizations that benefit from branch predictions belong global instruction scheduling,
code layout, instruction cache optimizations, function inlining and interprocedural register
allocation. In addition, [31] and [42] employ value-range analysis to remove unnecessary
bound checks. In [47], value-range analysis is used to show that some operations cannot
produce overflows. This knowledge is subsequently utilized for removing redundant overflow
tests from the program text resulting in decreasing code size and making code motion
optimization easier. According to [31] and [37], value-range algorithms can be used to
derive an upper bound on the number of iterations made when a loop is entered. In [48],
bitwidth analysis is formulated as a value-range analysis problem. Since bitwidth analysis
is essential to the bitwidth aware register allocator (see [50]) and also useful to synthesize
hardware (see [11, 38]), value-range analysis plays an important role in both these areas.

Additionally, results gained from value-range analysis provide valuable information for the
purposes of proving programs to be correct. According to [45, 55, 56], information inferred
by a value-range analyser can be used to detect buffer overflow vulnerabilities. Besides the
aforementioned usages of value-range analysis, [31] mentions that value-range analysis can
also be used to provide diagnostic information and choose a suitable data representation.

This chapter is organized as follows. The first part provides a motivating example that
shows the usefulness of value-range analysis. In the second part, different ways of im-
plementing value-range analysis are presented. Then, the third part introduces existing
tools that perform value-range analysis, especially the value-range analysis plug-in from
the Frama-C platform [25].

24

3.1 A Motivating Example

Although buffer overflow problems in C programs have been recognized since the early ’70s,
we still encounter these problems in many today’s applications. Indeed, as demonstrated
in Chapter 1, buffer overflows still belong to active attack methods. Since value-range
analysis can be successfully used to detect buffer overflows in programs, an example of
a source code with a simple buffer overflow is presented in the following text. Subsequently,
we run a hypothetical value-range analyser over the given source code to see what actions
it does when analysing the code.

In Figure 3.1, a simple C program with a buffer overflow is shown. The importantData
variable is initialized with 1 on line 5. On line 6, a static array named buffer with ten
elements is declared. In the for loop on lines 9 through 11, 9999 is assigned to each element
of this array. Subsequently, the value of the importantData variable is printed on line 13.
Since the importantData variable is apparently not changed in the program, the expected
output is importantData = 1. However, after compiling the source code and running the
resulting program, we see that importantData = 9999 is printed.

1 #include <stdio.h>
2
3 int main(int argc , const char *argv [])
4 {
5 int importantData = 1;
6 int buffer [10];
7
8 int i;
9 for (i = 0; i <= 10; i++) {
10 buffer[i] = 9999;
11 }
12
13 printf("importantData = %d\n", importantData);
14
15 return 0;
16 }

Figure 3.1: A simple C program containing a buffer overflow problem

Now, suppose that we have a hypothetical value-range analyser that provides a safe analysis
of the value ranges the variables may have. After running the analyser over the source code
from Figure 3.1, the results could look as shown in Figure 3.2. As we can see from this
output, the variable i can hold an arbitrary value from the interval 〈0, 10〉. Since the
size of the array buffer is 10 and the size of the interval is 11, the results for variable
i are suspicious. However, for a value-range analyser, it is typical to over-approximate
the results. Thus, we can suppose that an over-approximation happened in this case and
continue to the next line of the output. All elements of the buffer array can hold only
9999 which agrees with our assumptions. According to the last line of the output, the
variable importantData can hold 1 or 9999. However, we do not see any assignments
to the variable importantData except the one on the line 5 which assigns 1 to it. Since
there are no other visible modifications of the variable importantData and the program
actually prints importantData = 9999, our value-range analyser cannot over-approximate
in this case. Hence, it provides precise results. Thus, the value 9999 must be assigned

25

to the variable importantData indirectly. When we look carefully at the output of the
analyser, we can see that the value 9999 is used only when assigning to buffer. This
knowledge together with the suspicious result interval for the variable i indicates an off-by-
one error and a buffer overflow. Because this is a very simple example, even less experienced
programmers may notice that the buffer is accessed outside its bounds and do not need
a value-range analyser. However, in more complex programs, the problem may be hidden
from the eyes of programmers. In these cases, value-range analysers can be very useful.

i = {<0, 10>}
buffer = {<9999, 9999>}
importantData = {<1, 1>, <9999, 9999 >}

Figure 3.2: Output of the hypothetical value-range analyser

3.2 Approaches

In this section, different ways of implementing value-range analysis are introduced. Atten-
tion is devoted primarily to abstract interpretation because this approach was chosen for
our value-range analyser. In the second part, other possible approaches are presented.

3.2.1 Abstract Interpretation

Abstract interpretation was formalized by Patrick Cousot and Rhadia Cousot in 1977 in [13].
It is a theory of approximating the semantics of programming languages. It belongs to static
analysis techniques that execute analysed programs in an abstract way. Informally, the
central idea of abstract interpretation lies in interpreting an abstract version of the analysed
program. The abstraction preserves only important program properties and abstracts away
from irrelevant details. It must be guaranteed that the abstraction is sound so that all
possible errors are found. It is also required for the abstraction to be precise enough to
avoid false alarms. However, the abstraction should also be as simple as possible to evade
a combinatorial explosion in the number of reachable abstract program configurations. The
last two requirements on abstraction go significantly against each other. In practice, it
is necessary to find a reasonable compromise between these two requirements. The most
prevalent application for abstract interpretation lies in formal verification. Currently, it is
used in many automated verification tools. Some of them are introduced in Section 3.3.
The information about abstract interpretation in this part is drawn from [36, 39].

Since abstract interpretation can be formally defined by Galois connections, we try to
informally show why Galois connections are useful for abstract interpretation and then we
define them formally. Let P be a poset that represents program properties such as shapes of
data structures, lower and upper bounds for real numbers and the like. Then, let p1 and p2
be two program properties from P. Assume that prog represents a program that transforms
the property p1 to another property p2 that can be written as prog ` p1 B p2. In many
cases, it is too costly or even uncomputable to perform the analysis prog ` p1 B p2 in P.
Thus, it may be suitable to replace P by a simpler poset Q. For this purpose, we have to
find a representation of the elements of P in Q. This can be done by an abstraction function
that is in the following definition labeled as α. The abstraction function represents elements

26

of P as elements of Q by leaving irrelevant details out of consideration. On the other hand,
it is also necessary to express the meaning of elements of Q in terms of elements of P.
This service is provided by a concretization function that is labeled as γ in the following
definition. Since it is possible to safely move from one poset to another one and vice
versa, we can perform the analysis prog ` q1 B q2 in Q. If the abstract and concretization
functions are properly designed, then the results of the analysis computed in Q are sound
and the analysis is less demanding. Next, we give the mathematical definition of a Galois
connection.

Definition 3.1. A Galois connection is a quadruple π = (P, α, γ,Q), where

• P = (P,≤) and Q = (Q,v) are posets,

• α : P → Q and γ : Q→ P are functions such that ∀p ∈ P and ∀q ∈ Q:

p ≤ γ(q)⇐⇒ α(p) v q.

In Figure 3.3, elements of a Galois connection are shown. As is mentioned in the previous
text, α is an abstraction function and γ is a concretization function. P is considered to
be a concrete domain whereas Q is an abstract domain. The elements of P are known
as concrete contexts and the elements of Q are called abstract contexts. In side boxes,
we can see examples of concrete and abstract contexts used in the following illustration
of constructing a Galois connection. Suppose that we have a programming language that
can use only one unsigned int variable and two instructions, specifically incrementing
and decrementing a variable by one. Our task is to design a value-range analyser that
displays which values can our variable gain during a program execution at different program
points. Let the range of unsigned int be denoted by I (for example, on 32 bits, it can
be 〈0, 4294967295〉). Since during the value-range analysis values obtained for the variable
at a certain program location can be represented by an arbitrary subset of I, the concrete
domain P is 2I. The order of P coincides with the standard set inclusion. However, it can
be unnecessarily complicated to perform the analysis in P. Thus, instead of using a set of
numbers to represent values acquired by the variable during the analysis, we may use an
interval. Then, the abstract domain Q is a set of intervals. Suppose that q is an element
of Q, and that qmin and qmax denote the minimal and maximal number of q, respectively.
Then, the order of Q can be defined as

∀x, y ∈ Q : x v y ⇐⇒ {i | xmin ≤ i ≤ xmax} ⊆ {j | ymin ≤ j ≤ ymax}.

The abstraction function α takes responsibility for converting elements of P to elements
of Q. Assume that p is an element of P . Since p is a set of numbers, let min(p) denote the
minimal number in p and max(p) denote the maximal number in p. With these assumptions,

α(p) = 〈min(p),max(p)〉.

Suppose that q is an element of Q, and recall that qmin and qmax denote the minimal
number and maximal number of q, respectively. The concretization function γ is defined as

γ(q) = {x | qmin ≤ x ≤ qmax}.

Now, we have completely defined a Galois connection for our example. Next, we provide
a mathematical structure for defining abstract interpretation and then we continue with
constructing this structure for this illustration.

27

Figure 3.3: Galois connection π = (P, α, γ,Q)

Definition 3.2. An abstract interpretation I of a program prog with the instruction set
Instr is a tuple I = (Q, ◦,v,>,⊥, τ), where

• Q is a set of abstract contexts,

• > ∈ Q is the supremum of Q,

• ⊥ ∈ Q is the infimum of Q,

• ◦ : Q × Q → Q is an operation for accumulation of abstract contexts, together with
Q and > yielding the complete semilattice (Q, ◦,>),

• (v) ⊆ Q×Q is an ordering defined as x v y ⇔ x ◦ y = y in (Q, ◦,>),

• τ : Instr×Q→ Q defines an interpretation of instructions, τ is monotonic.

Now, we can continue with our illustration. Since abstract interpretation is performed in
Q, we need to represent (Q,v) in the abstract interpretation structure. Both Q and v are
defined in the first part of this example. The supremum is represented by 〈0, UINT MAX〉,
where UINT MAX denotes the maximal number of our unsigned int data type. The infimum
is represented by the empty interval, denoted by 〈〉. To accumulate abstract contexts on
branch and loop junctions, the operation ◦ is utilized. For our purposes, we can define ◦ as

x ◦ y = 〈min(xmin, ymin),max(xmax, ymax)〉.

Since our instruction set Instr consists of two instructions, incrementation and decremen-
tion, we need to specify their meaning in Q. For each instruction, there exists an abstract
transformer in the form of the function τ . Assume that our variable is called a and the
interval on which the instruction is performed is x. Then, abstract transformers can be
defined by

τ(a+ 1, x) = 〈xmin + 1, xmax + 1〉

28

and
τ(a− 1, x) = 〈xmin − 1, xmax − 1〉.

It is important to note that if abstraction and concretization functions form a Galois con-
nection which is used by an abstract interpretation, the abstract interpretation may only
over-approximate. The proof of this statement can be found in [36].

Abstract interpretation is based on an fixed point computation. However, computation
of the most precise fixed point can be time consuming, and its termination is not even
guaranteed (loops in which variables from infinite domains are manipulated). For these
reasons, widening operators can be used. They belong to a special class of upper bound
operators used for over-approximation of a fixed point. The mathematical definition follows.

Definition 3.3. Let I = (Q, ◦,v,>,⊥, τ) be an abstract interpretation of a program. The
binary widening operation O is defined as:

• O : Q×Q→ Q,

• ∀C,D ∈ Q : (C ◦D) v (COD),

• for all infinite sequences (C0, . . . , Cn, . . .) ∈ Qω, it holds that the infinite sequence
(s0, . . . , sn, . . .), defined recursively as

s0 = C0,

sn = sn−1OCn,

is not strictly increasing and because the result of O is an upper bound, the sequence
eventually stabilizes.

By using the technique of widening we get too rough results. So, in the following text,
another technique that copes with this problem is introduced. This technique is called
narrowing and it can be used only after performing widening. The purpose of narrowing
operators usage lies in refining the approximation of a fixed point gained from the widening
technique. For completeness, the mathematical definition of narrowing operator is provided
below.

Definition 3.4. Let I = (Q, ◦,v,>,⊥, τ) be an abstract interpretation of a program. The
binary narrowing operation M is defined as:

• M: Q×Q→ Q,

• ∀C,D ∈ Q : C v D → (C w (C M D) w D),

• for all infinite sequences (C0, . . . , Cn, . . .) ∈ Qω, it holds that the infinite sequence
(s0, . . . , sn, . . .), defined recursively as

s0 = C0,

sn = sn−1 M Cn,

is not strictly decreasing and because the result of C M D is a lower bound of C,
the sequence eventually stabilizes provided that the input sequence is not strictly
increasing.

29

In our example, widening may be used when analysing infinite loops, like while(true)
i++;. In such a case, after a certain prescribed amount of iterations is performed, we over-
approximate the value of i to the maximal interval. A more complex example that uses
both operators is presented in [36].

Usage of abstract interpretation for the purposes of value-range analysis can be found in sev-
eral successful tools used in industry, like Frama-C, AbsInt’s ValueAnalyser and Polyspace
products. These tools are introduced in Section 3.3. Moreover, in [45], Simon introduces
an algorithm based on abstract interpretation. The main goal of this algorithm is to detect
buffer overflows. According to Simon, the proposed algorithm is sound. In [55], Venet and
Brat use abstract interpretation to implement an array-bound checker specialized for NASA
software. There are also other examples of using abstract interpretation for the purposes of
value-range analysis. However, the aim of this work is not a summary of all of them. Thus,
we can move to the next section, which presents other approaches to value-range analysis.

3.2.2 Other Approaches

In addition to abstract interpretation, there exist also other approaches to value-range
analysis. An overview of some of them, together with references, is provided in this section.

In 1977, Harrison in [31] proposed an algorithm for value-range analysis. The main idea of
this algorithm lies in decomposing the problem into two mechanisms, specifically the value-
range propagation and value-range analysis. The value-range propagation mechanism is
based on a simple algorithm that uses data and the conditional structure of an analysed
program to derive and propagate refinements from the point of an assignment to a variable
to the points where this variable is used. The value-range analysis tracks the changes
applied to a variable at each program point in a loop. However, unlike the value-range
propagation, the value-range analysis ignores the conditional structure of the loop which
leads to limited accuracy. However, when results of the value-range analysis are intersected
with those obtained by value-range propagation, we get more precise results. Subsequently,
the value-range propagation continues with these results. Despite the fact that this value-
range algorithm was designed for a compiler optimization, nowadays different modifications
of this algorithm are used not only in compiler optimizations but also in a formal verification.
For example, in [42], Patterson introduced a static branch prediction by using Harrison’s
value-range propagation mechanism. Also, value-range analysis, introduced in [56], used to
detect buffer overflows is built on Harrison’s work. A value-range propagation technique
similar to Harrison’s is presented in [48], where it is utilized for minimizing the bitwidth of
operands. In other words, it is employed to minimize the number of bits used to represent
every integer and pointer in a program. Dynamic elimination of overflow tests in a trace
compiler, described in [47], also uses a modified version of Harrison’s value-range algorithm.

Another approach for implementing value-range analysis of integer variables is studied
in [10]. Firstly, the analysed source codes are converted to a suitable intermediate rep-
resentation. From this intermediate representation, it must be easy to extract equational
constraints imposed on the variables that are used for building a constraints graph in the
next step. This graph captures the dependencies between the constraints. In the last step,
different fixed-point iterators are applied on the constraints graph and the constraints are
solved. See [10] for more details.

30

3.3 Existing Tools

In this section, several value-range analysis tools are introduced. Attention is paid mainly
to Frama-C, which is an extensible and collaborative platform dedicated to static analysis
of source code written in the C programming language. The description of this platform
is based on [9, 12, 14, 15, 25]. In the conclusion of this section, which is based on [1, 9,
43], a brief introduction of AbsInt’s ValueAnalyser and Polyspace is provided. All of the
aforementioned static analysers are widely used in industry.

3.3.1 The Frama-C Platform

Frama-C is an open-source platform written in the OCaml language. It has been developed
since 2004 by the CEA LIST and the INRIA labs, and its development is still ongoing.
Frama-C is distributed in two forms: source code and binary. Binaries are available for
all popular architectures. In all distributions, the Frama-C kernel and several ready-to-use
analyses are included. Its modular architecture makes Frama-C an easy-to-extend tool.
Since Frama-C is a plug-in-based platform, each analyser comes in the form of a plug-in.
Plug-ins can collaborate with Frama-C’s kernel and other plug-ins in order to utilize the
results computed by the kernel or other analyses. Moreover, Frama-C has been designed to
provide the capability of developing new specific analyses in the form of plug-ins through
its extensible API. In addition, Frama-C’s plug-ins can be used in a batch or interactive
mode under Windows, UNIX and Mac OS X.

One of the means that allow different analyses to collaborate in Frama-C the is ANSI/ISO-C
Specification Language (ACSL). This collaboration can be achieved by exchanging informa-
tion through ACSL annotations. An ACSL annotation is written as a particular comment in
the C source code and its purpose is to formally specify source code properties. It can orig-
inate from three different sources: the user, Frama-C’s kernel and various plug-ins. ACSL
uses Hoare-like expressions of properties such as preconditions, postconditions, invariants
and so on. More details about ACSL are provided in [5].

In Figure 3.4, the architecture of the Frama-C platform is presented. The repository is used
to store project management information, states and results of analyses, dependencies be-
tween analyses and so on. Therefore, data can be shared by different plug-ins through this
repository. The Frama-C kernel helps to centralize information, guides the analysis and pro-
vides common functionalities. Remaining boxes represent some of the plug-ins distributed
with the Frama-C kernel. Their functionality is described in the following text. The Aoräı
plug-in [49] offers a method to automatically annotate C source codes. Also, the RTE
plug-in [32] can be used for automatic generation of annotations, particularly annotations
for common run-time errors, unsigned integer overflows, precondition and postcondition
checking and so on. The Metrics plug-in [8] computes complexity measures of the C source
code. The WP plug-in [4] uses weakest precondition calculus to prove ACSL annotations of
C functions, and the Mthread plugin [57] is dedicated for analysing concurrent C programs.
The Slicing plug-in [26] is used to convert the original program to a simplified one.

The last plug-in, which is the center of our interest, is called Value Analysis [15]. As its
name suggests, it performs value-range analysis. Thus, it computes sets of possible values
for each variable of the program at each point of the execution. The theoretical framework
on which this plug-in is based is abstract interpretation, introduced in the previous section.

31

Figure 3.4: Architecture of the Frama-C platform [9]

For each variable, abstract interpretation computes over-approximated sets of all possible
values acquired by the variable and labels all instructions that are identified as dangerous
from the viewpoint of safety. Subsequently, it warns about all possible run-time errors in
the analysed program. As for other plug-ins, the results of value-range analysis is stored
in the repository. Variables are divided into several variation domains by the plug-in. The
first variation domain is a set of integers and it covers all variables of an integral type. This
domain can be represented as an enumeration, interval without periodicity information or
interval with periodicity information. The second domain contains a floating-point value
or an interval of floating-point numbers. The third variation domain represents a set of
addresses.

The Value-Range plug-in can handle analysis of complete and incomplete applications. For
the purposes of incomplete applications and libraries, an option to specify the entry point
for the analysis can be used. Moreover, it is important to realize that the analysis of the
source code containing an infinite loop can never force the analyser itself to loop forever.
Thus, the analyser needs to use over-approximations when analysing a loop. This can lead
to broadly over-approximating the sets of possible values of the variables in the analysed
program. So, three options that can be used to refine the analysis of the loops are introduced
in the following text. The first one is placing an ACSL annotation before a loop to suggest
the analyser which values should be preferably used for which variables when widening the
sets of values attached to variables. The second option when taking care of a loop is using
a loop invariant that describes some properties holding at the beginning of each execution
of the loop. The last option is loop unrolling which means that the body of the loop is
unrolled as many times as specified. Similarly, without any special requirements set by the
user, function calls are taken care of by expanding the bodies of the functions at the call
sites.

The user can interact with the Value Analysis plug-in by inserting calls to pre-defined func-
tions into the analysed source codes. These functions are in the terminology of Frama-C
called primitive functions or primitives. They can be used for different reasons. Firstly,
since many applications use source codes that are part of the system rather than applica-
tions themselves and these source codes are not necessarily available, primitives can be used
for emulating the standard C library functions, like malloc(), strncpy(), atan() and so
on. Primitive functions try to model the behaviour of the standard C library function as
precisely as possible. Secondly, primitives declared in share/builtin.c allow us to intro-
duce some non-determinism in the analysis. For example, the Frama C nondet() function
randomly selects one of two given integer variables, the Frama C nondet ptr() function
randomly chooses one of two given pointer variables, and functions Frama C interval(),
Frama C float interval(), Frama C double interval() return an int, float or double

32

number from the given interval. Thirdly, primitives can be also used for observing the
results of the analysis that would not be observed otherwise. For displaying the en-
tire memory state, the function Frama C dump each() is used. Moreover, the function
Frama C show each name() displays the values of a given expression.

Since nothing is perfect, the Value Analysis plug-in has also some limitations. The correct-
ness of results provided by this plug-in is under assumption that the false-positive alarms
emitted during the analysis have been verified by the user. If only one assert emitted by
the plug-in is violated, it is also not possible to rely on the results of the analysis. More-
over, the current version of the plug-in is not capable to precisely analyse programs that
use variadic functions. Besides, at present, it is not able to handle recursive functions at
all. Programs using interrupts are another problem causing that the result of the analysis
do not reflect reality and cannot be considered as sound. Proper alignment of memory
accesses in memory is not checked by the plug-in at present. The Value Analysis plug-in
supposes that pointer casts are utilized in ways that are compatible with strict aliasing
rules. Otherwise, the result produced by the analyser need not be correct.

Although the ISO standard leaves the behaviour of many constructs of the C language
unspecified, these constructs are compiled in the same way by almost all compilers for
almost all architectures. Thus, the Value-Range plug-in assumes a reasonable compiler
and target architecture for analysing some of these constructs. In this way, more usable
information can be obtained than by strictly conforming to the ISO C standard. However,
the correctness of the analysis does not depend on the standard itself, but rather on the
standard and the way compilers implement unspecified constructs. For instance, the ISO C
standard does not specify the result of incrementing a signed variable holding the maximum
integer value. However, most compilers make the variable simply overflow.

Frama-C never remains silent for a location in the source code where an error can happen
at run-time. Since the users are informed about all potential run-time flaws detected in
the source code by Frama-C, a guarantee that there are no bugs in a program is provided.
Achieving the goal of correctness brings also one inconvenience: the Frama-C platform
emits warnings for constructs that do not cause any run-time errors. Thus, it produces
false alarms. However, Frama-C is still quite precise despite the pitfalls of the C language.

3.3.2 Other Tools

AbsInt’s ValueAnalyzer [2] is another successful static program analyser. It performs
a value-range analysis that is fully automatic and conservative. It is primarily focused
on embedded systems. It allows collaboration with other analysis tools from AbsInt. For
example, it interacts with AbsInt’s StackAnalyzer [1] to provide an analysis of stack usage.
In collaboration with other AbsInt’s analysers, it can detect unreachable code, validate
user-defined assertions and provide reports on all memory accesses and function calls.

Other static analysis tools that have found application in industry are Polyspace prod-
ucts [43]. The aim of Polyspace tools is to verify source code of embedded systems, espe-
cially to detect run-time errors and to formally prove their absence in C, C++ or ADA
source codes. Moreover, these tools can be exploited to compute a subset of dead code,
check compliance to coding standards, measure software quality, review code complexity
metrics and last but not least to determine ranges of variables and function return values.
Similarly to Frama-C, Polyspace products are based on abstract interpretation.

33

Chapter 4

Code Listener Infrastructure

Code Listener [17] is a completely open-source infrastructure intended to simplify construc-
tion of tools for static analysis of C programs. The development of Code Listener has started
at Brno University of Technology in 2010. Its long-term goal is wrapping the interfaces of
existing code parsers and providing a unified, well-documented, object-oriented and easy to
use API over these source code parsers. Simply speaking, the Code Listener infrastructure
transforms the interfaces provided by parsers into its own simplified interface. So, the Code
Listener API exposed to analysers is completely independent of these parsers. Thus, it is
possible to run the same analyser on top of different code parsers without touching the code
of this analyser.

The aforementioned approach of using the existing code parsers to process source codes
instead of leaving the job on static analysers brings several pros and cons. Since code
parsing is performed only once, we spare time as well as energy. It is worth noting that every
source code the parser is able to parse the analyser is able to use as its input. Therefore,
static analysers cannot fail due to problems with source code parsing. In addition, the Code
Listener infrastructure provides a uniform interface for reporting errors. This means that
errors are reported in the way programmers of static analysers are accustomed from using
the code parser. The main downside of this approach lies in the fact that Code Listener is
not a standalone tool and it is completely dependent on code parsers. Hence, it is necessary
to devote a considerable effort to establish support for different code parsers and maintain
the interface in response to changes in these parsers.

Code Listener is distributed as a C++ library. Since developed industrial compilers allow
to insert extra static-analysis passes at run-time in the form of compiler plug-ins, the Code
Listener infrastructure takes advantage of this fact. Hence, a static analyser is built as
a compiler plug-in that takes the internal representation of the source code from a compiler
via Code Listener. Nowadays, it allows building analysers that are able to handle everything
that GCC is able to compile in the form of GCC plug-ins. Thanks to the Code Listener
infrastructure, when dealing with software natively compiled by the GCC compiler, there
is no need for pre-processing the sources or changing the way they are built. There is also
no need to alter source codes or Makefiles. Indeed, adding the -fplugin compiler flag
into CFLAGS is sufficient. For more details about using plug-ins with GCC, please refer to
its manual pages.

34

Currently, the Code Listener infrastructure is used in two prototypical analysers: Preda-
tor [20] and Forester [30]. Both of them are aimed at analysing programs with complex
dynamically linked data structures. In order to illustrate the usage of the Code Listener
infrastructure, its distribution comes with a simple analyser called fwnull that looks for
null-pointer dereferences.

This chapter is organized as follows. The first part deals with the intermediate represen-
tation of a source program used by Code Listener. In the second part, the architecture of
Code Listener is studied. Then, the third part covers the Code Listener API. The present
chapter is based on [18, 19, 21] and our own experiences with this tool.

4.1 Intermediate Source Code Representation

This section presents a brief overview of the intermediate source code representation that
Code Listener obtains by transforming the code produced by the GCC compiler. We have
chosen this compiler because it is currently the only supported one.

The representation of a source code in GCC varies along the chain of compiler passes. The
Code Listener infrastructure takes one of these representations called GIMPLE, modifies it
into a more concise and easier to understand form and provides it to static analysers. GIM-
PLE is a machine-independent intermediate representation of source code that is based on
the structure of a parse tree. It comes in two flavours, namely low-level GIMPLE and high-
level GIMPLE. Code Listener uses the former type. A typical feature of this representation
is using a three-address form for most operations except function calls. GIMPLE uses short
circuiting for logical and and or operations and has no high-level control-flow structures,
such as for and while loops. By using the -fdump-tree-all parameter, the gcc compiler
generates files containing different program representations used by gcc during compila-
tion. One of these files includes the GIMPLE representation of the given program. More
information related to this representation can be found in [44] and [28].

Before we start describing the Code Listener’s representation of a source program, it is
important to realize what is necessary to represent. Since in the C language, programs
are organized in functions, a CFG representation can be used to describe each function.
In this description, nodes are basic blocks in the sense in which they are presented in
Section 2.1, and edges represent transitions between them during code execution. Each
basic block consists of several instructions. Code Listener divides these instructions into
two groups, specifically terminal and non-terminal instructions. As the names suggest,
a terminal instruction appears only as the last instruction in a basic block whereas a non-
terminal instruction cannot appear as the last instruction of a block. The targets of terminal
instructions determine the edges of a CFG. Both types of instructions utilize their operands
to access literals, program variables or the contents of memory pointed by a program
variable. The semantics of an operand can be changed via an accessor, which means, for
example, using the address of a variable instead of the variable itself. Since a function
may call other functions, it is vital to capture calling relations between functions. For this
purpose, a call graph (CG) is used.

In Table 4.1, non-terminal instructions are presented. The first column shows specific
instructions. Then, in the second column, a description of these instructions is provided.
The third column gives the form of instructions where dst is the destination operand (in

35

Table 4.1: Non-terminal instructions

Instruction Meaning Form Supported operators

UNOP unary operation dst = ◦src

logical not (!),
bitwise not (∼),
unary minus (−),
assignment (=)

BINOP binary operation dst = src1 ◦ src2

comparison binary operators,
arithmetic binary operators,
arithmetic unary operators,
logical binary operators,
bitwise binary operators

CALL function call dst = fnc arg1 . . .
function in analysed program,
external function,
indirect function call

the case of the CALL instruction, it can be void if the function’s return value is not used);
src, src1 and src2 are the source operands; ◦ is a unary operator (in the case of the UNOP
instruction) or it is a binary operator (in the case of the BINOP instruction). Note that if ◦
is identity in the case of the UNOP instruction, the instruction becomes an assignment. It is
also worth to note that fnc is an operand that specifies a function to be called, and arg1, . . .
are optional arguments passed to it. Furthermore, since CALL instructions are classified as
non-terminal instructions, they are always followed by another instruction within a basic
block.

Table 4.2 presents terminal instructions. The JMP instruction has exactly one target and no
operands which means that it connects the end of one basic block to the entry of another
basic block. In contrast, the COND instruction has one operand treated as Boolean and
two targets, one denoted as the then target and the other denoted as the else target. If
the operand evaluates as true, the then target is taken; otherwise, the else target is taken.
The SWITCH instruction is a generalisation of the COND instruction. In contrast to the COND
instruction, the SWITCH instruction has an arbitrarily long list of value-target pairs and its
semantics is similar to the switch statement in the C language. The RET instruction has no
targets and only a single operand that specifies the return value of a function. This operand
can be void if the function has the void type. The ABORT instruction has no targets and
no operands and it means termination of execution for the whole program.

Table 4.2: Terminal instructions

Instruction Meaning

JMP unconditional jump
COND conditional jump
SWITCH switch instruction
RET return from a function
ABORT abort instruction

36

4.2 Architecture

In this section, different parts of the Code Listener infrastructure and their functions are
covered. Then, a brief overview of communication between these parts is explained and
a procedure of intermediate source code construction is provided.

Let us start with describing Figure 4.1 from the left side to the right. The small boxes on the
left represent source code parsers with which Code Listener communicates. As mentioned
earlier, currently only support for the GCC compiler and Sparse is provided. However, the
Code Listener infrastructure is designed to be extensible in the sense that other parsers
may be used to obtain intermediate source code representation. The small boxes, embed-
ded into each source code parser, are called adapters and are responsible for translating the
intermediate code representation of the given parser into a parser-independent code rep-
resentation that is unified for all parsers. The code parser interface represents a channel
used for communication with code parsers. Behind this communication channel, filters and
listeners are located. Filters perform various transformations of the intermediate source
code representation gained from the code parser interface. For example, the switch to if
block translates every SWITCH instruction into a sequence of COND instructions. On the
other hand, listeners process the incoming streams of intermediate code obtained from the
code parser interface and provide some diagnostic tools. For example, a CFG plotter and
an intermediate-code printer are implemented as listeners.

switch
to if

co
d

e
 s

to
ra

g
e

filters

listeners analyzers

error stream

sparse
CFG

plotter predator

gcc

co
d

e
 p

a
rs

e
r

in
te

rf
a
ce

...

...

... forester

Figure 4.1: Architecture of the Code Listener infrastructure [17]

Communication between code parsers and the Code Listener infrastructure is based on
callbacks. For this purpose, the address of the handle fnc cfg() function is registered by
the plugin init() function. Subsequently, handle fnc cfg() is called immediately as the
GIMPLE code, gained from a code parser, is prepared for transformation. After that, Code
Listener starts to create its own representation of the source code. For communication
between Code Listener and data-flow analysers, a different approach must be introduced
since a callback-based interface is not appropriate. Hence, an interface accepting callbacks
and building a model of the intermediate code from them must be included. This function
is performed by the code storage block that is in charge of creating an API and providing

37

it to static analysers. After code storage builds the whole object model, a static analysis
can be started on this model.

4.3 Code Listener API

Since the Code Listener infrastructure serves as a communication channel between source
code parsers and static analysers, two APIs are necessary to be defined. The first API
is defined for communication between code parsers and Code Listener whereas the second
API is defined for communication between Code Listener and static analysers. The first
one is written in pure C to ensure compatibility with some parsers and the second API is
written in the C++ language. Since this work focuses on developing a static analyser, the
following text deals only with the API between Code Listener and static analysers.

In this section, the API provided by the code storage block, shown in Figure 4.2, is de-
scribed. The functionality supplied by this API is placed in the CodeStorage namespace.
In this namespace, the top-level data type named Storage is located. It gathers all avail-
able information about the analysed source code. Thus, Storage represents a serialised
model of the source program. It contains a look-up container for types called TypeDb,
a look-up container for variables called VarDb and a look-up container for functions called
FncDb. Besides the mentioned look-up containers, Storage contains one look-up container
for variable names, one look-up container for function names and a structure for CG used
for representing the calling relationship between functions. The TypeDb container repre-
sents the database of types. Its items contain extensive information about types in the
analysed program, such as the type’s kind, location, scope, name, size, number of nested
types and so on. The VarDb container contains all variables used in the analysed source
code and information related to these variables. Every variable is represented by the Var
class that stores, for example, the kind of a variable, location of the variable’s declaration,
name of the variable and so on. Since the name of the variable needs not be unique in the
processed program, a unique integer identifier is assigned to each variable. The last men-
tioned container, FncDb, is used for storing information about functions. Every function is
represented by the Fnc class that among other things provides two STL containers, the first
one filled with arguments of the function and the second one filled with the variables used
in the function’s code. The Fnc class also stores a CFG of the given function. The CFG
is represented by the ControlFlow class that allows us to iterate over its basic blocks. For
the representation of a basic block, the Block class is utilized.

An instruction in a basic block is represented by the Insn class. In Section 4.1, terminal
and non-terminal instructions were introduced. The former one uses a single operand and
the latter uses two operands. Since operands are key elements for an instruction, it is
necessary to represent these operands. For this purpose, a structure called cl operand is
utilized. This structure is shown in Figure 4.3. The item code holds the kind of an operand
that can represent void, unknown, pointer, structure, union, array, function, integer,
character, boolean, enum, real and string types. The second item scope is assigned
to each function and variable and can hold one of three scopes, namely local, global
or static. Since operands are statically typed, the item named type can be used to hold
a type. Each atomic type can be defined by its kind (integer, function and so on). However,
in the case of a non-atomic type, a list containing references to other types on which the
non-atomic type depends must be defined. The fourth item named accessor represents

38

TypeDb

VarDb

FncDb

Type

Var

Fnc

Block

Insn

cfg

ControlFlow

Storage

Figure 4.2: The code storage block [18]

a list of accessors or NULL if there is no accessor. This list contains the ways a variable may
be used—for example, taking a reference to a variable, dereferencing a variable and so on.
Note that an operand must refer to the structure cl var or to the structure cl cst. The
first one is used if an operand refers to a variable whereas the second one is used if the
operand refers to a constant, string literal or function.

1 struct cl_operand
2 {
3 enum cl_operand_e code; // kind of operand
4 enum cl_scope_e scope; // scope of the operand ’s validity
5 struct cl_type *type; // type of operand
6 struct cl_accessor *accessor; // chain of accessors
7
8 union
9 { // per operand type specific data
10 struct cl_var *var; // valid only for CL_OPERAND_VAR
11 struct cl_cst cst; // valid only for CL_OPERAND_CST
12 } data;
13 };

Figure 4.3: Structure for representing an operand [17]

39

Chapter 5

Design of the Analyser

In this chapter, we present the design of our analyser. The implementation is given in
the subsequent Chapter 6. This chapter is organized as follows. First, Section 5.1 gives
a high-level overview of the analyser to ease the understanding of the sections that follow
it. Then, Sections 5.3 through 5.7 discuss the design of the analyser’s components in detail.
Finally, Section 5.8 closes the chapter by summarizing limitations of the designed analyser,
mainly from the view of safety.

5.1 High-Level View

The analyser is based on the Code Listener architecture and is developed as a GCC plugin
(see Chapter 4). The input of the analyser is a C source code conforming to the ISO C99
standard [24]. The output is a mapping of basic blocks of functions in the input source code
into two pieces of information—the value ranges of variables on the input to the block and
on the output of the block. The line numbers in the original input files are also provided
so the analyst can orientate more quickly. To make the text of this and the next chapter
more readable, in Appendix A, we provide a complete example of running the analyser and
analysing its output.

The primary design criterion is that the analyser should be safe. This means that when it
emits output, this output is an over-approximation of the actual values the variables may
have. In other words, when a range for a variable j computed by the analysis is 〈1, 64〉,
then in every run of the program, j has never a value not belonging to the interval 〈1, 64〉.

The supported types of variables whose range the designed analysis can compute are all
integral and floating-point types from ISO C99, arrays, and structures. Other types, such
pointers, unions or complex numbers are not supported (see Section 5.8).

As outlined in Chapter 3, our analysis is based on abstract interpretation. Our concrete
domain is represented by numbers, and the abstract domain is that of interval ranges. As
there are several integral and floating-point types in C, we need a proper representation
that can capture all of these types in a unified way. Moreover, to preserve safety, we
need to be able to correctly handle situations like overflows and underflows. To this end,
Section 5.2 deals with the design of a class for such a unified representation of numbers.
The representation of interval ranges of such numbers is the topic of Section 5.3.

40

In Code Listener, operands of instructions are represented by the cl operand class. For
example, in the instruction a = b + c, there are three operands: a, b, and c. However,
apart from accessing variables, we may also access fields in structures or dereference arrays.
To this end, we need a uniform representation of such accesses. We call this representation
a memory place and discuss its design in Section 5.4. That section also covers the conversion
of cl operands into these memory places.

The design of the value-range analysis itself is the subject of Section 5.5. In there, we
provide details on how the analysis works and how the underlying classes, designed in
Sections 5.2 through 5.4, are utilized.

Finally, the analyser uses two sub-analyses. In the first sub-analysis, discussed in Sec-
tion 5.6, we address correct handling of global variables. We need to make sure that when
a global variable is changed in one function, other functions that use this global variable
properly reflect this fact. In the second sub-analysis, we focus on detecting loops in the
analysed program. Such a detection results into an increase of both speed of the analy-
sis and precision of the obtained results. The design of this loop analysis is addressed in
Section 5.7.

5.2 Unified Representation of Numbers

All numbers are represented by the Number class. It can hold a value of any integral type
(char, short, int, long) in both signed and unsigned versions, and of any floating-point
type (float, double, long double). When constructing an integral number, we need
to know its value, width (number of bytes), and whether it is signed or unsigned. On the
other hand, when creating a floating-point number, only its value and width suffice. Indeed,
floating-point types are not divided into signed and unsigned, so this piece of information
is irrelevant for them.

The Number class handles overflows and underflows of numbers. For example, if we have
unsigned int i = UINT MAX, and we do ++i, we obtain 0. Floating-point numbers do
not underflow or overflow—instead, they are set to the negative or positive infinity, re-
spectively [24]. All these cases are handled by the class. It should be noted that the C99
standard does not say what is the result of i++ when i is a signed integer [24]. However,
as the common behaviour in the existing C implementations is for i to overflow, the class
performs such an overflow instead of producing an undefined result. The same approach is
done for underflows in terms of signed integers.

Another concept that is handled by the Number class is integer promotion (see Section 6.3.1.1
of [24]). The C standard assigns conversion ranks to integral types, and when performing an
operation over an integral number whose rank is lower than the rank of int, it is promoted
to int. For example, if we have signed char c = 5 and perform --c over it, it is first
promoted to int, then the operation is done, and then it is converted back to signed char.
The Number class supports all the promotions, whose detailed description is omitted due to
space requirements (see Section 6.3.1.1 of [24] for a full description).

Apart from integer promotions, discussed in the previous paragraph, another concept han-
dled by the Number class is called usual arithmetic conversions (see Section 6.3.1.8 of [24]).
When performing an operation over two different types, such as signed int and unsigned

41

int, their type has to be first unified so the operation can be done. To see why this is
important, consider the following example:

1 int i = -1;
2 unsigned int j = 0;
3 if (i > j) {
4 printf("i > j");
5 }

When you compile and run the example, it outputs “i > j” even though one would expect
that -1 is lower than 0. The reason is that before comparing i and j, the mentioned
arithmetic conversions are done. First, as i is signed and j is unsigned, i is converted
to unsigned int, so its value becomes UINT MAX (recall that this is the unsigned value of
-1). Then, the expression UINT MAX > 0 evaluates to true, so the if statement’s body is
entered.

These conversions are described in detail in Section 6.3.1.8 of [24] and apply to both integral
as well as floating-point types. Once again, the Number class supports all of the conversions
described in the referenced section of the standard. Without them, the analysis might not
be safe.

Last, but certainly not least, the Number class supports the unary and binary operations
that can be done over numbers in the Code Listener’s intermediate representation. These
operations are summarized in Table 5.1. First, the operation’s code is given, as defined by
Code Listener, then its arity (unary or binary), followed by a brief description of what the
operation does. Note that the I in CL BINOP BIT IOR is not a typo.

5.3 Interval Ranges and Their Representation

In the previous section, we have described the class representing standalone numbers. In
this section, we move to the design of interval ranges, which form the abstract domain in
terms of the abstract interpretation framework that we use.

An interval is a set of numbers with the property that any number that lies between two
numbers in the set is also included in the set [39]. We write intervals in the form 〈x, y〉,
where x is the minimal number of the set and y is the maximal number of the set. In the
case of floating-point intervals, x or y may also be the negative infinity, positive infinity, or
NaN, which is an artificial number used in the C arithmetic and defined in the IEEE floating-
point standard [46]. If x or y is NaN, the other one has to be also NaN. For example, the
integral interval 〈−1, 2〉 denotes the set {−1, 0, 1, 2}, the floating-point interval 〈−∞,∞〉
denotes the interval of all floating-point numbers representable on the given type (excluding
NaN), and the floating-point interval 〈NaN, NaN〉 represents the singleton set {NaN}.

A range, represented by the Range class, is a union of intervals. For example, the range

〈−10,−8〉 ∪ 〈1, 4〉 ∪ 〈255, 255〉

represents the set {
−10,−9,−8, 1, 2, 3, 4, 255

}
.

All intervals in a range have to be of the same type. This corresponds to the fact that every
variable is of a single type so it makes no sense to consider ranges composed of intervals
having different types.

42

Table 5.1: Operation codes in Code Listener and their meaning

Code in Code Listener Arity Description

CL UNOP ASSIGN unary assignment
CL UNOP TRUTH NOT unary logical negation
CL UNOP BIT NOT unary bit negation
CL UNOP MINUS unary minus
CL UNOP ABS unary absolute value
CL UNOP FLOAT unary cast to a floating-point type
CL BINOP EQ binary equality comparison
CL BINOP NE binary non-equality comparison
CL BINOP LT binary less-than comparison
CL BINOP GT binary greater-than comparsion
CL BINOP LE binary less-than-or-equal comparison
CL BINOP GE binary greater-than-or-equal comparison
CL BINOP TRUTH AND binary logical and
CL BINOP TRUTH OR binary logical or
CL BINOP TRUTH XOR binary logical exclusive or
CL BINOP PLUS binary addition
CL BINOP MINUS binary subtraction
CL BINOP MULT binary multiplication
CL BINOP EXACT DIV binary integral division without a remainder
CL BINOP TRUNC DIV binary integral division with truncation
CL BINOP TRUNC MOD binary integral modulus with truncation
CL BINOP RDIV binary floating-point division
CL BINOP MIN binary minimum
CL BINOP MAX binary maximum
CL BINOP BIT AND binary bit and
CL BINOP BIT IOR binary bit or
CL BINOP BIT XOR binary bit exclusive or
CL BINOP LSHIFT binary bit left shift
CL BINOP RSHIFT binary bit right shift
CL BINOP LROTATE binary bit left rotate
CL BINOP RROTATE binary bit right rotate

Ranges support all the operations that are possible to perform over numbers (see Table 5.1).
However, as we are computing in the abstract domain, instead of the domain of concrete
numbers, the inputs to these operations are ranges. For example, consider the following
line of C code:

a = b + c;

Let a, b and c be three integral variables having the ranges of possible values ra, rb and
rc. Then, we compute the result of rb + rc and assign it to a new range r′a, which denotes
the range of a after the statement is performed. For example, if rb = 〈1, 5〉 and rc =
〈6, 8〉 ∪ 〈10, 10〉, then r′a = 〈7, 15〉. As we do not know the exact values of b and c, to
preserve safety, we have to consider all the possibilities, thus obtaining 〈7, 15〉 instead of,
for example, 11.

43

Apart from performing operations over ranges, the Range class supports the so-called
trimming of ranges. This is best to be explained on an example. Consider two ranges,
rx = 〈1, 10〉 ∪ 〈20, 30〉 and ry = 〈15, 25〉, and the following conditional statement:

1 if (x < y) {
2 // ...
3 }

Assume that on line 1, x has assigned the range rx and y has assigned the range ry. Then,
during the value-range analysis, when computing the input to the statement on line 2, we
know that x < y has to hold. Therefore, we may appropriately trim the ranges rx and
ry. In this case, on line 2, the range for x would be 〈1, 10〉 ∪ 〈20, 25〉, and the range for y
would be 〈15, 25〉, i.e. unchanged. As we do not know the exact values of x and y, to
preserve safety, we have to assume that they can be anything from their respective ranges.
Moreover, the trimming also works correctly if x and y have different types—in such a case,
usual arithmetics conversions (see Section 5.2) are performed, the ranges are trimmed, and
the resulting ranges are converted back to the types of x and y, respectively.

When an operation over ranges either cannot be computed precisely or it would include an
operation that may result into an undefined behaviour, such as division of zero in terms of
integral ranges, we over-approximate the resulting range. This ensures that the result of
the operation is an over-approximation, thus preserving safety. For example, when dividing
〈1, 10〉 by 〈−1, 5〉, the resulting range is 〈MIN,MAX〉. Otherwise, we would not know what
the resulting range should be. For example, on GCC 4.8 and Clang 3.3, x / 0 for an integer
variable x terminates the program with an exception.

Last, the Range class supports interval normalization. If we have an integral range formed
by the intervals 〈1, 4〉, 〈3, 7〉 and 〈8, 10〉, it is normalized into 〈1, 10〉. The reason of joining
〈3, 7〉 with 〈8, 10〉 is that there is no integral number between 7 and 8.

5.4 Memory Places and Conversion of Operands To Them

Consider the statement a = b;. This statement is represented in Code Listener as an
instruction formed by an assign operation having two operands—the source operand (b)
and the destination operand (a). In Code Listener, every operand is represented as an
instance of cl operand. If the operand is just a simple variable, like in the case above,
then the operand simply stores its type and UID—a unique identifier. However, operands
of the form x.y.z, s[10], or even x.y[5].t are more complex. What we need is a uniform
form of representation of these operands so that even if they appear on several places in
the program, we will get the same representation. This brings us to the idea of memory
places.

A memory place is a uniform representation of locations in memory into which some-
thing can be written or from which something can be read. It is represented by the class
MemoryPlace and supports the following three operations:

• Getting a string representation of the memory place. This is used when the output
from the analyser is printed. For example, if there is an instance of a structure called d
with a field named i, then its string representation is d.i.

44

• Distinguishing between variables that are actually in the input source code from
artificial variables introduced by GCC. When emitting the output of the analysis, the
ranges of artificial variables may be discarded because they are not present in the
original source code.

• Checking if the memory place represents an array. Due to some limitations imposed
on the analyser (see Section 5.8), when assigning something into an array, we treat
the array as a single variable. Therefore, for an array s, s[10] and s[1] should be
represented by a single memory place.

The primary use of memory places is to have an entity with which we associate ranges
during the value-range analysis. Moreover, we need a class that can convert an instance of
cl operand into an appropriate memory place. This class is named OperandToMemoryPlace
and works as follows:

(1) If the operand is just a variable, it uses its UID to convert it into a memory place.

(2) If the operand is an array dereference, like s[5], it uses the pair (UID, 0), where
UID is the UID of the array, and 0 marks that the array was dereferenced. As we have
already pointed out, we merge all array dereferences into a single dereference so s[1]
and s[10] are indistinguishable and both map to (UID, 0).

(3) If the operand is an access to a field of a structure of the form x.y1. · · · .yn for some
n ≥ 1, we use the tuple (UID, offset1, offset2, ...), where UID is the UID of x,
and offsetX is the offset of the Xth variable in the structure, where 1 ≤ X ≤ n. For
example, given the following structure

struct A {
int i; // offset 0 (in A)
double d; // offset 1 (in A)
struct B {
char c; // offset 0 (in B)
int b; // offset 1 (in B)

} a; // offset 2 (in A)
} x;

where the UID of x is 124, the operand x.a.b is represented as (124, 2, 1).

(4) If the operand is a combination of structure accesses and array dereferences, like
a.b.c[10].e, we combine (2) and (3) to get a proper memory place.

Having described numbers, ranges, and memory places, we can move to the heart of this
work—the value-range analysis itself.

5.5 Value-Range Analysis

The main part of our value-range analysis is represented by class ValueAnalysis. The
analysis is intraprocedural (see Section 2.4), which means that all functions are analysed
in isolation. This implies the top-level algorithm, shown in Algorithm 2.

The preliminary analyses on line 1 deal with global variables and loops, and are discussed
later in Sections 5.6 and 5.7. Then, on lines 2 through 6, we compute the ranges for all the

45

Algorithm 2: Top-level value-range analysis algorithm
Input: intermediate representation of the input C program
Output: value ranges of variables at the input and output of all basic blocks in the

program
1 preliminary analyses;
2 foreach function func in the program do
3 if func has a body then
4 compute the ranges for func;
5 end
6 end
7 print the computed ranges;

basic blocks in every function, and we end the algorithm by printing the computed ranges
(line 7). The output format is described in Section 6.9, so in the remainder of this section,
we focus only on the computation of ranges.

The computation of ranges for a function is based on the work list algorithm (see Sec-
tion 2.4). The computed values are propagated along with the control flow—that is, the
underlying data-flow analysis utilizes a forward-flow direction (see Section 2.1). To every
basic block block of the function, we assign two mappings. The first one, IN[block], maps
variables to ranges that they have when they enter the basic block. The second mapping,
OUT[block], stores the ranges of variables at the end of the basic block, i.e. on its out-
put. The main idea behind the computation is to keep traversing over the basic blocks,
re-computing the ranges, and checking which ranges change. When there is no change,
i.e. a fixed point has been reached, we end the computation. This idea is expressed in
Algorithm 3.

Algorithm 3: Computation of value ranges for input and output of all basic blocks
in the given function

Input: intermediate representation of a function func and its control-flow graph
Output: value ranges of variables at the input and output of all basic blocks in the

function
1 create empty mappings IN[block] and OUT[block] for every block of func;
2 create an empty todo queue;
3 put the first basic block of func into todo;
4 while todo is not empty do

// There is a basic block to be processed.

5 remove the front block from todo and store it to block;
6 store a copy of OUT[block] into oldRanges;
7 perform the value analysis of block to compute new IN[block] and OUT[block];
8 if oldRanges differs from OUT[block] then

// The output ranges have changed.

9 schedule the successors of block for further processing;
10 end
11 end

46

On line 1, we create the two mappings for every basic block of the function. Initially, they
are both empty. Lines 2 and 3 initialize the todo queue. Then, we keep iterating over
the todo queue, until it becomes empty. During every iteration, we pop the current basic
block, backup the old ranges on the output of the block, perform the analysis for the block,
and when the new output ranges differ from the old ranges, we schedule the successors of
the block for further processing. First, let us give the scheduling algorithm, expressed in
Algorithm 4.

Algorithm 4: Scheduling the successors of a basic block for further processing
Input: a basic block block of a function func, the control-flow graph of func, and

the todo queue from Algorithm 3
Output: updated todo

1 foreach successor succ of block in func do
2 if succ is not in todo then
3 enqueue succ to todo;
4 end
5 end

In the algorithm, we traverse all the successors of the block by using the control-flow graph.
If the successor is not already in the todo queue, we enqueue it.

Next, we describe the analysis of a basic block, which is done on line 7 in Algorithm 3.
This analysis is expressed in Algorithm 5.

Algorithm 5: Value analysis of a basic block
Input: a basic block block of a function func, the control-flow graph of func, and

the two mappings IN and OUT for block and all its predecessors
Output: new IN[block] and OUT[block]

1 update IN[block] based on the output ranges of all predecessors;
2 clear OUT[block];
3 foreach instruction insn in block do
4 update OUT[block] based on insn;
5 end

First, on line 1, we update the input ranges of the block, which we describe shortly. Then,
we clear the output mapping in order to compute the new one based on the updated input
ranges. After that, in a loop on lines 3 through 5, we inspect all instructions and update the
output ranges based on the operations the instructions do. Before presenting the algorithm,
let us first turn our attention on the update of input ranges, done on line 1.

What we have to do is to compute the new input ranges for the block based on the output
ranges from the block’s predecessors. Additionally, however, we utilize the computation of
trim ranges as described in Section 5.3. This leads to more precise results. Before describing
the algorithm in pseudocode, we illustrate it by an example. Consider the control-flow graph
from Figure 5.1, where there is a block block with two predecessors, pred1 and pred2.

Our task is to compute the range for i in IN[block]. Assume that the range for i
in OUT[pred1] is 〈−100, 100〉, and that the range for i in OUT[pred2] is 〈1, 10〉. Since
the pred1 block ends with i < 5, the trim range for i is 〈INT MIN, 4〉. The intersection

47

if (i < 5)

...

pred1

block pred2...

... else ...

Figure 5.1: A sample control-flow graph to illustrate Algorithm 6

of 〈−100, 100〉 and 〈INT MIN, 4〉 is 〈−100, 4〉. Therefore, the range for i at the input of block
is

〈−100, 4〉 ∪ 〈1, 10〉 = 〈−100, 10〉.

Notice that we have to take into account the output of all predecessors because at the input
of block, i might have the values from the output of both pred1 and pred2.

The above-described update of input ranges is given in Algorithm 6.

Algorithm 6: Update of input ranges for a basic block
Input: a basic block block of a function func, the control-flow graph of func, and

the two mappings IN and OUT for block and all its predecessors
Output: updated IN[block]

1 create a new empty mapping NEW IN[block];
2 foreach predecessor pred of block do
3 compute the trim ranges for variables in OUT[pred];
4 foreach variable var in OUT[pred] do
5 if there is a trim range for var then
6 store the trim range for var into varTrimRange;
7 store the range for var from OUT[pred] into varOutRange;
8 add the intersection of varTrimRange and varOutRange to NEW IN[block];
9 else
10 add the range for var from OUT[pred] to NEW IN[block];
11 end
12 end
13 end
14 merge NEW IN[block] into IN[block];

Let us argue about the necessity of the last step of Algorithm 6, done on line 14. Our value-
range algorithm is based on a fixed point computation. To this end, if we just assigned
NEW IN[block] to IN[block], we might reduce the ranges that are already in IN[block],
which might result into an infinite loop in the analysis. Therefore, we need to unite the
ranges in NEW IN[block] with those that are already in IN[block].

Now, the only algorithm to be presented is the update of output ranges by inspecting all
instructions of a basic block. This is done on line 4 of Algorithm 5. The idea behind the
algorithm is to call an appropriate operation over ranges, depending on the type of the
instruction and on its operands, and update the output of the block. This is described in
Algorithm 7.

48

Algorithm 7: Update of OUT[block] based on the given instruction
Input: a basic block block, an instruction insn in the block, and the current

mapping OUT[block]
Output: updated OUT[block]

1 switch type of insn do
2 convert all operands of insn into memory places (or constants);
3 perform the operation over ranges associated to these memory places;
4 update the range of the destination memory place;
5 endsw

First, depending on the type of the instruction, we convert all of its operands into memory
places by using the OperandToMemoryPlace class (see Section 5.4). If some of the operands
are literals, like floating-point or integral constants, we convert them directly into an in-
stance of Number because literals are not represented by memory places (there is no need
for that). Then, by using the appropriate function from Range (see Section 5.3 and Ta-
ble 5.1), we compute the resulting range after performing the operation over ranges that are
associated to the converted memory places (or Number instances). After that, we update
the range of the destination variable of the instruction by modifying OUT[block].

Consider the following statement, which Code Listener represents by an instruction of type
CL INSN BINOP with subcode CL BINOP PLUS:

c = x.i + 5;

Let us assume that the type of c is int, and that x is a structure with its first field being
int i. Then, the algorithm converts c and x.i into their respective memory places, and
gets the current range of x.i. For example, let the range of x.i be 〈5, 10〉. The literal 5
is converted into the interval 〈5, 5〉. By using the addition operation over ranges, whose
implementation is given later in Section 6.2, the result of 〈5, 10〉 + 〈5, 5〉 is 〈10, 15〉. This
result is then assigned to the memory place of c and stored into OUT[block].

To preserve safety, if there is a function call of the form dst = func(), then we set the
range of dst to be the maximal range. The reason is that since we do an intraprocedural
analysis, we do not know what is the exact range returned from func(). Moreover, if
there appears an operand without some already assigned range, we also use the maximal
range. This corresponds to the fact that in C, the value of uninitialized local variables is
undefined [24].

Having described the design of the value range-analysis, we move to describing two analyses
that are used to improve the precision of the obtained results.

5.6 Global Variables Analysis

Since the value-range analysis is intraprocedural, meaning that every function is analysed
in isolation, we need to make sure that accesses to global variables are handled correctly.
For example, if a global variable is changed in function A, it may affect the value of other
variables in function B. We solve this in the following way.

49

Before the main part of the value-range analysis itself, we perform another analysis, repre-
sented by class GlobAnalysis, in which we compute which global variables may be changed
when running the program. This is done by going through all the instructions in program
and checking which assignments have global variables on their left-hand sides.

Based on the above analysis, if a global variable is never modified, only read, then we
can use the initializer as its range. Otherwise, if the variable may be modified, we over-
approximate its value to the maximal range of its type. In this way, we preserve the safety
property of our analyser.

This analysis is done as part of line 1 in Algorithm 2.

5.7 Analysis of Loops

Consider the following program, consisting of a simple for loop:

1 #include <stdio.h>
2
3 int main()
4 {
5 int c = 1;
6 for (int i = 0; i <= 10; i++) {
7 c = 2 * c;
8 }
9
10 printf("%d\n", c);
11 return 0;
12 }

By applying the value-range algorithm as described in Section 5.5, we would get that the
range of c at the end of the function is 〈INT MIN, INT MAX〉. The reason is that we keep
iterating until there are no changes, and c changes until it reaches the maximal range. This
is not very helpful as this is the maximal range of int—the type of c. Instead, what we
would like to have is the information that c changes at most the number of times i changes.
This is the task of the analysis that is described next.

The LoopFinder class analyses the program to find loops and tries to compute their trip
count—the number of iterations of the loop under analysis. To compute it, we need the
following information:

• The so-called induction variable, which is the variable over which we are iterating. In
our example, this is i.

• The initial value of the induction variable. In our case, it is 0.

• The end value of the induction variable. This is 10 in the example above.

• The step, which gives us the information on how the induction variables changes after
every iteration. In our example, it is +1.

All the pieces of information above can be checked by traversing the control-flow graph. We
illustrate the process on the example above. Its control-flow graph is shown in Figure 5.2.

50

c = 1
i = 0

if (i<=10)

c = 2 * c
i = i + 1

printf(...)
return 0

true

false

L1

L2

L3

L4

Figure 5.2: Control-flow graph of the example at the beginning of Section 5.7

The only viable start of a loop is L2, which tests whether i <= 10. When traversing its
successors, we immediately find that it is indeed a loop—the only successor of L3 is L2 and
L4 is a return from the function. The induction variable has to be i because it is the only
variable tested in the condition of L2. To check that i is indeed the induction variable, we
traverse the predecessor of L2, which is L1. Since it contains i = 0, the initial value is 0.
From the condition of L2, we have that the end value is 10. Since the only increment of i
is in L3, we see that the step is +1.

Based on the above analysis, we have that the trip count of the found loop is 11. This
means that the loop is executed 11 times, and thus c is changed 11 times. This gives us
a more precise value of c. Of course, this was just a simple example to demonstrate the
concept. In reality, the structure of the loop may be more complex. This analysis is done as
part of line 1 in Algorithm 2. Moreover, in Algorithm 3, we add a limitation of the number
of passes for blocks which form a loop with a known trip count.

5.8 Limitations

As mentioned earlier in this chapter, the primary design criterion is that the analyser should
be safe. Moreover, considering the limits of existing tools for value-range analysis and
research papers on this topic (see Chapter 3), it is obvious that designing and implementing
a value-range analyser that handles all the imaginable cases (in addition, over the course
of just two semesters), is impossible. Therefore, we had to impose some restrictions on the
inputs in order for the analyser to work correctly and produce safe output. This section
summarizes such limitations.

The input C program has to satisfy the following restrictions for the analyser to work
correctly.

• No indirect manipulation of data. Variables may be modified only directly,
i.e. without using pointers. Indirect calls by means of pointers to functions, pointer
arithmetic and work with dynamically allocated memory are unsupported as well.

• No unsafe type conversions. There may not be any conversions that the bypass
the C type system in an undefined or implementation-defined way. For example, there
may not be any conversions between integers and pointers, or using unions to store
some value to a field X and then reading the value from another field Y.

51

• No unions. The union data type is not supported.

• No complex numbers. Code Listener does not support complex numbers, available
since C99 (see Section 7.3 of [24]), and so neither does the analyser.

• No partial initializations. Variables of a structure or array data type have to be
either fully initialized or left completely uninitialized.

When the input program uses the above features of the C language, the analyser may not
work properly or its output may not be safe.

52

Chapter 6

Implementation

In this chapter, we describe the implementation of our analyser, whose design is given in
Chapter 5. The analyser is implemented in C++, and conforms to the ISO C++ 1998
standard [23]. The ways of testing the implementation and an evaluation of the obtained
results are the subjects of Chapter 7.

The present chapter is organized as follows. Section 6.1 describes the implementation of
class Number, which is a unified representation of numbers. Then, Section 6.2 presents
how ranges, represented by class Range, are implemented. After that, Sections 6.3 and 6.4
discuss the representation of memory places and a conversion of Code Listener’s operands
to them, respectively. Section 6.5 presents the implementation of the main part of our
value-range analysis. The analysis of global variables, represented by class GlobAnalysis,
is the subject of Section 6.6. Section 6.7 deals with the implementation of loop analysis.
The implementation of various supportive functions is discussed in Section 6.8. Section 6.9
describes the interface and output format of the analyser. Finally, Section 6.10 closes the
chapter by giving several metrics regarding the implementation.

Let us note that due to space constraints, we focus only on the fundamental implementation
details. Other parts of the implementation can be seen in the heavily commented sources
of the analyser.

6.1 Number: Unified Representation of Numbers

The Number class, designed in Section 5.2, is implemented in files Number.{cc,h}. As an
internal storage for integral types, such as char or long, we use arbitrary-width integers
from the GMP library [27]. More specifically, we utilize mpz class, which is a C++ wrap-
per class around the corresponding integral GMP type. This choice of the underlying type
simplifies the operations over integers as we do not have to explicitly watch for overflows or
underflows, Instead, instances of mpz class simply increase their width, and after the oper-
ation is done, we fit them into the width of the actual integral type the number represents.
The details will be explained later.

To represent floating-point numbers, however, we directly use long double. The reason for
not choosing mpf class, which is the floating-point equivalent of mpz class from GMP, is
twofold. First, mpf class does not support special values such as NaN or infinities. Second,

53

the semantics of several operations differ from their semantics in C. Here, the underflow or
overflow is not an issue because long double never overflows [23]. Instead, it becomes the
negative or positive infinity. Moreover, the floating-point semantics in C++98 matches the
one in C99, so we can use this representation. As with integral types, if the actual type
differs from long double, after performing an operation, we fit the number into its actual
width.

Integral numbers are stored into the intValuemember variable, and floating-point numbers
are stored in floatValue. To distinguish between integral and floating-point types, we use
the following enumeration:

enum Type {INT , FLOAT} type;

As intValue is of type mpz class, which is an object, we cannot use a union because
C++98 prohibits that [23]. Alongside with the actual value, we store the actual width of
the type, provided by Code Listener, and in terms of integral values, their sign (stored in
a boolean sign flag).

Upon creation, we set the number’s type, value, width, and signess (in the case of an integral
type). Then, we set the internal limits by calling setIntLimits() or setFloatLimits().
What these functions do is that they compute the maximal (non-infinite) numbers that
can be represented on the given type, width, and with the specified signess. Then, we call
fitIntoBitWidth(), which makes sure that the given value fits into the specified type. If
not, it performs conversions, such as overflows or underflows that would be done in C to
make the number fit. This function is also called after performing operations over numbers
because the numbers may overflow.

Apart from the functions above, the class provides many supportive functions, such as
getBitWidth(), isIntegral(), isSigned(), isFloat(), isInf(), isMin(), isMax(),
toBool(), and many more. To convert between integral and floating-point values, the
static floatToInt() and intToFloat() functions may be used. The assign() function
enables us to simulate the assignment of a number into another number, just like it would
be done in C.

The concept of integer promotion, briefly mentioned in Section 5.2, is implemented as de-
scribed in Section 6.3.1.1 of [24]. This is done in function integralPromotion(). Usual
arithmetic conversions, mentioned in Section 5.2, are implemented in extensionByCRules()
according to Section 6.3.1.8 of [24].

The core of the class is the implementation of all the operations from Table 5.1. As our space
in this work is limited, we only focus on the implementation of three operations—addition,
unary minus, and bit right shift.

• Addition. The addition of two numbers is performed in operator+(), which, as its
name suggests, is the overload of the + operator. First, we have to perform the usual
arithmetic conversions of the numbers by calling extensionByCRules(op1, op2).
Now, both of the operands have the same type. Then, depending on whether we are
adding two integers or two floating-point numbers, we perform the addition either
over mpz class or long double. Finally, as there might have been an overflow (or
the value is supposed to be infinity when dealing with floating-point numbers), we
call fitIntoBitWidth(). As we are performing the floating-point addition over long

54

double, it correctly handles all the special cases, such as adding positive infinity with
NaN.

• Unary minus. The unary minus of a number is done in operator-() having a single
operand (the two-operand version is binary subtraction). If the operand is a floating-
point number, we simply use the unary minus over long double, and return the re-
sult. Otherwise, if the operand is an integral number, we call integralPromotion()
to perform integral promotions. Then, we use the operator-() operation from
mpz class, call fitIntoBitWidth() to make sure the result fits into the width, and
return the result. Notice that in the case of floating-point numbers, we do not have to
call fitIntoBitWidth(). The reason is that -x for a floating-point value x is always
representable on the same number of bits as x because they differ only on the value
of the sign bit [46].

• Bit right shift. The bit right shift over two numbers is done in bitRightShift()
(for bit and logical operations, we do not use the operatorX functions because for
example, there is no operator for logical non-equivalence (xor) in C++ [23]). The
bitRightShift() function calls performShift(op1, op2, false), where the last
false denotes the fact that we are doing a right shift. The reason is that the imple-
mentation of left and right shifts is similar so we use a single function for it. First,
we check whether both operands are integral numbers (bit shifts are defined only on
integers, so it is an error to call the function over floating-point numbers). Moreover,
when the value of the right operand is negative, the result is undefined [24], so in
this case, we also do not perform the operation. This is appropriately handled in the
Range class, where in such a case, we return the maximal range to capture the fact
that the result may be any value. After this, we promote both the operands by calling
integralPromotion(), which is what the standard requires [24].

If the left operand is negative, the standard leaves implementation-defined whether
the shift is arithmetical or logical [24]. Therefore, instead of performing the shift over
mpz class, we first convert the operands into appropriate integers (based on their
width), perform the shift over them, and convert them back to mpz class. As the
behaviour of bit right shifts of C++98 matches the one of C99 [23, 24], this solution
is correct.

After performing the operation, we call fitIntoBitWidth() to fit the result into its
width, and we return it.

6.2 Range: Representation of Ranges

The Range class, designed in Section 5.3, is implemented in files Range.{cc,h}. To represent
an interval, we use

typedef std::pair <Number , Number > Interval;

Then, as a range represents the union of intervals, we implement it as

std::vector <Interval > data;

It is a private attribute of Range. The class provides the following set of constructors:

55

Range();
explicit Range(Number n);
explicit Range(Interval i);
Range(Interval i1 , Interval i2);
Range(Interval i1 , Interval i2 , Interval i3);
Range(Interval i1 , Interval i2 , Interval i3 , Interval i4);

The default constructor is provided for convenience, e.g. when constructing an empty
range—no operation works on empty ranges. The second constructor is simply a briefer
way of writing Range(Interval(n, n)). The class supports creation of ranges having up
to four intervals. When having more intervals, they have to be added manually after the
construction.

When a range is created, either by the user or after performing an operation over other
ranges, the normalize() function is called. It performs the following actions:

• When there are more intervals of the form 〈NaN, NaN〉, only one of them is kept.
Moreover, if this interval exists, it is always the first interval in the range. This
simplifies many operations.

• Intervals of the form 〈x, y〉, where x > y, are converted to the union 〈MIN, y〉∪〈x, MAX〉.
For example, the interval 〈100, 1〉 on 8 bits (signed) is converted into 〈−128, 1〉 ∪
〈100, 127〉, which is the correct range for such input. Otherwise, the range would be
invalid.

• The intervals are sorted, and when possible, joined together. As suggested in Sec-
tion 5.3, if we have an integral range formed by the intervals 〈1, 4〉, 〈3, 7〉 and 〈8, 10〉,
it is normalized into 〈1, 10〉.

The Range class provides many supportive functions. Among them belong functions for it-
erating over the intervals, size(), empty(), operator[], containsZero(), isIntegral(),
isFloatingPoint(), containsOnlySingleNumber(), getMax(), getMin(), and many oth-
ers. To make the union and intersection of two ranges, unite() and intersect() can be
used. To assign a range into another range while converting the intervals of the source
range into the type of the destination range, there is the assign() function.

As in the case of Number, the core of the class is the implementation of all the operations
from Table 5.1. In contrast to Number, these operations are performed over ranges rather
than over single numbers. As our space in this work is limited, we only focus on the
implementation of two operations—addition and logical and.

• Addition. This operation has two input ranges, r1 and r2. The basic idea behind the
implementation is to iterate over both of these ranges, and compute the addition of
every interval in r1 with every interval in r2. This is done in two nested for loops.
Let 〈x, y〉 and 〈z, w〉 be the two current intervals. Then, we include the following five
intervals into the resulting range:

〈x+ z, y+ w〉
〈x+ z, x+ w〉

〈y+ z, y+ w〉
〈z+ x, z+ y〉

〈w+ x, w+ y〉

These intervals cover all possible numbers that can arise when adding numbers from
the two input ranges. Finally, we call normalize() on the result, which takes care of
possible overflows, and we return the result.

56

• Logical and. As in the case of addition, this operation, implemented in logicalAnd(),
takes two ranges, r1 and r2. First, we create two numbers that represent the values
0 and 1. Then, we create the resulting range by performing the following two actions:

– If r1 or r2 contains a number that evaluates to false, we include the interval
〈0, 0〉 into the result. This check is done by calling containsFalse() on the two
ranges.

– If both r1 and r2 contain a number that evaluates to true, we include the
interval 〈1, 1〉 into the result. This check is done by calling containsTrue() on
the two ranges.

Before returning the range, we call normalize() to join the intervals 〈0, 0〉 and 〈1, 1〉
to 〈0, 1〉 (if they are both present in the range).

In several operations, we need to return an over-approximation. In this case, there are
the overApproximateUnaryOp() and overApproximateBinaryOp() functions. The actual
choice depends on the number of operands of the performed operation.

Finally, we discuss the implementation of range trimming, whose example is given in Sec-
tion 5.5. In what follows, we only mention how the trim range for x in x <= y is computed.
For the implementation of other relational operators, see the source code. Moreover, when
computing the trim range for y, we can use the converse relational operation—that is, for
y in x <= y, we would compute the trim range from y > x. In this way, it suffices for our
trim-range-computing functions to return the trim range for the first operand.

The trim range for x in x <= y is computed in computeRangeForLtEq(), which takes
two ranges, for x and y, as its input. First, we perform the usual arithmetic conversions
over both ranges, which is a generalization of such conversions from the Number class (see
Section 6.1). After that, both ranges are of the same type. Then, we iterate over the
intervals in the first of the ranges after the conversions, and perform the following actions.
Let maxR2 be the maximal number of the second range and let 〈i, j〉 be the current interval
from the first range.

• If both i and j are lower or equal to maxR2, we include the interval 〈i, j〉 into the
result.

• If i is lower or equal to maxR2 but j is greater than maxR2, we include the interval
〈i, maxR2〉 into the result.

• Otherwise, we know that i is greater than maxR2, so we stop the iteration since no
more intervals can be added into the result.

After that, we use assign() and normalize() to convert the resulting range to the type
of the first input range, and return the result.

6.3 MemoryPlace: A Representation of Memory Places

The MemoryPlace class, whose design is given in Section 5.4, is implemented in files
MemoryPlace.{cc,h}. Its constructor simply takes a string representation of the mem-
ory place, and the information whether it corresponds to an artificial variable or not.

57

These properties can be obtained by calling asString() and isArtificial(), respec-
tively. Moreover, the representsElementOfArray() function returns true if the memory
place represents an element of an array. This check is done by searching for “[]” in the
memory place’s name.

6.4 OperandToMemoryPlace: From Operands To Memory Places

The conversion of operands into memory places is represented by OperandToMemoryPlace,
a class designed in Section 5.4, and implemented in files OperandToMemoryPlace.{cc,h}.
This class provides a static function convert() that is able to convert the given cl operand
into a pointer to MemoryPlace.

As described in Section 5.4, to uniquely represent a memory place, a tuple of numbers is
used. To implement tuples, we use std::vector<Int>, typedefed as UidVector, where Int
is a typedef to mpz class (an integer representation from the GMP library, see Section 6.1).
Then, there is a static map std::map<UidVector, MemoryPlace*> memoryPlaceMap that
maps such a vector into an existing memory place. If for a vector there is no memory
place, it means that no memory place has been created, so we create one. Otherwise, the
convert() function can immediately return the proper memory place.

The convert() function implements the conversion algorithm, given in Section 5.4. It takes
a cl operand and, optionally, a list of indexes. This list is represented by std::deque<int>.
The reason for choosing this type of a container is that it supports random access and has
fast adding and removing of elements from both sides. When the function is called with an
empty list of indexes, convertSimpleOperand() is called, which means that the operand
is either just a variable, an element of an array, or a field in a structure. The indexes for
the UidVector key to memoryPlaceMap are computed by traversing the accessors of the
operand, available through operand->accessor.

Otherwise, if the input list of indexes, passed as std::deque<int>, is non-empty, it means
that the operand is a complete structure, not just a single field of a structure. Alongside with
the indexes, the operand’s type is used to properly construct the needed std::deque<int>
list to index memoryPlaceMap. The reason for distinguishing between a structure access from
a complete structure is that when a complete structure is passed, there are no accessors in
the Code Listener’s representation, so the only way to navigate is through the operand’s
type and the input list of indexes.

6.5 ValueAnalysis: Value-Range Analysis

The ValueAnalysis class, whose design is given in Section 5.5, is implemented in files
ValueAnalysis.{cc,h}. Among many private functions, it provides two public static func-
tions: computeAnalysisForFnc(), which performs the value-range analysis over the given
function, and printRanges(), which prints the result of the analysis into the given stream.

Algorithm 2 from Section 5.5 is implemented in file vra.cc (see also Section 6.9). In there,
computeAnalysisForFnc() is called for every function definition in the input program.
The type of the maps IN[block] and OUT[block], which store the assignment of memory
places to their ranges, is

58

typedef std::map <const MemoryPlace*, Range >
MemoryPlaceToRangeMap;

Then, the IN and OUT maps have the following type:

typedef std::map <const CodeStorage :: Block*, MemoryPlaceToRangeMap >
BlockToResultMap;

The todo queue is represented by

typedef std::queue <const CodeStorage :: Block *>
SchedulerQueue;

and

typedef std::set <const CodeStorage :: Block *>
SchedulerSet;

The reason for using two types is that when checking whether a basic block is already in the
queue, we need only O(log(n)) comparisons when using a set instead of O(n) when using
a queue (n is the number of elements in the container). The only downside is that we have
to simultaneously update both the set and the queue. However, the obtained speedup is
worth the price.

Algorithm 3 is implemented in computeAnalysisForFnc(). To store a copy of OUT[block],
we make a shallow copy of the map storing the mapping of memory places to their ranges.
The scheduling of blocks, described in Algorithm 4, is done in scheduleBlock(). The anal-
ysis of a single basic block from Algorithm 5 is performed in computeAnalysisForBlock().
This function first calls computeInputRanges to update the input ranges of the current basic
block (Algorithm 6), and then it goes over all the instructions in the basic block, updating
OUT[block] (Algorithm 7).

6.6 GlobAnalysis: Analysis of Global Variables

The GlobAnalysis class, whose design is given in Section 5.6, is implemented in files
GlobAnalysis.{cc,h}. This class provides static functions to perform our analysis of
global variables. The entry point is computeGlobAnalysis(), which takes an instance of
CodeStorage::Storage. It visits all the function definitions in the program by calling
computeGlobAnalysisForFnc() over each of them. This function implements a simple
work list algorithm (see Section 2.4), which traverses all the instructions in the function.
Whenever a statement that assigns something into a global variable is encountered, the UID
of the global variable is stored into the private static std::map<int, bool> globVarInit
map. Having a global variable x, globVarInit[x] == true indicates that x may be mod-
ified during the program execution. From the outside, this map can be accessed by calling
isModified(id), where id is the UID of the global variable we want to check.

Apart from the functions mentioned above, there are several auxiliary functions, such as
isGlobal(id), which checks whether the given variable is global, or printGlobAnalysis(),
which can be used to print the result of the analysis during development or debugging.

59

6.7 LoopFinder: Analysis of Loops

The LoopFinder class, designed in Section 5.7, is implemented in files LoopFinder.{cc,h}.
Due to space requirements, we omit the implementation details as this class straightfor-
wardly implements the analysis designed in Section 5.7.

6.8 Utilities: Various Auxiliary Functions

The Utilities class, implemented in files Utilities.{cc,h}, provides two auxiliary func-
tions. The first one, getMaxRange(), takes a cl operand, and based on its type, it returns
the maximal range for that type. It is implemented as a switch over the cl operand’s code,
and internally uses Range::getMaxRange(). If the operand is a variable that is nested
in a structure or an array, we use the second parameter of Utilities::getMaxRange(),
named indexes, in an analogous way to OperandToMemoryPlace::convert().

The second function provided by this class is convertOperandToNumber(). It is used
to convert the given cl operand into an instance of Number. Once again, its body is
just a switch over the cl operand’s code. This code has to be either CL OPERAND CST or
CL OPERAND VAR. Otherwise, the operand cannot be converted into a number.

6.9 Interface and Output Format of the Analyser

After building the Code Listener infrastructure and the analyser (see the README file on the
enclosed CD), it can be run by issuing the following command:

./gcc -install/bin/gcc -fplugin=vra_build/libvra.so input.c

where -fplugin=vra build/libvra.so tells gcc to use our value-range analysis plugin,
and input.c is the input C source file to be analysed.

The output format is as follows. For every function in the input source file, its name is
emitted, and then, the list of its basic blocks, including the ranges of variables at the input
to the block as well at the output of the block are emitted. For example, for the following
trivial program

1 int main() {
2 int i = 0;
3 return i;
4 }

the analyser emits

1 ---------- Function main() ----------
2 Block L1[IN] at lines from 2 to 3:
3 Block L1[OUT]:
4 i = { <0, 0> }
5 Block L2[IN] at lines from 3 to 4:
6 i = { <0, 0> }
7 Block L2[OUT]:
8 i = {<(0, 0> }

60

To see the intermediate representation of the parsed input source code, run the above
command also with the following parameter:

-fplugin -arg -libvra -dump -pp

This will cause the analyser to emit the intermediate representation, including the labels
of basic blocks referenced in the analyser’s output:

1 main():
2 goto L1
3
4 L1:
5 %mF1716:i := 0
6 %r1718 := %mF1716:i
7 goto L2
8
9 L2:
10 ret %r1718

It should be noted that this emission is already provided by Code Listener, it is not part of
the implementation of the developed analyser. A complete example of running the analyser
and analysing its output is provided in Appendix A.

6.10 Metrics

Finally, we present several metrics of the implemented analyser. More precisely, they are
given in Table 6.1. This table shows the total number of lines in source files implementing
the used classes, and the total number of functions which the classes implement (public,
private, static, member, and friend functions are all included). Testing code is not
included in these metrics. For metrics of the testing code, see Chapter 7.

Table 6.1: Metrics regarding the implemented classes

Class Number of code lines Number of functions

GlobAnalysis 567 16
LoopFinder 1295 26
MemoryPlace 68 4
Number 1592 66
OperandToMemoryPlace 248 3
Range 2761 87
Utility 188 2
ValueAnalysis 1352 23

All in all, the implementation (without tests) has 8210 lines, including comments and empty
lines.

61

Chapter 7

Testing and Evaluation

This chapter discusses the ways of testing the implementation, and evaluates the obtained
results. First, Section 7.1 gives a brief introduction to test-driven development, which was
the method used to develop all the low-level classes that underly the implementation of
the analyser. So-called unit tests were the primary means of testing the implementation
of the underlying classes. Their description is also included in Section 7.1. After that,
Section 7.2 discusses overall tests, which were used to check the implementation of the
complete analyser. These tests inspect the combined functionality of all parts of the analyser
and focus on verifying whether the output is correct. The present chapter is concluded by
Section 7.3, which evaluates the results obtained by testing.

7.1 Unit Tests

The underlying classes Number, Range, Utility, MemoryPlace, and OperandToMemoryPlace
were developed by means of test-driven development, popularized by Kent Beck [6]. The
basic idea behind test-driven development is that before any production code is written,
a test for it is added. Only after that the programmer writes the actual code that passes
the test. In a greater detail, the development is structured into very short cycles, composed
of the following three steps:

(1) Write an automated test case that fails.

(2) Make the test pass by writing the actual implementation.

(3) Clean up the implementation.

In Step 1, a new test case is added. It is important for the test to be automated so we can
quickly check whether it succeeds or fails, and it has to initially fail. If it does not fail, then
either there are no improvements needed (i.e. the implementation suffices) or there is an
error in the test itself. In this way, by first checking that the test fails, we verify that the
test is correct.

After that, in Step 2, we write the actual implementation. By having an automated test
case, we know when we are done—when the test passes. During this step, we focus only on

62

writing code that makes the test pass. Indeed, if we think of an idea for a new feature, we
write it down on a piece of paper and leave it for the next cycle.

Finally, in Step 3, the implementation is cleaned-up by means of refactoring, which is a pro-
cess of restructuring existing code without changing its external behaviour [22]. Since the
test passes, during this step, we may solely focus on improving the code without worrying
of breaking something. Indeed, the test tells us if we go astray by failing. The reason for
dividing the implementation and refactoring into two steps is that it leads to much cleaner
code [22]. In this way, we can first focus on writing a correct implementation, and then,
we focus only on making the code as clean as possible. Therefore, we have to juggle only
a single ball at a time. For more information on test-driven development, see [6].

An appropriate method of testing during test-driven development is unit testing, where we
test a single component at a time in isolation [41]. This way of testing enables us to write
tests for any public method of the developed class and ensure that the code meets its design
and behaves as intended. To ease the creation of unit tests, we have used an open-source
unit testing framework called Google Test [52]. We have chosen this framework because it
is free, easy-to-use, written in C++, runs on a variety of platforms (GNU/Linux, Mac OS
X, MS Windows) and has a rich set of features. Among them are automatic test discovery,
many types of assertions, death tests, and various options for running the tests.

As an example of a test written in the Google Test framework, consider the following piece
of code:

1 TEST_F(RangeTest ,
2 DivisionByZeroResultsIntoOverApproximation)
3 {
4 // x / 0 -> undefined behaviour in C (we have to over -approximate)
5 EXPECT_EQ(Range(Interval(I<int >(vmin <int >()), I<int >(vmax <int >()))),
6 exact_div(Range(Interval(I<int >(1), I<int >(5))),
7 Range(Interval(I<int >(0), I<int >(0)))));
8 }

Here, we have declared a test case DivisionByZeroResultsIntoOverApproximation within
a fixture RangeTest. In terms of the Google Test framework, a test fixture is a class that
groups test cases for a single component. In this test case, we check that when we are
dividing two ranges, where the second contains zero, the resulting range is the maximal
range, i.e. the result is an over-approximation because dividing an integral number by zero
is undefined in C (see §5 of Section 6.5.5 in [24]). For testing purposes, we have defined
the templates I<>, vmin<> and vmax<>, which construct an instance of Number, return the
minimal number of the given type and return the maximal number of the given type, re-
spectively. The EXPECT EQ macro is provided by the Google Test framework to check the
equality of two values. Its first parameter is the reference result, and the second one is the
actual result.

When we run the test suite for RangeTest with a working implementation, we obtain the
following output1, which says that our test has passed:

1 $./ RangeTest
2 ...
3 [RUN] RangeTest.DivisionByZeroResultsIntoOverApproximation
4 [OK] RangeTest.DivisionByZeroResultsIntoOverApproximation
5 ...

1Only the relevant part is shown while the rest of the output is ommitted for clarity.

63

However, if we have a flawed implementation, we get an error:

1 $./ RangeTest
2 ...
3 [RUN] RangeTest.DivisionByZeroResultsIntoOverApproximation
4 RangeTest.cc :4512: Failure
5 Value of: exact_div(Range(Interval(I<int >(1), I<int >(5))),
6 Range(Interval(I<int >(0), I<int >(0))))
7 Actual: { (0, 2147483647) }
8 Expected: Range(Interval(I<int >(vmin <int >()), I<int >(vmax <int >())))
9 Which is: { (-2147483648 , 2147483647) }
10 [FAILED] RangeTest.DivisionByZeroResultsIntoOverApproximation
11 ...

The output clearly says what is the expected output and what we have actually got from
exact div(). The main advantage of using a unit testing framework like this is that it is
very simple to add and run tests, and quickly evaluate which tests have passed and which
have not. Otherwise, we would either have to come up with a hand-crafted solution, thus
reinventing the wheel, or to check the outputs manually, which is tedious and error-prone.

The overall number of unit tests created for the underlying classes is shown in Table 7.1.
They are placed in vra/tests-unit.

Table 7.1: Overall number of unit tests for underlying classes

Class Number of unit tests

Number 201
Range 309
MemoryPlace 12
OperandToMemoryPlace 17
Utility 19

All in all, the unit-testing code has 11136 lines, including comments and empty lines. To
run all the unit tests, one can use the run-all-unit-tests.sh script.

7.2 Overall Tests

Apart from unit tests, discussed in the previous section, another type of tests was used to
test the analyser: overall tests. They are focused on testing the analyser as a whole by
providing an input C source code and a reference output from the analyser. We have then
created a shell script, tests-run.sh, which runs the analyser over all tests, gathers their
outputs, and compares them with the reference outputs. This way of testing also gives us
a feedback when changing something in the analyser because when a test fails, a diff is
provided.

When all tests pass, the following output is emitted:

1 $./tests -run.sh
2 Running the analyser on tests in ’tests’...
3
4 test -0001.c [OK]
5 test -0002.c [OK]

64

6 test -0003.c [OK]
7 ...
8
9 Passed: 82/82
10 Failed: 0/82

However, when a test fails, a FAIL message is emitted, including a diff:

1 $./tests -run.sh
2 Running the analyser on tests in ’tests’...
3
4 test -0001.c [OK]
5 test -0002.c [FAIL]
6 21c21
7 < x.a = { <2, 2> }
8 ---
9 > x.a = { <1, 1> }
10 test -0003.c [OK]
11 ...
12
13 Passed: 81/82
14 Failed: 1/82

We can then check whether the new output is correct or not. For example, when improving
the analysis, the new result may be more accurate.

Another script that we have created, called tests-gen-ref-outputs.sh, can be used to
(re)generate the reference test outputs. It may be used, for example, if we just change the
format of the output from the analyser and we want to regenerate all the reference tests to
match the new format.

As we have already said, the overall tests are focused on testing the analyser as a whole
rather than testing the individual components (for this purpose, we use unit tests). They in-
clude tests that check the results of value analysis over programs having multiple functions,
assignments, control-flow statements like if, if-else and loops.

We have created over 80 overall tests. They are placed in vra/tests-overall.

7.3 Evaluation

The developed analyser was tested on two systems: a 64b Gentoo Linux distribution running
kernel 3.6.11 and gcc version 4.7.2, and a 64b Arch Linux distribution with kernel 3.8.6
and gcc 4.8.0. The used version of Code Listener was 2013-04-28-fa6664314a, obtained
from its Git repository [16]. On both of these systems, all the tests successfully passed. In
all the performed tests, the analyser returned correct results with respect to safety, i.e. all
the returned ranges were either precise or an over-approximation of the precise results.

Finally, the created unit tests will be of a great help when extending the analyser in the
future, for the following two reasons. The first one is that they provide a safety net when
modifying the classes. If a modification that breaks the functionality is introduced, their
failure can alert us that what we did might not have been correct. The second one is that
they show a sample way of using the API of the classes underlying the analyser. Indeed,
every unit test shows how a particular class is used under certain circumstances. This may
help to grasp the API more easily than from a standalone Doxygen documentation.

65

Chapter 8

Conclusion

In this work, we have presented the design and implementation of a value-range analyser
over C programs. The analyser is built on top of the Code Listener architecture, which
simplified its implementation because we did not have to deal with parsing of the input
C program. The analyser was tested by an extensive suite of unit tests, and also by tests
that check the analyser as a whole. The evaluation of the performed tests suggest that the
analyser is safe, which was the primary goal. Its code base is formed by nearly 20 000 lines
of code (including unit tests). In a direct connection with the topic of the present work, we
have published a paper in the local student conference EEICT 2013 [54].

In its general form, value-range analysis represents a topic for a dissertation thesis rather
than for a master’s thesis. This is caused by a narrow focus of many methods that have
been designed to deal with value-range analysis of C programs. Indeed, most of them
require certain condition to be satisfied in order for the method to work properly. The
reason is that the C language standard leaves many scenarios implementation-defined or
even undefined. Moreover, its weak type system allows one to bypass type checks and create
hard-to-properly-analyse code.

To sum up our experience with developing a tool for value-range analysis, we were able to
design and implement an analyser that can handle on certain type of programs (see the
limitations in Section 5.8) during the course of two semesters. The hardest work was to
properly implement the underlying classes representing numbers, ranges, and operations
over them. The reason is that the C standard requires many types of conversions to be
done, and, as we have already mentioned, leaves many situations implementation-defined
or undefined. This had to be properly reflected in the underlying classes. As for the Code
Listener architecture, its documentation is sometimes unclear, but its author responded
promptly to our emails, which eased the development.

The analyser can be extended in several ways. First, switching from intraprocedural analysis
into interprocedural analysis would make the results more precise. Second, an implementa-
tion of some sort of alias analysis would make the analyser safe also in cases when pointers
are used (at least when they are used in a type-safe way). Third, the designed loops analysis
(see Section 5.7) can be improved to handle more types of loops. Finally, a graphical user
interface may be added to the analyser to make the output fancier.

66

The developed analyser is freely available on the following web site:

http://www.stud.fit.vutbr.cz/~xduric00/vra/

It is distributed under the GNU GPL v3 license. Apart from sources of the analyser, the
web site also provides a documentation of the application interface.

67

http://www.stud.fit.vutbr.cz/~xduric00/vra/

Appendix A

Example of Analysis

In this appendix, we present a complete example of using the developed analyser to find
a buffer-overflow vulnerability in a simple C program. Consider the source code in Figure 3.1
from Section 3.1, which is for convenience repeated below.

1 #include <stdio.h>
2
3 int main(int argc , const char *argv [])
4 {
5 int importantData = 1;
6 int buffer [10];
7
8 int i;
9 for (i = 0; i <= 10; i++) {
10 buffer[i] = 9999;
11 }
12
13 printf("importantData = %d\n", importantData);
14
15 return 0;
16 }

Let us assume that this code is stored in a file named example.c. After compiling and
building our analyser (see the README file on the enclosed CD), we may run it over the code
by issuing the following command:

./gcc -install/bin/gcc -fplugin=vra_build/libvra.so -fplugin -arg -libvra -
dump -pp example.c

We force gcc to use our value-analysis plugin to inspect the source code. What we obtain
is an output divided into two parts. The first part is a dump of the Code Listener’s
intermediate representation of our program:

1 main(%arg1: %mF2160:argc , %arg2: %mF2161:argv):
2 goto L1
3
4 L1:
5 %mF2164:importantData := 1
6 %mF2166:i := 0
7 goto L2
8
9 L3:

68

10 %mF2165:buffer [% mF2166:i] := 9999
11 %mF2166:i := (% mF2166:i + 1)
12 goto L2
13
14 L2:
15 %r1048577 := (% mF2166:i <= 10)
16 if (% r1048577)
17 goto L3
18 else
19 goto L4
20
21 L4:
22 printf("importantData = %d\n", %mF2164:importantData)
23 %r2171 := 0
24 goto L5
25
26 L5:
27 ret %r2171

In this dump, we see that there is a single function, main(). It is divided into five basic
blocks, labeled L1 through L5. As you can see, there is no more any evidence of the for
loop that was present in the original source code. Morever, all operations were converted
into a uniform form. For example, the expression i <= 10 is first evaluated and the result
is stored into an artificial variable %r1048577. This variable is then used in the subsequent
condition. Nevertheless, even though the for loop is no longer present in the code in its
original, structured form, by inspecting the code, we immediately see that it does the same
computation as the original program.

For clarity, a graphical representation of the above code is given below in the form of
a control-flow graph:

importantData = 1
i = 0

if (i<=10)

buffer[i] = 9999
i = i + 1

printf(...)
return 0

true

false

L1

L2

L3

L4

Notice that as buffer is unititialized in L1, it does not appear in the dump from the
analyser nor in the control-flow graph.

The second—and the most important—information provided by the analyser are the ranges
the variables may have in the basic blocks L1 through L5:

1 ---------- Function main() ----------
2 Block L1[IN] at lines from 5 to 9:
3 Block L1[OUT]:
4 i = { <0, 0> }
5 importantData = { <1, 1> }
6 Block L2[IN] at lines from 9 to 9:
7 buffer [] = { <9999, 9999> }
8 i = { <0, 11> }

69

9 importantData = { <1, 1> }
10 Block L2[OUT]:
11 buffer [] = { <9999, 9999> }
12 i = { <0, 11> }
13 importantData = { <1, 1> }
14 Block L3[IN] at lines from 10 to 10:
15 buffer [] = { <9999, 9999> }
16 i = { <0, 10> }
17 importantData = { <1, 1> }
18 Block L3[OUT]:
19 buffer [] = { <9999, 9999> }
20 i = { <1, 11> }
21 importantData = { <1, 1> }
22 Block L4[IN] at lines from 13 to 15:
23 buffer [] = { <9999, 9999> }
24 i = { <0, 11> }
25 importantData = { <1, 1> }
26 Block L4[OUT]:
27 buffer [] = { <9999, 9999> }
28 i = { <0, 11> }
29 importantData = { <1, 1> }
30 Block L5[IN] at lines from 16 to 16:
31 buffer [] = { <9999, 9999> }
32 i = { <0, 11> }
33 importantData = { <1, 1> }
34 Block L5[OUT]:
35 buffer [] = { <9999, 9999> }
36 i = { <0, 11> }
37 importantData = { <1, 1> }

The output contains the ranges of variables for every input to a basic block and every
output of the block. For example, the ranges in L3[IN] say that at the beginning of the
original for loop’s body (line 10), i may have values from the interval 〈0, 10〉. Since we
know that buffer has 10 elements, and we are accessing it by i in the loop, this may
imply that there is an invalid access. This needs not to be the case as the analyser may
over-approximate the values, but after a quick inspection, we find out that we have really
run into an “off-by-one” error here.

Even though the output is not as precise as the hypothetical analyser in Figure 3.2 from
Section 3.1, it may still be valuable when searching for buffer overflow vulnerabilities or
other related issues.

70

Appendix B

Contents of the Enclosed CD

The enclosed CD has the following contents:

• README: a file summarizing the contents of the CD,

• thesis.pdf: an electronic version of this text,

• thesis/: a source code of this text,

• predator/: a source code of the Code Listener infrastructure (from the time of writing
this thesis),

• vra/: a source code of the value-range analyser,

• api-documentation/: a generated documentation of the analyser’s application inter-
face (API).

71

Bibliography

[1] AbsInt team. StackAnalyzer: Stack Usage Analysis.
http://www.absint.com/stackanalyzer/index.htm. [cit. 2013-01-25].

[2] AbsInt team. ValueAnalyzer: Static Value Analysis.
http://www.absint.com/valueanalyzer/index.htm. [cit. 2013-01-25].

[3] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques, and Tools (2nd ed.). Addison-Wesley, 2006. ISBN 0201100886.

[4] P. Baudin, L. Correnson, and Z. Dargaye. WP Plug-in (Draft) Manual.
http://frama-c.com/download/wp-manual-Oxygen-20120901.pdf. [cit.
2013-01-21].

[5] P. Baudin, P. Cuoq, J. Filliâtre, C. Marché, B. Monate, Y. Moy, and V. Prevosto.
ACSL: ANSI/ISO-C Sprecification Language.
http://frama-c.com/download/acsl-implementation-Oxygen-20120901.pdf.
[cit. 2013-01-25].

[6] K. Beck. Test Driven Development: By Example. Addison-Wesley, 2002.
ISBN 978-0321146533.

[7] L. Boettger. The Morris Worm: How it Affected Computer Security and Lessons
Learned by it. http://www.giac.org/paper/gsec/405/
morris-worm-affected-computer-security-lessons-learned/100954. [cit.
2013-02-26].

[8] R. Bonichon and B. Yakobowski. Frama-C’s metrics plug-in.
http://frama-c.com/download/metrics-manual-Oxygen-20120901.pdf. [cit.
2013-01-21].

[9] J. Boulanger, editor. Static Analysis of Software: The Abstract Interpretation. Wiley,
2012. ISBN 978-1-84821-320-3.

[10] V. Campos, R. Rodrigues, I. Costa, and F. Pereira. Tool for Static Analysis of Whole
Programs. http://range-analysis.googlecode.com/svn-history/r203/trunk/
doc/Manuscript/DTool/paper.pdf. [cit. 2013-02-24].

[11] J. Cong, Y. Fan, G. Han, Y. Lin, J. Xu, Z. Zhang, and X. Cheng. Bitwidth-aware
scheduling and binding in high-level synthesis. In Proceedings of the 2005 Asia and
South Pacific Design Automation Conference, ASP-DAC ’05, pages 856–861, New
York, NY, USA, 2005. ACM.

72

http://www.absint.com/stackanalyzer/index.htm
http://www.absint.com/valueanalyzer/index.htm
http://frama-c.com/download/wp-manual-Oxygen-20120901.pdf
http://frama-c.com/download/acsl-implementation-Oxygen-20120901.pdf
http://www.giac.org/paper/gsec/405/morris-worm-affected-computer-security-lessons-learned/100954
http://www.giac.org/paper/gsec/405/morris-worm-affected-computer-security-lessons-learned/100954
http://frama-c.com/download/metrics-manual-Oxygen-20120901.pdf
http://range-analysis.googlecode.com/svn-history/r203/trunk/doc/Manuscript/DTool/paper.pdf
http://range-analysis.googlecode.com/svn-history/r203/trunk/doc/Manuscript/DTool/paper.pdf

[12] L. Correnson, P. Cuoq, F. Kirchner, V. Prevosto, A. Puccetti, J. Signoles, and
B. Yakobowski. Frama-C User Manual.
http://frama-c.com/download/user-manual-Oxygen-20120901.pdf. [cit.
2013-01-21].

[13] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings of
the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 238–252, 1977.

[14] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski.
Frama-C’: A software analysis perspective. http://sefm2012.city.academic.gr/
other/presentations/SEFM/session4/Yakobowski.pdf. [cit. 2013-01-24].

[15] P. Cuoq, V. Prevosto, and B. Yakobowski. Frama-C’s value analysis plug-in.
http://frama-c.com/download/value-analysis-Oxygen-20120901.pdf. [cit.
2013-01-21].

[16] K. Dudka. Predator. https://github.com/kdudka/predator. [cit. 2013-04-20].

[17] K. Dudka, P. Peringer, and T. Vojnar. Code listener.
http://www.fit.vutbr.cz/research/groups/verifit/tools/code-listener/.
[cit. 2013-01-07].

[18] K. Dudka, P. Peringer, and T. Vojnar. An easy to use infrastructure for building
static analysis tools. http://www.fit.vutbr.cz/research/groups/verifit/
tools/code-listener/cl-ppt.pdf. [cit. 2013-01-07].

[19] K. Dudka, P. Peringer, and T. Vojnar. FAV 2011: GCC plug-ins, predator.
https://www.fit.vutbr.cz/study/courses/FAV/public/Lectures/

additional-lecture-predator.pdf. [cit. 2013-01-07].

[20] K. Dudka, P. Peringer, and T. Vojnar. Predator.
http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/. [cit.
2013-01-13].

[21] K. Dudka, P. Peringer, and T. Vojnar. An easy to use infrastructure for building
static analysis tools. In 13th International Conference on Computer Aided Systems
Theory—EUROCAST’11, pages 328–329, Las Palmas, Spain, 2011. Springer-Verlag.
ISBN 978-84-693-9560-8.

[22] M. Fowler et al. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999. ISBN 978-0201485677.

[23] International Organization for Standardization. [ISO/IEC 14882:1998] ISO/IEC.
Programming Languages–C++. Geneva, Switzerland, 1998.

[24] International Organization for Standardization. [ISO/IEC 9899:1999] ISO/IEC.
Programming Languages–C. Geneva, Switzerland, 1999.

[25] Frama team. The Frama-C platform. http://frama-c.com. [cit. 2013-01-23].

73

http://frama-c.com/download/user-manual-Oxygen-20120901.pdf
http://sefm2012.city.academic.gr/other/presentations/SEFM/session4/Yakobowski.pdf
http://sefm2012.city.academic.gr/other/presentations/SEFM/session4/Yakobowski.pdf
http://frama-c.com/download/value-analysis-Oxygen-20120901.pdf
https://github.com/kdudka/predator
http://www.fit.vutbr.cz/research/groups/verifit/tools/code-listener/
http://www.fit.vutbr.cz/research/groups/verifit/tools/code-listener/cl-ppt.pdf
http://www.fit.vutbr.cz/research/groups/verifit/tools/code-listener/cl-ppt.pdf
https://www.fit.vutbr.cz/study/courses/FAV/public/Lectures/additional-lecture-predator.pdf
https://www.fit.vutbr.cz/study/courses/FAV/public/Lectures/additional-lecture-predator.pdf
http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/
http://frama-c.com

[26] Frama team. Frama-C’s Slicing plug-in. http://frama-c.com/slicing.html. [cit.
2013-01-26].

[27] Free Software Foundation. The GNU multiple precision arithmetic library.
http://gmplib.org/. [cit. 2013-04-25].

[28] GCC Contributors. Gimple - GNU GCC internals.
http://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html. [cit. 2013-01-13].

[29] W. J. Gilbert. Modern Algebra with Applications. Wiley-Interscience, 2002.
ISBN 978-0471235439.

[30] P. Habermehl, L. Holík, A. Rogalewicz, J. Šimácek, and T. Vojnar. Forester.
http://www.fit.vutbr.cz/research/groups/verifit/tools/forester/. [cit.
2013-01-13].

[31] W. H. Harrison. Compiler analysis of the value ranges for variables. Software
Engineering, IEEE Transactions on, SE-3(3):243 – 250, 1977.

[32] P. Herrmann. Frama-C’s annotation generator plug-in.
http://frama-c.com/download/rte-manual-Oxygen-20120901.pdf. [cit.
2013-01-21].

[33] U. P. Khedker, A. Sanyal, and B. Karkare. Data Flow Analysis: Theory and
Practice. CRC Press, 2009. ISBN 978-0849328800.

[34] B. Křena and T. Vojnar. Automated formal analysis and verification: an overview.
International Journal of General Systems, 2013(42):335–365, 2013.

[35] G. Lann. An Analysis of the Ariane 5 Flight 501 Failure—A System Engineering
Perspective.
http://www.niwotridge.com/Resources/Ariane5Resources/78890339.pdf. [cit.
2013-02-26].

[36] O. Lengál and T. Vojnar. FAV 2012: Abstrat interpretation. https://www.fit.
vutbr.cz/study/courses/FAV/public/Lectures/fav-lecture-09.pdf. [cit.
2013-02-21].

[37] P. Lokuciejewski, D. Cordes, H. Falk, and P. Marwedel. A fast and precise static
loop analysis based on abstract interpretation, program slicing and polytope models.
In Proceedings of the 7th annual IEEE/ACM International Symposium on Code
Generation and Optimization, CGO ’09, pages 136–146, Washington, DC, USA, 2009.
IEEE Computer Society.

[38] S. Mahlke, R. Ravindran, M. Schlansker, R. Schreiber, and T. Sherwood. Bitwidth
cognizant architecture synthesis of custom hardware accelerators. Trans.
Comp.-Aided Des. Integ. Cir. Sys., 20:1355–1371, 2006.

[39] F. Nielson, H. R. Nielson, and Ch. Hankin. Principles of Program Analysis. Springer,
2005. ISBN 3-540-65410-0.

[40] NIST. National vulnerability database. http://nvd.nist.gov/home.cfm. [cit.
2013-02-26].

74

http://frama-c.com/slicing.html
http://gmplib.org/
http://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html
http://www.fit.vutbr.cz/research/groups/verifit/tools/forester/
http://frama-c.com/download/rte-manual-Oxygen-20120901.pdf
http://www.niwotridge.com/Resources/Ariane5Resources/78890339.pdf
https://www.fit.vutbr.cz/study/courses/FAV/public/Lectures/fav-lecture-09.pdf
https://www.fit.vutbr.cz/study/courses/FAV/public/Lectures/fav-lecture-09.pdf
http://nvd.nist.gov/home.cfm

[41] R. Osherove. The Art of Unit Testing. Manning Publications, 2009.
ISBN 978-1933988276.

[42] R. C. J. Patterson. Accurate static branch prediction by value range propagation.
SIGPLAN Not., 30(6):67–78, 1995.

[43] PolySpace team. Static Analysis with Polyspace Products.
http://www.mathworks.com/products/polyspace/. [cit. 2013-01-25].

[44] T. Salminen and E. Korhonen. GCC Gimple.
https://wiki.aalto.fi/display/t1065450/GCC+Gimple. [cit. 2013-01-07].

[45] A. Simon. Value-Range Analysis of C Programs: Towards Proving the Absence of
Buffer Overflow Vulnerabilities. Springer, 2008. ISBN 978-1848000162.

[46] IEEE Computer Society. IEEE standard for floating-point arithmetic. IEEE.
doi:10.1109/IEEESTD.2008.4610935. ISBN 978-0-7381-5753-5. IEEE Std 754-2008.

[47] R. Sol, C. Guillon, F. M. Q. Pereira, and M. A. S. Bigonha. Dynamic elimination of
overflow tests in a trace compiler. In Proceedings of the 20th international conference
on Compiler construction: part of the joint European conferences on theory and
practice of software, CC’11/ETAPS’11, pages 2–21, Berlin, Heidelberg, 2011.
Springer-Verlag.

[48] M. Stephenson, J. Babb, and S. Amarasinghe. Bidwidth analysis with application to
silicon compilation. SIGPLAN Not., 35(5):108–120, 2000.

[49] N. Stouls and V. Prevosto. Aoräı Plugin Tutorial.
http://frama-c.com/download/aorai-manual-Oxygen-20120901.pdf. [cit.
2013-01-21].

[50] S. Tallam and R. Gupta. Bitwidth aware global register allocation. SIGPLAN Not.,
38(1):85–96, 2003.

[51] GCC Team. GCC, the GNU Compiler Collection. http://gcc.gnu.org/. [cit.
2013-02-26].

[52] Google Test Team. Google test – Google C++ Testing Framework.
http://code.google.com/p/googletest/. [cit. 2013-03-20].

[53] Sparse Team. Sparse. https://sparse.wiki.kernel.org/. [cit. 2013-01-17].

[54] D. Ďuričeková. Static value-range analysis over C programs. In Proceedings of the
19th Conference STUDENT EEICT 2013 Volume 2, pages 304–306, Brno, CZ, 2013.

[55] A. Venet and G. Brat. Precise and efficient static array bound checking for large
embedded c programs. SIGPLAN Not., 39:231–242, 2004.

[56] D. Wagner, S. F. Jeffrey, E. A. Brewer, and A. Aiken. A first step towards automated
detection of buffer overrun vulnerabilities. In In Network and Distributed System
Security Symposium, pages 3–17, 2000.

[57] B. Yakobowski and R. Bonichon. Frama-C’s Mthread plug-in.
http://frama-c.com/download/mthread-manual-Oxygen-20120901.pdf. [cit.
2013-01-21].

75

http://www.mathworks.com/products/polyspace/
https://wiki.aalto.fi/display/t1065450/GCC+Gimple
http://frama-c.com/download/aorai-manual-Oxygen-20120901.pdf
http://gcc.gnu.org/
http://code.google.com/p/googletest/
https://sparse.wiki.kernel.org/
http://frama-c.com/download/mthread-manual-Oxygen-20120901.pdf

	Introduction
	Data-Flow Analysis
	Introduction to Data-Flow Analysis
	Two Examples
	Mathematical Background
	Intraprocedural Analysis

	Value-Range Analysis
	A Motivating Example
	Approaches
	Abstract Interpretation
	Other Approaches

	Existing Tools
	The Frama-C Platform
	Other Tools

	Code Listener Infrastructure
	Intermediate Source Code Representation
	Architecture
	Code Listener API

	Design of the Analyser
	High-Level View
	Unified Representation of Numbers
	Interval Ranges and Their Representation
	Memory Places and Conversion of Operands To Them
	Value-Range Analysis
	Global Variables Analysis
	Analysis of Loops
	Limitations

	Implementation
	Number: Unified Representation of Numbers
	Range: Representation of Ranges
	MemoryPlace: A Representation of Memory Places
	OperandToMemoryPlace: From Operands To Memory Places
	ValueAnalysis: Value-Range Analysis
	GlobAnalysis: Analysis of Global Variables
	LoopFinder: Analysis of Loops
	Utilities: Various Auxiliary Functions
	Interface and Output Format of the Analyser
	Metrics

	Testing and Evaluation
	Unit Tests
	Overall Tests
	Evaluation

	Conclusion
	Example of Analysis
	Contents of the Enclosed CD

