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NECESSARY CONDITIONS FOR HYPONORMALITY

OF TOEPLITZ OPERATORS ON THE FOCK SPACE

ANURADHA GUPTA and SHIVAM KUMAR SINGH

Abstract. In this article, the necessary conditions for the hyponormality of Toeplitz

operator Tφ with harmonic polynomial symbols φ on the Fock space are explored.

1. Introduction

Let dA denote the ordinary Lebesgue area measure on the complex plane C. Let
the space L2(C, dµ) be the Hilbert space of all Lebesgue measurable, absolute
square integrable functions on C with the norm given by

‖f‖ =

(∫
C
|f(z)|2dµ(z)

)1/2

for each f ∈ L2(C, dµ)

where the measure is given by dµ(z) = e−|z|
2

dA(z). The Fock space F2 consists of
all entire functions in L2(C, dµ) and is a closed subspace of L2(C, dµ). The space
F2 is a Hilbert space with the inner product inherited from L2(C, dµ) given by

〈f, g〉 =

∫
C
f(z)g(z)dµ(z) where f, g ∈ F2.

For n ≥ 0, let en(z) = zn√
πn!

, then the set {en}n≥0 forms an orthonormal basis

for F2(see [12]). Let P denote the orthogonal projection from the space L2(C, dµ)
onto the space F2. Then, for any f ∈ L2(C, dµ) and z ∈ C, it follows that

P (f(z)) = 〈Pf(w),Kz(w)〉 =
1

π

∫
C
f(w)ezw̄dµ(w)

where Kz(w) = K(z, w) = 1
π e

wz̄ is the Fock Kernel. The Fock space plays a
special role in quantum physics, harmonic analysis on the Heisenberg group, and
partial differential equations.

Let the space L∞(C) be the set of all essentially bounded Lebesgue measurable
functions f on the entire complex plane C. The space L∞(C) is the Banach
space with the norm ‖f‖∞ = ess sup{|f(z)| : z ∈ C}, for f ∈ L∞(C). Then, for
φ ∈ L∞(C), the multiplication operator denoted by Mφ, is defined as the operator
Mφ : L2(C, dµ) −→ L2(C, dµ) such that Mφ(f) = φf where f ∈ L2(C, dµ) and
the Toeplitz operator is the operator Tφ defined on F2 so that Tφ(f) = P (φf) for
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f ∈ F2. Consider the set D = {φ : φ is measurable and φf ∈ L2(C, dµ) for all f ∈
F2}. Then, L∞(C) ⊂ D and Toeplitz operator Tφ is also well defined for φ ∈ D.
The study of Toeplitz operators gained voluminous importance due to its multi-
directional applications. Toeplitz operators arise in many applications such as
prediction theory, wavelet analysis and differential equations.

A bounded linear operator S on a Hilbert space is said to be hyponormal if
its self-commutator [S?, S] = S?S − SS? is positive definite, where S? is the
adjoint of the operator S. In [1, 2], C. Cowen gave an elegant characterization of
hyponormal Toeplitz operator on the Hardy space. Later on, Nakazi and Takahashi
[7] also characterized the hyponormality of Toeplitz operators on Hardy space
using a different approach given by Cowen. In the Bergman space, Sadaroui [10],
Hwang and Lee [3–6], Phukon and Munmun [8, 9] studied the hyponormality of
Toeplitz operators. Motivated by the work of these authors, we have studied
the hyponormality of Toeplitz operators Tφ on Fock space F2 with polynomial
harmonic symbols φ. We have obtained some necessary conditions for Toeplitz
operators to be hyponormal on the Fock space.

2. Necessary conditions for hyponormality

Since the hyponormality of operators is translation invariant, we may assume that
f(0) = g(0) = 0 for f, g ∈ D. The following proposition follows from the definition
of Toeplitz operators.

Proposition 2.1. If f, g ∈ D, then the following equations hold:

(1) Tf+g = Tf + Tg
(2) T ?f = Tf̄
(3) Tf̄Tg = Tf̄g if f or g is analytic.

Lemma 2.2. If P is an orthogonal projection on F2, then for any non-negative
integers s and t, we have

P (z̄tzs) =

{
s!

(s−t)!z
s−t, for s ≥ t

0, otherwise.
(2.1)

Proof. For non-negative integers s and t with s ≥ t, using the measure dµ(z),
we have

P (z̄tzs) =
〈
P (w̄tws),Kz(w)

〉
=

1

π

∫
C
w̄twsezw̄dµ(w) =

1

π

∫
C
w̄twsezw̄−|w|

2

dA(w)

=
1

π

∫
C
w̄tws

∞∑
n=0

(zw̄)n

n!
e−|w|

2

dA(w)

=
1

π

∞∑
n=0

zn

n!

∫
C
w̄tws(w̄)ne−|w|

2

dA(w).
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The last step follows from the fact that the series is uniformly convergent. Now
letting w = reiθ for 0 ≤ θ ≤ 2π and 0 < r <∞, we have

P (z̄tzs) =
1

π

∞∑
n=0

zn

n!

∞∫
r=0

2π∫
θ=0

rs+n+t+1ei(s−n−t)θe−r
2

dθdr

= 2
zs−t

(s− t)!

∞∫
r=0

r2s+1e−r
2

dr

= 2
zs−t

(s− t)!

∞∫
t=0

tse−t
dt

2
( for t = r2)

=
zs−t

(s− t)!
Γ(s+ 1),

where Γ denotes the Gamma function. Therefore, for s ≥ t, we have

P (z̄tzs) =
s!

(s− t)!
zs−t.

Similarly, for s < t, it follows that

P (z̄tzs) =
1

π

∞∑
n=0

zn

n!

∞∫
r=0

2π∫
θ=0

rs+n+t+1ei(s−n−t)θe−r
2

dθdr

=
1

π

∞∑
n=0

zn

n!

 ∞∫
r=0

rs+n+t+1e−r
2

dr

2π∫
θ=0

ei(s−n−t)θdθ

 .

Now using the fact
2π∫
θ=0

eimθdθ =

{
2π if m = 0

0 otherwise
and n 6= s−t (because s−t < 0),

we get that
2π∫
θ=0

ei(s−n−t)θdθ = 0 for all n ≥ 0. Hence, P (z̄tzs) = 0.

Thus, it follows that (2.1) holds. �

For non-negative integers s and t, from ([11], Lemma 2.1), it follows that〈
zs, zt

〉
=

{
πs! if s = t

0 otherwise.
(2.2)

Toeplitz operators Tφ with symbols φ ∈ D of the form φ(z) = zk, for some positive
integers k, are always hyponormal on the Fock space. But with more general
symbols, Toeplitz operators need not be hyponormal. In the following theorem, we
present generalised necessary conditions for the hyponormality of Toeplitz operator
Tφ, with a polynomial harmonic symbol φ in D.

Theorem 2.3. Let φ(z) = f(z) + g(z), where f(z) =
∑N
n=1 anz

n and g(z) =∑N
n=1 a−nz

n; N ≥ 2 is an integer. If Tφ is hyponormal, then

(1) |a1|2 +
∑N
n=2(n+ 1)!|an|2 ≥ |a−1|2 +

∑N
n=2(n+ 1)!|a−n|2.
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(2)
∑N
n=1 n!|an|2 ≥

∑N
n=1 n!|a−n|2.

(3)
(∑N

n=1 n!(|an|2 − |a−n|2)
)(∑N

n=2(n+ 1)!(|an|2 − |a−n|2)

+(|a1|2 − |a−1|2)
)
≥
∣∣∣∑N

n=2 n!(anan−1 − a−na−(n−1))
∣∣∣2 .

Proof. Let the operator Tφ be hyponormal, then for complex numbers c0, c1, it
follows that

〈(Tφ?Tφ − TφTφ?)(c0 + c1z), (c0 + c1z)〉 ≥ 0 (2.3)

where φ(z) =
∑N
n=1 anz

n +
∑N
n=1 a−nz̄

n.
Consider

Tφ(c0 + c1z) = P (φ(c0 + c1z))

=P

[
c0

(
N∑
n=1

anz
n +

N∑
n=1

a−nz̄
n

)
+ c1

(
N∑
n=1

anz
n+1 +

N∑
n=1

a−nz̄
nz

)]
.

Then, by using Lemma 2.2, it follows that

Tφ(c0 + c1z) = c0

N∑
n=1

anz
n + c1

(
N∑
n=1

anz
n+1 +

N∑
n=1

a−nP (z̄nz)

)

= c0

N∑
n=1

anz
n + c1

(
N∑
n=1

anz
n+1 + a−1

)
(since P (z̄nz) = 0 for n > 1). Therefore,〈

T ?φTφ(c0 + c1z), (c0 + c1z)
〉

= 〈Tφ(c0 + c1z), Tφ(c0 + c1z)〉

=

〈
c0

N∑
n=1

anz
n + c1

(
a−1 +

N∑
n=1

anz
n+1

)
, c0

N∑
n=1

anz
n

+ c1

(
a−1 +

N∑
n=1

anz
n+1

)〉
.

Now from relation (2.2), it follows that〈
T ?φTφ(c0 + c1z), (c0 + c1z)

〉
= |c0|2

N∑
n=1

|an|2πn! + |c1|2
(
π|a−1|2 +

N∑
n=1

|an|2π(n+ 1)!

)

+ 2Re c0c1

〈
N∑
n=1

anz
n,

N∑
m=1

amz
m+1

〉

= π

{
|c0|2

N∑
n=1

|an|2n! + |c1|2
(
|a−1|2 +

N∑
n=1

|an|2(n+ 1)!

)

+ 2Re c0c1

N∑
n=2

anan−1n!

}
. (2.4)
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Again, as T ?φ = Tφ, by Lemma 2.2, we have

T ?φ (c0 + c1z) = P (φ(c0 + c1z))

=P

[
c0

(
N∑
n=1

anz̄
n +

N∑
n=1

a−nz
n

)
+ c1

(
N∑
n=1

anz̄
nz +

N∑
n=1

a−nz
n+1

)]

= c0

N∑
n=1

a−nz
n + c1

(
a1 +

N∑
n=1

a−nz
n+1

)
.

Thus, by relation (2.2), we get〈
TφT

?
φ (c0 + c1z), (c0 + c1z)

〉
=
〈
T ?φ (c0 + c1z), T

?
φ (c0 + c1z)

〉
=

〈
c0

N∑
n=1

a−nz
n + c1

(
a1 +

N∑
n=1

a−nz
n+1

)
, c0

N∑
n=1

a−nz
n

+ c1

(
a1 +

N∑
n=1

a−nz
n+1

)〉

= |c0|2
N∑
n=1

|a−n|2πn! + |c1|2
(
π|a1|2 +

N∑
n=1

|a−n|2π(n+ 1)!

)

+ 2Re c0c1

〈
N∑
n=1

a−nz
n,

N∑
m=1

a−mz
m+1

〉

= π

{
|c0|2

N∑
n=1

|a−n|2n! + |c1|2
(
|a1|2 +

N∑
n=1

|a−n|2(n+ 1)!

)

+ 2Re c0c1

N∑
n=2

a−na−(n−1)n!

}
. (2.5)

Therefore, by equations (2.4) and (2.5), it follows〈(
T ?φTφ − TφT ?φ

)
(c0 + c1z), (c0 + c1z)

〉
=π

{
|c0|2

(
N∑
n=1

n!(|an|2 − |a−n|2)

)
+ |c1|2

(
|a−1|2 − |a1|2

)
+ |c1|2

(
N∑
n=1

(n+ 1)!(|an|2 − |a−n|2)

)

+ 2Re

(
c0c1

N∑
n=2

n!(anan−1 − a−na−(n−1))

)}
.

Now from inequality (2.3), we get that

|c0|2
(

N∑
n=1

n!(|an|2 − |a−n|2)

)
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+ |c1|2
(
|a1|2 − |a−1|2 +

N∑
n=2

(n+ 1)!(|an|2 − |a−n|2)

)

+ 2|c0c1|

∣∣∣∣∣
N∑
n=2

n!(anan−1 − a−na−(n−1))

∣∣∣∣∣ ≥ 0. (2.6)

Now the following three cases arise:

Case (1) If c0 = 0, c1 6= 0, then, by inequality (2.6), it follows that

|a1|2 − |a−1|2 +

N∑
n=2

(n+ 1)!(|an|2 − |a−n|2) ≥ 0

or, equivalently,

|a1|2 +

N∑
n=2

(n+ 1)!|an|2 ≥ |a−1|2 +

N∑
n=2

(n+ 1)!|a−n|2.

Case (2) If c1 = 0, c0 6= 0, then, by inequality (2.6), it follows that

N∑
n=1

n!(|an|2 − |a−n|2) ≥ 0

or, equivalently,
N∑
n=1

n!|an|2 ≥
N∑
n=1

n!|a−n|2.

Case (3) If c0, c1 6= 0, then, by inequality (2.6) it follows that∣∣∣∣c0c1
∣∣∣∣2 N∑
n=1

n!(|an|2 − |a−n|2) + 2

∣∣∣∣c0c1
∣∣∣∣
∣∣∣∣∣
N∑
n=2

n!(anan−1 − a−na−(n−1))

∣∣∣∣∣
+

(
N∑
n=2

(n+ 1)!(|an|2 − |a−n|2) + (|a1|2 − |a−1|2)

)
≥ 0

which is a quadratic polynomial in |c0/c1| that only takes on non-negative values.
But, if a quadratic polynomial f(x) = ax2 + bx + c (for a, b, c real and a ≥ 0)
takes on non negative values for all x, then it cannot have two distinct real roots.
Hence, in such a case, the above equation has a non-positive discriminant and
consequently we have,

4

(
N∑
n=1

n!(|an|2 − |a−n|2)

)(
N∑
n=2

(n+ 1)!(|an|2 − |a−n|2) + (|a1|2 − |a−1|2)

)

≥ 4

∣∣∣∣∣
N∑
n=2

n!(anan−1 − a−na−(n−1))

∣∣∣∣∣
2

or, equivalently, we get condition (3) of Theorem 2.3. �

The following examples show that the conditions in the above theorem are only
necessary but not sufficient:
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Example 2.4. Let φ(z) = z+2z2 + z̄3, then it satisfies the conditions of Theo-
rem 2.3. Then, by Lemma 2.2, we have Tφ(z2) = z3 +2z4 and T ?φ (z2) = z5 +2z+4.

So, by relation (2.2) it follows that
〈
T ?φTφz

2, z2
〉

= 102π and
〈
TφT

?
φ (z2), (z2)

〉
=

140π. Therefore, we get that
〈

(T ?φTφ − TφT ?φ )(z2), (z2)
〉
< 0 and thus Tφ is not

hyponormal.

The following results are direct consequences of Theorem 2.3.

Corollary 2.5. Let φ(z) = f(z) + g(z), where f(z) = amz
m + aNz

N and
g(z) = a−mz

m + a−Nz
N for 1 < m < N . Let Tφ be hyponormal. Then,

(1) For N 6= m+ 1,
(a) (m+ 1)!(|am|2 − |a−m|2) ≥ (N + 1)!(|a−N |2 − |aN |2).
(b) m!(|am|2 − |a−m|2) ≥ N !(|a−N |2 − |aN |2).

(2) For N = m+ 1,
(a) (m+ 1)!(|am|2 − |a−m|2) ≥ (m+ 2)!(|a−(m+1)|2 − |am+1|2).

(b) m!(|am|2 − |a−m|2) ≥ (m+ 1)!(|a−(m+1)|2 − |am+1|2).

(c)
{(
m!(|am|2 − |a−m|2) + (m+ 1)!(|am+1|2 − |a−(m+1)|2

)(
(m+ 1)!(|am|2 − |a−m|2) + (m+ 2)!(|am+1|2 − |a−(m+1)|2

)}
≥
[
(m+ 1)!|am+1am − a−(m+1)a−m|

]2
.

Corollary 2.6. Let φ(z) = f(z) + g(z), where f(z) = a1z + aNz
N and g(z) =

a−1z + a−Nz
N for N > 1. Let Tφ be hyponormal. Then,

(1) For N > 2,
(a) (|a1|2 − |a−1|2) ≥ N !(|a−N |2 − |aN |2).
(b) (|a1|2 − |a−1|2) ≥ (N + 1)!(|a−N |2 − |aN |2).

(2) For N = 2,{
(|a1|2 − |a−1|2 + 2(|a2|2 − |a−2|2))(|a1|2 − |a−1|2 + 6(|a2|2 − |a−2|2))

}
≥ 4|a2a1 − a−2a−1|2.

Again, the conditions in the above corollaries are only necessary but not sufficient
which is shown by the following example:

Example 2.7. Let φ(z) =
∑4
i=1 aiz

i +
∑4
j=1 a−j z̄

j ∈ D, where ai, a−j ∈ C for
1 ≤ i, j ≤ 4. Now consider following four cases:

Case (1) a2 = 5, a4 = 2
√

2, a−2 = 2, a−4 = 3, a1 = a3 = a−1 = a−3 = 0.

Then, φ(z) = 5z2 + 2z̄2 + 2
√

2z4 + 3z̄4 and it satisfies condition (1) of Corollary

2.5, for m = 2 and N = 4. Then, by Lemma 2.2, we have Tφ(z3) = 2
√

2z7 +

5z5 + 12z and so, by relation (2.2), it follows that
〈
T ?φTφ(z3), (z3)

〉
= 43464π.

Also, we have T ?φ (z3) = 3z7 + 2z5 + 30z and, again by relation (2.2), we get that〈
TφT

?
φ (z3), (z3)

〉
= 46740π. Consequently, it follows

〈
(Tφ

?Tφ − TφTφ?)(z3), (z3)
〉

= (43464− 46740)π = −3276π < 0. Thus, Tφ is not hyponormal.

Case (2) a2 = 2, a−3 = 1 and ai = 0 for all i 6= 2,−3. Then, φ(z) = 2z2 + z̄3 and
it clearly satisfies condition (2) of Corollary 2.5. Then, by Lemma 2.2 it follows
that Tφ(z4) = 2z6 + 24z and T ?φ (z4) = z7 + 24z2. Therefore, from relation (2.2), it
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follows that
〈
T ?φTφ(z4), (z4)

〉
= 3456π and

〈
TφT

?
φ (z4), (z4)

〉
= 6192π. Therefore,

we have
〈

(T ?φTφ − TφT ?φ )(z4), (z4)
〉

= −2736π < 0. Hence, Tφ is not hyponormal.

Case (3) a1 = 5, a3 = 2
√

2, a−3 = 3 and ai = 0 for all i 6= 1, 3,−3. Then,

φ(z) = 5z + 2
√

2z3 + 3z̄3, which satisfies condition (1) of Corollary 2.6, for

N = 3. Then, by Lemma 2.2 it follows that Tφ(z5) = 5z6 + 2
√

2z8 + 180z2 and

T ?φ (z5) = 25z4 + 120
√

2z2 + 3z8. Therefore, from relation (2.2), it follows that〈
T ?φTφ(z5), (z5)

〉
= 405360π and

〈
TφT

?
φ (z5), (z5)

〉
= 435480π. Consequently,〈

(T ?φTφ − TφT ?φ )(z5), (z5)
〉
< 0. Thus, Tφ is not hyponormal.

Case (4) a2 = 1, a−1 = 1, a−2 = 2 and ai = 0 for all i 6= 2,−1,−2. Then, φ(z) =
z2+z̄+2z̄2 which satisfies condition (2) of Corollary 2.6, with a1 = 0, a2 = 1, a−1 =
1, a−2 = 2. Then, by Lemma 2.2 it follows that Tφ(z2) = z4 + 2z+ 4 and T ?φ (z2) =

2z4 +z3 +2. Then, from relation (2.2), it follows that
〈
T ?φTφ(z2), (z2)

〉
= 44π and〈

TφT
?
φ (z2), (z2)

〉
= 106π. Hence,

〈
(T ?φTφ − TφT ?φ )(z2), (z2)

〉
= 44π − 106π < 0.

Thus, Tφ is not hyponormal.
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