
Computational Geometry and Heuristic Approaches

for Location Problems

M. Šeda

Institute of Automation and Computer Science

Faculty of Mechanical Engineering, Brno University of Technology

Czech Republic

Abstract—In this paper we deal with two problems, whose

common basis is to find the location of a service center for

potential customers, but with different criterion functions,

determining what we consider in these tasks as optimal. While

maximizing the coverage of an area by supermarkets, we choose a

new supermarket the location that minimises interaction (and

thus competition) with existing supermarkets. On the contrary, if

we want to provide the availability of certain services for all

customers within a reasonable distance, and yet we know in

advance where it would be possible to set up servicing points, the

goal is to minimize their number. We show that the first type of

problem can be solved in polynomial time using the Voronoi

diagram, the task of the second type leads to the set covering

problem, which is an NP-hard problem, and it is therefore

necessary to solve larger instances of a task by heuristics. It is

proposed we use a genetic algorithm approach and special

attention is paid to implementation of a repair operator for

infeasible solutions generated by the operations of crossover and

mutation.

Keywords-computational geometry; location-based service

(LBS)

I. INTRODUCTION

One of the basic considerations of retail chains is to cover
the area where it can be expected the demand for their goods,
but so that any new shop, was as close to customers who have
existing shops too far and on the other hand, new shop was far
from existing ones not to compete with themselves.

The same considerations require the tasks when we need to
obtain a large, contiguous, undeveloped piece of land on
which to build a factory, or to find the new site for a source of
pollution.

Another possible view on the customer serviceability is
given by the maximum distance which still can be considered
for shop (or other facility, such as a school, hospital)
reachable sufficiently close to be able to satisfy the requested
service. Locations, where the service centers could be situated,
and we try to find a minimum number of service centers for
providing services in reachable distance for all customers

Both aspects bring various possibilities of solving and we
deal with them in more detail in the following paragraph.

II. COMPUTATIONAL GEOMETRY APPROACH

A. Voronoi Diagrams

A Voronoi diagram of a set of sites in the plane is a
collection of regions that divide up the plane. Each region
corresponds to one of the sites and all the points in one region
are closer to the site representing the region than to any other
site (Aurenhammer 1991, de Berg et al. 2000, LaValle 2006,
Okabe et al. 2000, Šeda 2007) [1-10]. An example of the
Voronoi diagram is shown in Figure 1.

Let d(pi , pj) denote the distance between two points pi 

(xi, yi) and pj  (xj, yj) in the plane and consider the Euclidean
metric

22)()(),(jijiji yyxxppd  (1)

Then more formally, we can define Voronoi diagrams in
mathematical terms.

Definition: Let P{p1, p2, … , pn} 
2
 be a set of points

with the Cartesian coordinates (x1, y1), … , (xn, yn) where 2  n

  and pi  pj for i  j. We call the region

  2() | (,) (,) f o r i i jV p x d x p d x p j i     (2)

the planar Voronoi polygon associated with pi (or the
Voronoi polygon of pi) and the set given by

  () , , ()i nV V p V p (3)

the planar Voronoi diagram generated by P (or the
Voronoi diagram of P). We call pi of V(pi) the site or
generator point or generator of the i-th Voronoi polygon and

the set P{p1, p2, … , pn} the generator set of the Voronoi
diagram V. Hence we get

 

  





Pp pPq

i

Pp

ii

Pp

i

i i

i

i

qxdpxdx

pPqqxdpxdx

pVPV

 
























}{

2

2

),(),(|

}){(:),(),(|

)()(

(4)

International Conference of Electrical, Automation and Mechanical Engineering (EAME 2015)

© 2015. The authors - Published by Atlantis Press 545

Assume that Voronoi diagrams are non degenerate (no
four or more of its Voronoi edges have a common endpoint.
Then it is satisfied:

 Every vertex of a Voronoi diagram V(P) is a common
intersection of exactly three edges of the diagram.

 A point q is a vertex of V(P) if and only if its largest
empty circle CP(q) contains three points on its boundary.

 The bisector between points pi and pj defines an edge of
V(P) if and only if there is a point q such that CP(q) contains
both pi and pj on its boundary but no other point.

 For any q in P, V(q) is convex.

 Voronoi diagram V(P) of P is planar.

 Polygon V(pi) is unbounded if and only if pi is a point on
the boundary of convex hull of the set P (convex hull of a set
P is the smallest convex set that contains P).

 The number of vertices in the Voronoi diagram of a set

of n point sites in the plane is at most 2n5 and the number of

edges is at most 3n6.

FIGURE I. VORONOI DIAGRAM.

The fundamental algorithms and their modifications
include the incremental algorithm, random incremental
algorithm, divide and conquer algorithm and plane sweep
algorithm (or Fortune’s algorithm). More details can be found
e.g. in (Aurenhammer 1991, de Berg et al. 2000, Okabe et al.
2000) [1,2,6]. The time complexity of the incremental
algorithm is O(n

2
) in the worst case, and O(n log n) for the

other three algorithms.

B. Largest Empty Circle

From the previous properties the most interesting is that
concerning the empty circle.

Given n points in the plane, find a largest circle containing
no points of the set yet whose center is interior to the convex
hull.

The largest empty circles among all empty circles can be
found as follows:

1. Compute Voronoi diagram.

2. Compute convex hull.

3. Find all vertices of the Voronoi inside the convex hull.

4. Find all circles in these vertices.

5. Select the largest circle.

Since the time complexity of the first two steps is O(n log

n) (Aurenhammer 1991, de Berg et al. 2000) [1,2] and all
other are simpler, the total time complexity of this algorithm is
O(n log n).

FIGURE II. LARGEST EMPTY CIRCLE.

In Figure 2, points are existing positions of the service
center network, the boundary drawn by a thick line is the
convex hull, and square is the center of the largest empty
circle, determined among the Voronoi vertices that lie inside
the convex hull and it is the best place to build a new service
center.

C. How to Adapt the Previous Solution

The drawback of the previous approach is that it does not
take into account whether a location that is determined by
calculation as optimal, can be used for a new service center. It
can be occupied by another building or there is no
communication to this place, or it is owned by someone who
does not want to sell the ground. In these cases it is necessary
to move on the nearest possible place.

Another problem is determining of distances. In previous
definition of Voronoi diagram, we consider the Euclidean
metric. In a real situation, because of other buildings, the
distance of two points is not given by direct line, but the road
between them. In cities like New York, partly Barcelona,
where the streets create the rectangular system, it would be
appropriate to use rectilinear metric. The traditional Euclidean
Voronoi diagram then changes in rectilinear Voronoi diagram
and its shape is significantly modified. changed. It contains
edges only in horizontal, vertical and diagonal direction

Consider rectilinear (or Manhattan) metric

 ||||),(jijiji yyxxppd  (5)

If we use the rectilinear metric for a Voronoi diagram,
then, due to the rectilinearity, each straight-line segment of a
bisector in the now rectilinear Voronoi diagram will be either
horizontal, vertical, or inclined at 45° or 135° to the positive
direction of the x-axis

Another way how to determine distances which correspond
to real situation is to use GPS systems or a specialized
program, such a route planner Trackroad that is available from
http://www.trackroad.com.

546

http://www.trackroad.com/

III. SET COVERING PROBLEM (SCP)

A. Dmax Cover

Assume that the transport network contains m vertices, that
can be used as operating service centers, and n vertices to be
served, and for each pair of vertices vi (considered as service
centers) and vj (serviced vertex) their distance dij is given
and Dmax is the maximum distance which will be accept for
operation between the service centers and serviced vertices.

The aim is to determine which vertices must be used as
service centers so that each vertex was covered by at least one
of the centers and the total number of operating centers was
minimal.

Note:

1. A necessary condition for solvability of the task is that
all of the serviced vertices were reachable from at least one
place where an operating service center is considered.

2. Serviced vertex vj is reachable from vertex vi, which is

considered as an operating service center if dij  Dmax. If this
inequality is not satisfied, vertex vj is unreachable from vi.

If variables aij, where aij=1 or aij=0, express whether
operated vertex vj is reachable from vertex vi, which is
considered as operating service center, respectively. is not
reachable, then the set covering problem can be described by
the following mathematical model:

Minimise





m

i

iyz
1

 (6)

subject to

njya
m

i

iij ,...,1,1
1




 (7)

  miyi ,...,1,1,0  (8)

The objective function represents the number of operating
centers, constraint (7) means that each serviced vertex is
assigned at least one operating service center.

Example:

Consider the following distance matrix which expresses
service centers and serviced vertices (= customer locations)

and Dmax40.

serviced vertices (customers locations)























782132133101254258

309088773219517037

12753486745611745

3132206867138249

594460382650415

5

4

3

2

1

87654321centers service

From Dmax40 we get the reachability matrix of serviced
vertices from service centers.























01100100

10001001

00000010

11100100

00011001

5

4

3

2

1

87654321

Since only service center 3 is reachable to the second
serviced vertex (serviced vertex 2 is covered by the 3rd
service center) and only service center 1 is reachable to
service center 5, these service centers must not be omitted.
These two centers cover serviced vertices 1, 4, 5 and 2

It remains to find the service centers which cover the
remaining uncovered vertices 3, 6, 7 and 8. This can be
achieved either by selecting the service centers 2 and 5, or 4
and 5.

Thus the example has two solutions, where four vertices
are sufficient to cover serviced vertices (either 1, 3, 2, 5, or 1,

3, 4, 5).

Note:

In the general case, however, the selection of service
centers for k uncovered vertices has 2

k
 possibilities and thus

the complexity of tasks increases exponentially with the
number of uncovered vertices.

For large k we must solve it using a heuristic method
(Galinier & Hertz 2007, Michalewicz & Fogel 2004, Yagiura
et al. 2006, Zelinka et al. 2012)[3,5,9,10], e.g., by a genetic
algorithm.

IV. GENETIC ALGORITM FOR SCP

The skeleton for GA can be described as follows
(Michalewicz & Fogel 2004)[5]:

generate an initial population ;

evaluate fitness of individuals in the population ;

repeat

 select parents from the population;

 recombine (mate) parents to produce children ;

 evaluate fitness of the children ;

 replace some or all of the population by the children

until a satisfactory solution has been found ;

Since the principles of GAs are well-known, we will only
deal with GA parameter settings for the problems to be studied.
Now we describe the general settings (Michalewicz & Fogel
2004, Zelinka et al. 2012)[5,10].

Individuals in the population (chromosomes) are
represented as binary strings of length n, where a value of 0 or

547

1 at the i-th bit (gene) implies that xi = 0 or 1 in the solution
respectively.

The population size N is usually set between n and 2n.
Many empirical results have shown that population sizes in the
range [50, 200] work quite well for most problems.

Initial population is obtained by generating random strings
of 0s and 1s in the following way: First, all bits in all strings
are set to 0, and then, for each of the strings, randomly
selected bits are set to 1 until the solutions (represented by
strings) are feasible.

The fitness function corresponds to the objective function
to be maximised or minimised.

There are three most commonly used methods of selection
of two parent solution for reproduction: proportionate
selection, ranking selection, and tournament selection. The
tournament selection is perhaps the simplest and most efficient
among these three methods. We use the binary tournament
selection method where two individuals are chosen randomly
from the population. The more fit individual is then allocated
a reproductive trial. In order to produce a child, two binary
tournaments are held, each of which produces one parent.

The recombination is provided by the uniform crossover
operator, which has a better recombination potential than do
other crossover operators as the classical one-point and two-
point crossover operators. The uniform crossover operator
works by generating a random crossover mask B (using
Bernoulli distribution) which can be represented as a binary
string B = b1b2b3 ··· bn-1bn where n is the length of the
chromosome. Let P1 and P2 be the parent strings
P1[1], ... ,P1[n] and P2[1], ... ,P2[n] respectively. Then the
child solution is created by letting: C[i] = P1[i] if bi = 0 and
C[i] = P2[i] if bi = 1. Mutation is applied to each child after
crossover. It works by inverting M randomly chosen bits in a
string where M is experimentally determined. We use a
mutation rate of 5/n as a lower bound on the optimal mutation
rate. It is equivalent to mutating five randomly chosen bits per
string.

When v child solutions have been generated, the children
will replace v members of the existing population to keep the
population size constant, and the reproductive cycle will
restart. As the replacement of the whole parent population
does not guarantee that the best member of a population will
survive into the next generation, it is better to use steady-state
or incremental replacement which generates and replaces only
a few members (typically 1 or 2) of the population during each
generation. The least-fit member, or a randomly selected
member with below-average fitness, are usually chosen for
replacement.

Termination of a GA is usually controlled by specifying a
maximum number of generations tmax or relative improvement
of the best objective function value over generations. Since the
optimal solution values for most problems are not known, we
choose tmax ≤ 5000.

The chromosome is represented by an n-bit binary string S
where n is the number of columns in the SCP. A value of 1 for

the j-th bit implies that column j is in the solution and 0
otherwise.

Since the SCP is a minimisation problem, the lower the
fitness value, the more fit the solution is. The fitness of a
chromosome for the unicost SCP (Šeda et al. 2014)[]7,8] is
calculated by (9).





n

j

jSSf
1

][)((9)

As to the crossover operation, we can use the traditional
two-point crossover, where middle parts of the parent
chromosomes are changed.

For mutation we considered three operators:

 exchange mutation (it exchanges two randomly selected
positions in a permutation),

 shift mutation (it removes a value at one position and
puts it at another position), andmutation inspired by well-
known Lin-2-Opt change operator usually used for solving the
travelling salesman problem (Šeda et al. 2014)[7,8]. Here first
two elements are added to the permutation (into positions 0

and |n|1) and then the same values are assigned to them to
simulate a cyclic tour. Two 'edges' (pairs of neighbour
elements) are randomly chosen ((p1, p2) and (q1, q2) say), the
inner elements p2, q1 are swapped and the elements between p2
and q1 are reversed.

The binary representation causes problems with generating
infeasible chromosomes, e.g. in initial population, in crossover
and/or mutation operations. To avoid infeasible solutions a
repair operator is applied.

Let I = {1, … , m} = the set of all rows;

J = {1, … , n} = the set of all columns;

 i = {jJ | aij 1} = the set of columns that cover row i,

iI;

 j = {iI | aij 1} = the set of rows covered by column j,

jJ;

S = the set of columns in a solution;

U = the set of uncovered rows;

wi = the number of columns that cover row i, iI in S.

The repair operator for the unicost SCP has the following
form:

initialise wi : = | S   i | , i  I ;

initialise U : = { i | wi = 0 , i  I } ;

for each row i in U (in increasing order of i) do

begin find the first column j (in increasing order of j)

in  i that minimises 1/ |U   j | ;

S : = S + j ;

548

wi : = wi + 1, i  j ;

U : = U   j

end ;

for each column j in S (in decreasing order of j) do

if wi  2 , i  j

then begin S : = S  j ;

wi : = wi  1, i  j

end ;

{ S is now a feasible solution to the SCP and contains no
redundant columns }

Initialising steps identify the uncovered rows. For
statements are “greedy” heuristics in the sense that in the 1

st

for, columns with low cost-ratios are being considered first
and in the 2

nd
 for, columns with high costs are dropped first

whenever possible.

V. CONCLUSIONS

In this paper, we show how to use Voronoi diagram in a
situation where we want to add to new service centers to the
existing ones. The procedure can also be used in the case of
construction, which can be a burden for a given area, such as
the construction of nuclear power plants or municipal waste
dump. The calculation requires only polynomial time, but the
resulting location may need a modification.

Conversely, if potentially useable locations for service
centers are given in advance, then we try to minimise their
number respecting reachable distance of at least one service
center for each element of the system. This this leads to the set
covering problem and has exponential time complexity. In the
paper, we proposed a genetic algorithm approach for its
solving.

Particular attention was paid to the repair operator,
because traditional methods of crossover and mutation
implementation do not guarantee that generated children
would create feasible solutions and penalising them would
lead to population with high number of infeasible individuals
and the chance to find a good solution would be almost
impossible.

REFERENCES

[1] Aurenhammer, F. 1991. Voronoi Diagrams – A Survey of a
Fundamental Geometric Data Structure. ACM Computing Surveys,
23(3): 345-405.

[2] de Berg, M., van Kreveld, M., Overmars M. & Schwarzkopf, O. 2000.
Computational Geometry: Algorithms and Applications. Berlin:
Springer-Verlag,.

[3] Galinier, P. & Hertz, A. 2007. Solution Techniques for the Large Set
Covering Problem. Discrete Applied Mathematics 155(3): 312-326.

[4] LaValle, S.M. 2006. Planning Algorithms. Cambridge: University Press.

[5] Michalewicz, Z. & Fogel, D. B. 2004. How to Solve It: Modern
Heuristics. Berlin: Springer-Verlag.

[6] Okabe, A., Boots, B., Sugihara, K. & Chiu, S.N. 2000. Spatial
Tessellations and Applications of Voronoi Diagrams. New York: John
Wiley & Sons.

[7] Šeda, M. 2007. Comparison of Roadmap and Cell Decomposition
Methods in Robot Motion Planning. WSEAS Transactions on Systems
and Control 2(2): 101-108.

[8] Šeda, M., Roupec, J. & Šedová, J. 2014. Transportation Problem and
Related Tasks with Application in Agriculture. International Journal of
Applied Mathematics and Informatics. 8(1): 26-33.

[9] Yagiura, M., Kishida, M. & Ibaraki, T. 2006. A 3-flip neighborhood
local search for the set covering problem. European Journal of
Operational Research 172(2): 472-499.

[10] Zelinka, I., Snášel, V. & Abraham, A. (eds.). 2012. Handbook of
Optimization. From Classical to Modern Approach. Berlin: Springer-
Verlag.

549

