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Abstract—In this paper we deal with two problems, whose 

common basis is to find the location of a service center for 

potential customers, but with different criterion functions, 

determining what we consider in these tasks as optimal. While 

maximizing the coverage of an area by supermarkets, we choose a 

new supermarket the location that minimises interaction (and 

thus competition) with existing supermarkets. On the contrary, if 

we want to provide the availability of certain services for all 

customers within a reasonable distance, and yet we know in 

advance where it would be possible to set up servicing points, the 

goal is to minimize their number. We show that the first type of 

problem can be solved in polynomial time using the Voronoi 

diagram, the task of the second type leads to the set covering 

problem, which is an NP-hard problem, and it is therefore 

necessary to solve larger instances of a task by heuristics. It is 

proposed we use a genetic algorithm approach and special 

attention is paid to implementation of a repair operator for 

infeasible solutions generated by the operations of crossover and 

mutation.  

Keywords-computational geometry; location-based service 

(LBS) 

I. INTRODUCTION 

One of the basic considerations of retail chains is to cover 
the area where it can be expected the demand for their goods, 
but so that any new shop, was as close to customers who have 
existing shops too far and on the other hand, new shop was far 
from existing ones not to compete with themselves. 

The same considerations require the tasks when we need to 
obtain a large, contiguous, undeveloped piece of land on 
which to build a factory, or to find the new site for a source of 
pollution. 

Another possible view on the customer serviceability is 
given by the maximum distance which still can be considered 
for shop (or other facility, such as a school, hospital) 
reachable sufficiently close to be able to satisfy the requested 
service. Locations, where the service centers could be situated, 
and we try to find a minimum number of service centers for 
providing services in reachable distance for all customers 

Both aspects bring various possibilities of solving and we 
deal with them in more detail in the following paragraph.    

II. COMPUTATIONAL GEOMETRY APPROACH 

A. Voronoi Diagrams 

A Voronoi diagram of a set of sites in the plane is a 
collection of regions that divide up the plane. Each region 
corresponds to one of the sites and all the points in one region 
are closer to the site representing the region than to any other 
site (Aurenhammer 1991, de Berg et al. 2000, LaValle 2006, 
Okabe et al. 2000, Šeda 2007) [1-10]. An example of the 
Voronoi diagram is shown in Figure 1. 

Let d(pi , pj) denote the distance between two points pi  

(xi, yi) and pj  (xj, yj) in the plane and consider the Euclidean 
metric 
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Then more formally, we can define Voronoi diagrams in 
mathematical terms.  

Definition: Let P{p1, p2, … , pn} 
2
 be a set of points 

with the Cartesian coordinates (x1, y1), … , (xn, yn) where 2  n 

  and pi  pj for i  j. We call the region  
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the planar Voronoi polygon associated with pi (or the 
Voronoi polygon of pi) and the set given by 

        ( ) , , ( )i nV V p V p                          (3) 

the planar Voronoi diagram generated by P (or the 
Voronoi diagram of P). We call pi of V(pi) the site or 
generator point or generator of the i-th Voronoi polygon and 

the set P{p1, p2, … , pn} the generator set of the Voronoi 
diagram V. Hence we get 
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Assume that Voronoi diagrams are non degenerate (no 
four or more of its Voronoi edges have a common endpoint. 
Then it is satisfied: 

 Every vertex of a Voronoi diagram V(P) is a common 
intersection of exactly three edges of the diagram. 

 A point q is a vertex of V(P) if and only if its largest 
empty circle CP(q) contains three points on its boundary. 

 The bisector between points pi and pj defines an edge of 
V(P) if and only if there is a point q such that CP(q) contains 
both pi and pj on its boundary but no other point. 

 For any q in P, V(q) is convex.  

 Voronoi diagram V(P) of P is planar. 

 Polygon V(pi) is unbounded if and only if pi is a point on 
the boundary of convex hull of the set P (convex hull of a set 
P is the smallest convex set that contains P). 

 The number of vertices in the Voronoi diagram of a set 

of n point sites in the plane is at most 2n5 and the number of 

edges is at most 3n6. 

 
FIGURE I. VORONOI DIAGRAM. 

The fundamental algorithms and their modifications 
include the incremental algorithm, random incremental 
algorithm, divide and conquer algorithm and plane sweep 
algorithm (or Fortune’s algorithm). More details can be found 
e.g. in (Aurenhammer 1991, de Berg et al. 2000, Okabe et al. 
2000) [1,2,6]. The time complexity of the incremental 
algorithm is O(n

2
) in the worst case, and O(n log n) for the 

other three algorithms. 

B. Largest Empty Circle 

From the previous properties the most interesting is that 
concerning the empty circle.  

Given n points in the plane, find a largest circle containing 
no points of the set yet whose center is interior to the convex 
hull. 

The largest empty circles among all empty circles can be 
found as follows: 

1. Compute Voronoi diagram. 

2. Compute convex hull. 

3. Find all vertices of the Voronoi inside the convex hull. 

4. Find all circles in these vertices. 

5. Select the largest circle. 

Since the time complexity of the first two steps is O(n log 

n) (Aurenhammer 1991, de Berg et al. 2000) [1,2] and all 
other are simpler, the total time complexity of this algorithm is 
O(n log n).   

 
FIGURE II. LARGEST EMPTY CIRCLE. 

In Figure 2, points are existing positions of the service 
center network, the boundary drawn by a thick line is the 
convex hull, and square is the center of the largest empty 
circle, determined among the Voronoi vertices that lie inside 
the convex hull and it is the best place to build a new service 
center. 

C. How to Adapt the Previous Solution 

The drawback of the previous approach is that it does not 
take into account whether a location that is determined by 
calculation as optimal, can be used for a new service center. It 
can be occupied by another building or there is no 
communication to this place, or it is owned by someone who 
does not want to sell the ground. In these cases it is necessary 
to move on the nearest possible place. 

Another problem is determining of distances. In previous 
definition of Voronoi diagram, we consider the Euclidean 
metric. In a real situation, because of other buildings, the 
distance of two points is not given by direct line, but the road 
between them. In cities like New York, partly Barcelona, 
where the streets create the rectangular system, it would be 
appropriate to use rectilinear metric. The traditional Euclidean 
Voronoi diagram then changes in rectilinear Voronoi diagram 
and its shape is significantly modified. changed. It contains 
edges only in horizontal, vertical and diagonal direction   

Consider rectilinear (or Manhattan) metric 

     ||||),( jijiji yyxxppd                (5) 

If we use the rectilinear metric for a Voronoi diagram, 
then, due to the rectilinearity, each straight-line segment of a 
bisector in the now rectilinear Voronoi diagram will be either 
horizontal, vertical, or inclined at 45° or 135° to the positive 
direction of the x-axis 

Another way how to determine distances which correspond 
to real situation is to use GPS systems or a specialized 
program, such a route planner Trackroad that is available from 
http://www.trackroad.com.   
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III. SET COVERING PROBLEM (SCP) 

A. Dmax Cover 

Assume that the transport network contains m vertices, that 
can be used as operating service centers, and n vertices to be 
served, and for each pair of vertices vi (considered as service 
centers) and vj  (serviced vertex) their distance dij is given 
and Dmax is the maximum distance which will be accept for 
operation between the service centers and serviced vertices. 

The aim is to determine which vertices must be used as 
service centers so that each vertex was covered by at least one 
of the centers and the total number of operating centers was 
minimal. 

Note: 

1. A necessary condition for solvability of the task is that 
all of the serviced vertices were reachable from at least one 
place where an operating service center is considered. 

2. Serviced vertex vj is reachable from vertex vi, which is 

considered as an operating service center if dij  Dmax. If this 
inequality is not satisfied, vertex vj is unreachable from vi. 

If variables aij, where aij=1 or aij=0, express whether 
operated vertex vj is reachable from vertex vi, which is 
considered as operating service center, respectively. is not 
reachable, then the set covering problem can be described by 
the following mathematical model: 

Minimise 
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The objective function represents the number of operating 
centers, constraint (7) means that each serviced vertex is 
assigned at least one operating service center. 

Example:  

Consider the following distance matrix which expresses 
service centers and serviced vertices (= customer locations) 

and Dmax40.  

serviced vertices (customers locations) 























782132133101254258

309088773219517037

12753486745611745

3132206867138249

594460382650415

5

4

3

2

1

87654321centers  service

 

From Dmax40 we get the reachability matrix of serviced 
vertices from service centers. 























01100100

10001001

00000010

11100100

00011001

5

4

3

2

1

87654321

 

Since only service center 3 is reachable to the second 
serviced vertex (serviced vertex 2 is covered by the 3rd 
service center) and only service center 1 is reachable to 
service center 5, these service centers must not be omitted. 
These two centers cover serviced vertices 1, 4, 5 and 2 

It remains to find the service centers which cover the 
remaining uncovered vertices 3, 6, 7 and 8. This can be 
achieved either by selecting the service centers 2 and 5, or 4 
and 5. 

Thus the example has two solutions, where four vertices 
are sufficient to cover serviced vertices (either 1, 3, 2, 5, or 1, 

3, 4, 5).  

Note: 

In the general case, however, the selection of service 
centers for k uncovered vertices has 2

k
 possibilities and thus 

the complexity of tasks increases exponentially with the 
number of uncovered vertices. 

For large k we must solve it using a heuristic method 
(Galinier & Hertz 2007, Michalewicz & Fogel 2004, Yagiura 
et al. 2006, Zelinka et al. 2012)[3,5,9,10], e.g., by a genetic 
algorithm. 

IV. GENETIC ALGORITM FOR SCP 

The skeleton for GA can be described as follows 
(Michalewicz & Fogel 2004)[5]: 

generate an initial population ; 

evaluate fitness of individuals in the population ; 

repeat 

 select parents from the population; 

 recombine (mate) parents to produce children ; 

 evaluate fitness of the children ; 

 replace some or all of the population by the children 

until a satisfactory solution has been found ; 

Since the principles of GAs are well-known, we will only 
deal with GA parameter settings for the problems to be studied. 
Now we describe the general settings (Michalewicz & Fogel 
2004, Zelinka et al. 2012)[5,10]. 

Individuals in the population (chromosomes) are 
represented as binary strings of length n, where a value of 0 or 
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1 at the i-th bit (gene) implies that xi = 0 or 1 in the solution 
respectively.  

The population size N is usually set between n and 2n. 
Many empirical results have shown that population sizes in the 
range [50, 200] work quite well for most problems.  

Initial population is obtained by generating random strings 
of 0s and 1s in the following way: First, all bits in all strings 
are set to 0, and then, for each of the strings, randomly 
selected bits are set to 1 until the solutions (represented by 
strings) are feasible. 

The fitness function corresponds to the objective function 
to be maximised or minimised.  

There are three most commonly used methods of selection 
of two parent solution for reproduction: proportionate 
selection, ranking selection, and tournament selection. The 
tournament selection is perhaps the simplest and most efficient 
among these three methods. We use the binary tournament 
selection method where two individuals are chosen randomly 
from the population. The more fit individual is then allocated 
a reproductive trial. In order to produce a child, two binary 
tournaments are held, each of which produces one parent. 

The recombination is provided by the uniform crossover 
operator, which has a better recombination potential than do 
other crossover operators as the classical one-point and two-
point crossover operators. The uniform crossover operator 
works by generating a random crossover mask B (using 
Bernoulli distribution) which can be represented as a binary 
string B = b1b2b3 ··· bn-1bn where n is the length of the 
chromosome. Let P1 and P2 be the parent strings 
P1[1], ... ,P1[n] and P2[1], ... ,P2[n] respectively. Then the 
child solution is created by letting: C[i] = P1[i] if bi = 0 and 
C[i] = P2[i] if bi = 1. Mutation is applied to each child after 
crossover. It works by inverting M randomly chosen bits in a 
string where M is experimentally determined. We use a 
mutation rate of 5/n as a lower bound on the optimal mutation 
rate. It is equivalent to mutating five randomly chosen bits per 
string. 

When v child solutions have been generated, the children 
will replace v members of the existing population to keep the 
population size constant, and the reproductive cycle will 
restart. As the replacement of the whole parent population 
does not guarantee that the best member of a population will 
survive into the next generation, it is better to use steady-state 
or incremental replacement which generates and replaces only 
a few members (typically 1 or 2) of the population during each 
generation. The least-fit member, or a randomly selected 
member with below-average fitness, are usually chosen for 
replacement. 

Termination of a GA is usually controlled by specifying a 
maximum number of generations tmax or relative improvement 
of the best objective function value over generations. Since the 
optimal solution values for most problems are not known, we 
choose tmax ≤ 5000. 

The chromosome is represented by an n-bit binary string S 
where n is the number of columns in the SCP. A value of 1 for 

the j-th bit implies that column j is in the solution and 0 
otherwise. 

Since the SCP is a minimisation problem, the lower the 
fitness value, the more fit the solution is. The fitness of a 
chromosome for the unicost SCP (Šeda et al. 2014)[]7,8] is 
calculated by (9). 





n

j

jSSf
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As to the crossover operation, we can use the traditional 
two-point crossover, where middle parts of the parent 
chromosomes are changed.  

For mutation we considered three operators: 

 exchange mutation (it exchanges two randomly selected 
positions in a permutation), 

 shift mutation (it removes a value at one position and 
puts it at another position), andmutation inspired by well-
known Lin-2-Opt change operator usually used for solving the 
travelling salesman problem (Šeda et al. 2014)[7,8]. Here first 
two elements are added to the permutation (into positions 0 

and |n|1) and then the same values are assigned to them to 
simulate a cyclic tour. Two 'edges' (pairs of neighbour 
elements) are randomly chosen ((p1, p2) and (q1, q2) say), the 
inner elements p2, q1 are swapped and the elements between p2 
and q1 are reversed. 

The binary representation causes problems with generating 
infeasible chromosomes, e.g. in initial population, in crossover 
and/or mutation operations. To avoid infeasible solutions a 
repair operator is applied. 

Let  I = {1, … , m} = the set of all rows;   

J = {1, … , n} = the set of all columns;  

 i = {jJ | aij 1} = the set of columns that cover row i, 

iI;   

 j = {iI | aij 1} = the set of rows covered by column j, 

jJ;   

S = the set of columns in a solution;   

U = the set of uncovered rows;  

wi = the number of columns that cover row i, iI  in  S. 

The repair operator for the unicost SCP has the following 
form: 

initialise wi : = | S   i | , i  I ; 

initialise U : = { i | wi = 0 , i  I } ; 

for each row i  in  U  (in increasing order of i) do 

begin find the first column j (in increasing order of j)  

in  i that minimises  1/ |U   j | ; 

S : = S + j ;      
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wi : = wi + 1,  i  j ;     

U : = U   j  

end ; 

for each column j  in  S  (in decreasing order of j) do 

if wi  2 , i  j 

then begin S : = S  j ;      

wi : = wi  1,  i  j  

end ; 

{ S is now a feasible solution to the SCP and contains no 
redundant columns } 

Initialising steps identify the uncovered rows. For 
statements are “greedy” heuristics in the sense that in the 1

st
 

for, columns with low cost-ratios are being considered first 
and in the 2

nd
 for, columns with high costs are dropped first 

whenever possible. 

V. CONCLUSIONS 

In this paper, we show how to use Voronoi diagram in a 
situation where we want to add to new service centers to the 
existing ones. The procedure can also be used in the case of 
construction, which can be a burden for a given area, such as 
the construction of nuclear power plants or municipal waste 
dump. The calculation requires only polynomial time, but the 
resulting location may need a modification.  

Conversely, if potentially useable locations for service 
centers are given in advance, then we try to minimise their 
number respecting reachable distance of at least one service 
center for each element of the system. This this leads to the set 
covering problem and has exponential time complexity. In the 
paper, we proposed a genetic algorithm approach for its 
solving.  

Particular attention was paid to the repair operator, 
because traditional methods of crossover and mutation 
implementation do not guarantee that generated children 
would create feasible solutions and penalising them would 
lead to population with high number of infeasible individuals 
and the chance to find a good solution would be almost 
impossible. 
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