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Abstract. In this paper, extraction of atmospheric veil is 
proposed to enhance the contrast of the images captured 
under poor visibility conditions. The method based on 
guided filtering can accurately recover hidden edges, 
maintain structural similarity to input image and it is 
effective for both color and gray level images. The 
proposed algorithm works without prior information about 
the scene and its complexity is linear function of the input 
image size. Experimental comparisons with state of the art 
algorithms demonstrate that our approach can significantly 
enhance the contrast and restore the visibility in fine 
details. 
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1. Introduction 
Most of the computer vision applications in outdoor 

environments such as automatic surveillance systems, 
object detection and tracking, object recognition, etc., are 
designed for clear weather. Bad weather conditions 
envisage difficulty in image analysis, processing and 
information extraction. Poor visibility that arises in bad 
weather is mostly due to presence of atmospheric aerosols 
such as haze, fog, mist, etc. These particles partially absorb 
and scatter the light reflected from the scene, resulting in 
image contrast degradation. Therefore contrast 
enhancement of such degraded outdoor images is highly 
desired. 

Image contrast enhancement can be achieved by using 
either model or non-model based methods. Non-model 
based methods do contrast enhancement without knowing 
the cause of image degradation whereas model based 
methods perform image restoration by reversing the 
underlying cause. Compared with non-model based, model 
based methods usually give natural results and retain the 
information contents of the image.  

In the literature, various solutions have been proposed to 
improve the scene visibility. Shwartz [1] and Schechner [2] 

enhance the visibility by using multiple images with 
different degrees of polarization. Polarization-based 
methods cannot be used on existing image databases 
because of the need of multiple image acquisition and 
dedicated hardware for rotating the polarizer filter [3]. 
Nayar and Narasimhan [4], [5] restored the contrast by 
using multiple input images of the same scene which were 
obtained under different weather conditions. This technique 
is effective but impractical because the images under 
different weather conditions are usually not available at the 
same time. Depth-based methods by Hautiere [6], 
Narasimhan [7] and Kopf [8] seek additional depth 
information either from user interactions or known three-
dimensional models. These techniques resolve the problem 
of multiple images requirement, but availability of either 
three-dimensional models of the real world or expert 
interaction makes these schemes unsuitable for real-time 
applications.  

Rao [9] proposed approaches based on physical model to 
restore the images and estimate the scatter coefficient. 
Although these schemes get good restoration result, they 
are iterative and require a minimum of 3 to 4 steps to 
converge. Zuo [10] introduced a non-iterative technique to 
blind restoration based on improved Self-deconvolving 
Data Reconstruction Algorithm (SeDDaRA) method. This 
method first extracts a point spread function directly from 
the degraded data in the frequency domain and then uses 
Wiener filter to restore it.  

Recently, single image contrast enhancement approaches 
by Fattal [11], He [12] and Tan [13] have been presented. 
These methods recover the contrast of weather-degraded 
input images using appropriate prior information or 
assumptions. All these current approaches fail when the 
image mismatches their prior or assumption. The main 
disadvantage of these algorithms is their time consumption. 
Average time taken for a 600 x 400 image is around 30-40 
seconds, 10-20 seconds and 5-7 minutes in [11], [12], [13] 
respectively. Tarel [14] proposed a fast algorithm for 
visibility restoration from a single image. This algorithm is 
based on median filtering and it restores the visibility by 
inferring the atmospheric veil. Its computation time is less 
than a second for a 598 x 396 image on 3 GHz dual core 
processor [15] and claims to have similar or in some cases 
better results when compared to [11], [12], [13]. However, 
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this algorithm does not improve the visibility in small 
details of the image. 

In this paper, we proposed a new method of inferring the 
atmospheric veil. The proposed algorithm is also fast since 
the time required is linear in amount of pixels. Moreover, 
the algorithm works without prior information or assump-
tion and is applicable for both color and gray level images. 
Results show the ability of the method to successfully 
enhance the contrast of weather-degraded images in fine 
details. 

The rest of the paper is organized as follows: Section 2 
briefly describes preliminaries consisting of optical 
imaging model, atmospheric veil inference and guided 
image filtering. In Section 3, framework of our approach 
and steps of proposed method are elaborated. Section 4 
verifies the validity of the proposed algorithm through 
experimental comparisons, followed by the conclusion in 
Section 5.  

2. Preliminaries 

2.1 Optical Imaging Model 
Poor visibility is mostly due to presence of 

atmospheric aerosols which partially absorb and scatter the 
reflected light from the scene before reaching the camera. 
In computer vision and computer graphics, the optical 
imaging model is widely used to approximate the formation 
of image taken in poor visibility conditions. It can be 
mathematically described for RGB and gray level images 
by [11], [12], [13], [14]: 

 ( ) ( ) ( ) (1- ( ))c cI x J x t x A t x= +  (1) 

where x indicates the location of a pixel, I is the observed 
image, A is the global atmospheric light, J stands for the 
scene radiance, t is the medium transmission and super-
script c represents one of the RGB color channel. 

In (1), the first term J(x)t(x) represents the directly 
attenuated component and the second term A(1-t(x)) is 
called the airlight. Pictorial description of the model is 
shown in Fig. 1. Assuming homogenous atmosphere 
constraint, we have the transmission expressed as: 

 - ( )( ) d xt x e ��  (2) 

where superscript � is the atmospheric attenuation 
coefficient and d is the scene depth. Putting t(x) in (1): 

 - ( ) - ( )( ) ( ) (1- )d x d xc cI x J x e A e� �� � . (3) 

This indicates that the scene radiance is attenuated, 
exponentially with the scene depth d. Thus, in order to 
recover the scene radiance using optical model, 
atmospheric light and depth / transmission map are 
frequently used. 
 

 
Fig. 1. The pictorial description of the optical imaging model. 

2.2 Atmospheric Veil Inference 
Visibility restoration is an ill-posed task as it is 

dependent on the unknown depth information. In order to 
achieve it, optical imaging model can be reframed as: 
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Let the atmospheric veil intensity V be described as [14]: 

 � �- ( )( ) 1- d xV x A e �� . (5) 

Putting (5) into (4), we can model the observed image 
in terms of atmospheric veil as: 
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. (6) 

Here we equivalently seek to infer the atmospheric 
light and atmospheric veil out of the observed image to get 
the restored image.  

2.3 Guided Image Filtering 
The guided filter [16] is an explicit image filter; it 

generates the filtering output by considering the contents of 
a guidance image that can be the input image itself or 
another different image. The filter has the edge-preserving 
smoothing property and its computational complexity is 
independent of the filtering kernel size.  

The output of the guided filter z is a linear 
transformation of guidance image G in a square window 
n 
of radius r centered at the pixel n. The linear coefficients pn 
and qn are determined in a way that minimizes the 
difference between z and the input image h, solution to 
which is: 
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The coefficients are assumed to be constant in 
n. 
Here, �n

2 and �n are the variance and mean of G in 
n , ��is 
the regularization parameter that prevents pn from 
approaching infinity, |
| is the cardinality of 
n and 
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is the mean of h in 
n. Finally, after finding linear 
coefficients from all the local windows in the entire image, 
filter output is computed by: 
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3. Proposed Methodology 

3.1 Atmospheric Light Estimation 
There are many techniques existing in the literature to 

estimate the atmospheric light A. The pixel with the highest 
intensity value is used as A by Tan [13], Fattal [11] com-
puted A by solving an optimization problem, Tarel [14] 
directly set A to (1, 1, 1) after performing white balance in 
preprocessing stage and He [12] picks the highest intensity 
pixel equals to A among the top 0.1 % brightest dark 
channel pixels. In our paper, we apply white balance by 
assuming that atmospheric light has larger intensity than 
that of any other pixel. 

3.2 Atmospheric Veil Extraction 
The physical properties of the atmospheric veil are 

subject to two constraints [14]. For an observed image I(x) 
it is non-negative and being pure white, it cannot be higher 
than the minimum of the components of I(x). Mathe-
matically, these constraints can be expressed by a single 
inequality as 0≤ V(x) ≤ D(x). We thus computed image of 
the whiteness ( )D x  within the observed image defined as 
the image of the minimal component of ( )I x . For each 
pixel, it is defined as: 

 For RGB image: D(x) = min(I(x)), (10) 

 For gray level image: D(x) =I(x). (11) 

When the airlight is pure white the atmospheric veil 
adds whiteness to the image, the amount of whiteness 
added depends on the depth of the object. Because the 
whiteness gives information about the depth and the depth 
is proportional to the atmospheric veil, it is possible to base 
the atmospheric veil on image of the whiteness. Therefore, 
atmospheric veil is extracted in a robust way from D(x) by 
following the steps shown in Fig. 2. 

 

 
 

Fig. 2.  Steps of atmospheric veil extraction.  

Firstly, guided filter [16] is employed on D(x) to 
obtain the filtered image of whiteness T(x). We used guided 
filtering because it performs smoothing by preserving large 
jumps along edges which is necessary for the image 
restoration. In contrasted texture image portions, the 
absolute difference between D(x) and T(x) yield low 
values. This difference is subtracted from T(x) so that T(x)
in these areas is not affected too much. Guided filter is 
applied on the absolute difference for making the scheme 
robust to outliers. Finally, V(x) is inferred by multiplying 
a constant parameter �  after obtaining the smallest entries 
from S(x) or D(x). The values of S(x) do not necessarily 
respect the constraints on the veil and thus are thresholded. 
Mathematically the atmospheric veil is estimated by: 

 � �( ) max(min( ( ), ( )),0)V x S x D x��  
where 
 )|)((|guided)()( xTDxTxS ���  

and  
 )()(guided)( xDxT �  (12) 

where � determines the percentage of restoration 
(0 ≤ � ≤ �). Atmospheric veil using median filter [14] is 
unable to recover the visibility of aerosol degraded images 
in fine details. Hence, in this work, the method of extract-
ing the atmospheric veil is modified. It is achieved using 
guided filter which avoids the gradient reversal artifacts 
that may appear in detail enhancement. Guided filter is fast 
and non-approximate linear-time algorithm [16] and it 
improves the accuracy of atmospheric veil in a better way. 
Fig. 3 shows a hazy image, filtered version T(x) and its 
corresponding estimated atmospheric veil. 

(a) (b) (c) 

Fig. 3.  (a) Input hazy image. (b) Filtered image of whiteness. 
(c) Estimated atmospheric veil.  

D(x) 
•Image of Whiteness  

T(x) 
•Filtered Output 

S(x) 
•Subtract difference from T(x) 

V(x) 
•Multiply  ζ 
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3.3 Recovering the Scene Radiance 
Given the atmospheric light and atmospheric veil, we 

can recover the scene radiance from (6) as: 

 
( ) - ( )

( )
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1-

c
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J x
V x

A

� . (13) 

4. Experimental Comparisons 
Several experimental comparisons are conducted for 

proposed contrast enhancement algorithm, which is 
controlled by following three parameters: � which is the 
regularization parameter, r is the radius of local window for 
guided filter and � is to control the strength of restoration. 

4.1 Qualitative Comparisons 
Fig. 4 warrants the use of guided filter in this paper. 

Tarel [14] uses geometric criterion to decide whether the 
observed white region is due to the fog or the object’s 
color. As a result it can be seen that fog is not removed 
between the small leaves. Using the same criterion with 
guided filter in Fig. 4(c), we successfully recover fine 
details by removing the fog between the small portions of 
highlighted rectangles and circles in Fig. 4(b) and 4(c).  

 

(a) 

 

(b) 
 

(c) 

Fig. 4. (a) Input foggy image. (b) Restored image using 
median filtering [14]. (c) Restored image using guided 
filtering 

Fig. 5 allows the comparison of our result with five 
most popular algorithms of visibility enhancement under 
bad weather conditions [8], [11], [12], [13], [14]. Kopf [8] 
utilizes 3D models of the scene, this information may come 
from Google Earth and satellite images. Fattal’s [11] work 
is based on color information and the algorithms of He 
[12], Tan [13] and Tarel [14] are based on geometric 
criterion. It is obvious from the results that our algorithm 
significantly overcomes the dense fog on the mountains, 
 

whereas there is still a small amount of haze left to be 
removed using all other algorithms. Additionally, colors 
produced by He [12] and Tan [13] are somewhat artificial, 
whereas our result looks more realistic and the colors 
remained consistent with the input foggy image. 

The comparison of our method with improved 
SeDDaRA method [10] on real turbulent degraded image 
has been shown in Fig. 6. We adopted the same pre-

processing used in [10] prior to our algorithm. It is evident 
from the results that the proposed scheme produces 
comparable results. 

4.2 Quantitative Comparisons 
We adopted the approach of Hautiere [17] to 

quantitatively evaluate the quality of enhancement. Here, 
we transform the color to gray level images and then 
compare gray level images by determining the three visual 
descriptors: e (rate of new visible edges), ƞ (percentage of 
pixels which becomes completely black or completely 
white after enhancement) and Ω (mean ratio of the 
gradients at visible edges). We calculated these descriptors 
for five approaches presented by Kopf [8], Fattal [11], Tan 
[13], He [12] and Tarel [14] on five images ny12, ny17, 
y01, y16 and stad1.  

Tab. 1 contains the numerical values of rate of new 
visible edges e after restoration, which demonstrates that 
there is a huge improvement to the rate of restored edges 
when compared with five known state of the art visibility 
restoration algorithms. Tab. 2 shows the percentage of 
pixels ƞ which become completely black or completely 
white after the contrast restoration. Compared to the others, 
our algorithm makes no pixel either completely black or 
completely white after the restoration. Tab. 3 gives the 
mean ratio Ω of the gradients at visible edges which 
estimate the average visibility enhancement. One can 
notice that, most of our results are either similar or better 
than Kopf, Fattal and He but less enhanced than Tan and 
Tarel. However, Tan’s method faces problem of producing 
oversaturated colors in the results and Tarel’s work is not 
able to remove the haze in fine details.  
 
 
 
 

e Kopf Fattal Tan He Tarel Our 
ny12 0.0361 -0.0538 -0.0835 0.0482 0.1450 0.408 
ny17 0.0169 -0.1060 -0.0412 0.0232 0.1104 0.405 
y01 0.0947 0.0864 0.1219 0.1426 0.2092 0.435 
y16 0.0009 0.0582 -0.0165 0.1314 0.2406 0.637 

stad1 - 0.237 0.295 0.368 0.397 0.531 

Tab. 1.  Rate of new visible edges. 

 
ƞ Kopf Fattal Tan He Tarel Our 

ny12 0.17587 0.6409 1.836 0.0002 0.0 0.0 
ny17 0.12347 1.6988 0.7653 0.0136 0.00013 0.0 
y01 0.01944 0.1128 0.3875 0.0136 0.0 0.0 
y16 0.28347 0.1491 0.4474 0.1522 0.00045 0.0 

stad1 - 0.3945 1.9566 0.0083 0.0 0.0 

Tab. 2. Percentage of pixels which becomes completely black 
or completely white after contrast enhancement. 

 
Ω Kopf Fattal Tan He Tarel Our 

ny12 1.4091 1.2875 2.1802 1.3979 1.7628 1.619 
ny17 1.6136 1.5346 2.19 1.6297 1.7057 1.568 
y01 1.6362 1.2152 2.2283 1.3134 1.9903 1.62 
y16 1.3456 1.2033 2.0602 1.3674 1.9583 1.671 

stad1 - 1.867 4.359 2.191 1.408 1.56 

Tab. 3. Mean ratio of the gradients at visible edges. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

 

(e) 

 

(f) 

 

(g) 

Fig. 5. Comparison with conventional methods. (a) Observed image. (b) - (f) Results obtained by Kopf [8], Fattal [11], He [12], Tan [13], 
Tarel [14]. (g) Our result with � = 0.01, r = 2 and � = 0.9. 

 
 
 
 
 
 
 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 6. Turbulence degraded image restoration. (a). Real turbulence degraded image; (b). Restored result by Zuo [10]; (c). Our result with 
� = 0.01, r = 2 and � = 0.9. 
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(b) 

 

 

 

(c) 

 

 

 

(d) 

 

 

 

(e) 

 

Fig. 7. Comparison with Tan’s work [13]. (a) Input image. (b) Restored images. (c) Map of visible edges in the restored image. (d) Map of 
pixels becoming completely black or completely white. (e) Map of ratio of the gradients at visible edges. Left and right columns show 
Tan and our results respectively. 

 

Fig. 7 shows the comparison of our approach with Tan’s 
work [13] on stad1 image. Maps of visible edges of the 
restored images in Fig. 7(c) indicate that our method 
recovers more detail by restoring 169726 edges where 
Tan’s method restores only 143501 edges. The perturbed 
pixels in Fig. 7(d) demonstrate that our result make no 
pixel either completely black or completely white. In 
Fig. 7(e), is shown the maps of ratio Ω of the gradients at 
visible edges for Tan and our algorithm which indicates 
that contrast has been amplified too strongly by Tan, which 
results in oversaturated colors of the restored image.  

Apart from improving visibility of images captured in 
poor visibility conditions, a contrast enhancement method 
must also have to provide good structural similarity (SSIM) 
with the contrast-degraded images. Thus we also use the 
method proposed by Wang [18] to measure the SSIM 
between the degraded images and the restored results by 
Tan [13], Tarel [14] and ours. Fig. 8 shows that SSIM 
indexes  for  our  results  are  more  than  that  of  Tan  and 

 

Fig. 8. SSIM index for Tan, Tarel and our results on four 
images. 
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Tarel’s results. This illuminates that our method bring less 
halos and artifacts when compared to two methods [13], 
[14].  

Qualitative and quantitative comparisons not only 
support each other but also verify that our results can 
produce huge rate of new visible edges and good SSIM by 
avoiding oversaturation in colors. 

5. Conclusion 
An algorithm that improves the contrast of aerosol 

degraded color and gray scale images, is presented. Our 
proposed method, based on guided filter, can unveil the 
details even in heavily hazy region without leaving any 
prominent halos along edges. Additionally, the algorithm 
does not need any human intervention and its complexity is 
a linear function of the number of input image pixels.  
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