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Abstract

Using intracerebral EEG recordings in a large cohort of human subjects, we investigate the time course of neural cross-talk
during a simple cognitive task. Our results show that human brain dynamics undergo a characteristic sequence of
synchronization patterns across different frequency bands following a visual oddball stimulus. In particular, an initial global
reorganization in the delta and theta bands (2–8 Hz) is followed by gamma (20–95 Hz) and then beta band (12–20 Hz)
synchrony.
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Introduction

During cognitive tasks, different brain regions communicate

with each other via oscillatory signals with functionally differen-

tiated frequency signatures [1], but the details of the mechanisms

linking the cognitive dynamics to neural events are still unknown.

Transient synchronization of neuronal discharges has been

proposed as one possible mechanism to dynamically bind widely

distributed sets of neurons into functionally coherent ensembles

[2,3]. In full compatibility, the communication-through-coherence

hypothesis suggests that at the heart of cognitive dynamics lies a

dynamic communication structure based on flexible neuronal

coherence patterns [4]. Evidence for these hypotheses is found

invasively in the cat and non-human primate brain [5–9] and non-

invasively through EEG and MEG in the human brain [1,3,10–

13]. In human studies, synchronization was consistently associated

with an oscillatory patterning of neuronal responses, most often in

the beta and gamma frequency range. Long-distance synchroni-

zation seemed to manifest itself in the lower frequency ranges such

as beta, but also in the theta (4–8 Hz) and alpha (8–12 Hz) range

[1]. Recently published studies on primates then proposed that

frequency-specific neuronal correlations in large-scale cortical

networks rather may be ‘‘fingerprints’’ of canonical neuronal

computations underlying cognitive processes (for review see [14]).

However, non-invasive scalp imaging in humans is a synthetic

measure of multiple local circuits [12] and provides only limited

information on the spatiotemporal evolution of the brain signals.

For proper validation, invasive multisite studies are obligatory, but

they are rather rare and mostly limited to a small number of

subjects [13,15–18]. Using various methodological approaches

(e.g. computation of cross-correlations, coherence, phase synchro-

ny, Granger causality, cross-frequency coupling, etc.) still some

authors recently started to study changes in synchronization

patterns in intracranial recordings in cognitive tasks [19–27]. As

far as we are aware the most comprehensive cognitive study

treating in a complex manner the brain dynamics in the cohort of

ten invasively investigated human subjects is the study of Gaillard

et al [28]. Here intracranial event-related potentials, event-related

spectral perturbations, phase coherence and Granger causality

were analyzed during visible and masked words processing.

Partially in accordance with previous discoveries the authors

found the local increases in spectral power in the gamma band and

the significant increases in long-distance phase synchrony in the

beta range during processing of consciously perceived words.

In the present study we investigate invasively, in a large cohort

of human subjects, context-dependent global neural communica-

tions during a simple discrimination task with randomly presented

rare and frequent visual stimuli. This cognitive paradigm known as

a visual oddball task was previously extensively studied in both

scalp and intracranial EEG recordings [29–36]. Research in

several independent labs then clearly identified a set of cortical and

subcortical generators of relevant event-related potentials (i.e.

areas of the brain involved in the genesis of a set of cognitive
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processes during discrimination stimulus type), but functional

integration among these sites was only rarely investigated within

intracranial EEGs [18,22,37–39]. The data presented in this study

are highly heterogeneous due to the significant inter-individual

variability in number and locations of implanted electrode, hence

we focus here on the temporal aspects of neural cross-talk and do

not primarily consider the spatial aspects on the group level. This

study offers a unique opportunity to identify and confirm some of

the proposed principles on global information integration in the

human brain.

Methods

Ethics Statement
Written informed consent was obtained from each subject prior

to the investigation and the study received approval from the

Ethics Committee of Masaryk University in Brno. Intracerebral

EEG measures and their mathematical analyses were taken to

document the process and the ethic committee approved this

consent procedure. On the behalf of children participants involved

in the study the written informed consent was provided by their

caretakers.

Subjects
Ten patients (six males and four females) ranging in age from 17

to 41 years (with an average age of 28.9 years, std. 8.21), all with

medically intractable epilepsies, participated in the study (Table 1).

Depth electrodes were implanted to localize seizure origin prior to

surgical treatment. Each patient received 6–15 orthogonal

platinum electrodes in the temporal and/or frontal, parietal, and

occipital lobes using the stereotaxic coordinate system of Talairach

[40]. Bilateral and multilobar investigations were conducted for

most subjects. A total of 898 intracerebral sites were electrophys-

iologically investigated by means of 95 multicontact depth

electrodes over the subjects (49 frontal, 31 temporal, 11 parietal,

and 4 occipital). Standard semiflexible depth electrodes (ALCIS)

with a diameter of 0.8 mm, a contact length of 2 mm, and an

intercontact interval of 1.5 mm were used for invasive EEG

monitoring. The exact positions of the electrode contacts in the

brain were verified using postplacement MRI with electrodes in

situ. Lesional anatomical structures and epileptogenic zone

structures were not included in the analysis (recording sites from

these structures are not included in Table 1 - last column). All

subjects were on chronic anticonvulsant medication (usually

slightly reduced due to the video-EEG monitoring) and all of

them had normal or corrected-to-normal vision. All the patients

were able to fully understand and perform the experimental task.

Visual Oddball Task
Subjects were seated comfortably in a moderately lit room with

a monitor screen positioned approximately 100 cm in front of

their eyes. During the examination, they were requested to

continuously focus their eyes on the small fixation point in the

centre of the screen and to minimize blinking. A standard visual

oddball task was performed: two types of stimuli (frequent and

rare) were presented in the centre of the screen in random order.

Clearly visible yellow capital letters O (frequent) and X (rare;

approx. 50 trials) on a black background were used as

experimental stimuli. The duration of stimuli exposure was

constant at 500 ms; the ratio of rare to frequent stimuli was 1:5.

The interstimulus interval randomly varied between 4 and 6 s.

Each subject was instructed to respond to the rare (target) stimulus

as quickly and accurately as possible by pressing a microswitch

button in the dominant hand.

EEG Recordings
The EEG signal was simultaneously recorded from various

intracerebral structures and a limited number of midline scalp

electrodes (Fz, Cz, and Pz), using the 128 channel TrueScan EEG

system (Deymed Diagnostic). All recordings were monopolar, with

a linked earlobe reference. All impedances were less than 5 kV.
Eye movements were recorded from a cathode placed 1 cm

laterally and 1 cm above the canthus of the left eye, and from an

anode 1 cm laterally and 1 cm below the canthus of the right eye.

The sampling rate was 1024 Hz. Standard anti-aliasing filters

were used. Occasional eye movements and muscle artefacts were

off-line rejected manually and further processing was performed

with artefact-free intracerebral EEG periods.

Signal Processing
Data processing was carried out on monopolar montages with

common reference and bipolar montages in order to distinguish

between far field and local field effect to signal propagation.

Bipolar montages were calculated by subtracting signal recorded

from adjacent contacts belonging to the same intracerebral

electrode. All the following processing is the same for both

monopolar and bipolar montages.

Artefact-free intracerebral EEG trials with target and frequent

stimuli were analyzed separately. The number of artefact-free

frequent stimuli was randomly reduced to obtain the same number

of trials for target and frequent stimuli for each subject. The

number of analyzed trials varied from 30 to 48 depending on the

subject. The EEG signal was passband filtered and analyzed in six

frequency bands: d (2–4 Hz), h (4–8 Hz), a (8–12 Hz), b (12–

20 Hz), lower c (20–45 Hz), and upper c (55–95 Hz). EEG signal

was filtered before segmentation. Filter based on Fourier

transformation was used.

Cross-correlation Computation
The time cross-correlation of contact pairs, given by Pearson’s

correlation coefficient, was computed in overlapping time window

moving over the whole length of trials. The length of the time

windows for correlation computing were 500, 250, 125, 80, 60,

and 30 ms in frequency bands d, h, a, b, lower c, and upper c
respectively. The length of the window was at least one period of

the lowest frequency in the analyzed band. The shift of the moving

window was tenth the window width. No mutual time shift was

supposed between contacts in analyzed pairs. In this case the

changes of correlation may have the origin in the change of signal

shape or in time shift between channels. Within subjects, the

number of cross-correlation contact pairs varied from 1,275 to

6,441.

Power Envelope Computation
Signal’s power envelope within each trial was evaluated by

Hilbert transform demodulation in selected frequency band. The

stimuli-locked signals were particularly eliminated by subtracting

averaged trial from all trials before demodulation computation.

Statistics
The post-stimulus changes of correlation and power corre-

sponding to the resting phase before the stimulation were

evaluated. The statistically significant changes between the mean

values in the reference period 100–700 ms before stimulus and the

corresponding mean values in the moving window (one-third the

width of the reference period) in the time area after stimuli were

determined. The non-parametric Wilcoxon test for paired samples

over trials was used. Statistical significance was computed

Neural Cross-Talk during Discrimination of Odds
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separately for each subject and each frequency band, and for

target and frequent stimuli. We adjusted p value to the number of

contacts in each subject by the multiple-comparison Bonferroni

correction. The post-stimulus statistical significance is the basis for

the following analysis.

All processing was performed using ScopeWin and Matlab

software.

Graphical Interpretation of Cross-correlation
The results of the cross-correlation analysis were given in

matrices in which lines correspond to contact pairs and columns

correspond to time. Matrix values have only three levels

representing statistically significant increase (red color), decrease

(blue color) and no significant change of correlation (transparent)

relative to baseline. The level of statistical significance was set to

p,0.05 after Bonferroni correction.

Such matrices were computed separately for each subject and

each frequency band, and for target and frequent stimuli. They

provide a time overview in what latency relative to stimuli (zero in

time axis) the correlation increase/decrease is significant. These

matrices are used as the input data for graphic presentation (Fig. 1)

and numerical analysis. Such a way of correlation representation

offer clear information about time distribution. Unfortunately, the

spatial localization is difficult to reach.

To treat a spatial interpretation of our results it is necessary to

select the time interval, here 250–750 ms after stimuli was chosen.

In this time window the effect of targets is expected based on

previous intracranial event-related potentials, event-related syn-

chronization/desynchronization and coupling studies

[13,17,28,41]. Then two approaches for graphical representation

of results have been used (Fig. 2). First post-stimulus interactions in

the chosen time interval after stimuli among all investigated brain

sites were arranged into the individual triangular matrices (Fig. 2

D). The single value of triangular matrices was given by ratio of

the length of time period that represents significant increase/

decrease of correlation to the entire interval length (500 ms). Each

contact pair lines (Fig. 1) were then represented by one point in

triangular matrix. The relative value of increase/decrease of

significant correlation changes over given time window was

represented by the level of red/blue color. When the increase/

decrease of correlation appeared in whole selected time window,

the red/blue color was full dark. Any shorter increase/decrease

was presented by lighter color, dependent on total percentage of

significant points in the time window. White color expresses that

no significant change of correlation occurs in given time window.

The second approach was to depict three orthogonal views of a

transparent ‘‘glass brain" with significant cross-correlation changes

[28] (Fig. 2 A,B,C). It is the same result as in triangular matrix

including blue and red color meaning, but this approach might be

better used for illustrating the results of spatial group analysis. All

contact pairs spatially localized with significant decrease/increase

of correlation are in glass brain linked with color lines.

Grand average across all subjects of cross-correlation and power

changes according to stimulus (target vs. frequent) were computed

(Fig. 3). Within long interval 0 to 1.5 s after stimuli and over all

correlation pairs or single contact power the relative increase/

decrease was calculated. This value, obtained for each subject

separately, is given by dividing the area that represents significant

increase/decrease by the entire area. Entire area is defined by

interval length (1500 ms) and number of correlation pairs (Fig. 1)

or contacts (power). A non-parametric test for paired samples was

finally used to test statistical significance of relative cross-

correlation and power changes between target and frequent

stimulus over all subjects. Grand average was computed in six

frequency bands d, h, a, b, lower c, and upper c.

Results

Satisfactory behavioral performance of all subjects was observed

during the experiment. The mean reaction time in the group of

patients was 487 ms (std. 71.4). The mean accuracy of subjects’

responses was 99.5% (std. 1.1).

Significant changes (p,0.05) of inter-areal cross-correlations

were detected after the stimuli in a number of investigated pairs for

both monopolar and bipolar montages (Fig. 1). In several

frequency ranges, the cross-correlations increased or decreased

after targets significantly more often than after frequents. As

expected these differences were more prominent in monopolar

analyses, but they could be observed in bipolar montages as well.

Figure 2 is giving a single subject example of spatial coupling after

targets among different brain sites. The post-target interactions

among investigated sites are both arranged here into the triangular

matrices and depicted in three orthogonal views of a ‘‘glass brain’’.

Critical across subject analysis revealed significant differences in

oscillatory coupling after targets versus frequents quite congruently

Table 1. Patient characteristics.

Subject no. Sex
Age
(years)

Dominant
hand MRIa Epileptic focusa

Implanted
sitesa

No. of
recording sites

No. of analyzed
contact pairs

1 M 36 R normal pericentral L LFP, RFP 99 4,851

2 F 24 R normal precentral R RFTP 105 5,460

3 M 41 R HS LT hippocampus L LFTP, RFTP 92 4,186

4 M 23 R FCD RF frontopolar R LFPTO, RFTP 108 5,778

5 M 29 R normal occipital L LTPO, RTP 114 6,441

6 M 17 R FCD L precentral premotor L LFP 58 1,653

7 F 41 R normal anterotemporal L LFTP 87 3,741

8 F 29 R DNET RT mesiotemporal R LT, RT 75 2,775

9 M 21 L normal insula R LF, RFTP 109 5,886

10 F 28 R EMC LT mesiotemporal L LT 51 1,275

aT, temporal; F, frontal; P, parietal; O, occipital; R, right; L, left; HS, hippocampal sclerosis; FCD, focal cortical displasia; DNET, dysembryoplastic neuroepitelial tumour;
EMC, encephalomeningocele.
doi:10.1371/journal.pone.0063293.t001
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for both types of montages. The relative incidence of correlation

increases was significantly higher for targets in d, h, b, and upper c
frequency bands with the most prominent findings in the d range

(Fig. 3A,B). In parallel, in some frequency ranges – d and upper c
(for monopolar montages) and h (for bipolar montages) – targets

significantly more often than frequents decreased the inter-areal

cross-correlations in other contact pairs. Importantly, the most

frequent decreases were observed in the upper c passband in

monopolar signals, which however dramatically dropped after re-

referencing.

The comparison of statistically significant target vs. frequent

cross-correlations and power changes revealed certain relation-

ships between the power increase (synchronization)/decrease

(desynchronization) and change of both shape and time shift of

signals represented here by cross-correlation (Fig. 3). The

increases of power accompanied by the increase of correlation

were only found in c range. The decrease of power was

dominant in d, h, a, and b bands, where parallel significant

increase in correlation incidence was revealed in bipolar

montages (Fig. 3 B,D). It can therefore be postulated that

desynchronization here is associated with an increase in

correlation.

The temporal characteristics of global cross-correlation

changes after targets were as follows: the very first significant

Figure 1. Matrices with significant correlation changes in three subjects; three frequency bands – d (2–4 Hz), b (12–20 Hz), and
upper c (55–95 Hz), and two different stimuli – targets vs. frequents, for monopolar and bipolar montages. The correlation increase is
highlighted in red, decrease in blue. Each colored line corresponds to changes in a contact pair in time (notice all pairs of investigated subject’s
contacts are represented in individual matrices for each patient). Green vertical lines define interval 250–750 ms after stimuli.
doi:10.1371/journal.pone.0063293.g001

Figure 2. An example of spatial representation of post-stimulus interactions after targets between all investigated brain sites in
one subject (No. 7). Correlation results are arranged in the triangular matrices into groups according to brain structures (delimited by black
lines)(D) and in graphic form of ‘‘glass brains’’ with linked pairs of investigated electrode contacts (A – Coronal, B – Sagittal, C – Axial). Matrix values
and links are colored according to the percentage of duration of the increase (red) or decrease (blue) in cross-correlations within time window 250–
750 ms after stimulation. Three selected frequency bands – d (left panel), b (middle panel), and upper c (right panel).
doi:10.1371/journal.pone.0063293.g002
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and massive change in terms of cross-correlation increase

(reflecting inter-areal coupling) occurred in the delta and theta

frequencies at about 500 ms after target and sustained for some

100–200 ms. Subsequently a significant coupling in gamma

oscillations emerged at about 700 ms, followed by the final

increase in global cross-correlation within the beta activities

closed the event at about 1 second after target presentation

(Fig. 4, Table 2). A non-parametric test for paired samples

across all time appearing and patients showed that difference in

the timing of cross-correlation increases in the beta frequency

band was statistically significant at p,0.05 with Bonferroni

correction.

Figure 5 provide in a graphic form the values and the spatial

distribution of the post-target cross-correlation changes across all

subjects in the time window 250–750 ms after stimuli. This

figure demonstrates a global pattern of both synchrony/

desynchrony in all the depicted frequency ranges with

maximum of long-distance (e.g. inter-hemispheric) couplings in

the d band. Further clearly dominant coupling over decoupling

within the low frequencies can be observed whilst mid and

upper frequencies reveal bigger amount of correlation decreases.

And finally after the treatment of potential volume conduction

(by bipolar montaging) a significant amount of long-distance

mid and upper frequencies coupling/decoupling is still present.

Discussion

In humans, large-scale neural network dynamics investigation is

most frequently characterized by the neuroimaging data that can

be acquired non-invasively such as electroencephalography,

magnetoencephalography or functional magnetic resonance im-

aging. This macroscopic dynamics is by definition a synthetic

measure of multiple local circuits and does not satisfactorily reveal

the details of information processing in brain dynamics. It was

therefore suggested that large-scale integration be examined

optimally at the mesoscopic scale (among neural assemblies),

which necessitates invasive recordings of EEG activity using

intracerebral macro- or microelectrodes [12].

Our findings demonstrate in a large cohort of subjects, and at

the optimal mesoscopic scale, the time course details of the

synchronization patterns of neuronal discharges following a

cognitively relevant stimulus. A broad spectrum of frequencies is

involved with predominant coupling in slower frequencies and less

expressed global synchrony in the middle and upper frequency

passbands. Immediately after stimulus offset, during the initial

phase of cognitive signal processing a highly significant reorgani-

zation of the couplings within the delta bands takes place. The

inter-areal synchronization in this frequency band was present in

the majority of investigated pairs with significant post-stimulus

cross-correlation changes, and it was significantly more often after

target than frequent stimuli. Much less frequently, in other

Figure 3. Relative incidences of significant post-stimulus changes in inter-areal cross-correlations (A – monopolar; B – bipolar) and
post-stimulus power changes (C – monopolar; D – bipolar) across all investigated subjects. Statistical significance of target/frequent
differences is indicated by asterisks.
doi:10.1371/journal.pone.0063293.g003
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investigated pairs or subjects, opposite inter-areal decoupling

emerged in the same passband, which however did not signifi-

cantly differ for targets and frequents. Given the hypothesis that

slower oscillations are involved in long-range synchrony and the

coordination of faster oscillations in functionally related but

spatially segregated areas [8,16], this finding support an initial

reorganization of the network dynamics on a large scale across

various brain areas. The significant increase in correlation within

slow frequencies (including delta and theta bands) was previously

observed between two distant brain areas in animal experiments

during perception of stimuli with varying behavioral significance

[8]. Also Canolty et al [22], focusing on changes in theta phase

coupling in linguistic target detection task, observed strong target-

selectivity within the widespread network of electrodes in one

invasively investigated epileptic subject. What is however the exact

timing of this long-distance delta/theta coupling, and what are the

temporal relationships to the synchronization in other frequencies,

was not treated in previous studies (to the best of our knowledge).

Following this initial large-scale organization, a presumably more

local reorganization of the couplings in the gamma bands take

place, which will be related to more functionally distinct processes.

The well-known local gamma synchronization, which is reflected

in large post-target power increase, is however accompanied by

more long-distance gamma synchrony in our study. Importantly,

large-scale synchronies in the gamma band also have been

observed within intracortical recordings from a single epileptic

patient performing a visual discrimination task (almost identical to

the ours) in the earlier methodological study of [18]. Theoretically

the locally synchronized oscillatory responses can become

synchronized over large distances due to reciprocal coupling of

the oscillatory networks via excitatory cortico-cortical connections

[42]. Then both local and long-range gamma couplings can

together mediate bottom-up effects of behaviorally significant

stimuli and may act as distributed unifying mechanism [8,43,44].

The final stage of cognitive processing reflected in EEG

synchronization is characterized by the release of the couplings

across beta band, which seems from previous primate studies to

exert a final top-down modulation [45,46]. In the extensive study

of Gaillard et al., significant long-distance phase synchrony in the

beta range was observed after presented words which increase was

as the only one significantly correlated with conscious access to the

stimuli [28]. In this study, which showed in a parallel way a

significant increases of spectral power in the gamma band during

conscious processing of the visible words, unfortunately slower

frequencies (theta and delta) were not analyzed. Also no temporal

code of various frequency couplings was addressed here.

The discussed form of time scale hierarchy is a well-known

mechanism in dynamic system theory separating processes and

functions within one and the same system. On the other hand our

data does not correspond fully with earlier views on the inter-areal

oscillatory frequency as a function of the distance only and rather

shows that slower and faster oscillations might be involved in the

same-range synchrony over the same Euclidean distances (Figs. 2

and 5). Even if synchronization among remote groups of neurons

or among large assemblies of neurons truly tends to occur at lower

oscillation frequencies than synchronization of local clusters of

cells [42], still there exist, very likely functionally significant,

gamma oscillations binding between remote areas too. This

finding fits also well with repeatedly proven association of the

cognitive process with long-range coherence in the gamma range

[18,24,47]. The present study limitations are related to the a)

recruitment of chronic epileptic patients (some of them with

structural brain pathology) and all of them on chronic anticon-

vulsant medication, which makes the results difficult to generalize

on the normal population, and b) to the available electrodes and

related limited analysis between electrode contacts within a given

patient which sometimes tend to be regrouped within a distinct

cortical area and make it difficult to analyze frequency couplings

across the majority of distant brain areas.

The interesting question is what all kinds of cognitive processes

are actually reflected in observed synchronization patterns of

neuronal discharges. For the average response time is shorter than

the effect latencies (.500 ms), it is unlikely that our findings reflect

a set of pre-movement cognitive functions, including early

attentional, mnestic and executive processes. Rather we can

speculate that they might mirror some broader aspects of cognitive

processing, including more complex attentional functions, perfor-

mance monitoring, and perhaps also affective processing related to

successful rare stimulus detection.

Table 2. Temporal characteristics of significant cross-
correlation changes after targets for monopolar (A) and
bipolar montages (B).

A

INCREASE d h b Lower c Upper c

Centre [ms] 662 (135.8) 592 (188.8) 944 (97.0) 747 (171.5) 724 (103.6)

Duration
[ms]

255 (81.2) 136 (25.0) 86 (29.7) 85 (29.9) 48 (49.1)

DECREASE d Upper c

Centre [ms] 603 (200.0) 623 (57.3)

Duration
[ms]

195 (67.4) 100 (78.0)

B

INCREASE d h b Upper c

Centre [ms] 495 (100.4) 574 (289.6) 878 (386.0) 741 (235.6)

Duration
[ms]

193 (196.2) 98 (78.1) 115 (79.3) 170 (133.6)

DECREASE h

Centre [ms] 711 (223.5)

Duration
[ms]

126 (54.2)

Standard deviations are given in brackets.
doi:10.1371/journal.pone.0063293.t002

Figure 4. Timing of significant post-target cross-correlation
increases across all subjects and areas. The duration was
determined as the mean level of corresponding changes over contact
pairs, and the occurrence was given as the center of changes.
doi:10.1371/journal.pone.0063293.g004
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It is intriguing, in light of the search for the link between

cognitive dynamics and neural events, to find evidence for

characteristic time courses of multi-frequency synchronization

patterns of neural discharges in the human brain. This highly

characteristic temporal structure of the evolution of couplings

suggests that different frequency bands carry different dimensions

of the integration process rather than only reflecting, as previously

suggested, their dependence on the distance of structures that are

involved [43,48]. It is also congruent with the recently proposed

view on the frequency-specific neuronal correlations in large-scale

cortical networks that point to the underlying computations [14].

This ‘‘spectral fingerprint’’ very likely reflects all the complexity of

the brain dynamics, including distinct biophysical properties of

involved circuit mechanisms and many simultaneously engaged

aspects of cognitive processes.

When interpreting the results, it is necessary to consider the

differences between monopolar and bipolar montages in intrace-

rebral EEG. Monopolar recordings represent the voltage referred

to common reference in its absolute value. Resulting signal shape

includes contribution of both local and far field sources. Very often

power of far fields is much higher than local fields. Far field spatial

distribution significantly increases correlation between remote

areas as well as correlation after stimuli. Against, bipolar montages

represent only differences between two closely adjoining contacts

and not the actual value of ground referenced potential. These

differences are often low voltage level contaminated by noise. It

also depends on the polarity of the signal in bipolar subtraction.

This bipolar montage features reduce the correlation value and

changes correlation character. Bipolar correlation can be inter-

preted as coupling of ‘‘neighborliness’’.

In the presented results we can find strong reduction of coupling

occurrence in bipolar montages. Remarkable is the correlation

diference in monopolar/bipolar montages in low and middle

frequencies and upper gamma range. In monopolar upper gamma

most often reveals the correlation decrease after target stimuli, but

in bipolar there is in the upper gamma a significant correlation

increase after targets (Fig. 3 A,B). Such diference we cannot find in

other lower frequencies. Taking into account monopolar and

bipolar properties we can speculate about strong local process

activation (decrease of monopolar long-range correlation and

Figure 5. Spatial distribution of couplings/decouplings across all investigated subjects, in the time window 250–750 ms after
targets. Three orthogonal views of a transparent ‘‘glass brain’’; links are colored according to the percentage of duration of the increase (red) or
decrease (blue) in cross-correlations within time window 250–750 ms after stimulation. Three selected frequency bands – d (left panel), b (middle
panel), and upper c (right panel).
doi:10.1371/journal.pone.0063293.g005
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increase of bipolar short-range correlation) after target stimulation

in upper gamma range (Fig. 5, upper gamma). This finding

confirms the hypothesis that faster oscillations are functionally

related to spatially limited short-distance areas.

The important role in reactions to the cognitive stimulation

seems to display simultaneous changes in correlation and power

levels as well - monopolar/bipolar correlation/power relationship.

The significant differences between the reactions to the targets and

the reactions to the frequent stimuli indicate specific frequency

bands (high for power increase - sychronization, low for power

decrease - desynchronization), which are most likely taking place

during decision-making process. In monopolar representation,

revealed relationship between the synchronization/desynchroni-

zation and the phase coupling represented by correlation is

showing that the increase of power in the delta band after target

and frequent stimulation is supported by the increase of

correlation only after target stimulation (Fig. 3 A,C, monopolar).

The massive decrease of global cross-correlation after targets in the

upper gamma appears to be connected to its significant power

increase after target stimuli. Theta, alpha, and beta frequencies

include predominant power decrease after both target and

frequent stimuli. In case of bipolar montages however we can

find predominantly significant increase in correlation incidence

accompanied by decrease in desynchronization (Fig. 3 B increase,

D decrease). The term significant here means significant increase

of correlation after target stimuli in comparison with frequent and

significant decrease of signal power after target stimuli in

comparison with frequent over all subjects. This behavior is

dominant for lower and mid frequencies - d, h, a, and b). We can

assume that in the case of bipolar montages the increase in

connectivity is associated with decrease of power - desynchroni-

zation. This feature appears only in bipolar montages and mainly

represents connectivity to shorter distances. It also corresponds

with Canolty et al. [22] results where theta power and phase

coupling can change independently (dissociate).

These reactions might indicate the basic principles of mental

activity in human brain. Patterns of synchronization and

desynchronization evolve dynamically within the framework of a

large-scale brain network. The essential ingredients determining

the evolution of these oscillatory patterns are the connectivity and

the time delays [49,50], which are referred to as the space-time

structure of the couplings of a network and are fundamental for

synchronization/desynchronization.

Our present results are summarized over different structures

within the human brain. The results show the overall feature of the

brain activity including heterogeneous active areas. Essential

information might be hidden in time as well and our results

(rounded over whole time interval after the stimulation (from 0 to

1.5 s) could unfortunately provide us only with limited notion

about correlation and power development over time only. The

future depth EEG studies should focus on the synchronization

patterns across different frequency bands within specific anatom-

ical networks, should treat generally the interactions between

different frequency bands and specifically between local and long-

range gamma for instance, should examine shorter time intervals

(and longer period) after the cognitive stimuli, and differentiate the

impact of different cognitive tasks on the frequency-specific inter-

areal correlations.
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