
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS

ÚSTAV INFORMAČNÍCH SYSTÉMŮ

GENERICDECENTRALIZED SELF-ADAPTIVE CONTEXT-

AWARE ARCHITECTURE MODEL
GENERIC DECENTRALIZED SELF-ADAPTIVE CONTEXT-AWARE ARCHITECTURE MODEL

PHD THESIS

DISERTAČNÍ PRÁCE

AUTHOR Ing. M. MOHANNED KAZZAZ

AUTOR PRÁCE

SUPERVISOR Doc. Ing. JAROSLAV ZENDULKA, CSc.

ŠKOLITEL

BRNO 2019

Abstract
The evolution in information system continuously raises demands for more efficient, effective
and adaptive cooperation between system’s components to cope with changes in the system
and to guarantee its best performance. Two main approaches have been introduced to
achieve these requirements. First, the self-adaptation approach which enables information
system to adapt to the changes in context information of the system and its surrounding
environment based on an adaptation strategy. Second, context-awareness approach which
enables to monitor the context information and recognize those changes that can trigger
the adaptation process.

In this work we introduce a generic context-aware self-adaptive architecture model to
support software system with adaptation functionalities that guarantee system’s availability,
operation conditions and performance. Moreover, we provide two real-life case studies as a
proof-of-concept of the applicability and re-usability of our proposed adaptation approach.

Abstrakt
Vývoj v informačním systému neustále zvyšuje nároky na účinnou, efektivní a adaptivní
spolupráci mezi komponenty systému, aby se vyrovnal se změnami v systému a zaručil tak
nejlepší výkon. K dosažení těchto požadavků byly zavedeny dva hlavní přístupy. Přístup
k adaptaci umožňuje informačnímu systému přizpůsobit se změnám v kontextu informací
systému a jeho okolního prostředí na základě adaptační strategie. Přístup ke zvyšování
informovanosti zase napomáhá sledovat informace o kontextu a rozpoznat změny, které
mohou proces adaptace vyvolat.

V této práci představujeme obecný kontextově orientovaný model vlastní adaptivní ar-
chitektury pro podporu softwarového systému s adaptačními funkcemi, které zaručují dos-
tupnost systému, provozní podmínky a výkon. Navíc poskytujeme dvě případové studie v
reálném životě jako důkaz konceptu použitelnosti našeho navrhovaného adaptačního přís-
tupu.

Keywords
Self-adaptation, software architecture, context model, decentralized control, context aware-
ness.

Klíčová slova
Adaptabilita, softwarová architektura, model kontextu, decentralizované řízení, sledování
kontextu.

Reference
KAZZAZ, M. MOHANNED. Generic decentralized self-adaptive context-aware architecture
model. Brno, 2019. PhD thesis. Brno University of Technology, Faculty of Information
Technology. Supervisor Doc. Ing. JAROSLAV ZENDULKA, CSc.

Generic decentralized self-adaptive context-aware
architecture model

Declaration
I hereby declare that the thesis is my own work that has been created under the supervision
of doc. Ing. Jaroslava Zendulky CSc. It is based on the seven papers [42, 43, 44, 41, 45, 46,
47] that I have written jointly with my supervisor specialist RNDr. Marek Rychlý, Ph.D.
Where other sources of information have been used, they have been duly acknowledged.

. .
M. MOHANNED KAZZAZ

July 4, 2019

Acknowledgements
First, I would like to thank my parents and family for supporting me with their love and
prayers all my life. Thank you so much!

I would like to thank doc. Ing. Jaroslava Zendulka, CSs., for his invaluable advice,
support and guidance during his supervision of this work. Also, I would like to thank
RNDr. Marek Rychlý, Ph.D., who has been a great source of guidance, inspiration and
assistance during my doctoral studies.

Contents

1 Introduction 6
1.1 Motivation . 7
1.2 Important Definitions . 7
1.3 Aim of the Thesis . 8
1.4 Thesis Objective . 9
1.5 Thesis Contribution . 10
1.6 Structure of the Thesis . 10

I Theoretical Background 12

2 State of the Art 13
2.1 Service Oriented Architecture . 13

2.1.1 The Motivation of Service Oriented Architecture 13
2.1.2 Service . 14
2.1.3 Service Attributes . 14
2.1.4 Modelling of Web Service . 15
2.1.5 Web service Composition . 15
2.1.6 Context Information . 16
2.1.7 Categorization of the Context . 16
2.1.8 Context Models . 16

2.2 Existing Approaches and Frameworks . 17
2.2.1 Adaptive Systems . 18
2.2.2 Context-aware Systems . 20
2.2.3 Context-aware Adaptive Software Systems 21
2.2.4 Decentralized Self-Adaptive System 22
2.2.5 Discussion . 22

2.3 Problem Statement . 23
2.4 Summary . 24

II Proposed Approach 25

3 Context-aware Self-Adaptive SOA Meta-Model 26
3.1 Introduction . 26
3.2 Semantic Web . 26
3.3 OWL-S Semantic Web Service Description 27
3.4 System Core Ontology . 28

1

3.5 Ontology-based Context Model . 30

4 The Decision-Making Process 32
4.1 Decision Making Using the AHP . 33
4.2 Dynamic Decision-Making Algorithms . 33

5 Web Service Migration-based Adaptive Service Oriented Architecture
Model 37
5.1 Related Work . 37
5.2 Service Migration . 39
5.3 Migration Decision Modelling . 39
5.4 Web Service Migration Ontology . 42

5.4.1 Service Migration Ontology Classes 43
5.4.2 Service Migration Object Properties 44
5.4.3 Rules . 45

5.5 Mobile Web Service Migration Framework Architecture 48
5.5.1 Discovery Module . 49
5.5.2 System Context Manager Module . 49
5.5.3 Migration Module . 50
5.5.4 Migration Process . 50

III Implementation and Experimental Results 52

6 Web Service Migration-based Framework Description 53
6.1 System Requirements . 53
6.2 Implementation Description . 53

6.2.1 Service Migration Framework Architecture 54
6.2.2 Device and Service Discovery . 54
6.2.3 System Services . 56
6.2.4 Context Model Reasoning . 56

6.3 Migration Example . 57

7 Case Studies 63
7.1 Case Study 1 - Traffic Jam Detection Service Migration 63

7.1.1 Related Work . 63
7.1.2 System Description . 64
7.1.3 System Components Context Representation 65
7.1.4 Framework Implementation Description 65
7.1.5 Experiment and Results . 67
7.1.6 Conclusion . 70

7.2 Case Study 2 - Tourist Video Streaming Mobile Service Migration 71
7.2.1 System Description . 71
7.2.2 System Settings . 71
7.2.3 Experiment Description . 72
7.2.4 Experiment Results . 73
7.2.5 Conclusion . 73

7.3 Evaluation and Conclusion . 74

2

IV Future Work and Conclusion 77

8 Future Work 78

9 Conclusion 79

Bibliography 81
List of Appendices . 87

A Abbreviations 88

B The Framework Applications 91

C Author’s Publications related to the Thesis 94

D Contents of the Enclosed CD-ROM 96

E JENA Rules of the Web Service Migration System Context Model 97

F Curriculum Vitae 99

3

List of Figures

2.1 Traffic Detection Service as adaptation to traffic information service loss in
car mobile navigation application. 24

3.1 The Semantic Web Stack. 27
3.2 System Core Ontology proposed to describe SOA component. 29
3.3 A simplified schema of the system component. 30

4.1 The InitializeCriteriaMatrix algorithm to compute a pair-wise criteria com-
parison matrix for AHP based on CriteriaPriorities of individual criteria. . 34

4.2 The InitializeDecisionMatrices algorithm to compute a decision comparison
matrix based on a given criterion. 36

5.1 The migration-decision process as a finite state automaton. 42
5.2 The ontology of web service migration system. 44
5.3 The definition of possibleProvidedService and possibleDestinationProvider

Properties in the Service Migration Ontology. 45
5.4 Mobile Web service migration architecture. 49
5.5 Illustration of the Migration Process Steps. 51

6.1 The interface of the framework’s controller and the interfaces implemented
by participating services and service providers to enable the service migration. 55

6.2 The partial model for service provider YProvider with information of the
provider’s status properties and preference rule. Preference rule YProvider-
Preference written in the JENA rules language allows the provider to host
only services with ServiceType set to value ”major“(other providers XProvider
and ZProvider do not have this restriction). 61

6.3 The partial model for service Service1 with information of its preference
rules. Service1ProviderPreference1 and Service1ProviderPreference2. 62

7.1 Traffic jam detection system ontology-based model representation. 65
7.2 Application interface showing the planned route and surrounding cars during

the experiment. 67
7.3 Mobile Web service migration framework application. 70
7.4 The Context Model of Service S Presented in JSON Format. 72
7.5 Framework Total CPU Usage by its Average Lasting Time During an Hour. 74
7.6 Battery Level Drop during the Experiments. 75

B.1 Application 1 - Service Migration Android Application GUI for Mobile Devices. 92
B.2 Application 2 - Service Migration Java-based Application GUI for Stationary

Devices. 93

4

List of Tables

4.1 Random Consistency Index (RI). 35

6.1 Values of the status properties published in partial models of the service
providers. 57

6.2 Values of the status properties published in partial models of the services. . 57
6.3 The migrations found to fix the violated preference rule. 58
6.4 The utilized criteria and values of their attributes. 59
6.5 Comparison matrix A, generated by the InitializeCriteriaMatrix algorithm

and weight vector w computed from the matrix. 59
6.6 Migration comparison matrices S(k) generated by the initializemigrationma-

trices algorithm and weight vectors v(k) computed from the matrices. . . . 60

7.1 Cars properties during migration example. 68
7.2 Main criteria comparison matrix and its priority vector. 69
7.3 Migration comparison matrices and priority vectors. 69
7.4 Values of the Status Properties and Preferences of the Mobile Service Providers. 72

5

Chapter 1

Introduction

The ever-developing nature of the distributed system arises demanding requirements of the
design process for an automatic and robust management means. To satisfy these require-
ments, Self-adaptation has been proposed to support software systems with the mechanism
to modify their behaviour and maintain their goals flexibly and robustly through an auto-
matic reaction to information context changes of 1) actor’s requirements, 2) surrounding
environment, 3) and, the system itself [65, 17]. The reaction is a result of specific monitoring
strategy the system should follow. Four functionalities have been defined in [73] as required
functionalities in Self-adaptive system, the system must: 1) monitor context information of
system and environment, 2) detect changes, 3) decide the adaptation plan to perform and
4) act by executing the chosen adaptation plan. On the other hand, Context Awareness
approach has been proposed to solve the problem of information misunderstanding between
system distributed components over different domains. It addresses the need to provide a
unified model of information context which helps the realization of system adaptation by
supporting system information context understanding, monitoring and discovery of context
changes in the operational environment.

The self-adaptive context-aware framework for stationary and mobile devices presented
in this thesis is a framework for enabling self-adaptation and context-awareness in infor-
mation system. It utilizes ontology-based model to describe system components including
their properties and preferences. Using an ontology-based model enables the adoption of
context awareness approach concepts of context modelling, monitoring and context rea-
soning. Moreover, the framework supports the utilization of a decision-making process to
choose the best adaptation scenario based on defined set of criteria. To present the ap-
plication of the decentralized context-aware adaptive architecture model proposed in this
research, we provided two case-studies with a detailed description of system configuration
and framework’s analysis and evaluation.

The introduced adaptive architecture model provides an answer to the question of how
to support information systems with a dynamic response to changes in their surrounding
environment. In other words, how to design a formal architectural model that supports
information system reconfiguration during runtime based on the changes in system compo-
nents and the current state of system environment. Moreover, the contribution of this thesis
leverages the adoption of system adaptation in service-oriented mobile architectures. Also,
it provides researchers with an adaptive architecture model supported with a multi-criteria
decision-making process, which facilitates and easies the design and implementation of new
adaptation scenarios through the utilization of the provided adaptive architecture model
and implemented framework.

6

In the next section we present the motivation scenario behind this work and our proposed
approach to support adaptation in software system and to solve the limitations of current
approaches.

1.1 Motivation
Inspired by [93, 74], let us consider a traffic jam detection system as a real-life scenario of
utilizing adaptation in car navigation system. The motivation behind utilizing the adap-
tation is to solve service’s loss situation and to help drivers to avoid traffic bottlenecks on
roadways. To design such a system, it is required to enable traffic information exchanging
between cars. For that, traffic information should be formally modelled and correctly under-
stood by the navigation system application on each car. On the other hand, the navigation
system requires to be context-aware by continuously monitoring and analysing traffic status
to detect traffic jam situations that trigger a process of re-planning the route. Moreover,
a process of deriving of alternative routes and recommending the best one should be pro-
vided. These requirements can be satisfied by defining a unified taxonomy of context terms
to describe the system and its components. Context information like car speed, position,
traffic status, route details, number of surrounding cars, etc., are pieces of information that
should be realized and exchanged between cars during run-time. This information should
be noted formally as car context model and published to be discovered by other cars. The
usage of car context model facilitates the integration of context-awareness approach by en-
abling context changes monitoring and discovery. Moreover, it supports the utilization of
self-adaptation to traffic information changes (i.e., traffic jam status), by defining adapta-
tion conditions and the utilization of a proper decision-making process used to choose the
best adaptation decision.

The importance of our research resides in the following points:

• The introduced context model of system components allows to provide a formal and
common understanding of system context information between different application
domains.

• The abstract core self-adaptive architecture model can be extended and customized
to adopt new adaptation scenarios.

• The proposed framework facilitates system adaptation and service provision in mobile
architectures.

• The proposed framework supports the integration of self-adaptation on existing in-
formation systems regardless their technical implementations which minimizes the
upgrade effort to enable self-adaptation in those systems.

1.2 Important Definitions
In this section we introduce definitions of the important basic concepts we use throughout
the thesis. These definitions provide the meaning of few topic-related terms and concepts
that will be explained in more details later in the thesis.

• System : the set of related hardware and software units implemented together to
perform specific business application.

7

• Controller : the software unit responsible for performing the considered adaptation
strategies in the system.

• Orchestration : the set of protocols, coordinations, and activities between software
and hardware systems designed to achieve an automated process [25].

• Centralized Controlled System : a system that is controlled using a central
processing unit that is responsible for performing the whole business processes.

• Decentralized Controlled System : system that is controlled by two or more
computers physically distributed to different places (for example, at the location of
system database or data source) to improve system’s performance (for example, by
avoiding transferring of large amount of data) and security.

• Environment : the operational surrounding and conditions where the System and
its users operate.

• Context : the information representing the status of the System and Environment
parts. This information can be acquired and processed for specific applications.

• Service : a piece of code designed to perform a specific computation in the system
[26].

• Device : a machine operating in the system. (i.e., mobile device, printer, camera,
etc.).

• Service Provider : a device set up with a running HTTP server to host services.

• Sensor/Context Provider : a device that provides specific type of data (i.e., light
sensor).

• Service Migration (Mobility) : The ability of a Controller to move a service from
one Service Provider to another [60, 15].

• Efficiency : The ratio of needed computation work dedicated to avoid operational
violations in the system and improve system performance to the total impact of
performed computation work on system performance.

1.3 Aim of the Thesis
Software architecture can be described as the “blueprints” of a software system at the
highest level of abstraction [79]. It describes the software system as a set of components
and their interactions through notation and documentation to provide better understanding
and analysing of the system [79, 88]. The importance of software architecture is realized in
its evolution and customization factors which enable the architecture to adapt itself and to
evolve to match new usages [67].

The evolution of software architecture is categorized into two types [16]: the static evo-
lution, which refers to the need to stop and restart the system if architectural modifications
is required and the dynamic evolution, that allows the application of these modifications
without causing interruptions or failures in the system. However, many approaches to
model software architectures were contributed, using different notations of components and

8

connectors which raised a problem of misunderstanding or interpretation of these documen-
tations as there is no formal description available [51].

From an architectural point of view, Service-Oriented Architecture (SOA) [26], Component-
based development (CBD) [12], and Microservice Architecture [63] are the state-of-the-art
approaches introduced to provide a formal architecture design style for modern information
systems and to cope with their distributed nature by supporting software system compo-
nents reusability, communications and interoperability.

Self-adaptive approach has been proposed to guarantee software system goals by dy-
namically reacting and adapting to changes in the environment and user requirements
to continue providing a reliable service. Researchers concentrate on self-adaptive system
requirements by modelling the properties of these requirements from goal-oriented [1] per-
spective, aspect-oriented perspective [62] and agent-oriented [8]. On the other hand, other
researchers [66, 76] addressed the context-aware adaptation and context management as
challenges to design self-adaptive system regarding its uncertainty in understanding the
meaning of context information and its changes over different development environments.

Contributions on self-adaptation [1, 62, 85] have used the goal-directed approach [19]
to model and define the objectives of the system as goals and sub-goals. Researches like
[95, 22], tried to achieve system goals using the component-based approach by supporting
components composition and defining the process plan through different implementation
techniques.

In [92], the authors provided a new way to improve self-adaptive architecture by ad-
dressing the need to separate between the application and adaptation concerns which is
considered a method towards coping the requirements of adaptive systems.

In [93], the authors addressed the decentralized self-adaptation by defining the attributes
of decentralized self-adaptive systems and demonstrating the defined attributes through
two case studies. The adaptation requires a reconfiguration of the system that costs more
adaptation time. The context providers cooperate in different system nodes to avoid the
lack of information through a centralized control (Master/Slave) organization.

The thesis focuses on investigating the design requirements needed to achieve self-
adaptation in information system by introducing a self-adaptation context awareness ar-
chitectural model. The proposed architecture model shall support dynamic discovery of
system components, an automatic identification of critical situations requiring the adapta-
tion and provide a mechanism to survive these critical situations by implementing a defined
adaptation plan. This thesis studies existing approaches of context-information modelling
to provide a formal model that can be used to describe system components statuses and
operating conditions so that changes in these statues can be recognized and understood to
be used in planning and performing the adaptation processes.

1.4 Thesis Objective
The general goal of this research is to design a decentralized self-adaptive architecture. In
this architecture, we want to provide the possibility of implementing self-adaptation not
only on the user side (i.e. end user interface) but also on the system itself in the way that
allows the system to adapt regarding context’s changes (i.e. light, temperature, communi-
cation bandwidth, battery status) through a decentralized adaptation which can minimize
the adaptation costs, guarantee the quality of provided services and improve system per-
formance. The specific objectives supporting the general objective can be summarized as
follows:

9

O1 To provide a formal system context model which enables the understanding of context
and context’s changes meanings and promotes context awareness in the system.

O2 To provide a context-aware self-adaptive architecture model that adapts to the con-
text’s changes of system components and its surrounding environment.

O3 To provide a framework that supports adaptation in the system. The framework
allows different types of devices to cooperate in centralized controlled orchestrations
to solve a problem of context’s loss or uncertainty by including new services that do
not affect with the changes causing the problem.

O4 To analyse the efficiency of implementing the decentralized adaptation on system side
on appropriate case studies.

1.5 Thesis Contribution
According to the proposed objectives, the following contributions are provided:

C1 A system ontology to support the usage of common understanding of context infor-
mation between different domains. A detailed description of the proposed ontology is
provided in Section 3.4 and Section 5.4.1.

C2 A formal ontology-based context model that allows to describe system component
context model and provides a method to ease the discovery process of new context
providers in the system. See Section 3.5 for more details.

C3 A framework for distributed context-aware self-adaptive system (presented in Sec-
tion 6.2), is provided to support an automatic system adaptation to context’s changes
of the system and environment. The adaptation guarantees the operation conditions
to keep a desired Quality of Service (QoS) performance level. Moreover, the dis-
tributed mechanism will improve system performance by distributing system tasks
of adaptation and context processing over several controllers which helps to avoid
system overloads that could happen when utilizing the centralized approach.

C4 An extensible adaptation architecture model (see Section 5.5) that can be easily cus-
tomized by researchers over new case studies. The extensibility of the model eases and
stimulates conducting research work on both self-adaptation and context-awareness.

C5 A decision-making process to support choosing the best adaptation scenario from a
set of alternative adaptations based on set of prioritized criteria. See Sections 4.1 and
4.2 For more details.

1.6 Structure of the Thesis
This thesis is divided into four parts as follows: Part I “Theoretical Background”, Part II
“Proposed Approach”, Part III “Implementation and Experimental Results”, and Part IV
“Future Work and Conclusion”, which contains the following chapters: Chapter 2, Chapters
3–5, Chapters 3–6, and Chapters 7–8-9, respectively.

Theoretical Background: In Chapter 2, we provide the state-of-the-art study of this
work starting with an introduction of the Service-Oriented Architecture approach and the

10

motivation behind adopting it in this work. Later, we review the existing literature imple-
menting the self-adaptive and context awareness approaches. In addition to the provided
state-of-the-art study, a supplementary information related to the state-of-the-art and re-
lated work dealing with more specific areas is covered in parts II and III. Finally, we
demonstrate a real-life problem statement and a summary of the-state-of-the-art study.

Proposed Approach: In Chapter 3, we introduce our proposed context-aware self-
adaptive SOA meta-model. We present the ontology-based component context model pro-
posed to describe system components. In Chapter 4, we demonstrate the decision making
process and algorithms developed to support decision making in our approach. In Chap-
ter 5, we provide an adaptive SOA based model by applying the meta-model proposed in
Chapter 3. The demonstrated architecture model adopts service migration between service
providers as the adaptation strategy to survive violations in service and providers prefer-
ences.

Implementation and Experimental Results: In Chapter 6. we provide the analysis of
requirements and implementation description of the proposed service migration system.
In Chapter 7, we provide two case studies to present the application and efficiency of our
service migration approach to solve this thesis motivation example provided in Chapter 2. In
Chapter 8, we discuss the future work and in Chapter 9, we summaries the thesis approach
and highlight its contributions.

11

Part I

Theoretical Background

12

Chapter 2

State of the Art

In this Chapter, we analyse some of the most important state-of-the-art approaches of
self-adaptive software systems. In Section 2.1 we provide a review of Service-Oriented
Architecture which provides the needed abilities for consumers to invest system services
between the distributed information systems and reusing their available resources. Context
and its categorization and models are described briefly in Section 2.1.6. In the later sec-
tions, we present the existing approaches used in software system. In Section 2.2, we deal
with adaptive system approaches, presenting the existing contributions based on system
adaptation and reconfiguration of systems based on context’s system changes. Later, we
review the existing Context-aware systems and the context-aware adaptation approaches.
Finally, we provide summary and conclusion of the state-of-the-art in Section 2.1.

2.1 Service Oriented Architecture
Service Oriented Architecture (SOA) is a paradigm for organizing and utilizing distributed
capabilities that can be under the control of different ownership domains. It provides
a uniform means to offer, discover services and use their capabilities to produce desired
effects consistent with measurable preconditions and expectations [56].

A Service provides documentation about its capabilities and the information necessary
to interact with it. SOA provides the ability for service consumers to discover and use
the functionalities and capabilities of the participated services. The main role of SOA is
to match these consumers requirements and capabilities of each party through a matching
process of the provided documentations.

In SOA, interaction between a service consumer and a service is achieved by a series of
information exchanges which is controlled through certain policies.

2.1.1 The Motivation of Service Oriented Architecture

The central objective of a service-oriented approach is to reduce dependencies between

”software islands“ which basically comprise the services and clients accessing those services
[83].

The main drivers for SOA-based architectures are to facilitate the manageable growth
of large-scale enterprise systems, to facilitate Internet-scale provisioning and use of services
and to reduce costs in organization to organization cooperation [56].

SOA based architectures enable the cooperation between software entities from different
environments to achieve new needed business processes. Reusing these software and avail-

13

able resources from different networks reduces time and cost of developing new software
systems.

2.1.2 Service

In the context of SOA, the term service can be defined as ”an implementation of a well-
defined piece of business functionality, with a published interface that is discoverable
and can be used by service consumers when building different applications and business
processes“ [26].

Another definition of a service is provided by [56], ”A service is a mechanism to enable
access to one or more capabilities, where the access is provided using a prescribed inter-
face and is exercised consistent with constraints and policies as specified by the service
description“.

2.1.3 Service Attributes

As service represents the corner stone in SOA, it must have common attributes to be
able to satisfy SOA standards. These attributes are described by [26] as a common set of
service-level design principles mostly associated with service orientation:

• Services are reusable. Regardless of whether immediate reuse opportunities exist,
services are designed to support potential reuse.

• Services share a formal contract. For services to interact, they need not share anything
but a formal contract that describes each service and defines the terms of information
exchange.

• Services are loosely coupled. Services must be designed to interact without the need
for tight, cross-service dependencies.

• Services abstract underlying logic. The only part of a service that is visible to the
outside world is what is exposed via the service contract. Underlying logic, beyond
what is expressed in the descriptions that comprise the contract, is invisible and
irrelevant to service consumers.

• Services are composable. Services may compose other services. This allows logic to be
represented at different levels of granularity and promotes reusability and the creation
of abstraction layers.

• Services are autonomous. The logic governed by a service resides within an explicit
boundary. The service has control within this boundary and is not dependent on
other services for it to execute its governance.

• Services are stateless. Services should not be required to manage state information, as
that can impede their ability to remain loosely coupled. Services should be designed
to maximize statelessness even if that means deferring state management elsewhere.

• Services are discoverable. Services should allow their descriptions to be discovered
and understood by humans and service requestors that may be able to make use of
their logic.

14

With these principles of service, SOA will be easily configurable by developers and
reusable in different implementations by modifying one service or more to achieve the
business goal of the system.

2.1.4 Modelling of Web Service

”A Web Service (WS) is a software system designed to support interoperable machine-to-
machine interaction over a network. It has an interface described in a machine-processable
format (specifically WSDL). Other systems interact with the Web service in a manner
prescribed by its description using SOAP-messages, typically conveyed using HTTP with
an XML serialization in conjunction with other Web-related standards“ [18].

From this definition it can be realized the ease of WS usage in software system as it
uses standardized technologies through the unique Uniform Resource Identifier (URI) in the
system and the Extensible Markup Language (XML). XML is used to describe Web service
methods in the Web Service Description Language (WSDL) document and also the Simple
Object Access Protocol (SOAP) messages used to achieve information communications
between Web services [26, 21].

The Web service model presented by [21] consists of three entities, the Service Provider,
the Service Registry and the Service Consumer. The service provider creates and offers the
web service with its standardized XML description on the service registry. The service reg-
istry has the required information about the service provider and technical documentation
of the service. The service consumer uses, locates and retrieves the information from the
registry then uses the obtained service description to invoke the web service.

The Representational State Transfer (REST) architecture style has been introduced in
[28] to standardize the description and interaction with Web services. REST defines a
Web service as set of resources that can be identified and reached by users through a URI.
Each resource can be managed through a set of operations (retrieve, create, update and
delete) through the Hypertext Transfer Protocol (HTTP) methods (GET, PUT, POST and
DELETE) representing these operations respectively.

2.1.5 Web service Composition

The interoperability of the Web services enables it to invoke other Web services in the
environment to achieve the business logic. This invocation of different Web services is
called web service composition. A new composite web service can be created by composing
basic services and composite services. A Web service composition provides a method to
achieve business logic of the system by web services of more complex tasks.

Service composition strategies have been categorized in [21] into five different categories.
We briefly note two that match with the interest of our work.

The first strategy is static and dynamic composition. It is related to time of composition.
Static composition takes place during design-time of planning the architecture. In contrast,
dynamic composition is planned and takes place during run-time of the application.

The second strategy is manual and automatic composition. The main aspect of this
strategy deals with whether the composition is made by a human intervention or by the
system itself.

15

2.1.6 Context Information

The need to get better and specific understanding the meaning of information about the
system and its surrounding environment has become highly important. This information is
referred by term ”context“. Different definitions have been provided according to the usage
of this information as one of the first contributions [75] defines context as location, identity
of users, and nearby people.

In [2] the authors define context as follows: ”Context is any information that can be
used to characterize the situation of any entity. An entity is a person, place, or object that
is considered relevant to the interaction between a user and an application, including the
user and applications themselves.“.

A refined definition of context information is provided in [76]: ”Context is a combination
of any information that can be sensed or received by an entity which is useful to catch events
and situations.“.

2.1.7 Categorization of the Context

Regarding to the nature of context and its different recourses, the need for classifying the
context is considered an important factor to understand and model it [35].

In [35], the authors provided four main characteristics of context information:

• Context is temporal: Context relates to time factor, so it can be static or dynamic.

• Context is imperfect: Context ranges between correct, incorrect, inconsistent, and
incomplete according to its representation of the true state of the environment.

• Context has many alternative representations: to fit with different types of applica-
tion.

• Context information is highly interrelated: by presenting the relationships between
the entities which describe the context.

2.1.8 Context Models

A good context information modelling formalism of reduces the complexity of context-aware
applications and improves their maintainability and evolvability [10].

Bettini et al. [10] proposed the following requirements which should be met by the
context information models:

• Heterogeneity and mobility: Regarding the vast of context sources, sensors, databases
and user data, the model of context should be able to express about the captured
meaningful data from these resources with a consideration of its different capturing
rates and changes (i.e., dynamic from sensors or static from user data). The mobility
expresses the ability to continuously model context obtained from mobile sources
which can be captured from different environments.

• Relationships and dependencies: The context model should also contain relational
information about the captured context information of the entities, objects or location
that may interact together in the environment or have dependencies on other entities.

16

• Timeline: As it is not possible to save all the captured information during all the life
time of the system, the ability to summarize this information should be applied for
some future usage.

• Imperfection: Regarding the imperfect nature of context as it is described in Sec-
tion 2.1.7, there is need for good modelling to evaluate the usage of context informa-
tion.

• Reasoning: To determine if there is a change in the observed context of environment.
A reasoning technique is applied to enable the system to capture context changes and
evaluate their importance to ensure the consistency verification of context model.

• Usability of modelling formalisms: Models should provide an easy way to obtain a
readable understandable context for both developers and applications.

• Efficient context provisioning: Context models should be supported by good tech-
niques (i. e. indexes) to enable efficient access and usage of the modelled context.

In the same work [10], three context models were proposed to fit with these requirements:

1. Object-role based models of context information
This model is based on the database modelling techniques to support query processing
and reasoning. The main strength of the object-role based model is its support for
various stages of the software process. On the other hand, its main weakness is the

”flat“ information model, through it all types of context are uniformly represented as
atomic facts.

2. Spatial models of context information
It organizes its context information by the physical location which could be predefined
as static locations or obtained as sensed locations by mobile sensors. Spatial context
models are well suited for applications that are mainly location-based, like many
mobile information systems. However, the drawback of spatial context models is the
effort of gathering up to date location data of the context information.

3. Ontology-based models of context information. Ontological models of context provide
clear advantages both in terms of heterogeneity and interoperability. They support
the usability by user-friendly graphical tools that make the design of ontological con-
text models viable to developers who are not particularly familiar with description
logics. The drawback of ontology-based models is the very little support of modelling
temporal aspects in ontologies and the serious performance issues [10] caused by the
ontological reasoning with OWL-DL.

2.2 Existing Approaches and Frameworks
In this section we provide an overview on the current approaches of self-adaptive systems
and context-aware systems. Later, we address the limitations in these works and introduce
our proposed contribution to solve these limitations.

17

2.2.1 Adaptive Systems

There have been many researches to introduce a formal or semi-formal architecture model
of adaptive systems that can adapt its behaviour or architecture in response to changes in
its environmental context [85, 82, 24].

Self-adaptation was first introduced by IBM through the ”Autonomic Computing“ ap-
proach [48] describing self-managing system using a central controller. The following func-
tionalities have been introduced to define self-managing software system.

• Self-configuration which presents a system’s ability to configure itself automatically
according to high level policies of its objectives.

• Self-optimization which is achieved by a system through continuously seeking to im-
prove and upgrade itself and its functionality by applying the latest versions of its
components.

• Self-healing of adaptive system which is the ability to detect, diagnose and repair its
components automatically.

• Self-protection which is the ability of continually predicting and defending system
failures or attacks.

AgentScape [94], is a multi-agent middleware provided to support the development of
adaptive and reconfigurable applications. An AgentScape application is described as a set of
agents and objects that can be invoked by agents to perform some processing. AgentScape
model uses naming and location services to enable agents to communicate using message-
passing communications and to migrate to other locations in the system.

Mobile-C [15] is a mobile agent platform that facilitates mobile agent communication
and migration. It has been provided to improve agent cooperation by reducing data trans-
mission between agents which leads to improve response time in real-time applications. The
communication is achieved through IEEE Foundation for Intelligent Physical Agents (FIPA)
[64] agent communication language (ACL) messages encoded in XML. Mobile-C supports
system adaptation by providing mobile agents with mechanism to discover changes and
perform unanticipated actions by dynamically deploying new algorithms and code.

Rainbow [30], an adaptation framework developed to support software systems with
the self-adaptation functionalities mentioned above through a reusable infrastructure. It
proposes the usage of an architectural style to define and encode system-specific knowledge
during design time. This knowledge describes system as sets of components, properties,
rules, analysis, operations, and strategies. The Rainbow framework supports a software
system with the infrastructure to perform monitoring of the defined properties and con-
straints of system components, evaluating the constraints, discovering violations in the con-
straints and triggering adaptation process to react to any violation through the adaptation
strategies defined to guarantee specific system concerns (i.e., system performance).

Jade [8], an agent development framework that facilitates the development and manage-
ment of agent-based self-adaptive applications. It provides the tool to define agent platform,
containers and agents and their tasks. Agent tasks can be extended by defining new be-
haviour class together with a behaviour ontology describing the term of this behaviour
and then assigning the new behaviour class to the agent object. Jade framework supports
the utilization of different ontologies to support different application domains. Using the
ontology guarantees the correct understanding of messages between agents. Moreover, the

18

framework facilitates the integration of Web service through supporting a bidirectional
interconnectivity between agents and Web services. Web services can be registered/dereg-
istered in the Universal Description, Discovery, and Integration (UDDI) registry to be
discovered and invoked by Jade agents. Jade supports the mobility of its mobile agents be-
tween different containers of the same platform. However, moving a mobile agent between
Jade containers is only supported by a manual process requiring the definition of platform
hops for an agent to visit till it reaches the destination.

Da Silva et al. [82], proposed a generic framework for the automatic generation of
processes for self-adaptive software systems so that it can be applied to different applica-
tion domains. The framework uses workflows, model-based and artificial intelligence (AI)
planning techniques to design adaptation plans. They used a standardized AI planning lan-
guage, the Planning Domain Definition Language (PDDL) [29], to define a system model
that is composite of 1) a domain representation stating system’s actions (or available tasks
that can be used to formulate the adaptation plans), and 2) a problem representation that
defines the system initial state and the desired goal. However, the proposed representation
does not define relationships between system components and/or system properties. More-
over, the defined system context representation is limited to a static set of terms defined
during design time. Which does not answer the question of how to support the automatic
usage of newly available resources and tasks in the system during runtime.

Tang et al. [85], have proposed a goal-directed model of self-adaptive software architec-
ture. They presented a goal requirement specification model to formulate a self-adaptive
software architecture model. The presented goal requirements model is defined using the
Keep All Objectives Satisfied (KAOS) modelling framework [87]. The defined self-adaptive
architectural model consists of two sub models: the structural model and the behavioural
model. The structural model is derived by mapping system goal and sub goals into compo-
nents. Each component has a controller and adaptation manager. The behavioural model
is provided through a set of processes mapping the interactions between system components
into Finite-State Machine (FSM) based control flows. Each process is demonstrated as a
subset of Communicating Sequential Processes (CSP) notations [37] representing the goal’s
and sub goals’ processes. The CSP annotations supports the description of goal as hierat-
ical decomposition tree of other sub-goals based on Parallel composition (i.e., AND based
composition) and Sequential Compositions (i.e., OR based composition). The adaptation
is performed in two steps. First, building a goal decomposition tree. Second, reconfiguring
the bindings between software components based on the corresponding goal decomposition
tree. To do that, each component’s controller collects data about its component, analyses
the data in comparison to a defined component’s knowledge base of goal plans. Then each
adaptation manger adapts its component’s structural configuration and dynamic behaviour
in accordance to its planned goals. At the end of the adaptation processes of adaptation
managers, the goal decomposition trees of all components will be generated assembling the
goal decomposition tree of the software. Then, the goal decomposition tree is translated
into an FSM presenting the software control flows.

FUSION framework for self-adaptive systems is based on self-tuning approach [24]. It
uses a technique of analysing system features to define a system model that copes dynam-
ically with the unanticipated system conditions. Feature relationships are used to improve
the adaptation planning during runtime. The feature model of the system consists of one
core and other features. These features are related by two kinds of relationships: 1) depen-
dency which defines the prerequisites of this feature, and 2) mutual exclusion that helps to
enable only one feature from the group of similar features. System context is presented as

19

a metric which is a measured value of system properties. Moreover, utility refers to a user’s
context or his/her preference about a specific metric. They presented an analytical method
to derive the behavioural model of the system by enabling or disabling system features
depending on metrics and utilities.

We see from these studies that system adaptation can be provided through modelling
both system’s behaviour and architecture explicitly. A formal model representing context
information must be defined to facilitate a shared understanding of system context infor-
mation and their possible changes to be discovered and uniformly understood between all
system components.

2.2.2 Context-aware Systems

Context-aware computing was introduced for the first time by [75] as the ability of a mo-
bile user’s application, which is constantly monitoring information about the surrounding
environment, to discover and react to changes in this environment.

Dey et al. [2] considered a system is context-aware if it uses context to provide relevant
information and/or services to the user, where relevancy depends on the user’s task.

ContextServ [81], is a platform for development of context-aware Web services based
on ContextUML [80], which is a modelling language for the model-driven development of
context-aware web services based on the Unified Modelling Language (UML). ContextUML
copes with both context modelling and context-awareness modelling. In context model, the
low-level context is defined as AtomicContext which represents simple information acquired
from context provider meanwhile the high-level context is referred asCompositeContext
that comprises either atomic or composite contexts. Context is provided by two source
types ContextService and ContextServiceCommunity. ContextService encapsulates sensors
details and derives context information by interpreting and transforming the sensed in-
formation. ContextServiceCommunity plays the role in selection of the most appropriate
context service which will provide the requested context information.

CONON [91] is an OWL-based ontology which provides a formal context model and
implements a Description Logic (DL) reasoning. A reasoning rules were used to reason over
a low-level (explicit) context to derive a high-level (implicit) context based on the proposed
ontology and by means of DL and Resource Description Framework (RDF) reasoners.

In [54], the authors use the Web Ontology Language (OWL) ontology and the Semantic
Web Rule Language (SWRL) rules to model context in a context-aware system using Rule-
Based Inference engine.

Ejigu et al. [23] similarly proposed Context Management Model (GCOMM) to provide
reasoning and decision making in context-aware system. They used an ontology-based
context model and defined rules on given data instances.

An OWL-based device ontology was provided by Bandara et al. [6] to describe devices
and their hardware and software components. However, the proposed ontology lacks for full
service descriptions as it only provides an initial representation for device’s services using
a relationship called hasService without providing a description of the service’s attributes.
On the other hand, in [11], an ontology has been used to provide a service’s description and
preferences and to allow match-making techniques on these descriptions.

Context-awareness modelling is presented by two mechanisms, context binding and
context triggering. The first one concerns with mapping between the input of service
operator and context sources automatically. The second one represents the contextual

20

adaptation of the services according to defined context constraints and a set of actions. The
context binding mechanisms enable more possibilities for automatic execution of service.

SOCAM is a service-oriented context-aware middleware architecture for building context-
aware services [32]. It provides a formal context model based on ontology using OWL for
representing context semantics and context reasoning. The context-awareness lies in ser-
vices ability to adapt regarding to context changes depending on predefined rules which
specify the adaptation plan. Low level context is captured directly from sensors or from
user’s data which the particular person defines using the user interface of the application.
High-level context can be derived using context reasoner indirectly by interpreting new con-
text from low level contexts. The authors addressed the dependency relationship between
context using a sematic description of datatypes and objects properties. Moreover, they
propose the ability to track and adapt the dynamic changes in context providers (i.e. adding
or removing physical sensors) and their context information through the locating service.
This service enables context providers to advertise their new context forms by deploying a
multiple matching mechanism between application’s query and context providers.

2.2.3 Context-aware Adaptive Software Systems

As the context-awareness contribution is proposed to model, process, and manage con-
text information, self-adaptation approach focuses on the ability of a system to adapt its
structure, goals, mechanisms regarding changes in the operating environments. A novel
approach was proposed by [39] to apply self-adaptive and context awareness together in
software systems. In this survey, the requirements of integrating of these two approaches
together have been identified as follow:

• The context modelling requirements need to be considered from the system-context
relationship perspective.

• Self-adaptivity needs to have a system that can cope with the context/requirements
changes (both anticipated and unanticipated), and then the system needs to be de-
signed with adaptation in mind.

• The requirements for the mechanism that integrates the context-awareness and self-
adaptivity needs to be considered.

An abstract architecture has been proposed in a later work [40] and it consists of three
layers:

• The functional system and its context layer comprise 1) the functional system element
which presents system functionality through the running components and inactive
ones. 2) the context element that manipulates the system operation and/or adaptation
3)theinterfaces with the management layerwhich role is divided to find out the changes
in the system or in its context and to apply the decided adaptation plans of the
management layers on system functionalities.

• The system and its context representation layer provide up-to-date context model of
the environmental context and a system model of its running state. Moreover, it
provides the implementation of the operation for applying the actions of the change
management layer.

21

• The change management layer checks any possible system consistency violation, de-
rives the high-level context information and decides the suitable adaptation plans
regarding to the context and/or requirements changes.

In this approach, system operation will adapt for both changes of system model andcontext
model, which could cause extra processing cost especially for modelling and deriving context
information and applying adaptation actions on the system.

2.2.4 Decentralized Self-Adaptive System

Self-adaptation approaches mainly presented adaptation as centralized or hierarchically
controlled systems. A new contribution [93] addressed self-adaptation in decentralized
managed software architecture. They divided the computational requirements for decen-
tralized controlled system into four groups: 1) coordinated monitoring through sharing
locally collected data of the partial system and its synchronization globally in the system,
as the monitoring process is managed locally and each partial system has only access to
his own knowledge; 2) coordinated analysis to provide a full analysis of each subsystems
data to provide full knowledge analysis of system data; 3) coordinated planning between
different planning units which could have different private goals that need to be reformed
in one adaptation plan avoiding any possible confliction; 4) coordinated execution needed
to synchronize and to manage execution plans of each partial system.

In [93], authors presented a case study of decentralized self-healing for camera failures
in traffic monitoring system. In this system, a camera analyses the partial collected data to
monitor and detect any possible traffic jam. Cameras will collaborate to monitor the traffic
jam located in their viewing range by organization of different nodes. This organization of
the same viewing range cameras can join other neighbour organization if traffic jam grows.
Organization dynamics are managed by organization controllers, each controller centrally
controls its organization and one of these controllers is selected as a master by the other
organization controllers which will be as slaves.

Self-healing subsystem is provided to recover camera failures using a self-healing man-
ager component which analyses the monitored data about the status of the cameras. This
manager executes a recovery strategy to ensure the consistency of the main system when a
camera failure or loss is detected. This approach presented a framework approach of decen-
tralized self-adaptive subsystems which can avoid the bottleneck in processing of monitored
data of participated devices or recovering process in each subsystem. However, the authors
did not address the possibility of using other types of devices that can be participated in the
proposed organization, which could provide more possible adaptation plans and requires
modelling of the acquired data of different devices.

2.2.5 Discussion

In this section we provide our evaluation of current approaches demonstrated in the previous
sections. We identify the drawbacks that should be addressed to support self-adaptation in
software system. These limitations are listed as follows:

L1 Limitation in system extensibility, as in [82, 93] that provides an adaptive design pat-
tern with a pre-defined set of tasks that can be considered in the design of adaptation
plan.

22

L2 Limitation in context information modelling, as in [85, 82, 81] addressed the adap-
tation but with a limited context model representation. However, context modelling
must be guaranteed to allow common understating of context information between
several domains and to support system extensibility. Moreover, context modelling is
essential to implement context-awareness and adaptation processes in the system.

L3 Limitation in adaptation strategies, as in [81] that requires a pre-defined adapta-
tion strategy and limits the proposed approach for limited context-aware adaptation
scenarios.

L4 Limitation in decision making during adaptation process, as in [85, 82, 93, 24] due to
the limitation in the system context model representation or due to the consideration
of a goal-oriented approach during system design. The decision-making process should
be extensible to adopt new terms of system context model that can be used in making
decision to support adaptation process.

Based on our evaluation of current approaches, we see that a context-aware self-adaptive
SOA model is required to overcome the existing limitations of current approaches. It is
required to provide a generic adaptation model that can promote service reusability and
system extensibility in software system through the implementation the SOA principles
during the design of system architecture. Moreover, it is required to provide a formal
context representation of system components to support context awareness and monitoring
of context changes in the system. Finally, we it is required to provide a dynamic decision-
making process to support the utilisation of different adaptation strategies and to select
the best adaptation plan based on metrics defined in the system context model.

2.3 Problem Statement
In this section, we present the statement of the problem caused by the limitations of current
approaches. Consider a mobile navigation application (System) providing location and
traffic information to drivers. The mobile application uses a Traffic Information Web service
(Service) that provides the required location, map and traffic information. The application
uses driver (Context) information in planning the best route. Considering driver plan to
stop by a supermarket to do shopping.

The system applies Context-awareness approach to cope with driver’s plan by suggest-
ing a route with one stop at the supermarket close to driver house. If the location service is
down or unreachable (see Figure 2.1), the system (Controller) adapts to this change in the
(Environment) Context (i.e., missing location and traffic information of the Traffic Infor-
mation Web service) by searching and acquiring the required information from the traffic
services provided by neighbouring cars or road’s traffic information points. As alternative,
the controller can perform a (Migration) of its Traffic Detection Service to another car
so that it can use the Traffic Information Service available on that car and perform the
computation needed to get the missed traffic information and send it back to the original
car.

To achieve this system, it is required to provide a framework that supports system exten-
sibility by enabling the automatic discovery of neighboring cars or road’s traffic information
points so that they can be used in the adaptation process as new source of traffic infor-
mation service. The framework should enable system developers to describe the context
information of system components in a way that guarantees a correct understanding and

23

Figure 2.1: Traffic Detection Service as adaptation to traffic information service loss in car
mobile navigation application.

utilization of these information between all system components. Moreover, the framework
should support a decision-making process that allows to decide which available service to
use or to which car to migrate the Traffic Detection Service.

2.4 Summary
In our approach, we use context-awareness in decentralized self-adaptive systems. On one
hand, we choose to use the ontology-based approach for context-modelling not only because
it describes a system semantically with a proper definition of the relationships between its
components, but also regarding to its capability to reason with the Semantic Web. For
example, Ontology Based Language (OWL) uses DL reasoner to derive new contextual
information about system component which will be used in making the adaptation deci-
sion. On the other hand, we think that using decentralized controlled adaptive units can
improve system adaptation performance by distributing adaptation efforts over several or-
chestrations adopting the decentralized control approach overviewed in Section 2.2.4. Also,
the utilization of different types of devices should be supported during the self-adaptation
process so that new adaptation plans can be performed in the system. For example, an
adaptation plan can suggest the utilization of a mobile device’s camera during a surveillance
camera failure. Moreover, this variation of device types can enable the system to avoid pos-
sible device-type-specific failures regarding some special environmental circumstances (see
Objective O3). We think that self-adaptation can be applied in each subsystem to avoid
such device failure or change in its context information by executing a recovery plan to
replace the device with another one that can provide similar context information.

24

Part II

Proposed Approach

25

Chapter 3

Context-aware Self-Adaptive SOA
Meta-Model

In this chapter, we introduce our meta-model proposed to describe SOA-based system and
enable the utilization of context-awareness and self-adaptation. The meta-model is pre-
sented in our ontology-based component model schema. The proposed component model
allows to describe system components including their properties and preferences. It allows
system architects to describe general system operational conditions that should be guaran-
teed during the run-time. Moreover, it supports the definition of system adaptive behaviour
to context changes through a planned self-adaptation strategy.

3.1 Introduction
In cloud computing, web-services are plenty available with their various functionalities.
The need for investing their power becomes highly requested to connect these services in
some compositions which perform a business process according the user needs instead of
spending more time on redeveloping new software. This is addressed by a new approach of
service composition with semantic descriptions that provide helpful notation for developers.
The developers can reuse these services to create new composite services which reduces the
development time and costs.

With this ability, services requesters and providers are communicating to perform user’s
needs. The user sends his request with the required data to be processed and waits until the
provider finishes processing the data and sends the results back to the user. Such process
requires a shared definition of the meaning of exchanged data so that it can be understood
and processed correctly by the users, service requestors and service providers.

3.2 Semantic Web
The semantic web is a framework of standards provided by the World Wide Web Consortium
(W3C) that makes an extension of the standard World Wide Web [9, 57]. It provides a
common machine-readable data document over the Web which promotes to read, share,
and reuse data in independent way from applications and websites which leads to achieve
the Web of data [78].

Semantic Web is an XML-based to describe data to provide the mediator language that
serves to understand the interchanged data between different applications and domains.

26

The Semantic Web provides a way to link between data based on the similarities of its
contextual semantic meanings. It also defines relationships between data and increases the
understanding and knowledge domain about them.

The Semantic Web Stack shown in Figure 3.1, presents the architecture of Semantic
Web, more specifically the components of technologies and formats that Semantic Web is
built on [9].

Figure 3.1: The Semantic Web Stack.

Resource Description Framework (RDF)
It is a formal model provided by W3C as a standardized method to describe information

used in Web resources. It is a data model that uses a contextual metadata of syntax
notations and serialization formats. An RDF-based modelled data is presented in a format
of subject-predicate-object triples describing Web resources as subject or object in addition
to the relationship between them as a predicate [53, 13].

Resource Description Framework Schema (RDFS)
RDFS is a general-purpose language consisting of RDF-defined classes and properties

used to provide the vocabularies required to define ontologies of Web resources among
different domains [53, 13].

3.3 OWL-S Semantic Web Service Description
OWL-S is an OWL-based Web service ontology that provides a semantic description of web
services in the way that facilitates the automation of Web service tasks (i.e., Web service
discovery, execution, composition and interoperation) [59]. This ontology describes the
service through three main questions: ”what the service does“, ”how the service works“,
and ”how to access the service“. Each answer of these questions presents a property of the
service, so the properties are ”presents“, ”describedBy“, and ”supports“.

27

Finally, the service description will consist of three main components: ”ServiceProfile“,

”Service Model“, and ”Service Grounding“. Service profile provides a helpful information
that searching agents needs to find the best service for each request. The service model de-
scribes the process of executing the service. Service grounding supports the clients with the
needed information about how to access this service regarding of communication protocols
and messaging formats [76].

While the OWL-S is a SOAP-based Web Service model, we realize that the need to pro-
vide a generic service description profile is demanding to enable the adaptation functionality
in SOA-based system, so that it must support the adaptation with different architectural
styles of Web services.

3.4 System Core Ontology
Many ontology languages and models, such as OWL, SWRL, and RDF were developed to
provide formal semantic models for Web resources and to apply rules on these semantics
in order to derive new meaningful data. Ontology terms must be understood and shared
between system components, which removes any ambiguity of the used terminology during
system design and enables a correct utilization of exchanged messages and information
between system components.

In this section, we introduce the OWL-based core ontology that will be used to describe
service-oriented architecture. The core ontology is a set of terms of architecture components
and relations between them. It basically describes SOA-based system as a set of Services
and Service Providers. Presented in Figure 3.2, the core ontology consists of the following
classes. The Service class, defining Service components in SOA, has a relationship with
the ServiceProvider class called providedBy. A ServiceProvider, is identified by hostname
and protocol properties. The relationship between ServiceProvider and its Service is called
provides.

During the development of the ontology, we consider the possibility to extend other
SOA standard ontologies such as the SOA Open Group (OG) ontology [31] by our ontology
to support them with our proposed adaptation approach. To facilitate the integration of
our ontology in any OG based system, we consider both Service and ServiceProvider classes
as sub classes of Element class as defined in the OG ontology. While the use property is
defined to express an interaction between elements of the OG ontology, we choose to specify
the interaction relationship between Service and ServiceProvider with provides to define
the type of relationship between a Service and ServiceProvider and avoid any inconsistency
and/or incoherence between the considered ontologies.

An object property hasProperty is defined in the ontology to describe properties of
system components. A component’s property object is defined as an instance of ontology
class Property.

The Property class has the following attributes

• propertyName: is the name of the Property.

• propertyType: is the data type of the Property.

• propertyValue: is the value of the Property.

• criteria: it states the CriteriaProperty that affects the Property instance during the
decision-making process.

28

The CriteriaProperty has the following attributes:

• name: is the name of criterion that governs the property of system component.

• owner: it has a value of “origin”, “destination”, and “service”, and limits possible
owners of the properties which are referring to a particular criterion (for example,
a criterion with the owner value set to “service” can be referred only from service
context models’ properties, i.e., it can be applied only on services, not on service
providers).

• valueWithHighestWeight: indicates which values of properties referring a particular
criterion are considered to be the most important during the decision-making process.

• valueWithLowestWeight: indicates which values of properties referring a particular
criterion are considered to be the least important during the decision-making process.

• criteriaPriority: indicates a general importance of a particular criterion by integer
values between 1 and 10. The criteriaPriority property of a criterion determines the
priority of a preference rule affected by the criterion.

Using the semantics of proposed ontology, we can define context models for Service-s and
ServiceProvider-s stating their operation preferences. A detailed description of component
model is provided in the following section.

Property CriteriaProperty

String

String

propertyType

propertyValue

String String

String String

owner name

intCriteriaPriority

valueWithHighestWeightvalueWithLowestWeight

ServiceProvider ProvidedService Servicesubclass

String

String

hostname

protocol

provides

providedBy

Figure 3.2: System Core Ontology proposed to describe SOA component.

29

3.5 Ontology-based Context Model
In this section we demonstrate our context model defined based on the core ontology intro-
duced in the previous section. Using the semantic terms proposed in the core ontology, the
context model defines SOA components and provides a semantic description of the joined
providers and hosted Web services by stating their specifications and properties. The
context model describes the preferences and conditions that control system’s components
through semantic-based rules. The full system context model is created by aggregating
system components models in one model. A higher-level context is inferred from the final
composed system context model through a reasoning process so that new context informa-
tion can be derived and used to make adaptation decisions.

The importance of utilizing a dynamically generated model of SOA service providers
becomes highly demanding in order to identify and perform the proper reactions to changes
in service providers resources. On the other hand, the fixed pre-defined service model can
be enriched to contain relevant information about system preferred resources that possibly
affect service performance.

{ ”name“:”defines the name of system component“,

”type“:”contains the type of system component. i.e., “Service” or “ServiceProvider”,
“noPreferenceRules”:“ ”true“ if there is rules element in the model, ”false“ if there is not”,
“properties”: {“propertyName”:“states the name of the property”,
“propertyValue”:“states the value of the property”,
“propertyType”:“states the data type of the property, for example, ”INT“”,
“criteria”:“ServicePriorityCriterion”},“rules”:“[RDFS rule: ...]”}

Figure 3.3: A simplified schema of the system component.

In SOA, SOAP Web service can be accessed through its URI and WSDL file which
describes a Service as a set of network endpoints. Further standard description of a service is
provided in its WSDL file. This description contains an abstract definition of the exchanged
data called Message meanwhile the defined service actions are described through Operation
tag. Similarly, a document called the Web Application Description Language (WADL) file
is provided to contain description of RESTful service stating its resources and operations.

In our proposed system we utilize RESTful services and consider to integrate service
context model in WADL file so that it can be retrieved through its URI.

A Service model holds the context information designed to be used in planning of
the adaptation process. Similarly, a ServiceProvider model contains context information
stating its properties, work preferences and conditions that specify the possible hosted
services. In Figure 3.3, we present this proposed component context model which consists
of the following elements:

• name: is a JSON element stating the name of a Service to be identified in the system.

• type: is a JSON elements stating the type of related service.

• properties: is an array of JSON Objects, describing component’s object properties.

• rules: is an JSON array of RDFS-based rules. Each rule describes a component’s
operation preference.

30

• noPreferenceRules: is a data property with a value of ‘false’ if the service has prefer-
ences and ‘true’ if it has not.

31

Chapter 4

The Decision-Making Process

The process of enabling software system to make an adaptation must contain a sub-process
of making a decision. In Section 2.2.5, we discussed the need to support the adaptive
systems with a decision-making mechanism that allow to integrate and use the terminology
(i.e., the ontology used to describe system components context models) in the decision
making process. Such a mechanism is needed to make the decision that satisfies system’s
and components’ rules and requirements. Usually there will be a set of possible decisions to
choose from and several factors affecting the decision-making process. These factors must
be considered and optimized in order to make more reliable and optimal decisions.

When addressing a decision-making process, the main problems to solve are: how to
take that most suitable decision, on what bases to make this judgment, and how to include
factors that affect the decision.

Considering specific adaptation scenario, there will be different adaptation possibilities.
And to provide an adaptation strategy, it is necessary to know how and what adaptation/s
to choose to perform these possibilities. To solve this problem, first, we need to classify each
adaptation according its components so that adaptations with similar set of components
will be grouped and subjected to a particular decision-making process. Second, in order
to select the most suitable adaptation from several alternatives, each adaptation should be
prioritized based on the properties of its components and their values.

There are many existing mathematical methods which have been implemented in com-
puter science to enable decision making processes. Some of these methods depend on an
analysis process that ranks the decisions using a defined set of quantitative and/or qual-
itative criteria through a series of pairwise comparisons of these decisions. This type of
decision-making process is called multiple-criteria decision-making (MCDM) or multiple-
criteria decision analysis (MCDA) method.

To make an adaptation decision from between a set of adaptation scenarios, we choose
to implement the Analytic Hierarchy Process (AHP, [71]) as the decision-making method.
The AHP method has been very widely used in computer science researches as the best
MCDA method because of its simplicity, flexibility [36] and accuracy [3]. It uses a multi-
criterion prioritizing mechanism to be used in analyzing, evaluating and prioritizing the
alternative decisions and selects the one with the highest priority.

While some other MCDA approaches such as the Analytic Network Process (ANP) [72]
considers the criteria to be interoperated so that the relational weights between them will be
considered in the decision-making process. We consider the criteria to be independent from
each other in the decision problem for the following reasons 1) to reduce the required effort
to define a consistent criteria relation matrix during design time of the decision making

32

problem, 2) to avoid extra processing time when considering the additional ANP weighting
factors (i.e., criteria relations) during the decision making process 3) and to avoid complexity
while presenting the steps of our adaptation approach the decision making process.

The AHP ranks all alternative decisions by calculating the composite weight for each
possible adaptation while considering a specific adaptation strategy in the system. It enables
a prioritized consideration of the properties of system components (Services and Service-
Providers) involved in the adaptation process. The AHP prioritizes each adaptation and
finally chooses the adaptation with the highest weight and priority from other suggested
adaptations.

4.1 Decision Making Using the AHP
The AHP starts with creating the comparison criteria matrix A. A is m×m matrix where
m is the number of considered criteria. aij is the importance of the ith criterion over the jth
one. aij entry is set to 1 in the case of the diagonal entries and also if the ith criterion has
the same importance of the jth one. On the other hand, the value of aij ranges over 3, 5,
7, 9, 1/3, 1/5, 1/7, or 1/9. An entry aij has the value of 3, 5, 7, or 9 when the importance
of the ith criterion has a moderate important, more important, strongly more important,
or absolutely more important, than importance of the jth criterion respectively. On the
contrary, aij has the value of 1/3, 1/5, 1/7, or 1/9 when the importance of the jth criterion
has a moderate important, more important, strongly more important, or absolutely more
important, than the importance of the ith criterion respectively.

Usually, aij entries are set through user judgment. To automate this process, we spec-
ified a CriteriaPriority property for each criterion to have a value of the interval [0, 10].
These values are set by system administrator in the core model and used to prioritize the
criteria over each other’s.

A CriteriaPriority instance will be considered in the decision-making process through
the AHP method only if it was considered as a Property’s criterion in one of components
involved in the adaptation scenario.

4.2 Dynamic Decision-Making Algorithms
In order to make an adaptation decision using the AHP, we developed the following algo-
rithms to generate the needed matrices for AHP computations:

InitializeCriteriaMatrix Algorithm it is required to initialize the main criteria prior-
ity matrix A. The InitializeCriteriaMatrix algorithm, (see Figure 4.1), calculates aij entry
by comparing the CriteriaPriority values of the ith criterion and jth and mapping the
difference into one value of set {1, 3, 5, 7, 9, 1/3, 1/5, 1/7, 1/9}.

After intializing A, the AHP computes the weight vector W(m×1) of matrix A(m×m)

by normalizing its entries to make the sum of each column entries equals to 1 through
Equation 4.1.

āij =
aij∑m

k=1 akj
(4.1)

Then it computes the priority vector or the normalized principal Eigen vector of criteria
by computing the average value of each row of the normalized matrix through Equation 4.2

33

Require: 〈p1, p2, . . . , pm〉 as values of CriteriaPriority of criteria 〈c1, c2, . . . , cm〉
Ensure: A is a pair-wise criteria comparison matrix for given criteria 〈c1, c2, . . . , cm〉

1: for i← 1 to m do
2: aii ← 1
3: for j ← i+1 to m do
4: difference ← |pi − pj |
5: if difference ≥ 8 then
6: judgment ← 9
7: else
8: judgment ← 2bdifference2 c+ 1
9: end if

10: if pi > pj then
11: aij ← judgment
12: else
13: aij ← judgment−1

14: end if
15: aji ← a−1ij

16: end for
17: end for
18: return A

Figure 4.1: The InitializeCriteriaMatrix algorithm to compute a pair-wise criteria compar-
ison matrix for AHP based on CriteriaPriorities of individual criteria.

wi =

∑m
k=1 akj
m

(4.2)

InitializeDecisionMatrices Algorithm The algorithm, (see Figure 4.2), is developed
to be automate the creation of the required AHP decisions comparison matrices. The
algorithm is executed for each considered criterion ck, where k = 1, . . . ,m, of criteria
set C = {c1, c2, . . . , cm} to generate matrix Vn×m = [V (1), V (2), . . . , V (m)], where n is the
number of possible adaptation decisions found before.

In the matrix V , each V (k) is a transpose of the weight vector of matrix S(k) obtained
by an individual execution of the InitializeDecisionMatrices algorithm. Each s

(k)
ij entry

represents a judgment value between the ith adaptation and the jth one based on the
criterion k.

The algorithm use valueWithHighestWeight and valueWithLowestWeight criterion at-
tributes to map the judgment into one of values of set {1, 3, 5, 7, 9} or their reciprocals,
which are accepted by AHP.

The judgment sij is considered to have an inverse proportionality relationship with the
difference between the related criterion values ski and skj of the considered adaptations
i and j respectively, when the difference between the valueWithHighestWeight and the
valueWithLowestWeight of the criterion k is less than 0.

By applying InitializeDecisionMatrices algorithm on all considered criteria we will have
m weight vectors of the possible adaptations, each vector of them is related to one criterion
of the m considered criteria. Finally, AHP computes the composite weight of the adaptation
decision through Equation 4.3.

34

n 1 2 3 4 5 6 7 8 9 10
RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

Table 4.1: Random Consistency Index (RI).

P n × 1 = V n × m · Wm × 1 (4.3)

where V is the n×m matrix obtained by multiple executions of the InitializeDecision-
Matrices algorithm as described before (one execution for each criterion) and W is the
weight vector of criteria from Equation 4.4.

Pn × 1 =

p1

p1

.

.
pn

 (4.4)

The entries of vector P represent the composite weights of the adaptations respectively.
By result the adaptation with the highest composite weight entry is selected to be executed
from the n alternate adaptation decisions based on the calculated adaptation weight vectors
and the criteria weight vector.

The AHP provides a Consistency Index (CI) to measure the consistency of judgment in
each matrix generated by InitializeCriteriaMatrix and InitializeDecisionMatrices. The CI
is calculated by the application of the following formula

CI =
λmax − n
n− 1

(4.5)

Where λmax is the highest eigen value of the principal Eigen vector of a given matrix.
To measure the consistency of the judgments of each generated matrix, AHP uses a

Consistency Ration (CR) calculated by comparing the CI with a Random Consistency
Index, as defined in the following formula

CR =
CI

RI
(4.6)

Where the appropriate RI values are provided in Table 4.1. The AHP accepts a matrix
to be consistent if its CR is smaller or equal to 10%.

35

Require: criterion k and its attributes valueWithHighestWeight(k) and valueWithLowest-
Weight(k); 〈p1, p2, . . . , pn〉 as values of services or service providers properties that con-
sider k as their criterion

Ensure: n× n matrix S(k) as a decision comparison matrix based on criterion k
1: for i← 1 to n do
2: sii ← 1
3: for j ← i+ 1 to n do
4: range ← valueWithHighestWeight (k) − valueWithLowestWeight (k)

5: diffValue ← pi − pj
6: fifthOfDiff ← range/5
7: if diffValue > 4 ∗ fifthOfDiff then
8: sij ← 9
9: else if diffValue ≤ 4 ∗ fifthOfDiff ∧ diffValue > 3 ∗ fifthOfDiff then

10: sij ← 7
11: else if diffValue ≤ 3 ∗ fifthOfDiff ∧ diffValue > 2 ∗ fifthOfDiff then
12: sij ← 5
13: else if diffValue ≤ 2 ∗ fifthOfDiff ∧ diffValue > fifthOfDiff then
14: sij ← 3
15: else if diffValue ≤ fifthOfDiff then sij ← 1
16: end if
17: if range ∗ diffValue < 0 then
18: sij ← s−1ij

19: else if range ∗ diffValue = 0 then
20: sij ← 1
21: end if
22: sji ← s−1ij

23: end for
24: end for
25: return S

Figure 4.2: The InitializeDecisionMatrices algorithm to compute a decision comparison
matrix based on a given criterion.

36

Chapter 5

Web Service Migration-based
Adaptive Service Oriented
Architecture Model

To demonstrate the power of our ontology-based SOA component context model, we propose
the utilization of Web service migration approach as an adaptation strategy in SOA. The
migration of a particular service should be considered if its hosting service provider is not
able to guarantee the preference or quality of the service and there is no alternative service
or service composition that can be used as a substitute for the original service, i.e., it
can provide the same functionality and required quality. In the next section we provide
a supplementary study demonstrating specific research work on supporting information
system with migration adaptation.

5.1 Related Work
Service mobility have been proposed as a very promising approach to leverage the interop-
erability and reusability characteristics of SOA.

Lange et al. [52] described an implementation of mobile agents in Java by the Aglets
framework. The framework allows reusing system components, i.e., aglets, in different
contexts, however, without any utilization in making migration decisions.

Hao et al. [33] developed a Web service migration environment and used a genetic
algorithm to find the optimal or near-optimal migration decisions. The algorithm calculates
the cost of a total round-trip including dependency calls for each service request and it is
used to decide migration according to this cost. However, the authors did not take into
account user-defined conditions affecting the migration decision, e.g., specific requirements
on a migrated service or a destination provider.

Zheng and Wu [98] presented an infrastructure for runtime migration of services in a
cloud which consists of five components with different roles and specific criteria to control
the migration decision. One of the components collects CPU load data from all known
hosts. Then, when the CPU load of a particular host reaches a predefined threshold, a
flag is set to indicate that service migration is needed on this host. The approach does not
check compatibility of services and providers during migration and does not address the
possibility of running several services on a single provider at the same time.

37

Schmidt et al. [77] implemented a prototype of an adaptive Web service migration with
two types of migration possibilities, namely context-based migration and functionality-
based migration. In the context-based migration, services are migrated to the providers
which meet the services’ requirements, while in the functionality-based migration, the ser-
vices are migrated according to their roles in a workflow (i.e., to optimize their communica-
tion in the workflow). Both migration possibilities can be implemented also in our approach
by an appropriate migration decision strategy.

Messig et al. [61] proposed a service migration facility in Service Oriented Grid environ-
ment which enables taking migration decision based on matching providers’ and services’
requirements. In this approach, services are hosted by service providers including the
resources needed for execution of the services’ operations. The authors made several exper-
iments of service migration between two geographically sparse grids where the first grid had
high-performance devices and faster network than the second one. While these experiments
demonstrated the process of service migration, they are not suitable for the demonstration
of migration decisions (e.g., selection of a migration destination) which should be discussed
in more detail.

Multi-agent system approaches, such as JADE [8], Mobile-C [15], and AgentScape [94],
provide middle-wares to host and migrate mobile agents in a distributed system. A mobile
agent is an autonomous composition of code, state, and data that can be transported
from one environment to perform agent’s tasks. MobiGo [70], which is another middle-
ware system for seamless mobility, provides a mechanism to migrate services according to
user’s needs using a simple service description. The description contains information about
service name, service type, and I/O devices which can be used to run that service. User can
select the desired service from a list of available services on that particular device. Service
description is considered the main backbone supporting the reusability and interoperability
of services.

In [97], a service migration approach was proposed as a solution to maintain continuous
service availability with migration decisions based on QoS goals.

In [27], authors introduced a virtual machines migration framework with several mi-
gration decision-making strategies for different resource reservations goals and schemes
during migration of virtual machines, namely: sequential migration, parallel migration and
workload-aware migration strategies.

In [27], authors proposed an algorithm for dynamic placement of services to servers
based on available server resources (such as CPU or memory) and network performance
given by SLAs.

In [34], authors described a framework for service migration in cloud computing en-
vironments using a genetic algorithm to search and select possible migrations. The al-
gorithm utilized a cost model with various service migration costs, including the costs of
consistency maintenance and communication during migrations, a service table with infor-
mation of all migrated and replicated services, and a general computing platform registry
with information about the hosted services. Another approach to support the selection
of migratable services in the cloud was provided in [84]. The selection process considered
pre-defined criteria related to QoS of the migratable services in the cloud, namely: response
time, throughput, availability, reliability, and cost. The selection process utilized the AHP
method with comparison matrices defined by a consumer’s judgments on the QoS criteria.
Although the AHP method is utilized also in our approach, the comparison matrices are,
in our case, defined by the ontology of dynamic properties and preferences of automatically

38

discovered providers and their services, which supports a dynamic multi-criteria migration
decision making process.

In [68], a decentralized migration approach was introduced based on monitoring of
health of Web Services Resource Framework (WSRF) containers [7]. The approach was
trying to minimize possible threats of service level agreements (SLA) violations to preserve
QoS of provided services by their migration. A service priority was proposed to be used as
a weighting factor in migration decisions in addition to a health metric of each WSRF con-
tainer. However, this approach was limited by the static health metric of WSRF containers
based on their available memory and CPU performance factors, while, in our work, we
are addressing this limitation by enabling a dynamic definition of the service and provider
properties and preferences together with the criteria so that the newly defined weighting
criteria and related properties can be automatically considered in the migration decision
making process.

Similarly, many frameworks have been proposed for Mobile-hosted provisioning on mo-
bile devices.

In [90], the author presented Android based framework for hosting mobile services using
REST web services to enable Web service provisioning. The framework utilizes a fuzzy
controller to monitor the context of joining devices, analyse the context and decide which
hosted service to be provided.

A mobile-hosted mobile Web service migration framework is proposed in [50]. The
framework utilizes SOAP engine to analyse SOAP messages and execute the corresponding
service. They utilized a migration policy [49] in the migration decision making process.
However, they did not consider the preferences of the connected devices in the migration
decision process.

AlShahwan, et al. [4], provided SOAP- and RESTful-based frameworks for distributed
execution of mobile Web services. Based on the performed tests on both frameworks, the
authors found that the REST framework has better performance than the SOAP one in
relation to hosting Web services on mobile devices.

5.2 Service Migration
The Service Migration (for definitions see Section 1.2) starts when a particular Service
is selected to be migrated to a particular destination Service Provider by a migration
Controller of the migration framework running on each Service Provider. An Orchestration
Controller can perform Service Migration by packaging the service and deploying it on the
destination service provider.

During the migration process, the migrating service is stopped, and its internal state
is stored and sent to the destination provider. All further incoming calls of the service
are postponed until the migration is completed, i.e., until the migrated service is initiated
in the new location, its internal state is restored, and until the service is able to handle
incoming messages.

5.3 Migration Decision Modelling
The migration decision can be described by the Linear Time Logic (LTL) [58, 99] as a
sequence of states which are related to time. In this section we are providing a formal
description of the service migration process demonstrating its stages and their related pre

39

and post conditions. LTL formulae are combinations of terms using logical operators ∧
and → and temporal operators �, �, and ◦. Formulae �p and �p means that p always or
sometimes holds in the future, respectively, and ◦p means that p is true in the next state.
Let P = {P1, P2, . . . , Pm} is a set of existing providers and S = {S1, S2, . . . , Sn} is a set of
the migratable services. To demonstrate the migration adaptation model, we provide the
following definitions.

Definition 1: FindOriginProvider is the process to find the most critical provider
in the system that needs to migrate its services regarding its current state and its migration
conditions.

Definition 2: FindMigratedService is the process to find the most appropriate
migratable service to be migrated from the FindOriginProvider.

Definition 3: FindDestinationProvider is the process to find the best destination
provider for the service selected during the FindMigratedService process.

Definition 4: Decision Making Process (D) is the process of making a decision
to select the best service migration to be performed. The migration decision process is
described as a sequence of the three defined processes (FindOriginProvider, FindMigrated-
Service, and FindDestinationProvider)

D ≡ (D ↑ ∧FindOriginProvider ↑ ∧Ta)
∧ ◦ (FindOriginProvider ↓ ∧FindMigratedService ↑ ∧Tb)
∧ ◦ (FindMigratedService ↓ ∧FindDestinationProvider ↑ ∧Tc)
∧ ◦ (FindDestinationProvider ↓ ∧Td)

(5.1)

In Formula 5.1, ↑ and ↓ represent the start event and the end event of each process,
respectively, and Ta ≤ Tb ≤ Tc ≤ Td represent the corresponding events’ times.

Definition 5: ProviderCurrentLevel(p) is the current performance level of a provider
p ∈ P.

Definition 6: ProviderPreferredLevel(p) is the preferred performance level of
provider p ∈ P.

Definition 7: ServiceCurrentLevel(s, p) is the current quality of service s ∈ S
hosted on provider p ∈ P.

Definition 8: ServicePreferredLevel(s) is the preferred quality of service s ∈ S.
Definition 9: Provider Preference Violation is the state when ProviderCur-

rentLevel of a provider p become less than its ProviderPreferredLevel. A preference vi-
olation can be modelled as in Formula 5.2. Stating that the FindOriginProvider process
will start sometime in the future when a preference violation will be met.

∀Sk, Pi s.t. (ProviderCurrentLevel (Pi) < ProviderPreferredLevel (Pi))→
�FindOriginProvider (5.2)

Definition 10: Service Preference Violation presents the state when the Service-
CurrentLevel of service Sk; k ∈ 1 . . . , n running on provider Pi for i ∈ 1 . . . ,m is no longer
at its ServicePreferredLevel.

∀Sk,Pi s.t. (ServiceCurrentLevel (Sk, Pi)< ServicePreferredLevel (Sk))
∧ FindOriginProvider→�FindMigratedService

(5.3)

Definition 11: Post Migration Condition presents the requirements to be satisfied
after the migration of the selected service to a new provider so that the migration to the

40

new provider will guarantee that both provider preferences and service preferences will be
always satisfied after the migration:

∀Sk,∃Pjs.t.(D →
�((ProviderLevel(Pj) ≥ ProviderPreferredLevel(Pj))
∧(ServiceCurrentLevel(Sk, Pj) ≥ ServicePreferredLevel(Sk)))

(5.4)

In Figure 5.1, we present the service migration decision-making process as a finite state
automaton based on the provided definitions and rules representing pre- and post-conditions
of the migration decision making processes. The FindOriginProvider process will start
by the discovery of a Provider Preference Violation or at the end of the FindDestina-
tionProvider when the migration fails to satisfy the Post Migration Condition. It means
there is still some unsolved Service Preference Violation or Provider Preference Violation
in the system. The Decision Making Process will finish when the Post Migration Condition
is satisfied meaning that all ProviderPreferredLevel levels and ServicePreferredLevel are
guaranteed.

41

Figure 5.1: The migration-decision process as a finite state automaton.

5.4 Web Service Migration Ontology
To enable service migration through our adaptation approach, we need to define domain
specific terms that describe the statuses and properties system components (i.e., Service
and ServiceProvider) during the migration process. To do that, we extend the system core
ontology presented in Section 3.4 by defining sub-classes of Service, ServiceProvider and
Property so that it can be used to describe the context model of each system components.
The Web service migration ontology is presented in Figure 5.2.

42

5.4.1 Service Migration Ontology Classes

The Service class is specialised to a ProvidedService and FrameworkService. The migration
ontology adopts the Web Service OWL-S ontology by considering the presentedBy object
property of a Service so that a ProvidedService is considered as a MigratableService iff it
is presentedBy a MigratableServiceProfile. A Service is specialized by its ServiceProfile to
one of the following Service’s subtypes:

• ProvidedService: is a subtype Service provided by a ServiceProvider of Service.

• MigratableService: a subtype of ProvidedService class which possible to be migrated
from one ServiceProvider to another one.

• FrameworkService: a subtype of ProvidedService class, it is an auxiliary service
concerned with managing the migration process.

• CandidateForMigrationService: a subtype of ProvidedService class, which rep-
resents the service found with violated preference and/or causing violations of its
current service provider preferences. Thus, it is recommended to be migrated to
another service provider.

On the other hand, properties of Services and ServiceProviders are defined as new classes
of Property class, the ontology-based description allows to define new property classes in
the models and does not limit the description with a static set of properties. In the Web
service migration scenario we are going to define the properties that will be considered in
the preferences of services and service providers which control the migration process by
evaluating the considered properties values of services and service providers. The following
list demonstrates the used sub-classes of Property with their descriptions.

• ServicePriority: The priority of a service with single value of the scope [0-100].

• FreeMemory: The current free size of memory on the service provider, measured
by Megabytes.

• PermanentStorageSize: The size of permanent memory on the service provider,
measured by Megabytes.

• BatteryLifeTime: The current available time of a service provider battery life time,
measured by hours.

New sub-classes of ServiceProvider class are defined to express the status of the service
provider after evaluating its preferences and the preferences of its hosted services. The new
classes are as follow

1. CandidateOriginServiceProvider : is a service provider having the required aux-
iliary FrameworkService-s to send its migratable services to another service provider.
A CandidateForMigrationService must be hosted on service provider of CandidateO-
riginServiceProvider to be able to send the service successfully.

2. CandidateDestinationServiceProvider : is a service provider that can be a des-
tination for one or more services of the type CandidateForMigrationService.

43

Property CriteriaProperty

ServiceProvider

ProvidedService Service
subclass

pr
ov
id
es

pr
ov
id
ed
By

PermanentStorageSizeFreeMemory BatteryLifeTimeServicePriority

crieteria

subclass subclass subclasssubclass

FrameworkService

MigratableService

CandidateDestination
ServiceProvider

CandidateOrigin
ServiceProvider

subclasssubclass

subclass

subclass

CandidateForMigration
Service

possibleProvidedService

possibleDestinationProvider

subclass

Figure 5.2: The ontology of web service migration system.

By reasoning the full system model, new services will be specialized as CandidateForMigrationService-
s. Only ServiceProvider-s that satisfy the preferences of one or more CandidateForMigrationService-
s as a new service provider will be classified as a CandidateDestinationServiceProvider-s.

A set of auxiliary services were implemented to support the migration process. The ser-
vices are instances of FrameworkService and operate on origin’s and destination’s providers
to provide/collect information about CandidateForMigrationService, CandidateOriginSer-
viceProvider, and CandidateDestinationServiceProvider, and to provide the functionalities
to perform the migration process.

5.4.2 Service Migration Object Properties

We defined two object properties to express the relationships between the MigratableService
and ServiceProvider.

1. possibleDestinationProvider : is the object property defining the relationship be-
tween the MigratableService and CandidateDestinationServiceProvider classes as the
domain and range respectively.

44

2. possibleProvidedService: is the object property defining the relationship between
the CandidateDestinationServiceProvider and MigratableService classes as the domain
and range respectively.

In Figure 5.3, the possibleProvidedService and possibleDestinationProvider properties
are defined as symmetric properties in the ontology of CandidateDestinationServiceProvider
and MigratableService respectively as follows:

<owl:SymmetricProperty rdf:about=“WSMF:possibleProvidedService”>
<rdfs:domain rdf:resource=“WSMF:CandidateDestinationServiceProvider”/>
<rdfs:range rdf:resource=“WSMF:MigratableService”/>
<rdf:type rdf:resource=“http://www.w3.org/2002/07/owl#ObjectProperty”/>
</owl:SymmetricProperty>

<owl:SymmetricProperty rdf:about=“WSMF:possibleDestinationProvider”>
<rdfs:domain rdf:resource=“WSMF:MigratableService”/>
<rdfs:range rdf:resource=“WSMF:CandidateDestinationServiceProvider”/>
<rdf:type rdf:resource=“http://www.w3.org/2002/07/owl#ObjectProperty”/>
</owl:SymmetricProperty>

Figure 5.3: The definition of possibleProvidedService and possibleDestinationProvider
Properties in the Service Migration Ontology.

Both of MigratableService-s and ServiceProvider-s may have operation preferences. Each
preference is described as a simplified RDFs rule expressing the operation conditions that
satisfy service or provider operation requirements. These rules are evaluated by a RDFS rule
reasoner to check whether each service can be a possibleProvidedService by some Service-
Provider or not. Based on this reasoning, a MigratableService which can not be possiblePro-
videdService by its current provider will be marked as a CandidateForMigrationService iff
its service provider is of type CandidateOriginServiceProvider. The same reasoning is used
to find a suitable CandidateDestinationServiceProvider for each MigratableService instance
of the type CandidateForMigrationService through deriving new instances of the object
propertypossibleDestinationProvider. Instance of service and service provider of matched
possibleDestinationProvider and possibleProvidedService will be considered as a service
migration possibility and will be added to the list of suggested migration decision.

5.4.3 Rules

The power of the using ontology-based models is located in the ability to derive additional
information from the service and service provider models and also to express the require-
ments of each service and provider as preferable working conditions. These conditions can
be presented through JENA [14] rules defined based on the provided ontology in the compo-
nent models (i.e., Service or Service Provider model) and added to the ontology model as a
set of component rules. Moreover, JENA rules can describe pre-defined system conditions,
not necessarily related to specific component but to the system business process in general.
A system rule can be defined directly in the core system model.

Core Rules To enable design and runtime configuration, we provide a set of JENA rules
that describe system configuration and preferences. The rules can be used by JENA reasoner

45

to obtain context information required to identify system components that can participate in
the adaptation. For simplicity reason, the defined core rules will be demonstrated using the
predicate logic notations. The complete list of the defined rules is provided in Appendix E
of the thesis.

The defined rules are listed as follows:
Rule 1: BecameCandidateOriginServiceProvider , is the rule defining the required

auxiliary FrameworkService-s that enable a service provider to become a Candidate Ori-
ginServiceProvider.

Rule 2: BecameCandidateDestinationServiceProvider , is the rule defining the
required auxiliaryFrameworkService-s that enable a service provider to become a Candi-
date DestinationServiceProvider.

By reasoning system ontology model, each ServiceProvider instance will possibly be spe-
cialized into one of the sub classes CandidateOriginServiceProvider and CandidateDestina-
tion ServiceProvider through the implementation of Rule_1 and Rule_2 respectively. The
specialization process is controlled by each rule that checks about the auxiliary framework
services provided by each ServiceProvider. If a ServiceProvider provides all the required in-
stances of services responsible for storing the provided MigratableService status, creating its
deployment package and sending it to another ServiceProvider, then that ServiceProvider
is specialized to CandidateOriginServiceProvider. Meanwhile, a ServiceProvider will spe-
cialized to a CandidateDestinationServiceProvider when it provides the required auxiliary
framework services to receive the deployment package of the MigratbleService and to deploy
it on its new provider.

The second set of defined system rules is responsible for deriving instances as pos-
sibleProvidedService for a CandidateDestinationServiceProvider and possibleDestination-
Provider for a MigratableService. Two RDFs rules are defined as follows:

Rule 3: FindServiceForProvidersWithoutPreferences, is the rule responsible for
initiating entries of all discovered MigratableService-s as possibleProvidedService of any
instance of type CandidateDestinationServiceProvider that has no preferences.

Rule_3 considers any CandidateDestinationServiceProvider which has no preferences
as a possibleProvidedService for Service of type MigratableService. The instance of a Mi-
gratableService type is presented by the term ‘s’ element and the instance of CandidateDes-
tinationServiceProvider.

Rule_3: FindServiceForProvidersWithoutPreferences
Let s = service, p = provider, NP = has no preference rules
MG is a MigratableService, CAND = is a candidate destination
provider, PPS = possible provided service.

∀s, p (MG (s) ∧NP (p) ∧ CAND (p)→ PPS (p, s)) (5.5)

Rule 4: FindProvidersForServicesWithoutPreferences: is the rule responsible
for initiating entries of all discovered instances of the CandidateDestinationServiceProvider
as possibleDestinationProvider of any MigratableService that has no preferences.

46

Rule_4: FindProvidersForServicesWithoutPreferences
Let PDP = possible destination provider

∀s, p (MG (s) ∧NP (s) ∧ CAND (p)→ PDP (s, p)) (5.6)

In brief, by implementing the aforementioned rules in the system, a MigratableSer-
vice without preferences is suggested to be migrated to any CandidateDestinationService-
Provider. On the contrary, a CandidateDestinationServiceProvider that has no preferences
will be suggested to host any MigratableService.

The last group of core rules helps to generate new instances of type CandidateForMi-
gratonService -s in the model.

Rule 5: CandidateForMigrationServiceDueToServicesPreferences, is respon-
sible for noting a MigratableService as a CandidateForMigrationService in the model due
to the violation of a preference of that MigratableService.

Rule_5: CandidateForMigrationServiceDueToServicesPreferences
Let o, d = provider, CANO = provider is a candidate origin,
PROVIDES = provider provides a service, CANS = service is a candidate for migration.

∀ s, o, d (MG (s) ∧ ¬NP (s) ∧ CANO (o) ∧ CAND (d)
∧ PROV IDES (o, s) ∧ PDP (s, d) ∧ ¬PDP (s, o)
→ CANS(s))

(5.7)

Rule 6: CandidateForMigrationServiceDueToProvidersPreferences is respon-
sible for noting a MigratableService as a CandidateForMigrationService in the model due
to a ServiceProvider preference violation through hosting the related MigratableService.

Rule_6: CandidateForMigrationServiceDueToProvidersPreferences

∀ s, o, d (MG (s) ∧ ¬NP (d) ∧ CANO (o)
∧ CAND (o) ∧ CAND (d) ∧ PROV IDES (o, s) ∧
PPS (d, s) ∧ ¬PPS (s, o)→ CANS(s))

(5.8)

Component Rules A component rule describes a preference of Service or ServiceProvider.
Each rule is identified in its owner model as a string entry of the rule element as described in
Section 3.5. The main purpose of defining a component rule is to state the operation pref-
erence of the component. A component rule should identify new possibleProvidedService
and possibleDestinationProvider properties of Service-s and ServiceProvider-s in addition
to the information acquired by implementing Rule_3 and Rule_4 rules.

In Formula 5.9, we demonstrate an example of a preference rule of an instance Ser-
viceProvider called sP. The rule called SamplePreference is defined in provider model to
present the possibility of hosting MigratableService ‘s’ only with ServicePriority property
higher than 50. The derived information by the implementation of this rule will generate
new OWL/RDF triples of MigratableService entries as possibleProvidedService properties
of the ServiceProvider “sP”.

47

Let sP = name of service provider sP, v = service priority property, hasServicePriority =
has a service priority property.

∀v ∈ Z ∀ s, o, d (MG (s) ∧ CANO (o) ∧ CAND (d)
∧ PROV IDES (o, s)∧ (d = sP) ∧ hasServicePriority (s, v)
∧ (v≥50)→ PPS(d, s))

(5.9)

As described in the rule, the ‘o’ term represents any CandidateOriginServiceProvider
originally hosting ‘s’. The ‘d’ term represents any CandidateDestinationServiceProvider
instance. The property value ‘v’ of ServicePriority property of ‘s’ instance is set to values
equal or greater than 50.

5.5 Mobile Web Service Migration Framework Architecture
In this section we demonstrate the framework architecture for service migration presented
in Section 5.2. The framework’s Controller running on service provider will lead both the
context-awareness and adaptation processes. On the first hand, context-awareness process
is presented in the system through the following functionalities:

• discovering the connected service providers in the network.

• checking the destination service provider availability.

• monitoring the quality of service after migration and deciding if another migration is
required.

On the other hand, system adaptation is presented through the ability of the framework
controller on a service provider to migrate a service to a new service provider and assure
the availability of the migrated service.

We demonstrate the architecture of proposed framework in Figure 5.4, the architecture
consists of:

1) The Presentation Layer: it is the top-level layer of the adaptive system application
that allows end-users to access and interact with the system and its services via a Graphic
User Interface (GUI) (such as a web page).

2) The Application Layer: it is the layer containing the system Framework Web service,
Migratable Web services and controller. The Migratable Web services implement business
processes and can be consumed by end-users and external systems. The system controller
is responsible for managing the integrity of system business processes by performing ser-
vice migration according an adaptation strategy. The controller consists of the following
modules: 1) Discovery Module: it is the unit responsible for automatic discovery of joining
service providers and their services in the system. 2) System Context Manager Module:
it is the unit responsible for creating system context model and discovering violations of
the rules defined in the context models of discovered services and service providers. 3)
Migration Module, which is responsible for making a migration decision, moving a service
and deploying it on a suitable service provider.

48

Figure 5.4: Mobile Web service migration architecture.

5.5.1 Discovery Module

The Discovery Module is responsible for a discovery process of the available service providers
in the network. Moreover, it is responsible for the discovery of FrameworkService-s and
MigratableService-s (see Section 5.4.1) hosted on each discovered service provider so that
their models can be requested in order to be considered in the Context Manager Module’s
reasoning process.

5.5.2 System Context Manager Module

This module is responsible for generating, monitoring and reasoning system context period-
ically to enable system context awareness. The module creates system core context model
and all partial context models of discovered service providers and MigratableService model
intended for migration. It is also responsible for generating the partial models of system
components that define real-time statuses of properties and preference rules of the subject
MigratableService and the surrounding service providers.

49

After creating the system context model of the discovered service providers, the Con-
troller looks for a destination service provider that can host MigratableService where the
pre-defined rules of both MigratableService and the destination service provider can be
satisfied.

This process is performed through the utilization of an ontology reasoner to derive new
context information from system context model and to find the possibleDestinationProvider
for MigratableService that has also MigratableService as a possibleProvidedService.

The output of this module is a list of triple entries stating the MigratableService, the
source ServiceProvider, and the possibleDestinationProvider. This list of entries is the input
of the decision-making process performed by the Migration Module.

5.5.3 Migration Module

This unit is responsible for selecting the best migration to perform from the input set
of possible migrations. It utilizes the algorithms proposed in Section 4.2 to initiate the
required matrices used by the AHP decision-making method to choose the migration with
the highest priority calculated based on priority values of the defined criteria.

5.5.4 Migration Process

The migration process, demonstrated in Figure 5.5, begins when the Discovery Module of
a framework controller hosted on some device SP1 starts the Search process to discover the
connected devices and services in the network. When a device SP2 is discovered, the SP1
controller’s System Context Manager Module fetches and adds the partial context models
of SP1, SP2 and their hosted services to the core context model including their preference
rules found in the partial context model of them. After that, the System Context Manager
Module utilizes JENA reasoner to reason the generated system model and query it for any
derived migration suggestions matching the services and devices preferences. The suggested
list of possible migrations is ranked through the Migration Module of framework’s controller
which selects the migration with the highest priority to be performed.

50

Figure 5.5: Illustration of the Migration Process Steps.

51

Part III

Implementation and Experimental
Results

52

Chapter 6

Web Service Migration-based
Framework Description

In this chapter, we provide the system requirements and implementation description of our
Web service migration framework presented in Section 5.5. We adopt Service migration
as adaptation strategy to solve violations in preferences of system’s services and/or de-
vices (i.e., mobile phones provided with a running http server). First, we demonstrate the
requirements analysis of migration system. Later, we provide implementation description
including the technical aspects adopted for development of the system. Finally, we provide
an example to illustrate our migration approach.

6.1 System Requirements
We provide a context-aware self-adaptive framework to support an automatic Web service
migration in SOA. The framework must provide the following functionalities.

• discover services and service providers so that their context models can be retrieved
and used in building system context model.

• allow to semantically describe context information which is important for providing
the correct understanding/utilization of context information between system compo-
nents.

• monitor context changes and discover possible context violations in system model.

• react to context violations by triggering the adaptation process.

• suggest possible migrations and automatically choose the most suitable migration to
perform based on defined weighting criteria.

• execute the migration decision by physically migrating services to the new destination
service provider so that the found violations will be resolved.

6.2 Implementation Description
In this section, we describe the design and implementation of the proposed service migration
framework.

53

6.2.1 Service Migration Framework Architecture

To support the proposed process of Web service migration, we designed a generic context-
aware migration-based framework. The framework describes an overall service-oriented
architecture supporting the service migration and defines interfaces which can be imple-
mented to adapt the framework to a particular Web service implementation technology.
It also provides extension points for user-defined migration decision strategies, i.e., the
strategies deciding when the migration of a particular service is needed and how it will
be performed. To utilise the framework, demonstrated in Figure 6.1, an implementation
of interface MigrationDecisionStrategy and auxiliary classes with interfaces ProviderStatus,
ServiceStatus, and ServiceSemanticDescription, representing state and semantic informa-
tion, must be provided. Migration decisions are based on state information extracted from
service providers (e.g., available resources, system workload, battery state, etc.) and their
services (e.g., utilized resources, number of requests per a unit of time, etc.) and on the ser-
vices’ semantic descriptions (e.g., provided functionality, inputs and outputs, required run-
time conditions, etc.). The migration decision strategy has to be able to acquire instances
of the mentioned classes (i.e., the objects representing the state and semantic information)
from providers supporting service migration and migratable services.

Interface MigrationDecisionStrategy defines methods getProviderMigrationNecessity, get-
ServiceMigrationNecessity, and getDestinationSuitability. The first two methods decide
whether some services of a particular service provider or a particular service of this provider,
respectively, need to be migrated for some reasons. The third method decides whether a
particular provider can be a migration destination for a particular service (i.e., whether a
given service can be provided by a given provider after the migration). Returning values
of the methods are directly proportional to the necessity of migration of the services or the
suitability of the migration destinations. To be able to migrate, services need to implement
interface MigratableService with the following public methods. Method getStatus returns
state information that is used in a migration decision strategy to decide whether a par-
ticular service needs to be migrated. Method getSemanticDescription provides a semantic
description of a migrated service which is used in a migration decision strategy to select
an appropriate destination service provider. Method getDeploymentPackage returns a ser-
vice deployment package which is used to deploy a new instance of a migrated service at
a destination service provider. Finally, migrateToDestination transfers a service’s internal
state from the service’s old instance to its previously deployed new instance and finalises
the migration.

Service providers with migratable services need to implement interface MigrationProvider
with the following public methods. Method getStatus returns state information that is used
in a migration decision strategy to decide whether services hosted by a particular service
provider need to be migrated.

Method getHostedServices returns all migratable services of a service provider. Method
deployServiceFromPackage should be able to deploy a service package to create a new
instance of the deployed service on a destination service provider. Finally, method re-
moveService removes a migrated service from its origin provider.

6.2.2 Device and Service Discovery

We decided to use the Devices Profile for Web Services (DPWS) standard in implementing
the framework Discovery Module introduced in Section 6.2.2 . DPWS is a middleware
with the minimal set of implementation constraints to define the devices and their hosted

54

+ getStatus() : ServiceStatus
+ getSem ant icDescript ion() : Sem ant icServiceDescript ion
+ getDeploym entPackage() : ServiceDeploym entPackage
+ m igrateToTarget (targetService : MigratableService) : void
-get InternalStatus() : ServiceInternalState
init iateInternalStatus(status : ServiceInternalState) : void
start () : void
-redirectToAnotherService(redirect ionTarget : MigratableService) : v...
stop() : void

< < Interface> >
M igrat ableService

+ setMigrat ionDecisionStrategy(m igrat ionDecisionStrategy : Migrat ionDecisionStrategy) : void
+ findProviderWithMigrat ionNecessity(providers : Migrat ionProvider []) : Migrat ionProvider
+ findServicesWithMigrat ionNecessity(services : MigratableServices []) : MigratableServices []
+ findSuitableMigrat ionTarget (providers : Migrat ionProvider [] , service : MigratableService) : Migrat ionProvi...
+ m igrateServiceToProvider(m igratedService : MigratableService, targetProvider : Migrat ionProvider) : void

< < Interface> >
M igrat ionCont roller

+ getStatus() : ProviderStatus
+ getHostedServices() : MigratableService []
+ deployService(package : ServiceDeploym entPackage) : MigratableService
+ rem oveService(service : MigratableService) : void

< < Interface> >
M igrat ionProvider

< < Interface> >
ProviderSt at us

+ getProviderMigrat ionNecessity(providerStatus : ProviderStatus) : byte
+ getServiceMigrat ionNecessity(providerStatus : ProviderStatus, serviceStatus : ServiceStatus) : byte
+ getTargetSuitability(providerStat ist ics : ProviderStatus, serviceDescript ion : ServiceSem ant icDescript ion) : b...

< < Interface> >
M igrat ionDecisionSt rat egy

< < Interface> >
ServiceSem ant icDescript ion

< < Interface> >
Service Int ernalSt at e

< < Interface> >
ServiceDeploym ent Package

< < Interface> >
W ebService

< < Interface> >
ServiceSt at us

< < Interface> >
Seria lizable

1

0..*

Figure 6.1: The interface of the framework’s controller and the interfaces implemented by
participating services and service providers to enable the service migration.

services. The hosted services discovery depends on the discovery of their hosting devices,
meanwhile the process of device discovery is provided by another type of DPWS built-in
services called the discovery services. Each discovery service advertises its Device profile
in the network to be discovered by other discovery services. The discovery process of the
hosted services is managed by metadata exchange built-in services that can dynamically
access to devices hosted services and to their metadata. To enable the automatic discovery
of emerging service providers, the DPWS standard has been utilized by integration of
WS4D.org Java Multi Edition DPWS Stack (WS4D-JMEDS) [96]. WS4D-JMEDS is a
light-weight framework that allows to implement and run DPWS Services, Devices and
Clients. Through using JMEDS, the required SOA infrastructure to build the Web service
migration system will be provided. Moreover, we will be able to easily discover system’s
devices and their services and to retrieve the required information to build the system model
locally on each device which enables the decentralized adaptation in our framework.

55

6.2.3 System Services

We adopt the REST architectural style for SOA design due to the lower message payload
of REST framework than SOAP framework which makes REST more suitable for mobile
devices [89]. For this reason, we utilize the Restlet framework [55] to implement our REST-
ful Web services for the migration framework as the Restlet APIs supports both JAVA and
Android platforms which enables to publish the Web services on stationary and mobile
servers (i.e., devices) without the need for modifying its source-code.

For the HTTP server we choose I-Jetty project [5] which is a lightweight HTTP server for
Android. Each HTTP server hosts one grounding service FrameworkService which has the
required functionalities to package, send and receive Web service WAR packages between
FrameworkService system devices.

We differentiate between three types of resources during the implementation in order
to cope with the principals of RESTful architectural style. Each resource is presented as
Restlet presentation class file and attached to the device URI.

First, The Service resource class, it provides the necessary methods to deal with the
hosted service as a resource

• GET: getServiceWar method is specified to packages the service in a WAR format
file path on service provider.

• POST: addService method provides the functionality to initiate new JMEDS service
instance on service provider.

• DELETE: deleteService method deletes the service instance from the related service
provider.

Second, the Provider resource class:

• GET: getProviderContext, is specified to returns service provider context model
through the getContext method.

• POST: addDevice, is defined to start new instance from JEMDS device in the network.

• DELETE: deleteDevice is called to stop and delete JEMDS device instance so that it
is not discovered in the system.

And last, the Framework resource class, which provides the required RESTFUL meth-
ods to manage required functionalities such as deploying Service package, identifying the
operation system on service provider.

On the other hand, each running MigratableService has its context model which can
be retrieved by its URI. The service OWL/RDF context model is attached to the ser-
vice’s the WADL file by inheriting the WadlApplication Restlet class in the main service
Application class. Then the WADL context model is provided through implementing the
getApplicationInfo method and stored as an instance of DocumentationInfo class of Restlet
framework.

6.2.4 Context Model Reasoning

The process of deriving possible migrations is performed through implementing JENA
framework reasoner on the service providers’ and services’ models with respect to their

56

Provider noPreferenceRules FreeMemory PermanentStorageSize BatteryLifeTime
XProvider True 512 MB 512 MB 1 hour
YProvider False 2048 MB 2048 MB 2 hours
ZProvider True 2048 MB 2048 MB 3 hours

Table 6.1: Values of the status properties published in partial models of the service
providers.

Service noPreferenceRules ServicePriority ServiceType
Service1 False 50% major
Service2 True 20% minor

Table 6.2: Values of the status properties published in partial models of the services.

defined JENA rule preferences. On Android-based framework application, we integrated
Androjena APIs [86] for Android to enable JENA based reasoning for the generated sys-
tem context model. Then the migration with the highest weight from the proposed set of
migrations is chosen to be executed. A detailed description of the AHP decision-making
process used to select the migration with the highest weight is provided in Section 4.1.

6.3 Migration Example
In this section we provide an illustrative example to evaluate the proposed service migration
approach introduced in Section 5.2. The example presents a system of service providers
hosting services which cooperate to achieve a particular business logic. Web service mi-
gration allows to migrate services from one provider to another in cases of unexpected
violations of services or service providers preferences.

The migration guarantees better availability of the services and increases fault-tolerance
of the system. Let us suppose the system consists of the following three service providers:
XProvider, YProvider, and ZProvider. The status properties of these providers, which are
published in their partial context model together with their preference rules are listed in
Table 6.1.

For example, the information published by YProvider service provider, that is its sta-
tus properties and preference rules, is listed in Figure 6.2. For simplicity reasons, let us
suppose that there are only two migratable services, namely service Service1 currently pro-
vided/hosted by service provider XProvider and service Service2 currently provided/hosted
by service provider YProvider. A partial context model of each of these two services is avail-
able as a part of their WADL file. The status properties published in the context models
of these services are listed in Table 6.2. Moreover, Service1 context model declares the
two preferences of Service1 as Service1Preference1 and Service1Preference2, which limits
Service1 migration to providers with FreeMemory ≥ 2048 MB and PermanentStorageSize
≥ 2048 MB respectively.

According to the properties published by the individual service providers (see Table 6.1
and Figure 6.2), OriginBatteryLifeTimeCriterion and DestinationBatteryLifeTimeCrite-
rion are considered as criteria to be included in the decision-making process dealing with
BatteryLifeTime properties of the providers. Similarly, the services (see Table 6.2 and Fig-
ure 6.3) publish their ServicePriority properties related to criterion ServicePriorityCriterion
to make it considered in the decision-making process dealing with these properties.

57

Migration Service Origin Destination
mig1 Service1 XProvider YProvider
mig2 Service1 XProvider ZProvider
mig3 Service2 YProvider XProvider
mig4 Service2 YProvider ZProvider

Table 6.3: The migrations found to fix the violated preference rule.

During this example’s design-time, the defined preferences rules of Service1 and YProvider
(see Figure 6.3 and Figure 6.2) are set to be violated during the run-time. As defined,
Service 1 is hosted by XProvider which has FreeMemory and PermanentStorageSize less
than 2048 MB (see Table). Also, YProviderPreference is violated as YProvider is cur-
rently hosting Service2 which does not have the ServiceType of ‘major’. Having Ser-
vice1ProviderPreference1, Service1ProviderPreference2, and YProviderPreference violated,
the migration process will be performed to resolve these violations. As described in Sec-
tion 5.5.4, the framework controller will start the migration process and perform the fol-
lowing steps:

Step 1 - Building System Context Model When the framework controller of service
provider discovers other service providers in the system, the controller calls the Frame-
workService service of each discovered service provider to collect its context model. Next
it extracts the context model of each hosted migratable service from the service WADL
file. The properties and preference rules extracted from service providers and migratable
services context models are combined in one model to be reasoned to generate an inferred
context model. Through the reasoning process, the framework’s controller will check if
there is any violation in the defined preference rules. In this example, the controller detects
two preference rule violations:

In the first case, Service1Preference1 and Service1Preference2 preference rules of service
Service1 are violated. These preference rules, which permit to host the service only by
providers with FreeMemory ≥ 2048 MB and PermanentStorageSize ≥ 2048 MB, are violated
by service provider XProvider which is currently hosting the service and has its both status
properties FreeMemory and PermanentStorageSize set to value 512 MB (see Table 6.1).

In the second case, preference rule YProviderPreference of service provider YProvider
is violated. This preference rule, which permits the provider to host only services with
ServiceType set to value “major” (see Figure 6.2), is violated by service Service2 which is
currently hosted by the provider and has status property ServiceType set to value “minor”(see Table 6.2).

Step 2 - System Context Reasoning Process By ontology reasoning with Jena rea-
soners, four possible migration decisions are found to fix the violations above when per-
formed in the system. These migrations, which are listed in Table 6.3, are mig1, mig2, mig3
and mig4. Migration mig1 suggests migrating Service1 from XProvider to YProvider ; mi-
gration mig2 suggests migrating Service1 from XProvider to ZProvider, and so on (see
Table 6.3). First two migrations are addressing the first violation (of Service1Preference1
and Service1Preference2 preference rules of service Service1), while the other two migra-
tions are addressing the second violation (of preference rule YProviderPreference of service
provider YProvider).

58

Criteria
Priority

owner valueWith
HighestWeight

valueWith
LowestWeight

ServicePriority
Criterion

7 service 100 0

OriginBatteryLife
TimeCriterion

9 origin 1 5

DestinationBattery
LifeTimeCriterion

3 destination 5 1

Table 6.4: The utilized criteria and values of their attributes.

λmax = 3.0967; CR = 0.0833 < 0.1; matrix A is consistent.

ServicePriority
Criterion

OriginBatteryLife
TimeCriterion

DestinationBattery
LifeTimeCriterion

wi

ServicePriority
Criterion

1.0 0.1428 0.2 0.0737

OriginBatteryLife
TimeCriterion

7.0 1.0 3.0 0.6433

DestinationBattery
LifeTimeCriterion

5.0 0.3333 1.0 0.2828

Table 6.5: Comparison matrix A, generated by the InitializeCriteriaMatrix algorithm and
weight vector w computed from the matrix.

Step 3 - AHP based Decision Making Process The list of all possible migrations
needs to be processed by AHP to find the best migration to be performed in the system.
In order to use AHP, we define the following criteria in the context model: ServicePrior-
ityCriterion, OriginBatteryLifeTimeCriterion, and DestinationBatteryLifeTimeCriterion.
Values of individual attributes of the defined criteria are listed in Table 6.4.

By application of the InitializeCriteriaMatrix algorithm (see Section 4.2), criteria com-
parison matrix A is generated as shown in Tabel 6.5. In the last column of Tabel 6.5, there
are also values of the weight vector for the criteria which is computed by application of
Equation 4.2 on the normalized comparison matrix.

By application of the InitializeDecisionMatrices algorithm on the results above, mi-
gration comparison matrices S(1), S(2) and S(3) are generated for criteria ServicePrior-
ityCriterion, OriginBatteryLifeTimeCriterion, and DestinationBatteryLifeTimeCriterion,
respectively. These matrices are listed in Figure 6.6 together with their weight vectors. For
k ∈ 1, 2, 3 weight vector w(k) is computed for matrix S(k) by application of Equation 4.2 on
corresponding normalized matrix S(k).

Finally, after generating and computing all required matrices and vectors, AHP com-
putes the composite weight vector p through Equation 4.3. The resulting vector is

P =

0.375 0.375 0.1534
0.375 0.375 0.3889
0.1249 0.1249 0.0686
0.1249 0.1249 0.3889

 .

 0.0737
0.6433
0.2828

59

λmax = 4, CR = 0; matrix S(1) is perfectly consistent.
ServicePriority
Criterion

mig1 mig2 mig3 mig4 v(1)

mig1 1.0 1.0 3.0 3.0 0.375
mig2 1.0 1.0 3.0 3.0 0.375
mig3 0.3333 0.3333 1.0 1.0 0.1249
mig4 0.3333 0.3333 1.0 1.0 0.1249

λmax = 4, CR = 0; matrix S(2) is perfectly consistent.
OriginBatteryLife
TimeCriterion

mig1 mig2 mig3 mig4 v(2)

mig1 1.0 1.0 3.0 3.0 0.375
mig2 1.0 1.0 3.0 3.0 0.375
mig3 0.3333 0.3333 1.0 1.0 0.1249
mig4 0.3333 0.3333 1.0 1.0 0.1249

λmax = 4.0575, CR = 0.0213; matrix S(3) is consistent.
DestinationBattery
LifeTimeCriterion

mig1 mig2 mig3 mig4 v(3)

mig1 1.0 0.3333 3.0 0.3333 0.1534
mig2 3.0 1.0 5.0 1.0 0.3889
mig3 0.3333 0.2 1.0 0.2 0.0686
mig4 3.0 1.0 5.0 1.0 0.3889

Table 6.6: Migration comparison matrices S(k) generated by the initializemigrationmatrices
algorithm and weight vectors v(k) computed from the matrices.

P =

0.3586
0.376
0.1208
0.1444

 (6.1)

where p11, p21, p31, and p41 entries represent the weights of mig1, mig2, mig3, and mig4, re-
spectively. Finally, mig2 is chosen to be performed as it has the highest priority (p21= 0.376)
and Service1 will be migrated from service provider XProvider to service provider ZProvider
which will fix the violated preference rules of Service1, namely Service1Preference1 and
Service1Preference2, and satisfy them with the current FreeMemory and PermanentStor-
ageSize status property values of ZProvider. We set the framework controller to perform
only the migration with the highest priority for each adaptation round. The chosen mi-
gration will only fix the most critical violations of preference rules found before (not all
of those violations). For example, preference rule YProviderPreference of service provider
YProvider is still violated by hosting service Service2 (see Table 6.1) and should be fixed by
future migrations. Informally said, migration mig2 was selected by AHP because it deals
with Service1 which has greater ServicePriority than Service2 in other migrations and be-
cause it has destination service provider ZProvider which has the best BatteryLifeTime in
comparison with other possible destination providers (see Tables 6.2 and 6.1, respectively).

60

{
“name”:“YProvider”,
“type”:“ServiceProvider ”,
“noPreferenceRules”:“false”,
“properties”:
[
{“propertyName”:“FreeMemory”,
“propertyValue”:“2048”,
“propertyType”:“ INT”},

{“propertyName”:“PermanentStorageSize”,
“propertyValue”:“2048”,
“propertyType”:“ INT”},

{“propertyName”:“BatteryLifeTime”,
“propertyValue”:“2”,
“propertyType”:“ INT”,
“criteria”:[“OriginBatteryLifeTimeCriterion”,
“DestinationBatteryLifeTimeCriterion”]
}
],
“rules”:
“[YProviderPreference:(?service rdf:type core:MigratableService),
(?origin rdf:type core:CandidateOriginServiceProvider),
(?destination rdf:type core:CandidateDestinationServiceProvider),
equal(?destination, core:YProvider),
(?origin core:provides ?service),
(?service core:hasProperty ?property),
(?property rdf:type core:ServiceType),
(?property core:propertyValue ?v1),
eq(?v1, ’major’∧∧xsd:sting)
->(?destination core:possibleProvidedService ?service)]”}

Figure 6.2: The partial model for service provider YProvider with information of the
provider’s status properties and preference rule. Preference rule YProviderPreference writ-
ten in the JENA rules language allows the provider to host only services with ServiceType
set to value “major” (other providers XProvider and ZProvider do not have this restriction).

61

{ “name”:“Service1”,
“type”:“Service”,
“noPreferenceRules”:“false”,
“properties”:
[{“propertyName”:“ServiceType”,
“propertyValue”:“major”,
“propertyType”:“STRING”},

{“propertyName”:“ ServicePriority”,
“propertyValue”:“50”,
“propertyType”:“ INT”,
“criteria”:[“ServicePriorityCriterion”]
}],
“rules”:
[
“[Service1Preference1:
(?service rdf:type core:MigratableService),
(?origin rdf:type core:CandidateOriginServiceProvider),
(?destination rdf:type core:CandidateDestinationServiceProvider),
(?origin core:provides core:service1),
(?destination core:hasProperty ?property),
(?property rdf:type core:FreeMemory),
(?property core:propertyValue ?v1),
ge(?v1, ’2048’∧∧xsd:int) ->
(core:service1 core:possibleDestinationProvider ?destination)]”,
“[Service1Preference2: (?service rdf:type core:MigratableService),
(?origin rdf:type core:CandidateOriginServiceProvider),
(?destination rdf:type core:CandidateDestinationServiceProvider),
(?origin core:provides core:service1),
(?destination core:hasProperty ?property),
(?property rdf:type core:PermanentStorageSize),
(?property core:propertyValue ?v1),
ge(?v1, ’2048’∧∧xsd:int) ->
(core:service1 core:possibleDestinationProvider ?destination)]”]
}

Figure 6.3: The partial model for service Service1 with information of its preference rules.
Service1ProviderPreference1 and Service1ProviderPreference2.

62

Chapter 7

Case Studies

In this chapter we demonstrate the proposed self-adaptive service-oriented architecture for
Web service migration between stationary and mobile service providers through two case
studies. The first case study presents our motivation scenario of the thesis proposing to
implement self-adaptation in software system to resolve the missing of traffic information
service in a cooperative car scenario. It provides a proof-of-concept of the proposed migra-
tion adaptation mechanism for Web service in real-life scenarios. In the second case study,
we provide a description migration scenario and the migration framework implemented ap-
plication. The conducted experiments show the applicability and efficiency of the proposed
decentralized migration-based service-oriented architecture which is the main goal of the
thesis described in Chapter 5.

7.1 Case Study 1 - Traffic Jam Detection Service Migration
In this section we demonstrate a case study of service migration for traffic jam detection
using the proposed Web Service migration framework. This case study is inspired by the
traffic jam scenario presented in [69] where the migration framework is installed on a group
of cooperative cars. In this case study we present the applicability of our service migration-
based SOA model proposed in Chapter 5 .

The purpose of the experiment is to show a practical implementation of our context-
aware adaptation approach by migrating a traffic jam detection service from an origin car
to search for cars inside an area of interest defined by origin or the sender car. In this
experiment we will investigate the validity and reliability of the migration framework in
rapidly changing environment and evaluate the applicability of the migration approach
through a real-life case study.

7.1.1 Related Work

This section presents the related work utilizing context awareness and self-adaptation to
solve traffic jam problems. It discusses the differences between these works and the demon-
strated work in this case study.

In the work of Hu et al. [38], context-awareness has been proposed to enable the usage
of several resources of contextual data such as user’s personal activities, social data and
environment context (i.e., location, temperature). The authors defined an ontology to
describe a mobile smart city system in a crowdsensing scenario. Context-awareness was

63

implemented through context monitoring and matching of the collected context data and
providing system recommendation to the user.

The authors of [20], propose a peer-to-peer architecture for mobile Web service selection
and composition. The proposed architecture composer is responsible for discovering the
services hosted on nearby mobile devices and composing the required service to respond to
a mobile user service request. However, their proposed algorithm uses only service response
time factor to select the best services to involve in the composition. In the contrast, this
work’s framework allows to use a dynamic set of services’ and devices’ properties and
preferences in order to find a set of possible destinations. Moreover, the work authors
utilize the Analytic Hierarchy Process (AHP) decision making algorithm with a dynamic
set of criteria to determine the best migration to perform. However, this work proposes
service migration as an adaptation so that the service can be migrated and hosted on the
requesting device, not only to be used while the requester is close to the service origin
device.

A cooperative aware vehicle communication system is proposed in the work of Santa et
al. [74] to provide information about traffic status and events. A Cooperative Awareness
Message (CAM) and Decentralized Environmental Notification Message (DENM) are pro-
posed to describe exchanged messages between cars stating their current status and position.
While CAM is used for status notification in one-hop communication, DENM messages are
broadcasted over multi-hop communication to cover a specific geographic area. A car hosts
services that allow the system to retrieve its position and status to be used in traffic track-
ing and monitoring applications. Compared to their work, the contribution of this work
provides a generic context aware adaptive system that can be customized and utilized in
different scenarios including the traffic monitoring system.

In order to use the mobile Web service migration framework introduced in [46] in a traffic
jam detection scenario, we customized and extended the ontology provided in [45] with new
traffic jam domain-specific classes to describe system components models, properties and
related criteria governing the AHP-based decision-making algorithm proposed to select the
best migration to perform. On the other hand, we improved the decision-making algorithm
with new weighting approach during the decision-making process. For example, when
weighting the speed properties based on the speed criterion, a car with speed closer (both
higher or lower) to the source car speed should have higher weight and priority to be selected
from between all other possible destination cars.

7.1.2 System Description

The car A, can plan its route from point X to point Y and investigate a traffic jam possibility
in this route. The traffic jam investigation is performed by migrating TrafficJamSearch
service of car A and executing it on another car B (i.e., a new service provider), for instance
the car that is located in the area of interest defined by car A for planning the route.

In this example, there are two criteria governing the service migration making process:

1. difference between speeds of car A and a possible migration destination car B, and

2. the possible destination car B from the area of interest center of car A.

The first criterion will cause the migration to destination car B with a speed closest to
the speed of Car A. While the second criterion will make the selection of service Traffic-
JamSearch migration to the car closest to the center of the area of interest of car A.

64

When a car B is chosen as a new destination to service TrafficJamSearch, the migration
controller on Car A starts the physical migration process to Car B. Then, A will execute a
search process on B by calling TrafficJamSearch to discover the number of cars located in
the area of interest of A in order to detect a traffic jam on its planned route.

7.1.3 System Components Context Representation

In order to demonstrate the traffic jam scenario, we added to the migration ontology in-
troduced in Section 5.4 the following semantic component’s property classes: 1) Speed, 2)
CenterDistance, and 3) ServicePriority. Two criteria are considered in this example, 1)
SpeedCriterion, and 2) CenterDistanceCriterion. The SpeedCriterion is the criterion that
values the migration to the car that has the closest speed of the service current service
provider. While CenterDistanceCriterion values the migration to the car that is closest
to the center of the area of interest identified by the source car. The traffic jam context
ontology-based model is demonstrated in Figure 7.1.

Through the continuous context-awareness monitoring of system context model, when
a violation of the rules is sensed, the system launches an adaptation process to migrate a
service to a new service provider. In the example scenario, the violation is caused by the
traffic information service absence that rises the need to migrate a TrafficJamSearch service
to a neighboring car in order to perform a car search service and predict traffic jams in an
area of interest.

Figure 7.1: Traffic jam detection system ontology-based model representation.

7.1.4 Framework Implementation Description

The framework is divided into two main parts, the framework Web service and service
migration Android application. The framework Web service is a Restful-based web service
implemented using the Restlet APIs. This service is responsible for publishing the car/ser-
vice provider instance in the ad hoc network in order to be discovered by other cars. The
discovery process is enabled by creating and starting JMEDS device instance on the mobile

65

service provider by calling the start restful post of the Frameworkservice. An example URI
request to perform a discovery process on destination car is:
http://{IP}:{Port}/FrameworkService/discover/centerLng/{centerLng}/centerLat/
{centerLat}

where the centerLng and centerLat are the center coordinates of the source car’s area of
interest. The service provider has the functionalities to retrieve car’s context model, GPS
location and speed (provided by the google services on Android mobile phone), and the
position of its area of interest.

The service migration Android application is responsible for the following tasks:

• discovery process of cars located in a defined area of interest.

• generating system context model by adding the context models of discovered cars.

• system context model reasoning and migration suggestion discovery process.

• migration decision making process.

• publishing service TrafficJamSearch migration onto the selected destination car.

• calling TrafficJamSearch service to retrieve the information about the traffic jam in
the defined area.

The context model of a car is retrieved in JSON format by calling the getProviderContext
method of its framework service. Based on its IP a car is identified in the network, and
its context model can be retrieved as explained in Section 6.2.2. When car A launches
the traffic jam detection in a certain area on its route, it starts searching for a car in that
area to host its TrafficJamSearch service. When a car X is discovered, the source car A’s
framework application requests the location and speed information to determine whether
or not the discovered car exists in its area of interest based on the distance between the
discovered car location and the area of interest center. Only cars located in that area will
be considered in the migration process so that the framework will request its context model
to include their properties and preferences in the model reasoning process. An example of a
car preference is defined to limit hosting TrafficJamSearch service to only services provided
by cars that have a specific manufacturer.

The framework application calculates the distance of each discovered car from the center
of the area of interest of car A and adds it to the system model as a CenterDistance property
of the related car. The calculation of CenterDistance uses the precise location of discovered
car and the area of interest center location of the source car. Similarly, the most recent cars
speed values are added to the system model as Speed properties. We choose to consider
average speed (estimated by the distance traveled during the last 60 s) and precise location
values to keep the decision making more reliable and realistic and to avoid service migration
failure to a car with an outdated location.

Finally, the decision-making process starts to select the migration with the highest
weight, the AHP algorithm weight the migration based on two criteria: (1) CenterDistance-
Criterion; and (2) speedCriterion, so that the migration with the destination car closer to
the center of the area of interest will have a higher weight to be chosen by the decision-
making process. Similarly, the car with speed equal or around car A’s speed will be more
highly chosen as destination car. The decision-making process choose the final destination
with consideration for the weight of both CenterDistanceCriterion and SpeedCriterion.

66

The migration process is provided by FrameworkService methods that enable a physical
migration of the subject MigratableService from a source car to the matching destination
car. The Controller calls the following URI to perform the migration of MigratableService’s
implementation from source to destination:
http://{destination.IP}:{destination.Port}/FrameworkService/download/{source.IP}/
port/{source.Port}/temp/{source.TempFolder}/service/{MigratableServiceWAR

Figure 7.2: Application interface showing the planned route and surrounding cars during
the experiment.

7.1.5 Experiment and Results

In this experiment, we use three Genymotion1 Android emulators and one real mobile phone
as service providers. Each mobile phone represents a car on a planned route of a single
lane where cars go from point A to point B. Speeds of the emulators are mocked to have
random values between 10 to 40 km/h while a fixed speed is set for the source to 20 km/h.
To present the possibility of setting rules for migration process, we set a rule for Car3 to
not accept services with less priority than 70% while the subject service only has a priority
property of 50%.

We initialize the locations of these cars with 100 meters distance consequently. Fig-
ure 7.2 demonstrates the interface visualizing the route and the red circle area of interest of
the subject car with red color Marker. Each car is presented in blue marker when located
inside the area of interest.

On Car1, the framework controller starts searching for other cars located in its area of
interest and migrates the search service to be hosted on one of the discovered cars. Later,

1 https://www.genymotion.com/

67

Car Name CenterDistance (m) Speed (km/h)
Car1 Not applicable 20
Car2 41.64 18
Car3 17.5 30
Car4 12.34 24

Table 7.1: Cars properties during migration example.

Car1 calls the search service to get feedback about the status of traffic in that area. The
area of interest, marked as red circle, is set to be 200 meters ahead from Car1 with a
diameter of 100 meters.

At first the framework controller on Car1, starts searching for neighboring cars. When a
car is found, The Car1 framework requests the FrameworkService hosted on the discovered
car to get its current location and to check whether the discovered car is located inside
Car1’s area of interest to consider in the migration process or not. After having a list of
discovered cars, Car1 framework starts to create system context model that contains the
context model of the discovered cars and its subject MigratableService, TrafficJamService.
In Figure 7.3, the discovered cars are presented with their distances from the center of
Car1 area of interest. To demonstrate the decision-making process, we choose the situation
when the 3 cars are located inside Car1 area of interest. Table 7.1 contains the Speed and
CenterDistance properties of the cars during the example migration decision.

At this moment, the framework controller suggests migrating the subject service accord-
ing through two migration plans: 1) Mig A to Car2 and 2) Mig B to Car4. Even though
Car3 is located inside the specified area but it was not to host the service regarding to its
preference allowing to host service with a priority higher that 70%. So, this preference rule
is not satisfied with Car1’s TrafficJamService.

The next step for the framework controller is to decide which one of this migration to
perform. This is decided based on the AHP process and the defined criteria priorities and
the related properties of the migration destinations. For purpose of the experiment, the
priority of SpeedCriterion and CenterDistanceCriterion are set to 9 and 3, respectively.

Based on that, the criteria comparison matrix A is initiated using the AHP-based Initial-
izeCriteriaMatrix algorithm, (see Section 4.2). The criteria comparison matrix generated
by InitializeCriteriaMatrix is listed in Table 7.2. The values show, considering the criteria
priorities only, migration to a car with a speed closer to source car speed is 7 times more
important than to a car closer to the center of the interest area.

Similarly, the AHP algorithm calculates matrices n × n of migration weights for each
criterion based on the migration properties respecting that criterion. A center distance
property is governed by the centerDistanceCriterion which has 0 and 50 for the value of the
highest and the lowest weight respectively and is statically defined in the system context
model. While a speed property is governed by the speedCriterion which is dynamically
calculated by the algorithm based on the current speeds of cars existing in the area of
interest. For each migration the algorithm queries the system context model for the current
cars speeds. Later, it evaluates the weights of each car’s speed based on the speed of the
source car so that the car with the closest speed will have the highest weight values and
vice versa. The migration comparison matrices are provided in Table 7.3.

Finally, the AHP algorithm implements Equation 4.2 to computes the composite weight
vector wso so that the migration with the highest weight will be chosen and executed.

The weights of migrations are noted in Equation 7.1.

68

λmax = 2, C = 0, CR = 0

centerDistance Cri-
terion

speedCriterion Priority vector w

centerDistance Cri-
terion

1.0 0.14 0.125

speedCriterion 7.0 1.0 0.875

Table 7.2: Main criteria comparison matrix and its priority vector.

Migration Comparison Matrix with regard to centerDistanceCriterion
λmax = 2, C = 0, CR = 0

Mig A Mig
B

Priority vector - V (1)

Mig A 1.0 0.2 0.166
Mig B 5.0 1.0 0.833

Migration Comparison Matrix with regard to speedCriterion
λmax = 2, C = 0, CR = 0

Mig A Mig
B

Priority vector - V (2)

Mig A 1.0 3.0 0.75
Mig B 0.33 1.0 0.25

Table 7.3: Migration comparison matrices and priority vectors.

p =

(
0.677

0.323

)
(7.1)

where p11 and p21 entries represent the weights of Mig A and Mig B respectively. Based
on the highest value of composite weight vector p, Mig A will be performed as it has the
highest priority (p11= 0.677).

This experiment is repeated 10 times to measure the time spent to perform the migration
process and its sub processes (see Figure 7.3). The experiment shows that the average time
for the whole migration process is 7.5 s while the average time to create system context is
4.136 s and time to make the decision using the AHP algorithm is 0.251 s. While the authors
of [69] used 11 devices in their case study, they set the experiment time-out to 7.5 s, and
each device speed is set to a value between 18 to 36 km/h with 5 s intervals. In comparison
to that and based on our experiment settings, we see that this time is acceptable as the
source car with a speed of 20 km/h will almost cross only 40 meters which leaves it 160
meters away from its area of interest for the routing system to call the TrafficJamSearch
service and re-plan the route if necessary.

The result shows the validity of the adaptive context-aware service migration approach
provided in this case study has been demonstrated through the appropriate adaptation
time to perform service migration. The result provides a proof-of-concept of the thesis ap-
proach utilized to solve traffic information service absence problem in a real-time application
through a seamless decision-making process.

69

Figure 7.3: Mobile Web service migration framework application.

7.1.6 Conclusion

We presented a case-study to show the applicability of our framework by performing service
migration between cooperative cars. Through this case study we present the functionality
and usability of the context-aware self-adaptive Web service migration approach proposed
in this thesis and the possibility to be customized for different real-life scenarios. The
experiment results show the efficiency (see Section 1.2) of the proposed decision-making
process demonstrated by the time required to make the decision compared to the total
time of the migration process. It is dependent on the static time of service discovery and
the physical migration of service deployable package. Moreover, the results show that the
framework’s performance is seamless and suitable for real-time implementations.

70

7.2 Case Study 2 - Tourist Video Streaming Mobile Service
Migration

In this section, we present a case study of service migration between mobile devices to
demonstrate the validity, applicability and efficiency of the self-adaptive migration-based
service-oriented architecture approach. We perform experiments to demonstrate the im-
provement on the QoS gained by the migration based on decentralized adaptation mecha-
nism. Also, we provide a performance analysis to show the light-weight impact of migration
adaptation process and framework on the resources of mobile devices as example of resource
restricted service providers.

7.2.1 System Description

The case study scenario is based on real life tour programme where tourists are subscrib-
ing to a travel company service hosted on a mobile phone of a tourist guide. The service
provides information about the scheduled tour, information about the sightseeing located
around the user position, and also video editing service that allows passengers to edit their
captured videos and publish them on company social webpage. The migration adapta-
tion is performed to migrate company service between different mobile devices based on
the resource status of its current hosting device. For example, when the tour guide mo-
bile device has a low memory situation, the framework performs migration adaptation to
guarantee specific level of service quality and performance by migrating the service onto
service provider with high memory resources. We assume for this scenario the later service
provider is located on the travel company bus. Another migration example can happen
when passengers leave the bus to a ferry as the service can follow the user by migrating to
a company server located on the ferry. Similarly, the service can migrate back to the bus
after the ferry journey finished and passengers return on-board the bus.

7.2.2 System Settings

In this section, we describe a test-bed system designed to represent the case study scenario.
From an objective perspective, several system’s metrics such as (Service Response Time,
CPUUsage and BatteryLevel) are measured duringa system’s resource-stress test. Based
on the performed measurements, we provide an analysis of the system performance during
the test to show the applicability of the proposed adaptation approach utilized to solve the
case study problem.

Two devices are used as service providers in this experiment. Both are Huawei Y560-
L01 mobile phones namely: Destination and Source, with 1.1GHz CPU frequency, 1GB
RAM and running Android 5.5.1 APIs. The status properties of both providers are listed
in Figure 7.4 including their preference rules.

Destination Provider has CPUUsage property of 40% and a preference rule defining the
least ServicePriority of services that can be hosted on Destination by 50%. Source provider
has 85% of CPUUsage and no preference rules.

The subject Web service S is a video transcoding service which converts AVI video files
into FLV format. S has ServicePriority property of value 50% and has one preference rule
that allows it to be migrated only to service provider with CPUUsage < 45%. ServicePri-
ority and CPUUsage both are sub properties of the Property Class in the context model.
ServicePriority’s states the priority of the service by a value of [0, 100] while CPUUsage

71

Provider CPUUsage Preference Rule
Source 85% NA
Destination 40% ServicePriority>=50%

Table 7.4: Values of the Status Properties and Preferences of the Mobile Service Providers.

{
“name”:“S”,
“type”:“MigratableService”,
“properties”:
{ “propertyName”:“ServicePriority”,
“propertyValue”:“50”,
“propertyType”:“INT”,
“criteria”:“ServicePriorityCriterion”},
“rules”:“[SPreference: (?service rdf:type core:MigratableService),
(?origin rdf:type core:CandidateOriginServiceProvider),
(?destination rdf:type core:CandidateDestinationServiceProvider),
(?origin core:provides core:S),
(?destination core:hasProperty ?property),
(?property rdf:type core:CPUUsage),
(?property core:propertyValue ?v1),
le(?v1, ”45“∧∧http://www.w3.org/2001/XMLSchema#int) ->
(core:S core:possibleDestinationProvider ?destination)]”}

Figure 7.4: The Context Model of Service S Presented in JSON Format.

is a service provider property stating the percentage of the device processor in use. The
context model of Service S is provided in Figure 7.4.

We install the implemented Web service migration framework on both experimental de-
vices. In this experiment we assume that the migration framework will perform continuous
monitoring real-time system context model stating CPUUsage of both devices. A reasoning
process will be performed on system context model based on the defined preference rules
of device Destination and Service (S). Through this reasoning process, the framework will
discover rule violations, suggest and perform service migration decision from its current
service provider to another device that satisfies the preference rules of Destination and S.

7.2.3 Experiment Description

First, we publish Service (S) on Source mobile service provider and call S to perform
a transcoding of an AVI sample video file of 17.1 MB size. We measured the response
times of service S for 10 times during the test in order to compare the result with the
response times of the service after the migration. The time measurement was done using
the Advanced REST Client API testing tool2. Later, we connect the second mobile service
provider Destination and run the migration framework application on both mobile phones.

2 https://advancedrestclient.com/

72

In this experiment, the framework controller discovers the violations in S preference
rule and tries to find an alternative service provider. The framework controller decides
to migrate Service S ontoDestination based on the reasoning process that guarantees the
defined preference rules. The suggested migration of S is suggested to Destination based on
its CPUUsage status is only 40% which satisfies S preference rule. On the other hand, the
migration of Service S (that has ServicePriority of 50%) onto Destination does not violate
but satisfies Destination preference that permits only services with ServicePriority ≥ 50 to
be migrated to Destination.

Similarly, measurements of response times of Service S are made to convert the same
AVI file while S is hosted on Destination. The measurements show that the average response
time of service S is 48.6 s when hosted on Destination while it is around 134.4 s when hosted
on Source.

The results show that by the migration of Service S from Source to be hosted on
Destination that has CPU Usage less than 50%, the proposed migration framework provides
the mechanism that achieves improvements on Service S’s QoS measured by its response
time. We configured the experiment to be repeatedly executed by the framework Controller
on Destination for an hour in order to investigate the migration process time and the impact
of running the implemented framework on device resources.

7.2.4 Experiment Results

• Migration Process Time: During this test, the controller performs the migration pro-
cess 634 times. We observed that the average time to perform the migration process
from Source to Destination is 4.836 s. By excluding the time to download and deploy
Service S WAR file of 2.30 MB on Destination, the time spent to take the migration
decision is 0.576, 0.449, and 1.309 s at its Average, Minimum and Maximum val-
ues, respectively. Based on these measurements, we see that the proposed framework
enables a seamless adaptation in SOA to redistribute system components.

• CPU Usage Consumption: We collected the CPU usage samples consumed by the
framework application. Figure 7.5 presents the percentage of time for the CPU usage
of the framework during this experiment. The measurements show that the framework
total CPU usage is 23% in average (18% in User mode and 5% in Kernel mode), while
it is 8% and 50% at its minimum and maximum values respectively.

• Battery Consumption: To investigate battery consumption by the framework, we
collected Battery level drop when the migration framework is used and compare it
with battery level drop when the framework is not running. The result is presented
in Figure 7.6. The battery level drop is by 4% higher when the framework is disabled
(OFF).

7.2.5 Conclusion

Through this case-study, we demonstrate our Restful-based Web service migration frame-
work for dynamic relocation and provisioning of Web services on mobile devices.

The experimental results show the lightweight impact of the implemented Web services
migration framework on mobile device resources. Moreover, the results demonstrate the
efficiency of utilizing the proposed migration approach to assure services’ and devices’

73

Figure 7.5: Framework Total CPU Usage by its Average Lasting Time During an Hour.

preferences and improve QoS in SOA by enabling self-adaptation on mobile devices in
P2P network.

With regards to the aim of the thesis described in Section 1.3, the experiments show
the applicability of our approach for decentralized context-aware self-adaptation in mobile
hosted service-oriented architecture. The proposed migration adaptation is proposed to
automatically satisfy operation conditions of system components that can be semantically
described in their context models. It enables software architectures to automatically react
to changes in their component status based on a designed adaptation strategy and to remove
unexpected violations.

7.3 Evaluation and Conclusion
In the previous sections, we provided two case studies that use our context-aware self-
adaptation architecture model to support a decentralized adaptation in SOA-based systems
through service migration as example of adaptation strategy. The introduced case studies
have demonstrated the application of the adaptive context-aware service-oriented architec-
ture model, the formal component context model, and the behavioural description of the

74

Figure 7.6: Battery Level Drop during the Experiments.

adaptation and decision-making processes in SOA, that has been proposed in Chapters 3
and 4.

In this section we describe the contributions that have been provided through this work
to solve the limitations of current approaches (see Section 2.2.5) and to support adaptation
in software systems. The contributions of our approach are listed as follows:

1. A SOA-based architecture meta-model has been provided in Chapter 3 to support
system adaptation and context-awareness in stationary and mobile architectures.

2. To solve limitation L1, the limitation of reusability and extensibility in the system, we
adopt the SOA principles of service reusability and extensibility in designing our ar-
chitecture model. As presented in our case studies (see Chapter 7), service reusability
has been a key factor to support customization of our architecture model to support
different adaptation plan.

3. To solve limitation L2, the limitation in context information modelling in the sys-
tem, an ontology has been provided (see Section 3.4 and Section 3.5) to guarantee
a dynamic and sharable understanding of context information between system com-
ponents, which also supports system extensibility over different domains. Moreover,
a generic ontology-based component context model has been introduced to describe
system components semantically and to support content information modelling. The
provided component context model supports the usage of the OWL-S description of
Web service as discussed in Section 3.3. It enables the utilization of system adapta-
tion and context awareness by providing a method to semantically describe system
services and devices including their properties and preferences to be used in planning
the adaptation.

4. To overcome limitation L3, the limitation in adaptation strategies, a customizable
adaptation approach has been provided in Chapter 3 to support different adaptation
plans by extending the system ontology core model and integrating rules stating the
adaptation plans. In our case studies (see Chapter 7), we customized our adaptation

75

model to support service migration as example of adaptation plan and demonstrated
its application through two real-life scenarios.

5. To overcome limitation L4, the limitation in the adaptation making process, a dynamic
multi-criteria decision-making process has been provided to choose the best adapta-
tion to perform from the possible adaptation plans (see Section 4.1 and Section 4.2).
The provided decision-making process is extensible so that the newly ontology-defined
terms, metrics, properties and criteria that can be dynamically considered in the adap-
tation decision making process.

76

Part IV

Future Work and Conclusion

77

Chapter 8

Future Work

The thesis demonstrates a decentralized context-aware self-adaptive service-oriented archi-
tecture model proposed to cope with changes of software system environment and com-
ponents context and react through an adaptation strategy designed to guarantee system
availability and improve its performance. During the research to reach the thesis’s goals,
few points have been shifted for future work as improvements and extensions that can be
considered as new research openings of this work.

• Service discovery: In Section 5.5.1, we introduced the abstract Discovery Module
proposed to discover existing devices and services in the network that can join and
contribute in the adaptation process. In the stage of implementing this Module,
we used the SOAP messaging exchange discovery framework JMEDS to handle the
discovery process in ad-hoc networks. Despite the fact that JMEDS has proven its
feasibility in both standalone and mobile platforms in small-scale ad-hoc networks, we
think that the discovery methodology for medium and large-scale networks should be
improved by utilizing the UDDI registry for Web service with a light-weight message
exchange payload such as REST framework due to the significant increment in the
number of participated services.

• Service migration: In Chapter 5 (Section 5.2), Service Migration is introduced through
packing and moving service internal running status with the service and resume its
execution on its new service provider. The concept of saving service status can lever-
age the seamless migration of the service. In the conducted experiments in Chapter 7,
service internal status has not been migrated with the service to leverage the perfor-
mance of the framework. However, we think that it is required to conduct further
investigations to consider the migration of the internal status based on the application
scenario and optimization of service/system performance.

• To consider other adaptation scenarios that involve large number of services and
devices. As discussed in Chapter 7, the case-studies are demonstrated as a proof-of-
concept for the thesis approach and to provide a real-life scenario of possible imple-
mentation. Moreover, the general adaptive approach introduced in Chapter 3 can be
customized to be used for other adaptation scenarios than service migration. Such a
promising adoption and implementation of this research contribution is to include for
goal-oriented cooperative robots’ scenario.

78

Chapter 9

Conclusion

The research work of the thesis has been conducted based on the objectives presented in
Section 1.4. The main objective of the thesis is reached by the proposal of a decentralized
context-aware self-adaptive service-oriented architecture approach.

Following the objective O1, we proposed a formal representation of system context using
ontology. The proposed ontology enables a common understanding of the semantic meaning
of system components and allows to define system components models and realizes changes
in these models. A context model states the description of a system component including
its attributes and operation conditions to consider in system adaptation.

With regard to objective O2, we introduced a decentralized context-aware self-adaptive
architecture model that enables SOA-based software system to react to context changes
in the surrounding environment and/or the status of system components. We presented a
formal description of service migration strategy to demonstrate the behavioural description
of service migration-based adaptive SOA.

To reach objective O3, we developed a framework that supports service migration adap-
tation and allows stationary and mobile devices as service providers to join the adaptation
process. The implanted framework enables system component context modelling, context
exchange, context reasoning, decision making, service migration adaptation, service provi-
sioning on both Android and Windows platforms.

Finally, regarding to objective O4, we presented two case studies to demonstrate the
applicability and efficiency of the thesis approach. The experiment results are provided as
proof-of-concept to show the validity of the decentralized context-aware adaptive architec-
ture model. The results provide measurements to presents the efficiency of the proposed
approach through showing improvements in system performance and quality of service fac-
tor by considering the thesis approach.

In comparison with the related approaches, our approach utilizes context-awareness
and self-adaptivity to guarantee and improve system performance. Using the proposed
context-aware self-adaptive meta-model allows to provide semantical description for both
Web services and service provides. Moreover, the thesis promotes the extension of service-
oriented architecture on mobile devices and enables the participation of type different types
of context resources and devices independently from their computing platform.

For future work, we consider empowering the proposed approach with other discovery
methodologies of service and service provider in large-scale network. Moreover, we intend
to extend the implementation work to join new types of devices and services. Another part
of the future work is to test the approach through other real-life examples with different
adaptation scenarios.

79

80

Bibliography

[1] Abeywickrama, D. B.; Zambonelli, F.: Model checking goal-oriented requirements for
self-adaptive systems. In 2012 IEEE 19th International Conference and Workshops
on Engineering of Computer-Based Systems. IEEE. 2012. pp. 33–42.

[2] Abowd, G. D.; Dey, A. K.; Brown, P. J.; et al.: Towards a better understanding of
context and context-awareness. In International symposium on handheld and
ubiquitous computing. Springer. 1999. pp. 304–307.

[3] Al-Azab, F. G. M.; Ayu, M. A.: Web based multi criteria decision making using AHP
method. In Proceeding of the 3rd International Conference on Information and
Communication Technology for the Moslem World (ICT4M) 2010. IEEE. 2010. pp.
A6–A12.

[4] AlShahwan, F.; Carrez, F.; Moessner, K.: Providing and evaluating the mobile web
service distribution mechanisms using fuzzy logic. Journal of Software. vol. 7, no. 7.
2012: pp. 1473–1487.

[5] Android, C.: Open Source Android Apps for Developers: I-Jetty (webserver for the
android mobile platform).

[6] Bandara, A.; Payne, T. R.; de Roure, D.; et al.: An ontological framework for
semantic description of devices. 2004.

[7] Banks, T.: Web services resource framework (wsrf)-primer v1. 2. OASIS committee
draft. 2006: pp. 02–23.

[8] Bellifemine, F.: Jade-a white paper. exp. vol. 3, no. 3. 2003.

[9] Berners-Lee, T.; Hendler, J.; Lassila, O.; et al.: The semantic web. Scientific
american. vol. 284, no. 5. 2001: pp. 28–37.

[10] Bettini, C.; Brdiczka, O.; Henricksen, K.; et al.: A survey of context modelling and
reasoning techniques. Pervasive and Mobile Computing. vol. 6, no. 2. 2010: pp.
161–180.

[11] Bianchini, D.; De Antonellis, V.; Melchiori, M.; et al.: Lightweight ontology-based
service discovery in mobile environments. In 17th International Workshop on
Database and Expert Systems Applications (DEXA’06). IEEE. 2006. pp. 359–364.

[12] Brown, A. W.: Large-scale, component-based development. vol. 1. Prentice Hall PTR
Englewood Cliffs. 2000.

81

[13] Candan, K. S.; Liu, H.; Suvarna, R.: Resource description framework: metadata and
its applications. ACM SIGKDD Explorations Newsletter. vol. 3, no. 1. 2001: pp. 6–19.

[14] Carroll, J. J.; Dickinson, I.; Dollin, C.; et al.: Jena: implementing the semantic web
recommendations. In Proceedings of the 13th international World Wide Web
conference on Alternate track papers & posters. ACM. 2004. pp. 74–83.

[15] Chen, B.; Cheng, H. H.; Palen, J.: Mobile-C: a mobile agent platform for mobile
C/C++ agents. Software: Practice and Experience. vol. 36, no. 15. 2006: pp.
1711–1733.

[16] Chen, Y.; Li, X.; Yi, L.; et al.: A ten-year survey of software architecture. In 2010
IEEE International Conference on Software Engineering and Service Sciences. IEEE.
2010. pp. 729–733.

[17] Cheng, B.; De Lemos, R.; Giese, H.; et al.: A research roadmap: Software engeering
for self-adaptive systems. In Schloss Dagstuhl Seminar, vol. 8031. 2009.

[18] Consortium, W. W. W.; et al.: Web Services Architecture, W3C Working Group Note
11 February 2004. http://www. w3. org/TR/2004/NOTE-ws-arch-20040211/. 2004.

[19] Dardenne, A.; Van Lamsweerde, A.; Fickas, S.: Goal-directed requirements
acquisition. Science of computer programming. vol. 20, no. 1-2. 1993: pp. 3–50.

[20] Deng, S.; Huang, L.; Taheri, J.; et al.: Mobility-aware service composition in mobile
communities. IEEE Transactions on Systems, Man, and Cybernetics: Systems.
vol. 47, no. 3. 2016: pp. 555–568.

[21] Dustdar, S.; Schreiner, W.: A survey on web services composition. International
journal of web and grid services. vol. 1, no. 1. 2005: pp. 1–30.

[22] Edwards, G.; Garcia, J.; Tajalli, H.; et al.: Architecture-driven self-adaptation and
self-management in robotics systems. In 2009 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems. IEEE. 2009. pp. 142–151.

[23] Ejigu, D.; Scuturici, M.; Brunie, L.: An ontology-based approach to context modeling
and reasoning in pervasive computing. In Fifth Annual IEEE International
Conference on Pervasive Computing and Communications Workshops
(PerComW’07). IEEE. 2007. pp. 14–19.

[24] Elkhodary, A.; Esfahani, N.; Malek, S.: FUSION: a framework for engineering
self-tuning self-adaptive software systems. In Proceedings of the eighteenth ACM
SIGSOFT international symposium on Foundations of software engineering. ACM.
2010. pp. 7–16.

[25] Erl, T.: Service-oriented architecture: concepts, technology, and design. Pearson
Education India. 1900.

[26] Erl, T.: A look ahead to the service-oriented world: Defining SOA when there’s no
single, official definition. 2005.

[27] Famaey, J.; Wauters, T.; De Turck, F.; et al.: Network-aware service placement and
selection algorithms on large-scale overlay networks. Computer Communications.
vol. 34, no. 15. 2011: pp. 1777–1787.

82

[28] Fielding, R. T.; Taylor, R. N.: Architectural styles and the design of network-based
software architectures. vol. 7. University of California, Irvine Doctoral dissertation.
2000.

[29] Fox, M.; Long, D.: PDDL2. 1: An extension to PDDL for expressing temporal
planning domains. Journal of artificial intelligence research. vol. 20. 2003: pp. 61–124.

[30] Garlan, D.; Cheng, S.-W.; Huang, A.-C.; et al.: Rainbow: Architecture-based
self-adaptation with reusable infrastructure. Computer. vol. 37, no. 10. 2004: pp.
46–54.

[31] Group, T. O.: Soa source book. Van Haren Publishing. 2009.

[32] Gu, T.; Pung, H. K.; Zhang, D. Q.: A service-oriented middleware for building
context-aware services. Journal of Network and computer applications. vol. 28, no. 1.
2005: pp. 1–18.

[33] Hao, W.; Gao, T.; Yen, I.-L.; et al.: An infrastructure for web services migration for
real-time applications. In 2006 Second IEEE International Symposium on
Service-Oriented System Engineering (SOSE’06). IEEE. 2006. pp. 41–48.

[34] Hao, W.; Yen, I.-L.; Thuraisingham, B.: Dynamic service and data migration in the
clouds. In 2009 33rd Annual IEEE International Computer Software and Applications
Conference, vol. 2. IEEE. 2009. pp. 134–139.

[35] Henricksen, K.; Indulska, J.; Rakotonirainy, A.: Modeling context information in
pervasive computing systems. In International Conference on Pervasive Computing.
Springer. 2002. pp. 167–180.

[36] Ho, W.; Xu, X.; Dey, P. K.: Multi-criteria decision making approaches for supplier
evaluation and selection: A literature review. European Journal of operational
research. vol. 202, no. 1. 2010: pp. 16–24.

[37] Hoare, C. A. R.: Communicating sequential processes. In The origin of concurrent
programming. Springer. 1978. pp. 413–443.

[38] Hu, X.; Li, X.; Ngai, E. C.-H.; et al.: Multidimensional context-aware social network
architecture for mobile crowdsensing. IEEE Communications Magazine. vol. 52,
no. 6. 2014: pp. 78–87.

[39] Hussein, M.; Han, J.; Colman, A.; et al.: An architecture-based approach to
developing context-aware adaptive systems. In 2012 IEEE 19th International
Conference and Workshops on Engineering of Computer-Based Systems. IEEE. 2012.
pp. 154–163.

[40] Hussein, M.; Han, J.; Colman, A.; et al.: An architecture-based approach to
developing context-aware adaptive systems. In 2012 IEEE 19th International
Conference and Workshops on Engineering of Computer-Based Systems. IEEE. 2012.
pp. 154–163.

[41] Kazzaz, M.; Rychly, M.: Ontology-based context modelling and reasoning in the Web
service migration framework. Acta Electrotechnica et Informatica. vol. 13, no. 4. 2013:
pp. 5–12.

83

[42] Kazzaz, M. M.: Semantic Services Migration. In Proceedings of the 18th Conference
STUDENT EEICT 2012 Volume. Brno University of Technology. 2012. pp. 386–390.

[43] Kazzaz, M. M.; Rychlỳ, M.: A web service migration framework. In ICIW 2013, The
Eighth International Conference on Internet. The International Academy, Research
and Industry Association. 2013. pp. 58–62.

[44] Kazzaz, M. M.; Rychlỳ, M.: Web service migration with migration decisions based on
ontology reasoning. In Proceedings of the Twelfth International Conference on
Informatics-Informatics. 2013. pp. 186–191.

[45] Kazzaz, M. M.; Rychlỳ, M.: Web service migration using the analytic hierarchy
process. In 2015 IEEE International Conference on Mobile Services. IEEE. 2015. pp.
423–430.

[46] Kazzaz, M. M.; Rychlỳ, M.: Restful-based mobile Web service migration framework.
In 2017 IEEE International Conference on AI & Mobile Services (AIMS). IEEE.
2017. pp. 70–75.

[47] Kazzaz, M. M.; Rychlỳ, M.: A Case Study: Mobile Service Migration Based Traffic
Jam Detection. International Journal of Systems and Service-Oriented Engineering
(IJSSOE). vol. 8, no. 1. 2018: pp. 44–57.

[48] Kephart, J. O.; Chess, D. M.: The vision of autonomic computing. Computer. , no. 1.
2003: pp. 41–50.

[49] Kim, Y.-S.; Lee, K.-H.: An efficient policy establishment scheme for web services
migration. In 2007 International Conference on Convergence Information Technology
(ICCIT 2007). IEEE. 2007. pp. 595–600.

[50] Kim, Y.-S.; Lee, K.-H.: A lightweight framework for mobile web services. Computer
Science-Research and Development. vol. 24, no. 4. 2009: page 199.

[51] Land, R.: A brief survey of software architecture. Mälardalen Real-Time Research
Center (MRTC) Report. 2002.

[52] Lange, D. B.; Mitsuru, O.: Programming and Deploying Java Mobile Agents Aglets.
Addison-Wesley Longman Publishing Co., Inc.. 1998.

[53] Lassila, O.; Swick, R. R.; et al.: Resource description framework (RDF) model and
syntax specification. 1998.

[54] Lee, K.-C.; Kim, J.-H.; Lee, J.-H.; et al.: Implementation of ontology based
context-awareness framework for ubiquitous environment. In 2007 International
Conference on Multimedia and Ubiquitous Engineering (MUE’07). IEEE. 2007. pp.
278–282.

[55] Louvel, J.; Templier, T.; Boileau, T.: Restlet in action: developing restful web apis in
Java. Manning Publications Co.. 2012.

[56] MacKenzie, C. M.; Laskey, K.; McCabe, F.; et al.: Reference model for service
oriented architecture 1.0. OASIS standard. vol. 12. 2006: page 18.

84

[57] Maedche, A.; Staab, S.: Ontology learning for the semantic web. IEEE Intelligent
systems. vol. 16, no. 2. 2001: pp. 72–79.

[58] Manna, Z.; Pnueli, A.: The temporal logic of reactive systems: Specification. 1992.

[59] Martin, D.; Burstein, M.; Hobbs, J.; et al.: OWL-S: Semantic markup for web
services W3C Member Submission 22 November 2004. W3C Member Submission,
from http://www. w3. org/Submission/2004/SUBM-OWL-S-20041122. 2004.

[60] Meehean, J.; Livny, M.: A service migration case study: Migrating the Condor
schedd. In Midwest Instruction and Computing Symposium. 2005.

[61] Messig, M.; Goscinski, A.: Service migration in autonomic service oriented grids. In
Proceedings of the sixth Australasian workshop on Grid computing and
e-research-Volume 82. Australian Computer Society, Inc.. 2008. pp. 45–54.

[62] Morandini, M.; Penserini, L.; Perini, A.: Modelling self-adaptivity: a goal-oriented
approach. In 2008 Second IEEE International Conference on Self-Adaptive and
Self-Organizing Systems. IEEE. 2008. pp. 469–470.

[63] Nadareishvili, I.; Mitra, R.; McLarty, M.; et al.: Microservice architecture: aligning
principles, practices, and culture. “ O’Reilly Media, Inc.”. 2016.

[64] O’Brien, P. D.; Nicol, R. C.: FIPA—towards a standard for software agents. BT
Technology Journal. vol. 16, no. 3. 1998: pp. 51–59.

[65] Oreizy, P.; Gorlick, M. M.; Taylor, R. N.; et al.: An architecture-based approach to
self-adaptive software. IEEE Intelligent Systems and Their Applications. vol. 14,
no. 3. 1999: pp. 54–62.

[66] Pauty, J.; Preuveneers, D.; Rigole, P.; et al.: Research challenges in mobile and
context-aware service development. In Future Research Challenges for Software and
Services Conference. Citeseer. 2006. pp. 141–148.

[67] Perry, D. E.; Wolf, A. L.: Foundations for the study of software architecture. ACM
SIGSOFT Software engineering notes. vol. 17, no. 4. 1992: pp. 40–52.

[68] Reich, C.; Bubendorfer, K.; Banholzer, M.; et al.: A SLA-oriented management of
containers for hosting stateful web services. In Third IEEE International Conference
on e-Science and Grid Computing (e-Science 2007). IEEE. 2007. pp. 85–92.

[69] Riva, O.; Nadeem, T.; Borcea, C.; et al.: Context-aware migratory services in ad hoc
networks. IEEE Transactions on Mobile Computing. vol. 6, no. 12. 2007: pp.
1313–1328.

[70] Rychly, M.: Dynamically Reconfigurable Runtime Architectures: Challenges and
Service-driven Approaches.

[71] Saaty, T. L.: Multicriteria decision making: the analytic hierarchy process: planning,
priority setting resource allocation. 1990.

[72] Saaty, T. L.: Analytic network process. Springer. 2013.

85

[73] Salehie, M.; Tahvildari, L.: Self-adaptive software: Landscape and research
challenges. ACM transactions on autonomous and adaptive systems (TAAS). vol. 4,
no. 2. 2009: page 14.

[74] Santa, J.; Pereñíguez, F.; Moragón, A.; et al.: Experimental evaluation of CAM and
DENM messaging services in vehicular communications. Transportation Research
Part C: Emerging Technologies. vol. 46. 2014: pp. 98–120.

[75] Schilit, B. N.; Theimer, M. M.: Disseminating Active Mop Infonncition to Mobile
Hosts. IEEE network. 1994.

[76] Schmidt, C.: Context-aware computing. Berlin Institute of Technology. 2011.

[77] Schmidt, H.; Kapitza, R.; Hauck, F. J.; et al.: Adaptive web service migration. In
IFIP International Conference on Distributed Applications and Interoperable
Systems. Springer. 2008. pp. 182–195.

[78] Shadbolt, N.; Berners-Lee, T.; Hall, W.: The semantic web revisited. IEEE
intelligent systems. vol. 21, no. 3. 2006: pp. 96–101.

[79] Shaw, M.; Garlan, D.; et al.: Software architecture. vol. 101. prentice Hall Englewood
Cliffs. 1996.

[80] Sheng, Q. Z.; Benatallah, B.: ContextUML: a UML-based modeling language for
model-driven development of context-aware web services. In International Conference
on Mobile Business (ICMB’05). IEEE. 2005. pp. 206–212.

[81] Sheng, Q. Z.; Pohlenz, S.; Yu, J.; et al.: ContextServ: A platform for rapid and
flexible development of context-aware Web services. In Proceedings of the 31st
International Conference on Software Engineering. IEEE Computer Society. 2009.
pp. 619–622.

[82] da Silva, C. E.; de Lemos, R.: A framework for automatic generation of processes for
self-adaptive software systems. Informatica. vol. 35, no. 1. 2011.

[83] Stal, M.: Using architectural patterns and blueprints for service-oriented
architecture. IEEE software. vol. 23, no. 2. 2006: pp. 54–61.

[84] Sun, M.; Zang, T.; Xu, X.; et al.: Consumer-centered cloud services selection using
AHP. In 2013 International Conference on Service Sciences (ICSS). IEEE. 2013. pp.
1–6.

[85] Tang, S.; Peng, X.; Yu, Y.; et al.: Goal-directed modeling of self-adaptive software
architecture. In Enterprise, Business-Process and Information Systems Modeling.
Springer. 2009. pp. 313–325.

[86] Team, A.; et al.: Androjena-Jena Android port.

[87] Van Lamsweerde, A.: The KAOS project: Knowledge acquisition in automated
specification of software. In Proc. of the AAAI Spring Symposium Series, Design of
Composite Systems, 1991. 1991. pp. 59–62.

[88] Vinayagasundaram, B.; Srivatsa, S.: Implementation of hybrid software architecture
for Artificial Intelligence System. IJCSNS. vol. 7, no. 1. 2007: page 35.

86

[89] Wagh, K.; Thool, R.: A comparative study of soap vs rest web services provisioning
techniques for mobile host. Journal of Information Engineering and Applications.
vol. 2, no. 5. 2012: pp. 12–16.

[90] Wagh, K.; Thool, R.: Mobile web service provisioning and performance evaluation of
mobile host. International Journal on Web Service Computing. vol. 5, no. 2. 2014:
page 1.

[91] Wang, X.; Zhang, D.; Gu, T.; et al.: Ontology Based Context Modeling and
Reasoning using OWL. In Percom workshops, vol. 18. Citeseer. 2004. page 22.

[92] Weyns, D.; Iftikhar, M. U.; Malek, S.; et al.: Claims and supporting evidence for
self-adaptive systems: A literature study. In Proceedings of the 7th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems. IEEE
Press. 2012. pp. 89–98.

[93] Weyns, D.; Malek, S.; Andersson, J.: On decentralized self-adaptation: lessons from
the trenches and challenges for the future. In Proceedings of the 2010 ICSE Workshop
on Software Engineering for Adaptive and Self-Managing Systems. ACM. 2010. pp.
84–93.

[94] Wijngaards, N. J.; Overeinder, B. J.; van Steen, M.; et al.: Supporting internet-scale
multi-agent systems. Data & Knowledge Engineering. vol. 41, no. 2-3. 2002: pp.
229–245.

[95] Wu, Y.; Wu, Y.; Peng, X.; et al.: Implementing self-adaptive software architecture by
reflective component model and dynamic AOP: A case study. In 2010 10th
International Conference on Quality Software. IEEE. 2010. pp. 288–293.

[96] Zeeb, E.; Moritz, G.; Timmermann, D.; et al.: Ws4d: Toolkits for networked
embedded systems based on the devices profile for web services. In 2010 39th
International Conference on Parallel Processing Workshops. IEEE. 2010. pp. 1–8.

[97] Zeng, L.; Benatallah, B.; Ngu, A. H.; et al.: QoS-aware middleware for web services
composition. IEEE Transactions on software engineering. vol. 30, no. 5. 2004: pp.
311–327.

[98] Zheng, L.; Wu, S.: An infrastructure for web services migration in clouds. In 2010
International Conference on Computer Application and System Modeling (ICCASM
2010), vol. 10. IEEE. 2010. pp. V10–554.

[99] Zuo, Y.: Towards a Logical Framework for Migration-Based Survivability. In
Proceedings of the 7th Annual Symposium on Information Assurance/Secure
Knowledge Management. 2012. pp. 29–33.

87

88

Appendix A

Abbreviations

AHP Analytic hierarchy process
API Application programming interface
AVI Audio Video Interleave
CBD Component-based Development
CPU Central Processing Unit
CI Consistency Index
CR Consistency Ratio
CSP Communicating Sequential Processes
DPWS Devices Profile for Web Services
FLV Flash Video
FSM Finite State Machine
FUSION FeatUre-oriented Self-adaptatION
JSON JavaScript Object Notation
HTTP Hypertext Transfer Protocol
IP Internet Protocol
JMEDS WS4D.org Java Multi Edition DPWS Stack
JSON JavaScript Object Notation
KAOS Keep All Objectives Satisfied
LTL Linear temporal logic
MCA Multiple-Criteria Analysis
MCDA Multiple-Criteria Decision Analysis
MCDM Multiple-Criteria Decision-Making
OWL The W3C Web Ontology Language
OWL-DL OWL-Description Logic
OWL-S The Web Ontology Language for Services
QoS Quality of Service
RDF Resource Description Framework
RDFS Resource Description Framework Schema
REST Representational state transfer
RFID Radio-frequency identification
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
SOCAM Service oriented context-aware middleware architecture
SWRL Semantic Web Rule Language
UML Unified Modeling Language

89

URI Uniform Resource Identifier
WADL Web Application Description Language
WAR Web Application Resource or Web Application ARchive
WS Web Service
WS4D Web Services for Devices
WSDL Web Services Description Language
XML Extensible Mark-up Language

90

Appendix B

The Framework Applications

In this thesis, two software applications have been developed to support the implementation
of the proposed adaptation approach of provision and migration of mobile services between
mobile and stationary devices.

1. Application 1: Service Migration Framework Application for Mobile Devices (Android
system).

2. Application 2: Service Migration Adaptation Framework Application for Stationary
Devices (Windows system).

Figure B.1 and Figure B.2 demonstrate the GUI of application 1 and application 2, respec-
tively.

91

Figure B.1: Application 1 - Service Migration Android Application GUI for Mobile Devices.

92

Figure B.2: Application 2 - Service Migration Java-based Application GUI for Stationary
Devices.

93

Appendix C

Author’s Publications related to
the Thesis

This Appendix presents the list of publications that has been contributed by this thesis. All
of the publications are included in the Bibliography and referred as [42, 43, 44, 41, 45, 46, 47],
respectively.

1. KAZZAZ M. Mohanned. SEMANTIC SERVICES MIGRATION. In: Proceedings of
the 18th Conference STUDENT EEICT 2012 Volume 3. Brno: Brno University of
Technology, 2012, pp. 386-390. ISBN 978-80-214-4462-1. In this paper we addressed
the technical requirements to enable our proposal of service migration SOA. First,
we presented the need to utilise a formal architecture description language to provide
semantic description of system components stating the status of their properties and
operation conditions. Second, we introduced our initial approach of service migration
and noted the required operations to enable service migration.

2. KAZZAZ M. Mohanned and RYCHLÝ Marek. A Web Service Migration Frame-
work. In: ICIW 2013, The Eighth International Conference on Internet and Web
Applications and Services. Rome: The International Academy, Research and Indus-
try Association, 2013, pp. 58-62. ISBN 978-1-61208-280-6. This paper presented a
detailed description of service migration process and addressed the need to utilize a
decision-making method to select the best migration decision. A formal modelling
of the service migration process is provided in the paper using the linear temporal
logic and integrated in the thesis in Section 5.3. Moreover, the paper describes a
prototype design of a framework for service migration which represents the blueprints
of framework implementation presented in Chapter 6 of this thesis.

3. KAZZAZ M. Mohanned and RYCHLÝ Marek. Web Service Migration with Migration
Decisions Based on Ontology Reasoning. In: Proceedings of the Twelfth International
Conference on Informatics - Informatics’2013. Košice: Faculty of Electrical Engineer-
ing and Informatics, University of Technology Košice, 2013, pp. 186-191. ISBN
978-80-8143-127-2.

4. KAZZAZ M. Mohanned and RYCHLÝ Marek. Ontology-based Context Modelling
and Reasoning in the Web Service Migration Framework. Acta Electrotechnica et
Informatica. 2013, vol. 13, no. 4, pp. 5-12. ISSN 1335-8243. The research work pro-
vided in these two publications demonstrates a customized utilization of the proposed

94

service-oriented architecture model described in Chapter 5 of the thesis in order to
enable service migration in SOA. An extension of the thesis SOA ontology is pro-
posed to describe formal context model of system components of services and service
providers and their operation conditions. Parts of this work formulate the content of
Section 5.4 of the thesis.

5. KAZZAZ M. Mohanned and RYCHLÝ Marek. Web Service Migration using the Ana-
lytic Hierarchy Process. In: 2015 IEEE International Conference on Mobile Services.
New York: IEEE Computer Society, 2015, pp. 423-430. ISBN 978-1-4673-7284-8. In
this paper, we present a framework for dynamic Web service migration in Service-
oriented Architecture (SOA). It allows an automatic discovery of system components
(i.e., service providers and Web services) and creates a full system context model by
aggregating the context model of the discovered components. The framework provides
a mechanism to monitor and sense violations in pre-defined operation preferences of
system components through ontology reasoning process of the system context model.
The publication addresses the problem of making a decision from a set of alternative
adaptation decision and proposed the utilization of the Analytic Hierarchy Process
method to find the best Web service migrations to be performed. In Section 4.2 we
addressed the AHP algorithms proposed in this paper. Moreover, we provided an
AHP-based migration example in Section 6.3 of the thesis.

6. KAZZAZ M. Mohanned and RYCHLÝ Marek. Restful-based Mobile Web Service
Migration Framework. In: 2017 IEEE International Conference on AI & Mobile
Services (AIMS). Honolulu: IEEE Computer Society, 2017, pp. 70-75. ISBN 978-1-
5386-1999-5. This paper addresses the second case study presented in Section 7.2.
It demonstrates the applicability of the thesis’s proposed self-adaption approach on
stationary and mobile architectures. The paper describes experiments on the imple-
mented framework for Mobile Web service migration in P2P wireless network and
shows the improvement in system performance by adopting the thesis approach.

7. KAZZAZ M. Mohanned and RYCHLÝ Marek. A Case Study: Mobile Service Mi-
gration Based Traffic Jam Detection. International Journal of Systems and Service-
Oriented Engineering (IJSSOE). Hershey, PA: IGI Global, 2018, vol. 8, no. 1, pp.
44-57. ISSN 1947-3052. In this paper we described the design and implementation
of a framework for service migration between cars to support traffic jam detection
as an adaptation to the loss of traffic information service. The experiment result
demonstrates the application of our proposed adaptation model supporting service
mobility between mobile devices. Moreover, it presents the usability of service mi-
gration adaptation plan to survive service absence during route planning as real-life
scenario.

95

Appendix D

Contents of the Enclosed CD-ROM

The case studies provided in Chapter 7 are supported with two software applications im-
plementing the service migration framework for Windows and Android based devices (see
Appendix A). The enclosed CD-ROM contains a source package of the migration framework
projects and other related case studies documents in the following directories:

./sources/app – Android studio and Eclipse projects of the developed framework appli-
cation for service migration.
./sources/service – Eclipse project of the framework service hosted on service provider
(see Section 5.4.1).
./model – system context model of system components in JSON (see Section 3.5).
./case-studies – documentation of the services and devices specifications used in the case
studies including the experiments data.

96

Appendix E

JENA Rules of the Web Service
Migration System Context Model

1. Core rule to derive semantical statements with possibleProvidedService predicate.
[FindServiceForProvidersWithoutPreferences:
(?service rdf:type WSMF:MigratableService),
(?destination rdf:type WSMF:CandidateDestinationServiceProvider),
(?destination WSMF:noPreferenceRules ’true’∧∧xsd:boolean)
->
(?destination WSMF:possibleProvidedService ?service)
]

2. Core rule to derive semantical statements with possibleDestinationProvider predicate.
[FindProvidersForServicesWithoutPreferences:
(?service rdf:type WSMF:MigratableService),
(?destination rdf:type WSMF:CandidateDestinationServiceProvider),
(?service WSMF:noPreferenceRules ’true’∧∧xsd:boolean)
->
(?service WSMF:possibleDestinationProvider ?destination)
]

3. Core rule to derive instances of CandidateForMigrationService class due to a violation
of service preference rule, (see Section 5.4.3).

[CandidateForMigrationServiceDueToServicesPreferences:
(?service rdf:type WSMF:MigratableService),
(?origin rdf:type WSMF:CandidateOriginServiceProvider),
(?destination rdf:type WSMF:CandidateDestinationServiceProvider),
(?origin rdf:type WSMF:CandidateDestinationServiceProvider),
(?origin WSMF:provides ?service),
(?service WSMF:possibleDestinationProvider ?destination),
(?service WSMF:noPreferenceRules ’false’∧∧xsd:boolean),
noValue(?service, WSMF:possibleDestinationProvider, ?origin)
->
(?service rdf:type WSMF:CandidateForMigrationService)
]

97

4. Core rule to derive instances of CandidateForMigrationService class due to a violation
of provider preference rule, (see Section 5.4.3).

[CandidateForMigrationServiceDueToProvidersPreferences:
(?service rdf:type WSMF:MigratableService),
(?origin rdf:type WSMF:CandidateOriginServiceProvider),
(?destination rdf:type WSMF:CandidateDestinationServiceProvider),
(?origin rdf:type WSMF:CandidateDestinationServiceProvider),
(?origin WSMF:provides ?service),
(?destination WSMF:possibleProvidedService ?service),
(?destination WSMF:noPreferenceRules ’false’∧∧xsd:boolean),
noValue(?origin, WSMF:possibleProvidedService, ?service)
->
(?service rdf:type WSMF:CandidateForMigrationService)
]

5. Component rule example
[SamplePreference:
(?service rdf:type WSMF:MigratableService),
(?origin rdf:type WSMF:CandidateOriginServiceProvider),
(?destination rdf:type WSMF:CandidateDestinationServiceProvider),
equal(?destination, WSMF:sP1),
(?origin WSMF:provides ?service),
(?service WSMF:hasProperty ?property),
(?property rdf:type WSMF:ServicePriority),
(?property WSMF:propertyValue ?v1),
ge(?v1, “50”

∧∧xsd:int)
->
(?destination WSMF:possibleProvidedService ?service)
]

98

Appendix F

Curriculum Vitae

Personal Information
Name M. Mohanned Kazzaz
Title Ing.
Nationality Syrian
Date of Birth 18.05.1983
Contact Information
Address Halap Al-jaddeda, C5, Aleppo, Syria
E-mail mohanned.kazzaz@gmail.com
Phone +420 774 923 358
LinkedIn www.linkedin.com/in/mohannedkazzaz
Education

2011 - present

Faculty of Information Technology, Brno University of Technology
doctoral study (PhD.)
Computer Science and Engineering
http://www.fit.vutbr.cz/∼ikazzaz/

2010
Brno University of Technology, Brno. Czech Republic.
Master’s degree of Computer Engineering and Networks –
Education Recognition.

2001-2007

Faculty of Electronic and Electrical Engineering, University
of Aleppo, Aleppo, Syria.
Bachelor’s degree of Electronic Engineering “Computer
Engineering“.

Work Experience
8/2009 - 10/2011 Software Engineer

Employer: Aleppo City Council, Aleppo, Syria.

99

	Introduction
	Motivation
	Important Definitions
	Aim of the Thesis
	Thesis Objective
	Thesis Contribution
	Structure of the Thesis

	I Theoretical Background
	State of the Art
	Service Oriented Architecture
	The Motivation of Service Oriented Architecture
	Service
	Service Attributes
	Modelling of Web Service
	Web service Composition
	Context Information
	Categorization of the Context
	Context Models

	Existing Approaches and Frameworks
	Adaptive Systems
	Context-aware Systems
	Context-aware Adaptive Software Systems
	Decentralized Self-Adaptive System
	Discussion

	Problem Statement
	Summary

	II Proposed Approach
	Context-aware Self-Adaptive SOA Meta-Model
	Introduction
	Semantic Web
	OWL-S Semantic Web Service Description
	System Core Ontology
	Ontology-based Context Model

	The Decision-Making Process
	Decision Making Using the AHP
	Dynamic Decision-Making Algorithms

	Web Service Migration-based Adaptive Service Oriented Architecture Model
	Related Work
	Service Migration
	Migration Decision Modelling
	Web Service Migration Ontology
	Service Migration Ontology Classes
	Service Migration Object Properties
	Rules

	Mobile Web Service Migration Framework Architecture
	Discovery Module
	System Context Manager Module
	Migration Module
	Migration Process

	III Implementation and Experimental Results
	Web Service Migration-based Framework Description
	System Requirements
	Implementation Description
	Service Migration Framework Architecture
	Device and Service Discovery
	System Services
	Context Model Reasoning

	Migration Example

	Case Studies
	Case Study 1 - Traffic Jam Detection Service Migration
	Related Work
	System Description
	System Components Context Representation
	Framework Implementation Description
	Experiment and Results
	Conclusion

	Case Study 2 - Tourist Video Streaming Mobile Service Migration
	System Description
	System Settings
	Experiment Description
	Experiment Results
	Conclusion

	Evaluation and Conclusion

	IV Future Work and Conclusion
	Future Work
	Conclusion
	Bibliography
	List of Appendices

	Abbreviations
	The Framework Applications
	Author's Publications related to the Thesis
	Contents of the Enclosed CD-ROM
	JENA Rules of the Web Service Migration System Context Model
	Curriculum Vitae

