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ABSTRACT
Thesis deals with generalized exponential distribution as an alternative distribution to
Weibull and log-normal distributions. At first, properties of the generalized exponential
distribution are presented, followed by the methods of parameter estimation. Separate
chapter describes goodness of fit tests. Second part of the thesis deals with censored
samples. Demonstrative examples of censoring on exponential distribution are presented.
Moreover the type I left censored case on generalized exponential distribution, which
has not been studied before, is elaborated at the end of the chapter. Simulations for
this particular case of censoring are presented and studied in detail. EM algorithm is
developed and its efficiency is compared to the maximum likelihood method. The derived
theory is then applied on set of environmental data.
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ABSTRAKT
Diplomová práce se zabývá zobecněným exponenciálním rozdělením jako alternativou
k Weibullovu a log-normálnímu rozdělení. Jsou popsány základní charakteristiky tohoto
rozdělení a metody odhadu parametrů. Samostatná kapitola je věnována testům dobré
shody. Druhá část práce se zabývá cenzorovanými výběry. Jsou uvedeny ukázkové přík-
lady pro exponenciální rozdělení. Dále je studován případ cenzorování typu I zleva, který
dosud nebyl publikován. Pro tento speciální případ jsou provedeny simulace s podrob-
ným popisem vlastností a chování. Dále je pro toto rozdělení odvozen EM algoritmus a
jeho efektivita je porovnána s metodou maximální věrohodnosti. Vypracovaná teorie je
aplikována pro analýzu environmentálních dat.
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INTRODUCTION
Reliability theory is important for any design of product in any industry where we
want to assure the quality of the product. So far the behavior of reliability was
modeled by Weibull, Gamma or log-normal distributions. Professors Gupta and
Kundu suggested in 1999 an alternative distribution that is appropriate for evalua-
tion of reliability data. This distribution is the generalized exponential distribution
(abbreviated as GE distribution).

This thesis gives the general overview of the properties of the GE distribution
in chapter 2. The theory continues with basic methods of parameters estimation
in chapter 3 and goodness of fit tests in chapter 4. Short chapter 5 gives the com-
parison among GE, Weibull and log-normal distributions and shows the pitfalls of
discriminating among these distributions.

Chapter 6 sets the key theory for the censored data that are closely related
to reliability theory. Fundamental definitions of censoring are introduced as well as
examples of selected types of censoring. Chapter 6 moreover contains the analysis
of type I left censoring, that has not been studied before, as an original work by the
author. The type I left censoring is completely described in details as well as its
asymptotic behavior. Simulations of this type of censoring are done at the end of
the chapter.

Chapter 7 shows an alternative way of parameter estimation by EM algorithm
in case of censored data. EM algorithm is adjusted for the GE distribution. The
comparison of this approach and maximum likelihood estimation is done at the end
of this chapter.

Chapter 8 shows the application of the theory and simulations on type I left
censored data set. Data processed in this chapter was gathered as a part of project
CzechGlobe (CZ.1.05/1.1.00/02.0073, CzechGlobe – Global Change Research Cen-
tre).
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1 BASIC DEFINITIONS
At first some basic concepts of probability theory, that will be used in the following
chapters, will be listed. The chapter emphasizes the important definitions of the
topic, not the whole theory of statistics. Text will hold the notation and definitions
used in [1], [14] and [10].

1.1 Probability space and random variable
Probability theory models random experiments so that we can draw inferences about
them. The triple (Ω;𝒜;P) is called the probability space and it is the fundamental
object of probability theory. A probability space is needed for each experiment that
we wish to describe mathematically. The probability space is defined by its sample
space Ω, a collection 𝒜 of events, which is an 𝜎-algebra, and a probability measure
𝑃 . The properties of 𝜎-algebra 𝒜 and measure 𝑃 are summarized in the following
two definitions.

Definition 1.2 (𝜎-algebra). .
Set 𝒜 is a 𝜎-algebra on Ω iff

• 𝒜 ⊆ 𝒫(Ω) (i.e. 𝒜 is subset of the powerset of Ω )
• 𝒜 ≠ ∅
• 𝑀 ∈ 𝒜 ⇒ Ω∖𝑀 ∈ 𝒜
• 𝑀𝑖 ∈ 𝒜,∀𝑖 ∈ N ⇒ ⋃︀∞

𝑖=1 𝑀𝑖 ∈ 𝒜

Definition 1.3 (Probability function). The probability function 𝑃 : 𝒜 → ⟨0, 1⟩ is
defined for all 𝑀 ∈ 𝒜 such that

1. ∀𝑀𝑖 ∈ 𝒜 such that 𝑀𝑖 ∩𝑀𝑗 = ∅ for 𝑖 ̸= 𝑗 and 𝑖, 𝑗 = 1, 2, . . .
holds that

𝑃 (∪∞
𝑖=1𝑀𝑖) =

∞∑︁
𝑖=1

𝑃 (𝑀𝑖)

2. 𝑃 (Ω) = 1,
For each subset 𝑀 ⊆ 𝒜, the number 𝑃 (𝑀) is called the probability of the event 𝑀 .
𝑃 is also a measure on 𝒜.

The system of Borel sets in R will be denoted as ℬ.

Definition 1.4 (Random variable). Given a random experiment with a sample
space (Ω;𝒜;𝑃 ). A measurable function 𝑋 : (Ω,𝒜, 𝑃 ) → (R,ℬ) is called a random
variable. Every Borel set 𝐵 ∈ ℬ can be assigned their preimage 𝑋−1(𝐵) = {𝜔 ∈ Ω :
𝑋(𝜔) ∈ 𝐵} and probability measure 𝜈(𝐵) = 𝑃{𝑋−1(𝐵)}. Measure 𝜈 is called the
induced measure.
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Definition 1.5 (Vector of random variables). Given a random experiment with
the sample space (Ω; 𝒜; P). Measurable function X : (Ω,𝒜) → (R𝑛,ℬ𝑛), where ℬ𝑛

denotes the system of Borel sets in R𝑛, is called a random vector X = (𝑋1, . . . , 𝑋𝑛).

Definition 1.6 (Cumulative distribution function and probability density func-
tion). Let X be a random variable. Function 𝐹 (𝑥) = 𝑃 ({𝜔 : 𝑋(𝜔) ≤ 𝑥}) is called
cumulative distribution function (abbreviated c.d.f.) of the random variable 𝑋. If
there exists function 𝑓(𝑤) ≥ 0, 𝑤 ∈ R such that

𝐹 (𝑥) =
∫︁ 𝑥

−∞
𝑓(𝑤) 𝑑𝑤, ∀𝑥 ∈ R

then 𝑋 is said to have continuous distribution. Function 𝑓(𝑥) is called the proba-
bility density function (abbreviated as p.d.f.) of 𝑋.

Equivalently function 𝐹 (𝑥1, . . . , 𝑥𝑛) = 𝑃 (∩𝑛
𝑖=1 {𝜔 : 𝑋𝑖(𝜔) ≤ 𝑥𝑖}) is called c.d.f.

of random vector. Moreover if there exists function 𝑓(𝑤1, . . . , 𝑤𝑛) ≥ 0, (𝑤1, . . . , 𝑤𝑛) ∈
R𝑛 such that

𝐹 (𝑥1, . . . , 𝑥𝑛) =
∫︁ 𝑥1

−∞
. . .
∫︁ 𝑥𝑛

−∞
𝑓(𝑤1, . . . , 𝑤𝑛) 𝑑𝑤1 . . . 𝑑𝑤𝑛, ∀𝑥1, . . . , 𝑥𝑛 ∈ R

then random vector X is said to have continuous distribution. Function 𝑓(𝑥1, . . . , 𝑥𝑛)
is called the probability density function of X.

Definition 1.7 (Survival function). Let the random variable 𝑋 have the c.d.f.
𝐹 (𝑥). Function 𝑆(𝑥) = 1 − 𝐹 (𝑥) is called survival function (in some literature
reliability function) of the random variable 𝑋.

Definition 1.8 (Hazard function). Let the random variable 𝑋 have the p.d.f. 𝑓(𝑥)
and survival function 𝑆(𝑥). Function ℎ(𝑥) = 𝑓(𝑥)

𝑆(𝑥) for 𝑆(𝑥) > 0 is called hazard
function (in some literature hazard rate) of the random variable 𝑋.

Survival and hazard functions are very important for the reliability theory.
The survival function gives us information of the percentual survival. The hazard
function is often interpreted as the probability of fail at time 𝑥 under the condition
that the observed sample survives till time 𝑥.

Definition 1.9 (Mathematical expectation). Let the random variable 𝑋 have the
p.d.f. 𝑓(𝑥) and let 𝑌 = 𝑢(𝑋) be a transformed random variable of 𝑋. Value 𝐸(𝑌 )
such that

𝐸(𝑌 ) = 𝐸(𝑢(𝑋)) =
∫︁ ∞

−∞
𝑢(𝑥)𝑓(𝑥) 𝑑𝑥

is called mathematical expectation (or expected value) of transformed random vari-
able 𝑌 when the integral above is well defined.
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There are several special transformed random variables and their mathematical
expectations that will be used in the following chapters.

Definition 1.10 (Mathematical expectation for special transformed random vari-
ables). Let the random variable 𝑋 have the p.d.f. 𝑓(𝑥). Let us define special
mathematical expectations under the condition that the following integrals exist:

• 𝑛-th moment of random variable 𝑋: 𝐸(𝑋𝑛) =
∫︀∞

−∞ 𝑥𝑛𝑓(𝑥) 𝑑𝑥, 𝑛 ∈ N
In the rest of the thesis will be the 𝑛-th moment denoted as 𝜇′

𝑛.
• Expected value of random variable 𝑋: 𝐸(𝑋) =

∫︀∞
−∞ 𝑥𝑓(𝑥) 𝑑𝑥

• 𝑛-th central moment of random variable 𝑋:
𝐸((𝑋 − 𝐸(𝑋))𝑛) =

∫︀∞
−∞(𝑥− 𝐸(𝑋))𝑛𝑓(𝑥) 𝑑𝑥, 𝑛 ∈ N

In the rest of the thesis will be the 𝑛-th central moment denoted as 𝜇𝑛.
• Variance of random variable 𝑋: 𝐸((𝑋 − 𝐸(𝑋))2) =

∫︀∞
−∞(𝑥− 𝐸(𝑋))2𝑓(𝑥) 𝑑𝑥

In the rest of the thesis will be variance denoted as 𝑉 𝑎𝑟(𝑋).

Definition 1.11 (Coefficient of variation). Let the random variable 𝑋 have finite
variance and 𝐸(𝑋) ̸= 0. The coefficient of variation is defined as

𝐶𝑉 =

√︁
𝑉 𝑎𝑟(𝑋)
𝐸(𝑋)

Definition 1.12 (Skewness and curtosis). Let the random variable 𝑋 have finite
fourth central moment 𝜇4 and 𝑉 𝑎𝑟(𝑋) ̸= 0. The skewness of the distribution 𝛾1 is
defined as

𝛾1 = 𝜇3

𝑉 𝑎𝑟(𝑋) 3
2

The curtosis of the distribution 𝛾2 is defined as

𝛾2 = 𝜇4

𝑉 𝑎𝑟(𝑋)2

Definition 1.13 (Mode). The mode of a continuous probability density is the value
𝑥 at which its p.d.f. 𝑓(𝑥) has its maximum value.

Definition 1.14 (Quantile function and median). Let the random variable 𝑋 have
the c.d.f. 𝐹 (𝑥) then function 𝑄(𝑝) defined as

𝑄(𝑝) = inf{𝑥 ∈ R, 𝑝 < 𝐹 (𝑥)}, 𝑝 ∈ ⟨0, 1⟩

is called the quantile function of the random variable 𝑋. Value 𝑄(0.5) is called
median of the random variable 𝑋.
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Definition 1.15 (Characteristic function). Let 𝑋 be a random variable. Function
𝜑𝑋(𝑡) given by

𝜑𝑋(𝑡) = 𝐸(𝑒𝑖𝑡𝑋) = 𝐸(cos(𝑡𝑋)) + 𝑖𝐸(sin(𝑡𝑋)), 𝑡 ∈ R

is called characteristic function of 𝑋.

Theorem 1.15.1. [1]
Let 𝜑𝑋(𝑡) be a characteristic function of 𝑋 and let the 𝑘-th derivation of 𝜑𝑋(𝑡) be
well defined. Then the following equality holds

𝜑𝑋(0)(𝑘) = 𝑖𝑘𝐸(𝑋𝑘), ∀𝑘 ∈ N

Definition 1.16 (Independence of two random variables). Let 𝑋 and 𝑌 be the
random variables with corresponding c.d.f. 𝐹𝑋(𝑥) and 𝐹𝑌 (𝑦). Random variables 𝑋
and 𝑌 are said to be independent if and only if the c.d.f. of joint distribution of
random vector (𝑋, 𝑌 ) has the property that

𝐹(𝑋,𝑌 )(𝑥, 𝑦) = 𝐹𝑋(𝑥)𝐹𝑌 (𝑦), ∀𝑥, 𝑦 ∈ R

Equivalently for their corresponding p.d.f. 𝑓𝑋(𝑥) and 𝑓𝑌 (𝑦) and joint p.d.f. 𝑓(𝑋,𝑌 )(𝑥, 𝑦)
holds that

𝑓(𝑋,𝑌 )(𝑥, 𝑦) = 𝑓𝑋(𝑥)𝑓𝑌 (𝑦), ∀𝑥, 𝑦 ∈ R

Definition 1.17 (Independence of 𝑛 random variables). Let X be a vector X =
(𝑋1, 𝑋2, . . . , 𝑋𝑛) of random variables. Random variables 𝑋1, 𝑋2, . . . , 𝑋𝑛 are inde-
pendent if and only if joint distribution of this vector 𝐹X holds

𝐹X(𝑥1, 𝑥2, . . . , 𝑥𝑛) =
𝑛∏︁

𝑖=1
𝐹𝑋𝑖

(𝑥𝑖), ∀𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ R𝑛

Independence is a very important property and assumption in many theorems
in statistics. Random vector X = (𝑋1, . . . , 𝑋𝑛) of independent and identically dis-
tributed variables 𝑋𝑖 with the c.d.f. 𝐹𝑋 (abbreviated as i.i.d.) will be called the
random sample from distribution with c.d.f. 𝐹𝑋 .

Definition 1.18 (Covariance and Correlation). Let 𝑋 and 𝑌 be the random vari-
ables then

𝐶𝑜𝑣(𝑋, 𝑌 ) = 𝐸((𝑋 − 𝐸(𝑋))(𝑌 − 𝐸(𝑌 )))

is called covariance 𝐶𝑜𝑣(𝑋, 𝑌 ) of the random variables 𝑋 and 𝑌 if all the expecta-
tions are well defined. Moreover if 𝑉 𝑎𝑟(𝑋) ̸= 0 and 𝑉 𝑎𝑟(𝑌 ) ̸= 0 then

𝐶𝑜𝑟(𝑋, 𝑌 ) = 𝐶𝑜𝑣(𝑋, 𝑌 )√︁
𝑉 𝑎𝑟(𝑋)

√︁
𝑉 𝑎𝑟(𝑌 )

is called the correlation 𝐶𝑜𝑟(𝑋, 𝑌 ) of the random variables 𝑋 and 𝑌 if all the
expectations are well defined.
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Theorem 1.18.1. [1]
Let 𝑋 and 𝑌 be the random variables. If 𝑋 and 𝑌 are independent then

𝐶𝑜𝑣(𝑋, 𝑌 ) = 0.

Definition 1.19 (Ordered random sample). Let X = (𝑋1, 𝑋2, . . . , 𝑋𝑛) be random
sample from distribution with c.d.f. 𝐹𝑋 . Let 𝑋(1)(𝜔) = min(𝑋1(𝜔), . . . , 𝑋𝑛(𝜔)),
𝑋(2)(𝜔) be the second smallest value from (𝑋1(𝜔), . . . , 𝑋𝑛(𝜔)) and so on till𝑋(𝑛)(𝜔) =
max(𝑋1(𝜔), . . . , 𝑋𝑛(𝜔)).

𝑋(1)(𝜔) ≤ 𝑋(2)(𝜔) ≤ . . . ≤ 𝑋(𝑛)(𝜔), ∀𝜔 ∈ Ω

Then random vector X() = (𝑋(1)(𝜔), . . . , 𝑋(𝑛)(𝜔)) for 𝜔 ∈ Ω is called ordered random
sample. Random variable 𝑋(𝑖) is called the 𝑖-th ordered random variable.

Theorem 1.19.1. [21]
Let X be i.i.d. vector of random variables with c.d.f. 𝐹X of the size 𝑛 and let each
𝑋𝑖 have p.d.f. 𝑓𝑋 and c.d.f. 𝐹𝑋 . The p.d.f. of the ordered random variable 𝑋(𝑖) is:

𝑓𝑋(𝑖)(𝑥) = 𝑛!
(𝑖− 1)! (𝑛− 𝑖)! (𝐹𝑋(𝑥))𝑖−1 (1 − 𝐹𝑋(𝑥))𝑛−𝑖 𝑓(𝑥), 𝑖 = 1, . . . , 𝑛

Definition 1.20 (Empirical distribution function). Given an random sample X of
size 𝑛. The empirical distribution function ̂︀𝐹 (𝑥) is defined as

̂︀𝐹 (𝑥) = 1
𝑛

𝑛∑︁
𝑖=1

𝐼[𝑋𝑖≤𝑥]

where 𝐼𝐴 is so called indicator random event which is defined to be equal to 1 if
property 𝐴 holds and 0 otherwise.

1.2 Basic statistic methods
This section will focus primary on method of maximum likelihood estimation. This
method is used in the Chapter 3 as well as the Chapter 6, where is effectively used
for advanced problems of estimation theory. Notation and definitions are taken
from [1], theorems are taken from [15]. Other methods are unfortunately not listed
because of the limited range of pages of this thesis. For this reason has every method
a short introduction in the corresponding part of this thesis.
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Definition 1.21 (System of regular p.d.f.). Let Θ ⊂ R𝑚 be an open Borel set.
System ℱ𝑟𝑒𝑔 = {𝑓(x, 𝜃) : 𝜃 ∈ Θ,x ∈ R𝑛} of p.d.f. depending on parameter 𝜃 is said
to be regular if:

• set 𝑀 = {x : x ∈ R𝑛, 𝑓(x, 𝜃) > 0} is independent of 𝜃
• there exists vector of finite partial derivations

𝜕𝑓(x, 𝜃)
𝜕𝜃𝑖

, 𝜃 ∈ Θ, ∀𝑥 ∈ 𝑀, ∀𝑖 = 1, . . . ,𝑚

• for all 𝜃 = (𝜃1, 𝜃2, . . . , 𝜃𝑚) ∈ Θ holds

∫︁
𝑀

𝜕𝑓(x,𝜃)
𝜕𝜃𝑖

𝑓(x, 𝜃) 𝑑𝐹 (x, 𝜃) =
∫︁

𝑀

𝜕 ln 𝑓(x, 𝜃)
𝜕𝜃𝑖

𝑑𝐹 (x, 𝜃) = 0 𝑖 = 1, . . . ,𝑚

where 𝐹 (x, 𝜃) is the corresponding c.d.f.
(i.e. derivation can be interchanged with integration)

• for all 𝜃 = (𝜃1, 𝜃2, . . . , 𝜃𝑚) ∈ Θ is

ℐ𝑖𝑗(𝜃) =
∫︁

𝑀

𝜕 ln 𝑓(x, 𝜃)
𝜕𝜃𝑖

𝜕 ln 𝑓(x, 𝜃)
𝜕𝜃𝑗

𝑑𝐹 (x, 𝜃) 𝑖, 𝑗 = 1, . . . ,𝑚

is finite and matrix ℐ = ℐ(𝜃) = (ℐ𝑖𝑗(𝜃))𝑚
𝑖,𝑗=1 is positive definite matrix. Matrix

ℐ is called Fisher information matrix.

Definition 1.22 (Score vector). Let 𝑓(𝑥, 𝜃) ∈ ℱ𝑟𝑒𝑔. The random vector

𝑈(𝜃) = (𝑈1(𝜃), . . . , 𝑈𝑚(𝜃))

where 𝑈𝑖(𝜃) = 𝜕 ln 𝑓(𝑋,𝜃)
𝜕𝜃𝑖

is called the score vector (or the score) with respect to the
p.d.f. 𝑓(𝑥, 𝜃).

Theorem 1.22.1. [15]
Let 𝑓(𝑥, 𝜃) ∈ ℱ𝑟𝑒𝑔. If 𝑓 ′′

𝑖𝑗(𝑥, 𝜃) = 𝜕2𝑓(𝑋,𝜃)
𝜕𝜃𝑖𝜕𝜃𝑗

then

𝐸(𝑈𝑖(𝜃)) = 0, 𝑉 𝑎𝑟(𝑈(𝜃)) = ℐ(𝜃), ∀𝑖 = 1, . . . ,𝑚

Moreover if 𝐸
(︂

𝑓 ′′
𝑖𝑗(𝑋,𝜃)
𝑓(𝑋,𝜃)

)︂
= 0 then

ℐ(𝜃) = −𝐸(𝑈 ′(𝜃)) = −𝐸

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝜕2 ln 𝑓(𝑋,𝜃)
𝜕𝜃2

1

𝜕2 ln 𝑓(𝑋,𝜃)
𝜕𝜃1𝜕𝜃2

· · · 𝜕2 ln 𝑓(𝑋,𝜃)
𝜕𝜃1𝜕𝜃𝑚

𝜕2 ln 𝑓(𝑋,𝜃)
𝜕𝜃2𝜕𝜃1

𝜕2 ln 𝑓(𝑋,𝜃)
𝜕𝜃2

2
· · · 𝜕2 ln 𝑓(𝑋,𝜃)

𝜕𝜃2𝜕𝜃𝑚

... ... . . . ...
𝜕2 ln 𝑓(𝑋,𝜃)

𝜕𝜃𝑚𝜕𝜃1

𝜕2 ln 𝑓(𝑋,𝜃)
𝜕𝜃𝑚𝜕𝜃2

· · · 𝜕2 ln 𝑓(𝑋,𝜃)
𝜕𝜃2

𝑚

⎞⎟⎟⎟⎟⎟⎟⎟⎠
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Theorem 1.22.2. Let X = (𝑋1, . . . , 𝑋𝑛) be an i.i.d. random vector with p.d.f.
𝑓(𝑥, 𝜃) ∈ ℱ𝑟𝑒𝑔. Then the score vector of X is

𝑈X
𝑛 (𝜃) =

𝑛∑︁
𝑗=1

𝑈(𝑋𝑗, 𝜃)

Fisher information matrix of X is:

ℐ𝑛(𝜃) = 𝑛ℐ(𝜃)

where ℐ is the Fisher information matrix defined above.

In the following text let us denote 𝑙(x, 𝜃) = ∏︀𝑛
𝑖=1 𝑓𝑖(𝑥𝑖, 𝜃) = 𝑓X(x, 𝜃) the prob-

ability density of i.i.d. vector X considered as a function of parameter 𝜃 for given
𝑥. Function 𝑙(x, 𝜃) is called the likelihood function. Moreover 𝐿(x, 𝜃) is called the
log-likelihood function which is the logarithm of likelihood function

𝐿(x, 𝜃) = ln 𝑙(x, 𝜃)

where 𝑓𝑖(𝑥, 𝜃) ∈ ℱ𝑟𝑒𝑔,∀𝑖 = 1, . . . , 𝑛 and 𝑥𝑖 ∈ 𝑀, ∀𝑖 = 1, . . . , 𝑛.

Theorem 1.22.3. Let X = (𝑋1, . . . , 𝑋𝑛) be an i.i.d. random vector with p.d.f.
𝑓(𝑥, 𝜃) ∈ ℱ𝑟𝑒𝑔. If 𝑓 ′′

𝑖𝑗(𝑥, 𝜃) = 𝜕2𝑓(𝑥,𝜃)
𝜕𝜃𝑖𝜕𝜃𝑗

then

𝐸(𝑈X
𝑛 (𝜃)) = 0, 𝑉 𝑎𝑟(𝑈X

𝑛 (𝜃)) = 𝑛ℐ(𝜃)

Moreover if 𝐸
(︂

𝑓 ′′
𝑖𝑗(𝑋,𝜃)
𝑓(𝑋,𝜃)

)︂
= 0 then

ℐ(𝜃) = − 1
𝑛
𝐸(𝑈X

𝑛
′(𝜃)) = − 1

𝑛
𝐸

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝜕2𝐿(X,𝜃)
𝜕𝜃2

1

𝜕2𝐿(X,𝜃)
𝜕𝜃1𝜕𝜃2

· · · 𝜕2𝐿(X,𝜃)
𝜕𝜃1𝜕𝜃𝑚

𝜕2𝐿(X,𝜃)
𝜕𝜃2𝜕𝜃1

𝜕2𝐿(X,𝜃)
𝜕𝜃2

2
· · · 𝜕2𝐿(X,𝜃)

𝜕𝜃2𝜕𝜃𝑚

... ... . . . ...
𝜕2𝐿(X,𝜃)
𝜕𝜃𝑚𝜕𝜃1

𝜕2𝐿(X,𝜃)
𝜕𝜃𝑚𝜕𝜃2

· · · 𝜕2𝐿(X,𝜃)
𝜕𝜃2

𝑚

⎞⎟⎟⎟⎟⎟⎟⎟⎠

Theorem 1.22.4. Let X = (𝑋1, . . . , 𝑋𝑛) be a random sample with p.d.f. 𝑓(𝑥, 𝜃) ∈
ℱ𝑟𝑒𝑔. If for all 𝑥 ∈ 𝑀, 𝜃 ∈ Θ and 𝑖, 𝑗 = 1, . . . ,𝑚 exists second partial derivations of
𝑓(𝑥, 𝜃) then

1√
𝑛
𝑈X

𝑛 (𝜃) 𝐴∼ 𝑁𝑚(0, ℐ(𝜃))

where 𝐴∼ means that as sample size 𝑛 → ∞ the distribution of the statistic ap-
proaches a normal distribution.
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Theorem 1.22.5. Let X = (𝑋1, . . . , 𝑋𝑛) be an i.i.d. random vector with p.d.f.
𝑓(𝑥, 𝜃0) ∈ ℱ𝑟𝑒𝑔. Let 𝑀 = {𝑥 ∈ R, 𝑓(𝑥, 𝜃0) > 0}. Let ∀𝑥 ∈ 𝑀, 𝜃 ∈ Θ and 𝑖, 𝑗 =
1, . . . ,𝑚 exist second partial derivations of 𝑓(𝑥, 𝜃) and let 𝐸

(︂
𝑓 ′′

𝑖𝑗(𝑌,𝜃)
𝑓(𝑋,𝜃)

)︂
= 0 be true.

Then
√
𝑛(𝜃𝑛 − 𝜃0) 𝐴∼ 𝑁𝑚(0, ℐ(𝜃0)−1)

or equivalently

𝜃𝑛
𝐴∼ 𝑁𝑚

(︃
𝜃0,

ℐ(𝜃0)−1

𝑛

)︃

where 𝜃𝑛 is the maximum likelihood estimator.

1.23 Special functions
This short section will introduce two important functions that will be used in the
following text.
Gamma function: Gamma function Γ is defined as:

Γ(𝑡) =
∫︁ ∞

0
𝑥𝑡−1𝑒−𝑥 𝑑𝑥

for all 𝑡 for which integral converges.
Digamma function: Digamma function 𝜓 is defined as:

𝜓(𝑡) = Γ′(𝑡)
Γ(𝑡) =

∫︁ ∞

0

(︃
𝑒𝑥

𝑥
− 𝑒−𝑥𝑡

1 − 𝑒−𝑥

)︃
𝑑𝑥

for all 𝑡 for which integral converges.
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2 GENERALIZED EXPONENTIAL DISTRIBU-
TION

The two-parametrized general exponential distribution (GE distribution) was in-
troduced by authors Gupta and Kundu in 1999 in article [7] as a generalization of
exponential distribution. This distribution is from exponential family of distribu-
tions [1] and can be used in the description of natural phenomena. Since then many
papers were published by these authors describing the properties of this distribu-
tion a comparisons with other similar distributions (mainly log-normal and Weibull
distributions).[8],[9] This chapter will summarize all the important properties of this
distribution.

2.1 Distribution and density function of the GE
distribution

The GE distribution is characterized by shape parameter 𝛼 and by the scale param-
eter 𝜆. The GE distribution has the c.d.f.:

𝐹𝐺𝐸(𝑥;𝛼, 𝜆) = (1 − 𝑒−𝜆𝑥)𝛼, 𝛼, 𝜆 > 0, 𝑥 ≥ 0

and p.d.f.:

𝑓𝐺𝐸(𝑥;𝛼, 𝜆) = 𝛼𝜆(1 − 𝑒−𝜆𝑥)𝛼−1𝑒−𝜆𝑥, 𝛼, 𝜆 > 0, 𝑥 ≥ 0

The p.d.f. for different values 𝛼 and 𝜆 can be seen on the figures 2.1 and 2.2. Figure
2.1 demonstrates the change of shape of the p.d.f. when the shape parameter 𝛼
changes. Figure 2.2 demonstrates the change of scale of the p.d.f. when the scale
parameter 𝜆 changes. For parameter 𝛼 = 1 the distribution passes to exponential
distribution. We can see that for 𝛼 ≤ 1, it is decreasing function and for 𝛼 > 1, it
is unimodal, skewed, right tailed density function. It is observed that even for very
large shape parameter it is not symmetric.[10]

The potential application of this distribution comes right from its p.d.f. be-
cause density is different from zero only for 𝑥 ≥ 0. In most cases the variable
𝑥 represents time and the value

∫︀ 𝑥+𝜖
𝑥 𝑓𝐺𝐸(𝑡;𝛼, 𝜆) 𝑑𝑡 probability that some natural

phenomena occurs in time interval (𝑥, 𝑥+ 𝜖).



12

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α = 0.25

α = 0.75

α = 1

α = 1.5

α = 2.5

α = 3.5

Fig. 2.1: Density functions of the GE distribution for different values of 𝛼 when
𝜆 = 1
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𝛼 = 2.5



CHAPTER 2. GENERALIZED EXPONENTIAL DISTRIBUTION 13

2.2 Survival and hazard function of the GE dis-
tribution

Basic functions used in reliability theory are the survival and the hazard function.
The survival function of GE distribution is:

𝑆𝐺𝐸(𝑥;𝛼, 𝜆) = 1 − (1 − 𝑒−𝜆𝑥)𝛼, 𝛼, 𝜆 > 0, 𝑥 ≥ 0

and the hazard function is:

ℎ𝐺𝐸(𝑥;𝛼, 𝜆) = 𝛼𝜆(1 − 𝑒−𝜆𝑥)𝛼−1𝑒−𝜆𝑥

1 − (1 − 𝑒−𝜆𝑥)𝛼
, 𝛼, 𝜆 > 0, 𝑥 ≥ 0

For 𝛼 = 1 (i.e. exponential distribution) the hazard function simplifies to
constant function equal to 𝜆. For 𝛼 ̸= 1 is the hazard function a monotone function
which is approaching the 𝜆 value in ∞ as it is shown in theorem 2.2.1. The behavior
of the hazard function can be observed in figure 2.3.
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Fig. 2.3: Hazard function of the GE distribution for different values of 𝛼 when 𝜆 = 1

Theorem 2.2.1. Let ℎ𝐺𝐸(𝑥;𝛼, 𝜆) be hazard function of GE distribution. Then

lim
𝑥→∞

ℎ𝐺𝐸(𝑥;𝛼, 𝜆) = 𝜆
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Proof [Convergence of the hazard function]
We use L’Hospital rule repeatedly and simplify the expressions.

lim
𝑥→∞

ℎ𝐺𝐸(𝑥;𝛼, 𝜆) = lim
𝑥→∞

𝛼𝜆(1−𝑒−𝜆𝑥)𝛼−1𝑒−𝜆𝑥

1−(1−𝑒−𝜆𝑥)𝛼

𝐿′𝐻.= lim
𝑥→∞

𝛼𝜆2(1−𝑒−𝜆𝑥)𝛼−1
(𝛼−1)(𝑒−𝜆𝑥)2

1−𝑒−𝜆𝑥 −𝛼𝜆2(1−𝑒−𝜆𝑥)𝛼−1
𝑒−𝜆𝑥

− (1−𝑒−𝜆𝑥)𝛼
𝛼𝜆𝑒−𝜆𝑥

1−𝑒−𝜆𝑥

= lim
𝑥→∞

𝑒𝜆𝑥(−1+𝑒−𝜆𝑥)𝜆(𝛼−𝑒𝜆𝑥)
(𝑒𝜆𝑥−1)2

𝐿′𝐻.= lim
𝑥→∞

𝜆2𝑒𝜆𝑥(−1+𝑒−𝜆𝑥)(𝛼−𝑒𝜆𝑥)−𝜆2(𝑎−𝑒𝜆𝑥)−(𝑒𝜆𝑥)2(−1+𝑒−𝜆𝑥)𝜆2

2(𝑒𝜆𝑥−1)𝜆𝑒𝜆𝑥

= −1
2 lim

𝑥→∞
𝜆(𝑎−2 𝑒𝜆𝑥+1)

𝑒𝜆𝑥−1
𝐿′𝐻.= −1

2 lim
𝑥→∞

−2 𝜆2𝑒𝜆𝑥

𝜆𝑒𝜆𝑥

= −1
2(−2𝜆)

= 𝜆 �

The 𝜆 parameter thus denotes the failure rate when time is approaching infinity.
This theorem has the key role in understanding the significance of both parameters
𝛼 and 𝜆. This can be seen and compared on the figure 2.1 of the p.d.f. with fixed
𝜆 parameter and the figure 2.3 of the hazard function.

2.3 Mode and median of the GE distribution
Mode and median are the robust characteristics of the GE distribution. For 𝛼 ≤ 1
is mode at zero value (see figure 2.1). For 𝛼 > 1 is mode equal to the ln(𝛼)

𝜆
(see the

peak in the figure 2.1).[10]

Mode𝐺𝐸(𝛼, 𝜆) =
⎧⎨⎩ 0, 0 < 𝛼 ≤ 1

ln(𝛼)
𝜆
, 𝛼 > 1

Quantile function for the GE distribution is:

𝑄𝐺𝐸(𝑝;𝛼, 𝜆) = −
ln
(︁
1 − 𝛼

√
𝑝
)︁

𝜆
, 0 ≤ 𝑝 ≤ 1

Median is value that separates data in half.

Median𝐺𝐸(𝛼, 𝜆) = −
ln
(︁
1 − 𝛼

√
0.5
)︁

𝜆

2.4 Moments of the GE distribution
GE distribution can be equivalently fully described by its characteristic function.
All moments of the distribution can be derived from the characteristic function. The
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most important moments of every distribution are its expected value and variance.
The characteristic function of 𝐺𝐸(𝛼, 𝜆) is:

𝜑𝐺𝐸(𝑡;𝛼, 𝜆) = 𝐸𝑒𝑖𝑡𝑋 =
Γ (𝛼 + 1) Γ

(︁
1 − 𝑖𝑡

𝜆

)︁
Γ
(︁
𝛼− 𝑖𝑡

𝜆
+ 1

)︁ [10]

From the property of this function derived in the section 1.1, expectation value and
variance can be obtained.

𝐸(𝑋) = 1
𝜆

[𝜓(𝛼 + 1) − 𝜓(1)]

𝑉 𝑎𝑟(𝑋) = 1
𝜆2 [𝜓′(1) − 𝜓′(𝛼 + 1)]

Where 𝜓 denotes the digamma function and Γ denotes the gamma function.
Both functions are described in section 1.23. From the properties of digamma func-
tion we can derive the properties of 𝐸(𝑋) for given parameters. For fixed 𝜆 and
𝛼 → ∞ the expected value tends to ∞, the variance also increases up to value 𝜋2

6𝜆
.

For fixed 𝛼 and 𝜆 → ∞ the expected value and variance go to 0 but with different
rate. 1 [10]

2.5 Skewness and curtosis of the GE distribution
Skewness 𝛾1 and curtosis 𝛾2 are important parameters of the GE distribution. As it
was referred in Chapter 1.1 they are given by the second (𝜇′

2), third (𝜇′
3) and fourth

(𝜇′
4) moment that can be computed by the characteristic function 𝜑𝐺𝐸(𝛼,𝜆)(𝑥).

𝛾1 = 𝜇′
3 − 3𝜇′

2𝐸(𝑋) + 2𝐸(𝑋)3

𝑉 𝑎𝑟(𝑋) 3
2

, 𝛾2 = 𝜇′
4 − 4𝜇′

3𝐸(𝑋) + 6𝜇′
2𝐸(𝑋)2 − 3𝐸(𝑋)4

𝑉 𝑎𝑟(𝑋)2

where
𝜇′

2 = 1
𝜆2

[︁
𝜓′(1) − 𝜓′(𝛼 + 1) + [𝜓(𝛼 + 1) − 𝜓(1)]2

]︁

𝜇′
3 = 1

𝜆3

[︁
𝜓′′(𝛼+1)−𝜓′′(1)+3[𝜓(𝛼+1)−𝜓(1)][𝜓′(1)−𝜓′(𝛼+1)]+[𝜓(𝛼+1)−𝜓(1)]3

]︁
𝜇′

4 = 1
𝜆4 [𝜓′′′(1)−𝜓′′′(𝛼+1)+3[𝜓′(1)−𝜓(𝛼+1)]2+4[𝜓(𝛼+1)−𝜓(1)][𝜓′′(𝛼+1)−𝜓′′(1)]

+ 6[𝜓(𝛼 + 1) − 𝜓(1)]2[𝜓′(1) − 𝜓(𝛼 + 1)] + [𝜓′′′(1) − 𝜓′′′(𝛼 + 1)]4)]

Skewness and curtosis are independent of the scale parameter 𝜆. It is numeri-
cally observed that kurtosis and skewness are both decreasing functions with respect
to 𝛼. Moreover the limiting value of skewness is approximately 1.139547. [10]

1This feature is different from gamma or Weibull distribution. In case of gamma distribution,
the variance tends to infinity as the shape parameter increases. In case of Weibull distribution the
variance is approximately 𝜋2

6𝜃𝜏2 for large values of the shape parameter 𝜏 .[10]
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2.6 Ordered sample properties of the GE distri-
bution

Ordered sample from GE distribution is important for several methods of parameters
estimation as well as for problems where censoring on the data occurs (see chapter
6). The key is to understand the behavior of the 𝑖-th ordered random variable 𝑋(𝑖)

because generally 𝑋(𝑖) does not have the GE distrubution. Using the theorem 1.19.1
in Chapter 1.1, the 𝑖-th ordered random variable 𝑋(𝑖) has the p.d.f. function:

𝑓𝑋(𝑖)(𝑥) = 𝑛!𝛼𝜆
(𝑖− 1)! (𝑛− 𝑖)!

(︁
1 − 𝑒−𝜆𝑥

)︁𝑖𝛼−1 [︁
1 −

(︁
1 − 𝑒−𝜆𝑥

)︁𝛼]︁𝑛−𝑖
𝑒−𝜆𝑥, [11]

The illustration of the p.d.f. can be seen on the Figure 2.4 for the case when 𝑛 = 5.
The two special cases that should be emphasized are for 𝑖 = 1 and 𝑖 = 𝑛.

𝑋(1) = min {𝑋1, 𝑋2, . . . , 𝑋𝑛}

𝑋(𝑛) = max {𝑋1, 𝑋2, . . . , 𝑋𝑛}

The corresponding p.d.f. are:

𝑓𝑋(1)(𝑥) = 𝑛𝛼𝜆
[︁
1 −

(︁
1 − 𝑒−𝜆𝑥

)︁𝛼]︁𝑛−1 (︁
1 − 𝑒−𝜆𝑥

)︁𝛼−1
𝑒−𝜆𝑥

𝑓𝑋(𝑛)(𝑥) = 𝑛𝛼𝜆(1 − 𝑒−𝜆𝑥)𝛼𝑛−1𝑒−𝜆𝑥

The transformed random variable 𝑋(𝑛) has also a GE distribution with shape pa-
rameter 𝑛𝛼 and scale parameter 𝜆.
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Fig. 2.4: P.d.f. of 𝑋(𝑖) under assumption that 𝑋𝑖 are i.i.d. taken from GE(2,1),
𝑛 = 5
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3 ESTIMATION OF GE DISTRIBUTION PA-
RAMETERS

3.1 Estimation by maximum likelihood estima-
tors

Method of maximum likelihood is a very popular method of parameter estimation of
parameters of the distributions for a given random sample x. Theory was introduced
in section 1.2. Let the random variables 𝑋𝑖 be from GE distribution with p.d.f.

𝑓𝐺𝐸(𝑥;𝛼, 𝜆) = 𝛼𝜆(1 − 𝑒−𝜆𝑥)𝛼−1𝑒−𝜆𝑥, 𝛼, 𝜆 > 0.

The likelihood function is

𝑙(x;𝛼, 𝜆) = 𝛼𝑛𝜆𝑛
𝑛∏︁

𝑖=1
(1 − 𝑒−𝜆𝑥𝑖)𝛼−1𝑒−𝜆𝑥𝑖

In order to find the maximum likelihood estimators, function 𝑙(x;𝛼, 𝜆) for given x
must be maximized. This maximizing values of 𝛼̂ and 𝜆̂ are maximum likelihood
estimates of 𝛼 and 𝜆. Since logarithm is an injective function, the 𝑙 function is
maximized for the same values as 𝐿 = ln 𝑙 (i.e. the log-likelihood function). Then:

𝐿(x;𝛼, 𝜆) = 𝑛 ln𝛼 + 𝑛 ln 𝜆+ (𝛼− 1)
𝑛∑︁

𝑖=1
ln(1 − 𝑒−𝜆𝑥𝑖) − 𝜆

𝑛∑︁
𝑖=1

𝑥𝑖

So we have:
𝜕𝐿(x;𝛼, 𝜆)

𝜕𝛼
= 𝑛

𝛼
+

𝑛∑︁
𝑖=1

ln(1 − 𝑒−𝜆𝑥𝑖)

𝜕𝐿(x;𝛼, 𝜆)
𝜕𝜆

= 𝑛

𝜆
+ (1 − 𝛼)

𝑛∑︁
𝑖=1

𝑥𝑖𝑒
−𝜆𝑥𝑖

1 − 𝑒−𝜆𝑥𝑖
−

𝑛∑︁
𝑖=1

𝑥𝑖

The maximum likelihood estimator of 𝛼 is obtained from the first equation as
the function 𝛼̂(𝜆):

𝛼̂(𝜆) = −𝑛∑︀𝑛
𝑖=0 ln(1 − 𝑒−𝜆𝑥𝑖)

This function is dependent on 𝜆 parameter only thus we need to estimate the 𝜆
parameter first before estimating the 𝛼 parameter.

The maximum likelihood estimator (MLE) of 𝜆 is obtained from the second
equation by solving the equation 𝑔(𝜆) = 𝜆 where:

𝑔(𝜆) = 𝑛

[︃
(𝛼− 1)

𝑛∑︁
𝑖=1

𝑥𝑖𝑒
−𝜆𝑥𝑖

1 − 𝑒−𝜆𝑥𝑖
+

𝑛∑︁
𝑖=1

𝑥𝑖

]︃−1
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In this equation is 𝛼 estimated by 𝛼̂(𝜆) and 𝑔(𝜆) is then dependent only on 𝜆. It
is observed in article [11] that 𝑔(𝜆) is an unimodal function. Its maximum can be
obtained by an iterative procedure.

The maximum likelihood estimators 𝛼̂ and 𝜆̂ are consequently found first by
solving 𝑔(𝜆) = 𝜆 equation iteratively and obtaining 𝜆̂ and then by substituting 𝜆̂ to
𝛼̂(𝜆) and obtaining the 𝛼̂ estimator.

In case that parameter 𝛼 is known from the beginning, the equation 𝑔(𝜆) = 𝜆

simplifies in the 𝛼 term. In case that parameter 𝜆 is known, the estimate of the
shape parameter 𝛼 is obtained by 𝛼̂ = 𝛼̂(𝜆).

Fisher Information Matrix

More information on estimates of 𝛼 and 𝜆 can be gained from the Fisher information
matrix by exploring the second partial derivations of the likelihood function. Fisher
information matrix of the GE distribution can be written as:

ℐ(𝛼, 𝜆) = − 1
𝑛

⎛⎝𝐴𝛼𝛼 𝐴𝛼𝜆

𝐴𝜆𝛼 𝐴𝜆𝜆

⎞⎠ , [18]

where the elements of the matrix are the partial derivations of the log-likelihood
function (as it was presented in chapter 1.2):

𝐴𝛼𝛼 = 𝐸

(︃
𝜕2𝐿(X;𝛼, 𝜆)

𝜕𝛼2

)︃
= −𝑛

𝛼2

𝐴𝛼𝜆 = 𝐴𝜆𝛼 = 𝐸

(︃
𝜕2𝐿(X;𝛼, 𝜆)

𝜕𝛼𝜕𝜆

)︃
= 𝐸

(︃
𝜕2𝐿(X;𝛼, 𝜆)

𝜕𝜆𝜕𝛼

)︃
= 𝐸

(︃
𝑛∑︁

𝑖=1

𝑋𝑖𝑒
−𝜆𝑋𝑖

1 − 𝑒−𝜆𝑋𝑖

)︃

𝐴𝜆𝜆 = 𝐸

(︃
𝜕2𝐿(X;𝛼, 𝜆)

𝜕𝜆2

)︃
= −𝐸

(︃
𝑛

𝜆2 + (𝛼− 1)
𝑛∑︁

𝑖=1

𝑋2
𝑖 𝑒

−𝜆𝑋𝑖

(1 − 𝑒−𝜆𝑋𝑖)2

)︃

The expectations are computed in [12]. For clarity, only the outcomes from the
computations are presented.

𝐴𝛼𝜆 = 𝐴𝜆𝛼 =
⎧⎨⎩ −𝑛

𝜆

[︁
𝛼

𝛼−1 [𝜓(𝛼) − 𝜓(1)] − 𝜓(𝛼 + 1) + 𝜓(1)
]︁
, 𝛼 ̸= 1

𝑛
𝜆

∑︀∞
𝑖=0

1
(2+𝑖)2 ≈ 0.645𝑛

𝜆
, 𝛼 = 1

𝐴𝜆𝜆 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

− 𝑛
𝜆2

[︁
1 + 𝛼(𝛼−1)

𝛼−2

[︁
(𝜓′(1) − 𝜓′(𝛼− 1) + [𝜓(𝛼− 1) − 𝜓(1)]2

]︁]︁
+

𝑛𝛼
𝜆

[︁
𝜓′(1) − 𝜓(𝛼) + [𝜓(𝛼) − 𝜓(1)]2

]︁
, 𝛼 ̸= 2

− 𝑛
𝜆2 − 4𝑛

𝜆2
∑︀∞

𝑖=0
1

(2+𝑖)3 ≈ −1.308𝑛
𝜆2 , 𝛼 = 2
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In case that parameters 𝛼 and 𝜆 are not known but estimated from the given
sample and expectations are not taken, we are speaking about observed Fischer
information matrix ̃︀ℐ(𝛼̂, 𝜆̂).

̃︀ℐ(𝛼̂, 𝜆̂) =
⎛⎝ 1

𝛼̂2 𝐴1

𝐴1
1

𝜆̂2 + 𝐴2

⎞⎠
where

𝐴1 = − 1
𝑛

𝑛∑︁
𝑖=1

𝑥𝑖𝑒
−𝜆̂𝑥𝑖

1 − 𝑒−𝜆̂𝑥𝑖

𝐴2 = 𝛼̂− 1
𝑛

𝑛∑︁
𝑖=1

𝑥2
𝑖 𝑒

−𝜆̂𝑥𝑖(︁
1 − 𝑒−𝜆̂𝑥𝑖

)︁2

Fisher information matrix is then the expected value of ̃︀ℐ(𝛼̂, 𝜆̂).

ℐ(𝛼, 𝜆) = 𝐸(̃︀ℐ(𝛼̂, 𝜆̂))

3.2 Estimation by method of moment estimators

Estimation by moment method uses the expectation value and variance of the dis-
tribution computed in section 2.4. This method involves equating sample moments
with theoretical moments. The coefficient of variation (CV) mentioned in chapter
1.1 is used. For GE distribution the CV excludes the 𝜆 parameter and depends only
on 𝛼.

𝐶𝑉 =

√︁
𝑉 𝑎𝑟(X)
𝐸(X) =

√︁
𝜓′(1) − 𝜓′(𝛼 + 1)
𝜓(𝛼 + 1) − 𝜓(1)

Corresponding sample moments 𝑆2 and 𝑋̄ are computed in order to make an esti-
mation of CV.

√
𝑆2

𝑋̄
=

√︁
𝜓′(1) − 𝜓′(𝛼̂ + 1)
𝜓(𝛼̂ + 1) − 𝜓(1)

Equation can be solved iteratively in order to obtain the moment estimator 𝛼̂.
For an efficient guess of the starting value of 𝛼̂(1), tables in the article [11] can be
used. The moment estimator 𝜆̂ is then directly obtained from the following equation

𝜆̂ = 𝑋̄ [𝜓(𝛼̂ + 1) − 𝜓(1)]

which is derived from the expression of the expectation value of the GE distribution
that was presented in Section 2.4.
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3.3 Least squares estimators and weighted least
squares estimators

The method of least squares is about estimating parameters by minimizing the
squared discrepancies between observed data and their expected values. Suppose
that X is i.i.d. vector of size 𝑛 taken from the GE distribution. Then an ordered
sample X(𝑖) can be defined. The density of 𝑋(𝑖) is given by formula in section 2.6.
The least squares method uses the distribution function 𝐹 (𝑋(𝑖)). For a sample size
𝑛, we have

𝐸(𝐹𝐺𝐸(𝑋(𝑖))) = 𝑖

𝑛+ 1 , 𝑉 𝑎𝑟(𝐹𝐺𝐸(𝑋(𝑖))) = 𝑗(𝑛− 𝑖+ 1)
(𝑛+ 1)2(𝑛+ 2) ,

𝐶𝑜𝑣(𝐹𝐺𝐸(𝑋(𝑖)), 𝐹𝐺𝐸(𝑋(𝑗))) = 𝑖(𝑛− 𝑗 + 1)
(𝑛+ 1)2(𝑛+ 2) for 𝑖 < 𝑗,[11]

Then we can obtain estimators by minimizing the difference between 𝐹𝐺𝐸(𝑥(𝑖);𝛼, 𝜆)
and the term 𝑖

𝑛+1 :
𝑛∑︁

𝑖=1

(︂
𝐹𝐺𝐸(𝑥(𝑖);𝛼, 𝜆) − 𝑖

𝑛+ 1

)︂2
, [11]

Which means the 𝛼̂ and 𝜆̂ estimators are given by minimizing:
𝑛∑︁

𝑖=1

(︂
(1 − 𝑒−𝜆𝑥(𝑖))𝛼 − 𝑖

𝑛+ 1

)︂2

If we want to include the effect of changing variance for each 𝑋(𝑖), we can
suggest so called Weighted least squares method.

𝑛∑︁
𝑖=1

𝑤𝑖

(︂
𝐹𝐺𝐸(𝑥(𝑖);𝛼, 𝜆) − 𝑖

𝑛+ 1

)︂2

We introduce the weight 𝑤𝑖

𝑤𝑖 = 1
𝑉 𝑎𝑟(𝐹𝐺𝐸(𝑋(𝑖)))

= (𝑛+ 1)2(𝑛+ 2)
𝑗(𝑛− 𝑖+ 1) .[11]

such that weight 𝑤𝑖 gives more importance to the 𝑋(𝑖) with smaller variance. Then
the 𝛼̂ and 𝜆̂ estimators are given by minimizing

𝑛∑︁
𝑖=1

(𝑛+ 1)2(𝑛+ 2)
𝑖(𝑛− 𝑖+ 1)

(︂
(1 − 𝑒−𝜆𝑥(𝑖))𝛼 − 𝑖

𝑛+ 1

)︂2
.
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4 GOODNESS OF FIT TESTS ON GE DISTRI-
BUTION

This chapter introduces a group of tests that will test whether given sample comes
from GE distribution of not. These tests typically sumarize the discrepancy between
observed values and the values expected under the predicted model.

4.1 Pearson 𝜒2 test

Pearson 𝜒2 test (commonly referred as 𝜒2 test) is nonparametric test. This test is
based on fact that random variable with multinomial distribution can be transformed
to a random vector with 𝜒2 distribution. The null hypothesis is that the frequency
distribution of considered sample is consistent with the theoretical distribution (see
figure 4.1). 𝜒2 test is an asymptotic test so it can be recommended only for large
samples.[1]

Fig. 4.1: Histogram of measured sample a fitted density
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Let the set 𝑀 defined in section 1.2 be divided into 𝑘 intervals. In case of
GE distribution 𝑀 = R+. Let 𝑎𝑖 and 𝑏𝑖 be the lower and upper bound of each
interval 𝐼𝑖 = (𝑎𝑖, 𝑏𝑖⟩. Let 𝑍1, 𝑍2, . . . , 𝑍𝑘−1, 𝑍𝑘 be the particular frequencies of each
interval 𝐼𝑖. 𝑍1, 𝑍2, . . . , 𝑍𝑘−1, 𝑍𝑘 have a multinomial distribution with parameters 𝑝1,

𝑝2, · · · , 𝑝𝑘 (see the histogram 4.1 with blue columns representing the 𝑝𝑖 value ). Then
𝑝1 + . . .+ 𝑝𝑘 = 1 thus 𝑝𝑘 is set by the others 𝑝𝑖 such that 𝑝𝑘 = 1 − (𝑝1 + . . .+ 𝑝𝑘−1).
Now we define 𝑄𝑘−1:

𝑄𝑘−1 =
𝑘∑︁

𝑖=1

(𝑍𝑖 − 𝑛𝑝𝑖)2

𝑛𝑝𝑖

It is proved that for 𝑛 → ∞ 𝑄𝑛 has an limiting distribution 𝜒2(𝑘 − 1). We can say
that 𝑄𝑘−1 is an approximate 𝜒2 distribution with 𝑘 − 1 degrees of freedom. [14]

For known parameters 𝛼 and 𝜆 of the GE distribution we can easily compute
the 𝑝1, . . . , 𝑝𝑘.

𝑝𝑖 = 𝐹𝐺𝐸(𝛼,𝜆)(𝑏𝑖) − 𝐹𝐺𝐸(𝛼,𝜆)(𝑎𝑖)

where 𝐹 is the cumulative distribution function of the GE distribution with known
parameters 𝛼 and 𝜆.

If the parameters 𝛼 and 𝜆 are not known then we estimate them by using the
maximum likelihood method described in the chapter 3. Then the statistic 𝑄𝑘−1

has asymptotically 𝜒2 distribution with (𝑘 − 1 −𝑚) degrees of freedom where 𝑚 is
the number of parameters of the distribution that has been estimated (i.e. 𝑚 = 0
for known 𝛼 and 𝜆 parameters; 𝑚 = 1 if one of the parameter is estimated; 𝑚 = 2
if both 𝛼 and 𝜆 are estimated by one of the methods of 3).

Literature commonly recommends to have 𝑛 such that 𝑛𝑝𝑖 ≥ 5 for every 𝑖 =
1, . . . , 𝑘.

𝜒2 test for GE distribution is defined as follows:
• 𝐻0: The random sample is taken from the GE distribution
• 𝐻𝑎: The random sample is not taken from the GE distribution

Statistic:

𝜒2
𝐺𝐸 =

𝑘∑︁
𝑖=1

(𝑍𝑖 − 𝑛𝑝𝑖)2

𝑛𝑝𝑖

Where 𝑝𝑖 is the frequency of observations in the interval 𝐼𝑖 that was defined in
the formula above, 𝑛 is the number of measured samples and 𝑍𝑖 is the number of
measured samples in interval 𝑖. Hypothesis 𝐻0 is not rejected if

𝜒2
𝐺𝐸 ≤ 𝜒2

(1−𝛼)(𝑘 − 1 − 𝑟).

Quantiles 𝜒2
(1−𝛼)(𝑘−1−𝑟) can be found in statistical tables or computed in language

R by command qchisq.[19]
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4.2 One-sample Kolmorov–Smirnov test
One-sample Kolmogorov–Smirnov test is a nonparametric test. Test statistic is the
distance between the theoretical c.d.f. and the empirical c.d.f. The statistic finds
the biggest difference between empirical and theoretical c.d.f. and compare it to the
critical value. For a better clarification observe figure 4.2.
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Fig. 4.2: Empirical cumulative distribution function and the hypothetical distribu-
tion function

The Kolmogorov–Smirnov test for GE distribution is defined as follows:
• 𝐻0: The random sample is taken from the GE distribution
• 𝐻𝑎: The random sample is not taken from the GE distribution

Statistic:
𝐷𝑛 = sup

𝑥

⃒⃒⃒ ̂︀𝐹 (𝑥) − 𝐹𝐺𝐸(𝛼̂,𝜆̂)(𝑥)
⃒⃒⃒

Where ̂︀𝐹 (𝑥) is the empirical c.d.f. Values of 𝐷𝑛 are compared to the critical value
𝐷𝛼(𝑛) that can be found in tables in [13]. For large sizes of 𝑛 can be used the
aproximated critical value

𝐷𝛼(𝑛) ≈
√︃

1
2𝑛 ln 2

𝛼
.[17]

Hypothesis 𝐻0 is not rejected if 𝐷𝑛 ≤ 𝐷𝛼(𝑛). This test for GE distribution is
included for language R in package reliaR as a function ks.gen.exp.
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4.3 Anderson–Darling test
Anderson–Darling test compares the empirical cumulative distribution function with
the hypothetical distribution function (see Fig.4.3). Anderson–Darling test is stud-
ied in detail in [13].

We treat the following measure:

𝑊 = 𝑛
∫︁ ∞

0
𝜓
(︁
𝐹𝐺𝐸(𝛼̂,𝜆̂)(𝑥)

)︁ [︁ ̂︀𝐹 (𝑥) − 𝐹𝐺𝐸(𝛼̂,𝜆̂)(𝑥)
]︁2
𝑑𝐹, [2]

where 𝜓
(︁
𝐹𝐺𝐸(𝛼̂,𝜆̂)(𝑥)

)︁
is some preassigned weight function.

When 𝜓
(︁
𝐹𝐺𝐸(𝛼̂,𝜆̂)(𝑥)

)︁
= 1, the statistic is the Cramér von Mies statistic. [13]

Cramér von Mies statistic gives the same weight along the domain. Anderson–
Darling test is realized when 𝜓

(︁
𝐹𝐺𝐸(𝛼̂,𝜆̂)(𝑥)

)︁
=
[︁
𝐹𝐺𝐸(𝛼̂,𝜆̂)(𝑥)(1 − 𝐹𝐺𝐸(𝛼̂,𝜆̂)(𝑥))

]︁−1
,

thus gives more weight on observations in the tails of the distribution.

𝑊𝐴𝐷 = 𝑛
∫︁ ∞

0

[︁ ̂︀𝐹 (𝑥) − 𝐹𝐺𝐸(𝛼̂,𝜆̂)(𝑥)
]︁2

𝐹𝐺𝐸(𝛼̂,𝜆̂)(𝑥)(1 − 𝐹𝐺𝐸(𝛼̂,𝜆̂)(𝑥)) 𝑑𝐹

.

Fig. 4.3: Empirical c.d.f. and the hypothetical c.d.f.
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Anderson–Darling test for GE distribution is defined as follows:
• 𝐻0: The random sample is taken from the GE distribution
• 𝐻𝑎: The random sample is not taken from the GE distribution

Statistic:

𝐴2 = −𝑛−
𝑛∑︁

𝑖=1

(2𝑖− 1)
𝑛

[︁
ln𝐹 (𝑥(𝑖), 𝛼̂, 𝜆̂) + ln(1 − 𝐹 (𝑥(𝑛+1−𝑖), 𝛼̂, 𝜆̂))

]︁
where F is the c.d.f. of the hypothetical distribution with known [estimated] param-
eters 𝛼[𝛼̂] and 𝜆[𝜆̂] . 𝑥(𝑖) are the ordered sample data. This 𝐴2 is then compared
to the critical value 𝐴2

𝛼 that can be found in the tables [13]. Critical values are
determinated by Monte Carlo methods for cases when both parameters are known,
one parameter is known and one estimated or both parameters are estimated by
maximum likelihood method derived in section 3. Hypothesis 𝐻0 is not rejected if
𝐴2

𝛼 ≤ 𝐴2.
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5 COMPARISONS OF WEIBULL, LOG-NOR-
MAL AND GE DISTRIBUTION

Weibull, log-normal and GE distribution play an important role in reliability anal-
ysis. All of them are positively skewed distributions thus appropriate to analyze
positively skewed data. We often assume that the data are coming from a specific
parametric family and then build a model based on this assumption. But this as-
sumption of a particular model is quite difficult. Basic properties of Weibull and
log-normal distributions are summed up in the Appendix A (A.1, A.2).

It is observed that for certain range of parameters of Weibull, log-normal and
GE distribution the probability density functions and cumulative distribution func-
tions are very close to each other. On the other hand, hazard functions can differ
very significantly with the same parameters.[6] One of the cases is shown on the
Figure 5.1. In cases when empirical c.d.f. is close to these distribution functions it
is very hard to distinguish between them and choose the correct distribution and
thus the correct model.
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Fig. 5.1: C.d.f of Weibull (𝜏 = 1.7, 𝜃 = 2.1), log-normal (𝜇 = 0.45, 𝜎 = 0.6) and GE
(𝛼 = 3 and 𝜆 = 1) distributions

The choice of the right model is crucial because as you can see on the Figure
5.2 the hazard functions of all the distributions have completely different behavior
and this can lead to misinterpretation of the data. Distributions are close only for
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certain parameters such as the presented one. The key is to set a proper number
of observations 𝑛 such that likelihood ratio test is able to distinguish among the
distributions. The method, which determines the minimum sample size 𝑛 needed to
discriminate among these three distributions for a given user specified probability
of correct selection, is described in article [6]. Sadly it is observed that higher
𝑛 is needed to distinguish between GE distributions and Weibull or log-normal
distribution rather than distinguish between log-normal and Weibull distributions.
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Fig. 5.2: Hazard functions of Weibull (𝜏 = 1.7, 𝜃 = 2.1), log-normal (𝜇 = 0.45, 𝜎 =
0.6) and GE (𝛼 = 3 and 𝜆 = 1) distributions
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6 CENSORING

6.1 Introduction

In many practical experiments we can measure only some part of the data set due
to limited measurement conditions or costs of the experiment.

In mechanical engineering we typically test mechanical parts for durability
over time or lifetime (especially when the metal fatigue occurs). All the parts are
tested during the experiment and we make some conclusions on durability of the
parts based on how many parts did not last the experiment. The parts that survived
the experiment are then censored because we did not get the information about the
part’s lifetime.

Most typically censoring occurs in medical research. When we want to estimate
the survival of patients after organ transplant (or any other serious operation) and
after some time patients stop attending their regular checkups or move to another
region. For those patients we do not know any health information after this time.

Another case when censoring can play an important role is in experiments
with measuring devices that are sensitive only in some range. For example if a
scale can measure samples from 1 kg up to 100 kg we obviously cannot measure
samples lighter than 1 kg. But we know that unmeasured lighter samples have
0–1 kg. Particularly this case is solved in the last chapter on the environmental
data of organic and elemental carbon.

As you can see, censoring is very important in real experiments and it is crucial
to recognize it and include it in the model for a better understanding of what is
happening. It can be observed in the previous example with the mechanical parts.
If we throw away all the data of parts that did not break during the experiment, we
would lost a huge part of the information. Often only 10% of parts breaks during
the experiment so we could lost a 90% of the information. In some cases, like this
one, the effect is obvious, in some cases it isn’t and by ignoring it we can get very
different conclusions on what is happening in reality.

The following subsections deal with the basic types of censoring and give prac-
tical examples of the application on exponential distribution with censoring. Expo-
nential distribution is a special case of GE distribution for 𝛼 = 1. This simplification
is done mainly because we want to focus on the approach and not glut this text with
long equations.

The last section of this chapter deals with type I left censored case on GE
distribution and its asymptotic properties. The other types of the censoring were
elaborated in several articles by the authors Gupta, Kundu and Mitra.
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6.1.1 Type I censoring (Time censored samples)

Type I censoring is used when the experiment ends in a given fixed time 𝑇 . Thus
the number of censored variables is random and 𝑇 is constant. The situation is
illustrated in the figures 6.1,6.2,6.3.

Definition 6.2 (Type I left censoring). Let X be i.i.d. sample of size 𝑛 and con-
stant 𝑇 ∈ R is given. Let 𝑋(𝑁) be such that 𝑋(𝑁) < 𝑇 ≤ 𝑋(𝑁+1). The tuple
(𝑁,𝑋(𝑁+1), . . . , 𝑋(𝑛)) is then called the type I left censored sample.

x1

x2

x3

x4

x5

x6

x7

TimeT
fixed

N censored n−N observed

Fig. 6.1: Illustration of type I left censoring

Definition 6.3 (Type I right censoring). Let X be i.i.d. sample of size 𝑛 and
constant 𝑇 ∈ R is given. Let 𝑋(𝑁) be such that 𝑋(𝑁) < 𝑇 ≤ 𝑋(𝑁+1). The tuple
(𝑁,𝑋(1), . . . , 𝑋(𝑁)) is then called the type I right censored sample.
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T Time
fixed

N observed n−N censored

Fig. 6.2: Illustration of type I right censoring

Definition 6.4 (Type I interval censoring). Let X be i.i.d. sample of size 𝑛 and
constants 𝑇1, 𝑇2 ∈ R are given. Let 𝑋(𝑁1) be such that 𝑋(𝑁1) < 𝑇1 ≤ 𝑋(𝑁1+1) and
𝑋(𝑁2) be such that 𝑋(𝑁2) < 𝑇2 ≤ 𝑋(𝑁2+1).
The tuple (𝑁1, 𝑁2, 𝑋(1), . . . , 𝑋(𝑁1), 𝑋(𝑁2+1), . . . , 𝑋(𝑛)) is then called the type I inter-
val censored sample.
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Fig. 6.3: Illustration of type I right censoring

Theorem 6.4.1. [3]
Let X be the i.i.d. and the tuple (𝑁,𝑋(𝑁+1), . . . , 𝑋(𝑛)) be the type I left censored

sample. Then the likelihood function of this sample is:

𝑙(𝜃, 𝑇, 𝑥(𝑁+1), . . . , 𝑥(𝑛)) = 𝑛!
𝑁 ! (𝐹 (𝑇, 𝜃))𝑁

𝑛∏︁
𝑖=𝑁+1

𝑓
(︁
𝑥(𝑖), 𝜃

)︁
.

Example 1. 1 Find the maximum likelihood estimation of parameter 𝜆 under as-
sumption that X of size 𝑛 is i.i.d. with distribution 𝑋𝑖 ∼ 𝐸𝑥(𝜆). Some observations
are left censored by the time censor 𝑇 .

Solution: Because exponential distribution is a special type of GE distribu-
tion with parameter 𝛼 = 1, the p.d.f. of exponential distribution is:

𝑓𝐸𝑥(𝜆)(𝑥) = 𝜆𝑒−𝜆𝑥, for 𝑥 ≥ 0

and the c.d.f. is given by:

𝐹𝐸𝑥(𝜆)(𝑥) = 1 − 𝑒−𝜆𝑥, for 𝑥 ≥ 0

Because X = (𝑋1, ..., 𝑋𝑛) are independent variables then we can build a likelihood
function. Assume that from 𝑛 values, 𝑁 are censored and 𝑛−𝑁 are observed. Then
the random variable 𝑁 has binomial distribution thus

𝑁 ∼ 𝐵𝑖(𝑛, 𝜃)

where 𝜃 = 𝐹𝐸𝑥(𝜆)(𝑇 ). Then the p.d.f. of this distribution is:

𝑓𝐵𝑖(𝑛,𝑁, 𝜃) =
(︁

𝑛
𝑁

)︁
(𝜃)𝑁(1 − 𝜃)𝑛−𝑁

= 𝑛!
𝑁 !(𝑛−𝑁)!

(︁
𝐹𝐸𝑥(𝜆)(𝑇 )

)︁𝑁 (︁
1 − 𝐹𝐸𝑥(𝜆)(𝑇 )

)︁𝑛−𝑁

1Similar example on right censoring can be found in [17]
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Then we can use the theorem 6.4.1 and write the likelihood function such as:

𝑙(𝜆, 𝑇, 𝑥(𝑁+1), . . . , 𝑥(𝑛)) = 𝑛!
𝑁 !

(︁
𝐹𝐸𝑥(𝜆)(𝑇 )

)︁𝑁 ∏︀𝑛
𝑖=𝑁+1 𝑓𝐸𝑥(𝜆)

(︁
𝑥(𝑖)

)︁
= 𝑛!

𝑁 !

(︁
1 − 𝑒−𝜆𝑇

)︁𝑁 ∏︀𝑛
𝑖=𝑁+1 𝜆𝑒

−𝜆𝑥(𝑖)

The log-likelihood function is then

𝐿(𝜆, 𝑇, 𝑥(𝑁+1), . . . , 𝑥(𝑛)) = ln
(︁

𝑛!
𝑁 !

)︁
+𝑁 ln

(︁
𝐹𝐸𝑥(𝜆)(𝑇 )

)︁
+∑︀𝑛

𝑖=𝑁+1 ln
(︁
𝑓𝐸𝑥(𝜆)

(︁
𝑥(𝑖)

)︁)︁
= ln

(︁
𝑛!
𝑁 !

)︁
+𝑁 ln

(︁
1 − 𝑒−𝜆𝑇

)︁
+∑︀𝑛

𝑖=𝑁+1 ln
(︁
𝜆𝑒−𝜆𝑥(𝑖)

)︁
= ln

(︁
𝑛!
𝑁 !

)︁
+𝑁 ln

(︁
1 − 𝑒−𝜆𝑇

)︁
+ (𝑛−𝑁) ln(𝜆)

−𝜆∑︀𝑛
𝑖=𝑁+1 𝑥(𝑖)

We want to find the maximum of this function. Then 𝜕𝐿
𝜕𝜆

= 0.

𝜕𝐿

𝜕𝜆
= 𝑁

𝑇𝑒−𝜆𝑇

1 − 𝑒−𝜆𝑇
+ 𝑛−𝑁

𝜆
−

𝑛∑︁
𝑖=𝑁+1

𝑥(𝑖) = 0

Then we get the implicit equation which must be solved by iterations such that
𝑔(𝜆) = 𝜆.

𝜆 = 𝑔(𝜆) =
⎡⎣ 1
𝑛−𝑁

𝑛∑︁
𝑖=𝑁+1

𝑥(𝑖) − 𝑁

𝑛−𝑁

𝑇𝑒−𝜆𝑇

1 − 𝑒−𝜆𝑇

⎤⎦−1

6.4.1 Type II censoring (Failure-censored samples)

This type of censoring is used when the experiment ends after given number of
observations 𝑁 ∈ N. Thus the number of censored variables (left/interval/right)
is fixed and the time 𝑇 when we start the censoring is a random variable. The
situation is illustrated by the figures 6.4 and 6.5.

x1

x2

x3

x4

x5

x6

x7

TimeT = x(N)
random variable

N censored n−N observed

Fig. 6.4: Illustration of Type II left censoring
Definition 6.5. Let X be i.i.d. random sample of size 𝑛 and constant 𝑁1, 𝑁2 ∈
N such that 1 ≤ 𝑁1 < 𝑁2 ≤ 𝑛. Let 𝑋(𝑖) be the ordered sample. The tu-
ple (𝑋(1), . . . , 𝑋(𝑁1)) is then called the type II right censored sample. The tu-
ple (𝑋(𝑁1+1), . . . , 𝑋(𝑛)) is then called the type II left censored sample. The tuple
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(𝑋(1), . . . , 𝑋(𝑁1), 𝑋(𝑁2+1), . . . , 𝑋(𝑛)) is then called the type II interval censored sam-
ple.

Theorem 6.5.1. [3]
Let X be the i.i.d. random sample of size 𝑛 with p.d.f. 𝑓(𝑥, 𝜃) and survival function
𝑆(𝑥, 𝜃). The tuple (𝑋(1), . . . , 𝑋(𝑁)) be the type II right censored sample. Then the
likelihood function of this sample is:

𝑙(𝜃, 𝑛, 𝑥(1), ...𝑥(𝑁)) = 𝑛!
(𝑛−𝑁)!

(︁
𝑆(𝑥(𝑁), 𝜃)

)︁𝑛−𝑁
𝑁∏︁

𝑖=1
𝑓
(︁
𝑥(𝑖), 𝜃

)︁
.

Example 2. Find the maximum likelihood estimation of parameter 𝜆 under as-
sumption that X is a i.i.d. random vector of size 𝑛 with distribution 𝑋𝑖 ∼ 𝐸𝑥(𝜆).
𝑛 units are being observed during the experiment and 𝑛 − 𝑁 of them are right
censored (see figure 6.5).[17]

x1

x2

x3

x4

x5

x6

x7

TimeT = x(N)
random variable

N observed n−N censored

Fig. 6.5: Illustration of Type II right censoring

Solution: Because exponential distribution is a special type of GE distribu-
tion with parameter 𝛼 = 1 the survival function is given by:

𝑆𝐸𝑥(𝜆)(𝑥) = 𝑒−𝜆𝑥, for 𝑥 ≥ 0

Survival function is used because we have right censoring thus we need the (1 −
𝐹𝐸𝑥(𝜆)(𝑥)) probability which is 𝑆𝐸𝑥(𝜆)(𝑥). Because X = (𝑋1, . . . , 𝑋𝑛) are all inde-
pendent variables then we can use the theorem 6.5.1 and build a likelihood function
𝑙.

𝑙(𝜆, 𝑛, 𝑥(1), ..., 𝑥(𝑁)) = 𝑛!
(𝑛−𝑁)!

(︁
𝑆𝐸𝑥(𝜆)(𝑥(𝑁))

)︁𝑛−𝑁
𝑁∏︁

𝑖=1
𝑓𝐸𝑥(𝜆)

(︁
𝑥(𝑖)

)︁
After substitution of 𝑆𝐸𝑥(𝜆)(𝑥) and 𝑓𝐸𝑥(𝜆)(𝑥) we obtain

𝑙(𝜆, 𝑛, 𝑥(1), ..., 𝑥(𝑁)) = 𝑛!
(𝑛−𝑁)!

(︁
𝑒−𝜆𝑥(𝑁)

)︁𝑛−𝑁
𝑁∏︁

𝑖=1
𝜆𝑒−𝜆𝑥(𝑖)
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The log-likelihood function is then

𝐿(𝜆, 𝑛, 𝑥(1), ..., 𝑥(𝑁)) = ln
(︃

𝑛!
(𝑛−𝑁)!

)︃
− (𝑛−𝑁)𝜆𝑥(𝑁) +𝑁 ln(𝜆) − 𝜆

𝑁∑︁
𝑖=1

𝑥(𝑖)

We want to find the maximum of this function. Then 𝜕𝐿
𝜕𝜆

= 0.

𝜕𝐿

𝜕𝜆
= −(𝑛−𝑁)𝑥(𝑁) + 𝑁

𝜆
−

𝑁∑︁
𝑖=1

𝑥(𝑖) = 0

By solving the equation we obtain the solution of the estimated 𝜆 parameter.

𝜆̂ =
(︃

1
𝑁

𝑁∑︁
𝑖=1

𝑥(𝑖) + 𝑛−𝑁

𝑁
𝑥(𝑁)

)︃−1

Note that we arrived to the explicit formula of 𝜆̂. This is caused by the right
censoring and the survival function in the step of taking logarithm of the maximum
likelihood function 𝐿.

6.5.1 Random censoring

Random censoring often occurs in case of complex real systems. We cannot design
the experiment such that we stop the experiment in a given time. The most common
examples are the studies in medicine, where patients can stop attending their regular
checkups or move to another city. Some of the patients are then censored but not by
the same time 𝑇 . The time censor 𝑇𝑖 is then a random variable for each observation
𝑋𝑖. [17]

x1

x2

x3

x4

x5

x6

x7

TimeT1 T2T3 T4T5T6T7

(T1, 0)

(T2, 0)

(T3, 0)

(x4, 1)

(x5, 1)

(x6, 1)

(x7, 1)

Fig. 6.6: Illustration of random right censoring

Definition 6.6 (Random right censored observations). Let X be i.i.d. sample and
T be i.i.d. sample. X and T are not necessarily taken from the same distribution.
Let W be a random variable such that 𝑊𝑖 = min(𝑋𝑖, 𝑇𝑖) and 𝐼𝑖 ∈ {0, 1}. Then
each observation can be defined as the couple (𝑊𝑖, 𝐼𝑖) where 𝑊𝑖 represents the time
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information about the observation and 𝐼𝑖 represents if the observation was censored
(𝐼 = 0) or not (𝐼 = 1). Observation is called randomly right censored if 𝑋𝑖 > 𝑇𝑖

thus 𝐼𝑖 = 0. Couple (𝑊𝑖, 𝐼𝑖) is called the random censored sample. (see figure 6.6)

The left random censoring and interval random censoring are defined in the
same way as the previous right random censoring. This type of censoring is the
most complicated one. No example is given in this section in order to prevent the
incomprehensibility of the text due to limited range of this thesis. Examples on
random censoring can be found in the [17].

6.7 Type I left censored data from GE distribu-
tion

After introduction to censoring, this chapter will discuss type I left censored data
of the GE distribution. Other types of censoring for GE distribution were mainly
described by autors Gupta, Kundu and Mitra in [18]. The maxumim likelihood
function 𝑙 is again introduced. The size of the sample is 𝑛 and the time censor
will be denoted as 𝑇 . 𝑁 represents how many samples were left censored. Thus
0 ≤ 𝑁 ≤ 𝑛. Likelihood function is then

𝑙(𝛼, 𝜆,𝑁, 𝑥(𝑁+1), .., 𝑥(𝑛)) = 𝑛!
𝑁 !𝐹𝐺𝐸(𝑇, 𝛼, 𝜆)𝑁

𝑛∏︁
𝑖=𝑁+1

𝑓𝐺𝐸(𝑥(𝑖)).

Log-likelihood function 𝐿 is

𝐿(𝛼, 𝜆,𝑁, 𝑥(𝑁+1), .., 𝑥(𝑛)) = ln
(︃
𝑛!
𝑁 !

)︃
+𝑁 ln(𝐹𝐺𝐸(𝑇, 𝛼, 𝜆)) +

𝑛∑︁
𝑖=𝑁+1

ln[𝑓𝐺𝐸(𝑥(𝑖))].

By substituting the 𝐹𝐺𝐸 and 𝑓𝐺𝐸 functions the following expression is obtained.

𝐿(𝛼, 𝜆,𝑁, 𝑥(𝑁+1), .., 𝑥(𝑛)) = ln
(︁

𝑛!
𝑁 !

)︁
+𝑁𝛼 ln(1 − 𝑒−𝜆𝑇 )

+∑︀𝑛
𝑖=𝑁+1 ln[𝛼𝜆(1 − 𝑒−𝜆𝑥(𝑖))𝛼−1𝑒−𝜆𝑥(𝑖) ]

Next step is just formal breakdown of the sum.

𝐿(𝛼, 𝜆,𝑁, 𝑥(𝑁+1), .., 𝑥(𝑛)) = ln
(︁

𝑛!
𝑁 !

)︁
+𝑁𝛼 ln

(︁
1−𝑒−𝜆𝑇

)︁
+(𝑛−𝑁) ln (𝜆)+(𝑛−𝑁) ln (𝛼)

+ (𝛼− 1)∑︀𝑛
𝑖=𝑁+1 ln

(︁
1 − 𝑒−𝜆𝑥(𝑖)

)︁
− 𝜆

∑︀𝑛
𝑖=𝑁+1 𝑥(𝑖)

This expression is fundamental for the following section. Finding the maximum
likelihood estimators means finding the maximum [𝛼̂, 𝜆̂] of this function. Necessary
conditions for the maximum of this function are 𝜕𝐿

𝜕𝛼
= 0 and 𝜕𝐿

𝜕𝜆
= 0. Both partial

derivations of the 𝐿 are computed
𝜕𝐿

𝜕𝛼
= 𝑁 ln

(︁
1 − 𝑒−𝜆𝑇

)︁
+ 𝑛−𝑁

𝛼
+

𝑛∑︁
𝑖=𝑁+1

ln
(︁
1 − 𝑒−𝜆𝑥(𝑖)

)︁
= 0
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𝜕𝐿

𝜕𝜆
= 𝑛−𝑁

𝜆
+ 𝑁𝛼

1 − 𝑒−𝜆𝑇
𝑇𝑒−𝜆𝑇 + (𝛼− 1)

𝑛∑︁
𝑖=𝑁+1

𝑥(𝑖)𝑒
−𝜆𝑥(𝑖)

1 − 𝑒−𝜆𝑥(𝑖)
−

𝑛∑︁
𝑖=𝑁+1

𝑥(𝑖) = 0

These two equations must be solved in order to find the maximum of this
function. Similarly to chapter 3, the first equation gives an estimation of the 𝛼

parameter which is denoted as 𝛼̂. Function 𝛼̂(𝜆) depends only on 𝜆 parameter.

𝛼̂(𝜆) = − 𝑛−𝑁

𝑁 ln (1 − 𝑒−𝜆𝑇 ) +∑︀𝑛
𝑖=𝑁+1 ln

(︁
1 − 𝑒−𝜆𝑥(𝑖)

)︁
The second equation can be modified into 𝑔(𝜆) = 𝜆, form where the 𝑔(𝜆) is the
following expression:

𝑔(𝜆) =

⎡⎢⎢⎣ 1
𝑛−𝑁

𝑛∑︁
𝑖=𝑁+1

𝑥(𝑖)

1 − 𝑒−𝜆𝑥(𝑖)
+

𝑁𝑇 𝑒−𝜆𝑇

1−𝑒−𝜆𝑇 +∑︀𝑛
𝑖=𝑁+1

𝑥(𝑖)𝑒
−𝜆𝑥(𝑖)

1−𝑒
−𝜆𝑥(𝑖)

𝑁 ln (1 − 𝑒−𝜆𝑇 ) +∑︀𝑛
𝑖=𝑁+1 ln

(︁
1 − 𝑒−𝜆𝑥(𝑖)

)︁
⎤⎥⎥⎦

−1

The equation 𝑔(𝜆) = 𝜆 can be solved iteratively. Algorithm, which is presented
in the appendix, uses function uniroot in R, which is based on Fortran subroutine
zeroin. The solution of this equation is denoted as 𝜆̂. The parameter estimator 𝛼̂
is obtained by substituting 𝜆̂ into 𝛼̂(𝜆).

6.7.1 Fisher information matrix of type I left censored data

Fisher information matrix can give us the variance of the estimations 𝛼̂ and 𝜆̂.
Theory was introduced in section 1.2. Fisher information matrix can be written as:

ℐ(𝛼, 𝜆) = − 1
𝑛

⎛⎝𝐸 (︁𝜕2𝐿(𝛼,𝜆)
𝜕𝛼2

)︁
𝐸
(︁

𝜕2𝐿(𝛼,𝜆)
𝜕𝛼𝜆

)︁
𝐸
(︁

𝜕2𝐿(𝛼,𝜆)
𝜕𝜆𝛼

)︁
𝐸
(︁

𝜕2𝐿(𝛼,𝜆)
𝜕𝜆2

)︁⎞⎠
where the partial derivations are:

𝐸

(︃
𝜕2𝐿(𝛼, 𝜆)
𝜕𝛼2

)︃
= 𝑁 − 𝑛

𝛼2

𝐸

(︃
𝜕2𝐿(𝛼, 𝜆)
𝜕𝛼𝜕𝜆

)︃
= 𝐸

(︃
𝜕2𝐿(𝛼, 𝜆)
𝜕𝜆𝜕𝛼

)︃
= 𝐸

⎛⎝𝑁𝑇𝑒−𝜆𝑇

1 − 𝑒−𝜆𝑇
+

𝑛∑︁
𝑖=𝑁+1

𝑋(𝑖)𝑒
−𝜆𝑋(𝑖)

1 − 𝑒−𝜆𝑋(𝑖)

⎞⎠

𝐸

(︃
𝜕2𝐿(𝛼, 𝜆)
𝜕𝜆2

)︃
= −𝐸

⎛⎜⎝𝑛−𝑁

𝜆2 + 𝑁𝛼𝑇 2𝑒−𝜆𝑇

(1 − 𝑒−𝜆𝑇 )2 + (𝛼− 1)
𝑛∑︁

𝑖=𝑁+1

𝑋2
(𝑖)𝑒

−𝜆𝑋(𝑖)(︁
1 − 𝑒−𝜆𝑋(𝑖)

)︁2

⎞⎟⎠
where 𝑋(𝑖) and 𝑁 are the random variables and 𝐸(𝑁) is computed as: 𝐸(𝑁) =
𝑛𝐹𝐺𝐸(𝑇 ;𝛼, 𝜆), where 𝐹𝐺𝐸(𝑇 ;𝛼, 𝜆) gives the percentual censoring and 𝑛 is the sample
range. 𝐸(𝑁) is the mean of the number of left censored variables. The p.d.f. of the
𝑖-th ordered variable is 𝑓𝑋(𝑖)(𝑥) and was introduced in section 2.6. Fisher information
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matrix in fact depends only on ratio 𝑁
𝑛

and not the values 𝑁 and 𝑛 itselves. Thus
every empirical Fisher information matrix can be computed numerically such that
𝐹𝐺𝐸(𝑇 ;𝛼, 𝜆) = 𝑁

𝑛
where 𝑛,𝑁 ∈ N.

Values of the empirical Fisher information matrix were computed numerically
in R and corresponding algorithm can be found on the attached CD. .

6.7.2 Simulation results

The maximum likelihood method for type I left censored data was programmed in R
language in the R studio.[19] The algorithm can be found in appendix and on CD.
At first the alpha and lambda values were set in combinations that can be seen in
the table 6.1.

𝛼∖𝜆 0.5 1 1.5 2.5
0.5 (0.5,0.5) (0.5,1) (0.5,1.5) (0.5,2.5)
1 (1,0.5) (1,1) (1,1.5) (1,2.5)
1.5 (1.5,0.5) (1.5,1) (1.5,1.5) (1.5,2.5)
2.5 (2.5,0.5) (2.5,1) (2.5,1.5) (2.5,2.5)

Tab. 6.1: Table of all test choices of 𝛼 and 𝜆 parameters for simulations

Random samples of sample size 𝑛 were generated with these pairs (𝛼, 𝜆). As
sample size 𝑛 were chosen the representative samples of size 30, 50, 100 and 500.

𝑛 30 50 100 500

Tab. 6.2: Table of all test choices for 𝑛

The censoring level 𝑇 was set such that 𝑇 will censor some % of observed
values. The censoring level 𝑇 is thus given in % out of observed values. 𝑇 is
computed by the quantile function 𝑄𝐺𝐸

𝑇 = 𝑄𝐺𝐸(𝑝) = −
ln
(︁
1 − 𝛼

√
𝑝
)︁

𝜆
, 0 ≤ 𝑝 ≤ 1

where 𝑝 is the given percentage that has been censored. At first the censoring levels
were set at 0%, 5%, 10%, 15%, 20%, 25%, 50% and 75%.

𝑝 0 0.05 0.1 0.15 0.2 0.25 0.5 0.75

Tab. 6.3: Table of all test choices for 𝑝
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This gives four parameters (𝛼, 𝜆, 𝑛, 𝑇 ) on which the estimations 𝛼̂ and 𝜆̂ can
depend. A 5-dimensional graph would be needed to explore all the aspects at once.
For this reason we fix some of the parameters and explore the behavior of the
estimations only partially.

For each combination (𝛼, 𝜆, 𝑛, 𝑇 ) was generated 1000 samples and the on each
of them were computed the estimations 𝛼̂ and 𝜆̂. An average value of all estimations
was taken and this value is presented as the result 𝛼̂ and 𝜆̂. Also variance and
covariance of all estimations is presented. All the results can be seen in files on the
attached CD.

In the following subsections will present results of the simulations when certain
parameters will be fixed.

Fixed 𝛼 and 𝜆 parameters and sample size 𝑛

By fixing both 𝛼 and 𝜆 parameters and the sample size we are able to see how
censoring affects the accuracy of the estimation of both parameters. As the rep-
resentative example was chosen 𝛼 = 1.5 and 𝜆 = 1 and 𝑛 = 100. The graph of
dependence of estimation on censoring level can be seen on figure 6.7.

Fig. 6.7: Dependence of estimation on censoring level

The graph shows the average value of estimations 𝛼 and 𝜆. Moreover it shows
the medians of the estimations and the first and third quartile. Generally for all
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combinations of parameters 𝛼, 𝜆 and 𝑛 is observed that both parameters 𝜆 and 𝛼

are biased. Also the 𝜆 parameter is estimated better than the 𝛼 parameter.

Fixed 𝛼 parameter and sample size 𝑛

If we fix only 𝛼 parameter and 𝑛 then it is reasonable to ask if the precision of
estimator 𝜆̂ is affected by the value of 𝜆. For comparing the quality of estimatior
𝜆̂ an ratio 𝜆̂

𝜆
is used. In fact the simulations did not showed any evidence that the

quality of the estimator 𝜆̂ is affected by the value of 𝜆. For fixed 𝛼 = 2.5 and
𝑛 = 100 was produced a Fig. 6.8.

Fig. 6.8: Dependence of 𝜆̂ on censoring level and 𝜆

Either the estimator 𝛼̂ did not showed any evidence that value of 𝜆 affects the
estimation.

Fixed 𝜆 parameter and sample size 𝑛

When the parameter 𝜆 is fixed it is reasonable to ask if the precision of estimator 𝛼̂
is affected by the value of 𝛼. For most of the cases it was observed that the greater
parameter 𝛼 gets the worse is the precision of the estimatior 𝛼̂. Again a ratio 𝛼̂

𝛼

is introduced in order to compare the results. For fixed 𝜆 = 1 and 𝑛 = 100 it can
be seen on Fig. 6.9 that the greater the 𝛼 parameter gets the less accurate is the
estimation 𝛼̂. Specially for higher levels of censoring 𝑇 .

On the other hand simulations showed that by increasing 𝛼 parameter the
more accurate is the estimation 𝜆̂. For fixed 𝜆 = 1 and 𝑛 = 100 it can be seen on
Fig. 6.10.
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Fig. 6.9: Dependence of 𝛼̂ on censoring level and 𝛼

Fig. 6.10: Dependence of 𝜆̂ on censoring level and 𝛼
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This sensitivity of estimators to change of 𝛼 parameter can be explained by
looking at the figures 2.1 and 2.2 of p.d.f. in Chapter 2. The shape parameter 𝛼
affects the shape p.d.f. more than parameter 𝜆.

Fixed 𝛼 and 𝜆 parameters

For fixed parameters 𝛼 and 𝜆 can be observed how accurate are the estimations 𝛼̂
and 𝜆̂ when we change the size of the sample 𝑛 and the censoring level 𝑇 . At first
the previous simulations were analyzed but the situation showed that more deep
insight will be needed. The 𝑇 was chosen such that interval ⟨0%, 100%) was divided
to 20 representing points by 5%. Sample sizes 𝑛 were chosen to 15, 30, 50, 100, 500
and 5000. As the fixed values were chosen 𝛼 = 2.5 and 𝜆 = 2. The results of the
simulations can be seen on graph 6.11 and 6.11. Some results for cases when 𝑛 is
small and 𝑇 is large are not dispayed in order to make the graph clear and easily
understandable.

This graph again shows that maximum likelihood method estimates the 𝜆

parameter better than the 𝛼 parameter. Both estimators are biased and maximum
likelihood method tends to overestimate them both. Moreover we can see that for
fixed 𝑛 the estimators from some censoring level 𝑇 grow exponentially. This for
example shows that for 𝑛 = 100 and 𝑇 > 70% the maximum likelihood method
won’t give us any reliable information about the 𝛼 parameter because the cesoring
level will be simply too high. This problem can be fought by increasing the sample
size 𝑛. If sample size 𝑛 is raised from 100 to 500 the estimator 𝛼̂ improves rapidly.
This shows that if the sample size 𝑛 is high enough the censoring level 𝑇 is not a
problem for the calculations.

The natural question that would follow is about the variances of the estimators.
So far only behavior of mean of the outcomes of the simulations was studied. The
variance of the estimators is strongly related to the Fisher information matrix ℐ
which was introduced in chapter 1.1.

(𝛼̂𝑛, 𝜆̂𝑛 ) 𝐴∼ 𝑁2

(︃
(𝛼, 𝜆), ℐ(𝛼, 𝜆)−1

𝑛

)︃

Fisher information matrix for type I left censored data was derived at the end of
the previous section. The computation of Fisher information matrix is done in file
Fisher.r on attached CD and the outcomes of this computation are presented in
Excel file FI.xls. Parameters are again set to 𝛼 = 2.5 and 𝜆 = 2. Only limiting
Fisher information matrix where the censoring level is set to 𝑁

𝑛
% is studied. The

inverse of the Fisher information matrix is taken and presented in the table 6.4.
Element 𝐴12 is equal to the element 𝐴21. Correlation of parameters is computed
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Fig. 6.11: Graph of average values of 𝛼̂ with respect to censoring level in % and
number of observations 𝑛 (maximum likelihood estimation)

Fig. 6.12: Graph of average values of 𝜆̂ with respect to censoring level in % and
number of observations 𝑛 (maximum likelihood estimation)
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and presented in the last column of the table.

ℐ(𝛼, 𝜆)−1 =
⎛⎝𝐴11 𝐴12

𝐴21 𝐴22

⎞⎠
Simulations supported this theory. The variances of 𝛼̂ and 𝜆̂ that was observed

𝑇 [%] 𝐴11 𝐴22 𝐴12 Correlation
0% 15.378 4.547 6.443 0.770
10% 19.352 5.155 7.997 0.801
20% 24.521 5.839 9.877 0.825
30% 31.720 6.683 12.341 0.848
40% 42.280 7.780 15.744 0.868
50% 58.790 9.289 20.737 0.887
60% 87.095 11.535 28.708 0.906
70% 141.910 15.233 42.945 0.924
80% 276.536 22.633 74.509 0.942
90% 826.124 45.086 185.550 0.961

Tab. 6.4: Values of inverse Fischer information matrix for 𝛼 = 2.5 and 𝜆 = 2

in simulations correspond to the theoretically computed. The variance of the 𝛼̂

can be seen on figure 6.13. The variance of the 𝜆̂ can be seen on figure 6.14. Pay
attention to the logarithmic scale on the vertical axis. The correlation observed in
simulations corresponds to the theoretically computed correlation. The outcomes
of the simulation and the comparison can be seen on Fig. 6.15. Correlation has
the advantage that it is dimensionless thus outcomes for different 𝑛 can be visually
compared. Fig. 6.15 shows that for different 𝑛 there exist a certain level of censoring
𝑇 ′(𝑛) for which the simulations works quite well. But when the censoring level 𝑇 ′(𝑛)
is exceeded the individual values start to fall down. This means that one of the
variances grows rapidly and the estimatiors 𝛼̂ or 𝜆̂ are not useful anymore. For
example for 𝑛 = 30 is not recommended to have 𝑇 more than 40%.
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Fig. 6.13: Variance of 𝛼̂ from simulations

Fig. 6.14: Variance of 𝜆̂ from simulations
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Fig. 6.15: Correlation of 𝛼̂ and 𝜆̂
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7 EM ALGORITHM

Introduction

Expectation-maximization algorithm (EM algorithm) is an iterative method for find-
ing the maximum likelihood estimates of parameters in statistical models with latent
variables. It is broadly applicable to the interactive computation and even for very
complex incomplete data problems. EM algorithm was firstly suggested in article
[5]. Book [16] describes many applications of this algorithm.

The theory developed in this section will demonstrate the alternative algo-
rithm for maximum likelihood estimations and will be compared with the algorithm
developed in the previous chapter. EM algorithm developed here is purposed for
more general cases than just type I left censored samples. Censoring is generalized
to type I interval censoring and can be adjusted to left or right censoring eventually.

The general EM algorithm starts with some initial parameters 𝜃(0) which can
be chosen from some given domain Θ of the estimated parameters. A new value
of the 𝜃 is computed in each iteration as the algorithm proceeds. The value in the
𝑘-th iteration will be denoted as 𝜃(𝑘). The data can be split into complete data,
which will be marked as 𝑋, and incomplete data, which will be marked as 𝑌 . Each
iteration consists of two steps, the Expectation step (E step) and the Maximization
step (M step).[16]

E step: In this step a function 𝑄(𝜃, 𝜃(𝑘)) is constructed, which is an function
of expectation of the log-likelihood function which depends on the known parameter
𝜃(𝑘) form the previous step and parameter 𝜃 that should be estimated.

𝑄(𝜃, 𝜃(𝑘)) = 𝐸𝜃(𝑘) {𝐿(𝜃)|𝑌 }

M step: This step is used for finding 𝜃(𝑘+1) ∈ Θ such that function 𝑄(𝜃, 𝜃(𝑘))
is maximized.

𝑄(𝜃(𝑘+1), 𝜃(𝑘)) = max
𝜃
𝑄(𝜃, 𝜃(𝑘))

Weaker version of this step just requires to find value 𝜓(𝑘+1) ∈ Θ such that

𝑄(𝜓(𝑘+1), 𝜓(𝑘)) ≥ 𝑄(𝜓, 𝜓(𝑘))

E steps and M steps are repeated until
⃒⃒⃒
𝜓(𝑘) − 𝜓(𝑘+1)

⃒⃒⃒
< 𝜖 where 𝜖 is the chosen

precision value.
Convergence analysis of this algorithm was sketched in the original paper [5]

however it was fully developed in 1983 by C. F. Jeff Wu in article [20]. The algo-
rithm converges for exponential family (GE distribution is in exponential family)
of distributions as well as for the problems outside the exponential family (this
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was the major proof by Wu). EM algorithm is due to this property used in many
applications.

Unfortunately the convergence of the algorithm to some value 𝜃 does not nec-
essary mean that 𝜃 in the global maximum of the function. In general, if the log-
likelihood function 𝐿 has several maximums and stationary points, convergence of
the EM sequence to either type of point depends on the choice of starting point.
This situation can be prevented by using several starting points and choosing the 𝜃
which returns maximum value of the 𝑄(𝜃) function. [16]

EM algorithm for the GE distribution

The EM algorithm in this particular problem uses an maximum likelihood function
𝐿𝑐, where censored data can be thought of as the missing data of the EM algorithm.
Complete data set W can be formed by combining the observed data 𝑋𝑖 with in-
terval censored data 𝑌𝑖. The interval censored data 𝑌𝑖 are censored on the interval
(𝑎𝑖, 𝑏𝑖). 𝑌𝑖 forms generalized case for type I censored data. When the data 𝑌𝑖 are left
censored, then 𝑎𝑖 = 0. If 𝑌𝑖 are right censored, then 𝑏𝑖 = ∞. Number of censored
variables is 𝑁 and number of observed variables 𝑋𝑖 is 𝑛 − 𝑁 . Together they form
data set of size 𝑛. We assume that W is i.i.d. and taken from GE distribution and
we treat 𝑌𝑖 as an observed value. The likelihood function 𝑙𝑐 is:

𝑙𝑐(𝛼, 𝜆,𝑁,W) =
𝑛−𝑁∏︁
𝑖=1

𝑓𝐺𝐸(𝑥𝑖, 𝛼, 𝜆)
𝑁∏︁

𝑗=1
𝑓𝐺𝐸(𝑦𝑗, 𝛼, 𝜆)[4]

This function in fact coincides with the likelihood function introduced in section 3.1.
Logarithm of the likelihood function is:

𝐿𝑐(𝛼, 𝜆,𝑁,W) =
𝑛−𝑁∑︁
𝑖=1

ln 𝑓𝐺𝐸(𝑥𝑖, 𝛼, 𝜆) +
𝑁∑︁

𝑗=1
ln 𝑓𝐺𝐸(𝑦𝑗, 𝛼, 𝜆)

After substituting the 𝑓𝐺𝐸:

𝐿𝑐(𝛼, 𝜆,𝑁,W) =
𝑛−𝑁∑︁
𝑖=1

ln
(︁
𝛼𝜆(1 − 𝑒−𝜆𝑥𝑖)𝛼−1𝑒−𝜆𝑥𝑖

)︁
+

𝑁∑︁
𝑗=1

ln
(︁
𝛼𝜆(1 − 𝑒−𝜆𝑦𝑗 )𝛼−1𝑒−𝜆𝑦𝑗

)︁
Then we can expand all the terms. But values 𝑦𝑖 are not known since 𝑌𝑖 are censored
on the intervals. This problem is solved by taking the expected value of the outcome
as you can see in the following expression.

𝐿𝑐(𝛼, 𝜆,𝑁,W) =𝑛 ln(𝛼) + 𝑛 ln(𝜆) + (𝛼− 1)
𝑛−𝑁∑︁
𝑖=1

ln
(︁
1 − 𝑒−𝜆𝑥𝑖

)︁
− 𝜆

𝑛−𝑁∑︁
𝑖=1

𝑥𝑖+

(𝛼− 1)
𝑁∑︁

𝑗=1
𝐸
(︁
ln
(︁
1 − 𝑒−𝜆𝑌𝑗

)︁)︁
− 𝜆

𝑁∑︁
𝑗=1

𝐸 (𝑌𝑗)
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Now the main task is to deal with the expectations 𝐸
(︁
ln
(︁
1 − 𝑒−𝜆𝑌𝑗

)︁)︁
and 𝐸 (𝑌𝑗).

The idea is that estimations between steps 𝑘 and 𝑘 + 1 won’t differ that much, so
for step 𝑘 + 1 the estimations from the previous step will be partially used in such
way that:

𝐸
(︁
ln
(︁
1 − 𝑒−𝜆𝑌𝑗

)︁)︁
=
∫︁ 𝑏𝑖

𝑎𝑖

ln
(︁
1 − 𝑒−𝜆𝑦

)︁
𝑓𝑌𝑗

(𝑦, 𝛼(𝑘), 𝜆(𝑘)) 𝑑𝑦

𝐸 (𝑌𝑗) =
∫︁ 𝑏𝑖

𝑎𝑖

𝑦 𝑓𝑌𝑗
(𝑦, 𝛼(𝑘), 𝜆(𝑘)) 𝑑𝑦

where 𝑓𝑌𝑗
is the p.d.f. of 𝑌𝑗 and is defined as:

• for interval censored data:

𝑓𝑌𝑗
(𝑦𝑗, 𝛼, 𝜆) = 𝑓𝐺𝐸(𝛼,𝜆)(𝑦𝑖)

𝐹𝐺𝐸(𝛼,𝜆)(𝑏𝑗) − 𝐹𝐺𝐸(𝛼,𝜆)(𝑎𝑗)
, 𝑎𝑖 ≤ 𝑦𝑖 ≤ 𝑏𝑖

• for right censored data

𝑓𝑌𝑗
(𝑦𝑗, 𝛼, 𝜆) = 𝑓𝐺𝐸(𝛼,𝜆)(𝑦𝑖)

1 − 𝐹𝐺𝐸(𝛼,𝜆)(𝑎𝑖)
, 𝑎𝑖 ≤ 𝑦𝑖 ≤ ∞

• for left censored data

𝑓𝑌𝑗
(𝑦𝑗, 𝛼, 𝜆) = 𝑓𝐺𝐸(𝛼,𝜆)(𝑦𝑖)

𝐹𝐺𝐸(𝛼,𝜆)(𝑏𝑖)
, 0 ≤ 𝑦𝑖 ≤ 𝑏𝑖

Timeai biE(Yi)

fYi

fGE(α(k),λ(k))(FGE(α(k),λ(k))(bi)− FGE(α(k),λ(k))(ai))

Fig. 7.1: Illustration of estimation of 𝐸(𝑌𝑖) from interval censored variables 𝑌𝑖 in
EM algorithm

This is the key step that simplifies the most of the calculations. First expectation
depends now only on 𝜆 and the second is independent on both parameters. Illus-
trative examples of both expectations in case of interval censoring can be seen on
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Timeai biE[e−Yi ]

fYi

fGE(α(k),λ(k))(FGE(α(k),λ(k))(bi)− FGE(α(k),λ(k))(ai))

Fig. 7.2: Illustration of estimation of 𝐸[𝑒−𝑌𝑖 ] from interval censored variables 𝑌𝑖 in
EM algorithm

figures 7.1, 7.2. First figure shows the estimated expected value of 𝑌𝑖. Second figure
shows the expected value of 𝑒−𝑌𝑖 .
By substituting these terms, the following equation is obtained.

𝐿𝑐(𝛼, 𝜆,𝑁,W) =𝑛 ln(𝛼) + 𝑛 ln(𝜆) + (𝛼− 1)
𝑛−𝑁∑︁
𝑖=1

ln
(︁
1 − 𝑒−𝜆𝑥𝑖

)︁
− 𝜆

𝑛−𝑁∑︁
𝑖=1

𝑥𝑖+

(𝛼− 1)
𝑁∑︁

𝑗=1
𝐸
(︁
ln
(︁
1 − 𝑒−𝜆𝑌𝑗

)︁)︁
− 𝜆

𝑁∑︁
𝑗=1

𝐸 (𝑌𝑗)

The parameters that maximizes this function must be found. In order to maximize
the 𝐿𝑐, derivations with respect to parameters 𝛼 and 𝜆 must be taken. Both partial
derivations must be equal to zero as a necessary condition of the maximum.

𝜕𝐿𝑐(𝛼, 𝜆,𝑁,W)
𝜕𝛼

=𝑛

𝛼
+

𝑛−𝑁∑︁
𝑖=1

ln
(︁
1 − 𝑒−𝜆𝑥𝑖

)︁
+

𝑁∑︁
𝑗=1

𝐸
(︁
ln
(︁
1 − 𝑒−𝜆𝑌𝑗

)︁
, 𝛼(𝑘), 𝜆(𝑘)

)︁
= 0

𝜕𝐿𝑐(𝛼, 𝜆,𝑁,W)
𝜕𝜆

=𝑛
𝜆

−
𝑛−𝑁∑︁
𝑖=1

𝑥𝑖 + (𝛼− 1)
𝑛−𝑁∑︁
𝑖=1

𝑥𝑖𝑒
−𝜆𝑥𝑖

1 − 𝑒−𝜆𝑥𝑖
−

𝑁∑︁
𝑗=1

𝐸
(︁
𝑌𝑗, 𝛼

(𝑘), 𝜆(𝑘)
)︁

+ (𝛼− 1)
𝑁∑︁

𝑗=1
𝐸

(︃
𝑌𝑗𝑒

−𝜆𝑌𝑗

1 − 𝑒−𝜆𝑌𝑗
, 𝛼(𝑘), 𝜆(𝑘)

)︃
= 0

From the first equation arise the estimation of 𝛼(𝑘+1).

𝛼(𝑘+1) = 𝛼̂(𝜆) = − 𝑛

[︃
𝑛−𝑁∑︁
𝑖=1

ln
(︁
1 − 𝑒−𝜆𝑥𝑖

)︁
+

𝑁∑︁
𝑗=1

𝐸
(︁
ln
(︁
1 − 𝑒−𝜆𝑌𝑗

)︁
, 𝛼(𝑘), 𝜆(𝑘)

)︁]︃−1
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Unfortunately 𝛼(𝑘+1) is dependent on 𝜆. Approximation of 𝜆 is needed and is
obtained from the second equation. Second equation can be again expressed as
𝑔(𝜆) = 𝜆 where 𝑔(𝜆) is

𝑔(𝜆) =𝑛
[︃

𝑛−𝑁∑︁
𝑖=1

𝑥𝑖 − (𝛼− 1)
𝑛−𝑁∑︁
𝑖=1

𝑥𝑖𝑒
−𝜆𝑥𝑖

1 − 𝑒−𝜆𝑥𝑖
+

𝑁∑︁
𝑗=1

𝐸
(︁
𝑌𝑗, 𝛼

(𝑘), 𝜆(𝑘)
)︁

− (𝛼− 1)
𝑁∑︁

𝑗=1
𝐸

(︃
𝑌𝑗𝑒

−𝜆𝑌𝑗

1 − 𝑒−𝜆𝑌𝑗
, 𝛼(𝑘), 𝜆(𝑘)

)︃]︃−1

Function 𝑔(𝜆) is also dependent on the 𝛼 parameter, but this can be estimated as
𝛼̂(𝜆) and thus 𝑔(𝜆) will depend only on parameter 𝜆.

The steps are now similar to estimation in Chapter 6 except that the calcu-
lations are done in an iterative way. The algorithm is summarized here and the
implementation can be found on the attached CD.

EM algorithm for GE distribution

Data: Vector x, Vectors a and b for censored variables.
Result: Estimated parameters 𝛼̂ and 𝜆̂

Start with arbitrary positive values 𝛼(1) and 𝜆(1);
𝛼(𝑘+1) := 𝛼(1), 𝜆(𝑘+1) := 𝜆(1);
repeat

𝛼(𝑘) := 𝛼(𝑘+1), 𝜆(𝑘) := 𝜆(𝑘+1);
Define 𝑔(𝜆) = 𝑔(𝜆,x,a,b, 𝛼(𝑘), 𝜆(𝑘));
𝜆(𝑘+1):=Solve(𝑔(𝜆) − 𝜆 = 0);
𝛼(𝑘+1) = 𝛼̂(𝜆(𝑘+1));

until
⃒⃒⃒
𝛼(𝑘) − 𝛼(𝑘+1)

⃒⃒⃒
< 𝜖 and

⃒⃒⃒
𝜆(𝑘) − 𝜆(𝑘+1)

⃒⃒⃒
< 𝜖;
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7.1 Simulation results
As in the simulation results of the maximum likelihood method the same simula-
tions were done for type I left censored data by EM algorithm. The results of the
simulations are virtually the same and both methods are consistent with each other.
On the figures 7.4 and 7.5 can be seen a similar outcome of the simulations by using
EM algorithm as it was on figures 6.11 and 6.12, where maximum likelihood method
was used.

The biggest difference between this two approaches is the computing time. As
we could see, the EM algorithm is more general and is able to handle even very
diverse types of censoring. This is reflected in the computing time. On Fig. 7.3 can
be seen, that for higher censoring levels, the EM algorithm must do more iterations
and the demands on time grows. This particular simulation was set such that both
algorithms had to compute 1000 problems on the set censoring level 𝑇 with 𝑛 = 100
and for 𝛼 = 2.5, 𝜆 = 2. The time displayed is the overall time for each censoring
level 𝑇 .

Fig. 7.3: Time demands on both algorithms
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Fig. 7.4: Graph of average values of 𝛼̂ with respect to censoring level in % and
number of observations 𝑛 (EM algorithm)

Fig. 7.5: Graph of average values of 𝜆̂ with respect to censoring level in % and
number of observations 𝑛 (EM algorithm)
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8 APPLICATION
This chapter shows the application of derived theory on given measured sets of
data. First set of data deals with elemental carbon. Second set deals with organic
carbon. These two sets were measured at atmospheric station at Křešín u Pacova
from August 2013 till December 2013. Measurements were taken every day in 4
hour intervals.

Elemental carbon (also called black carbon, abbreviated as EC) is emitted
during the combustion of fossil fuels as small aerosol particles that are smaller than
2,5 µm. EC particles have often other chemicals attached to their surface. EC forms
include charcoal, soot, graphite, and coal. EC causes higher human morbidity and
premature mortality.

Naturally-occurring organic carbon (abbreviated as OC) forms are derived
from the decomposition of plants and animals. Sources of organic carbon include
industrial combustion and the degradation of carbon-containing materials.

Both samples are type I left censored with censoring level 𝑇 = 0.5 µgC/m3.
This censoring is caused by the lower resolution of measurements for samples that
have values less than 0.5 µgC/m3. Both data sets are time series. The corresponding
autocorrelation functions drop quickly to zero thus both time series can be consid-
ered as stationary.

8.1 Elemental carbon
First set of data consists of 740 measurements of elemental carbon. Unfortunately
almost 58% of the data is left censored. Estimated parameters of GE distribution
by maximum likelihood method for this set of data are 𝛼̂ = 2.53 and 𝜆̂ = 2.58. The
histogram of the data with the corresponding p.d.f. of this distribution can be seen
of figure 8.1.

Figure 8.2 shows the Q-Q plot (quantile-quantile plot) of the data and the
fitted distribution. The censored part of the data is not shown.

The censoring of this sample was quite high thus the Pearson 𝜒2 test was the
most appropriate one to test the goodness of fit. Figure 8.3 shows the comparison
between theoretical distribution and the data set. The outcome of the Pearson 𝜒2

test was the following:

Pearson’s Chi-squared test
data: dataEC
X-squared = 5.8157, df = 13, p-value = 0.9526

The p-value = 0.9526 > 0.05 and that means that the hypothesis that the data are
coming from GE distribution is not rejected.
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Fig. 8.1: Histogram of EC data and p.d.f. of fitted GE distribution

Fig. 8.2: Q-Q plot of EC

.



CHAPTER 8. APPLICATION 57

Fig. 8.3: Illustration of the Pearson 𝜒2 test on EC data

8.2 Organic carbon
Second set of data consists of 742 measurements of organic carbon. OC has higher
concentrations in the air thus only two observations were censored during the ex-
periment. Estimated parameters of GE distribution for this set of data are 𝛼 = 4.61
and 𝜆 = 0.79. The histogram of the data with the corresponding p.d.f. of this
distribution can be seen of figure 8.4.

Figure 8.5 shows the Q-Q plot of the data and the fitted distribution. The
censored part of the data is not shown.

There are only 2 censored values of 742. For this case is used Kolmogorov-
Smirnov test as the goodness of fit test. The outcome of the Kolmogorov-Smirnov
test was the following:

One-sample Kolmogorov-Smirnov test
data: dataOC
D = 0.0296, p-value = 0.5502
alternative hypothesis: two-sided

The p-value = 0.5502 > 0.05 and that means that the hypothesis that the data are
coming from GE distribution is not rejected.
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Fig. 8.6: Illustration of Kolmogorov–Smirnov test on OC data

Analysis of both samples showed that GE distribution can be used as an al-
ternative distribution for analyzing unimodal, positively skewed data.
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9 CONCLUSION
The thesis describes the GE distribution and its characteristics. Fundamental char-
acteristics are described in chapter 2. Chapter 3 summarizes the methods of pa-
rameter estimations with special attention to the maximum likelihood estimations.
Chapter 4 describes goodness of fit tests for this distributions and chapter 5 shows
the comparisons among the GE distribution, Weibull distribution and log-normal
distribution. Chapter 6 introduces the fundamentals of censoring and the maximum
likelihood estimations with censored variables.

Chapter 6 contains section where I derived the maximum likelihood method
for type I left censored data of the GE distribution. Type I left censored case has
not been studied before. The maximum likelihood estimations are derived as well as
their asymptotic behavior through the Fisher information matrix. The theoretically
derived properties are verified by using simulations. Simulation results are presented
in detail and the practical recommendations on sample censoring are done. Moreover
observations of parameter sensitivity are done.

Chapter 7 introduces the EM algorithm that I developed for the GE distri-
bution. EM algorithm can be used for simulations of various types of censoring.
The performance of this algorithm is compared to the maximum likelihood method
on the same type I left censored data. Although the numerical results on both
algorithms are almost the same, it is shown that the EM algorithm is much more
time-consuming than the derived maximum likelihood method. This shows the ef-
ficiency of the maximum likelihood approach.

As an example, environmental data of elemental carbon and organic carbon
are presented. Data were collected at atmospheric station at Křešín u Pacova from
August 2013 till December 2013. Analysis shows that GE distribution can be used
as an alternative distribution for analyzing the environmental data.
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A PROPERTIES OF WEIBULL AND
LOG-NORMAL DISTRIBUTION

A.1 Weibull distribution
The Weibull distribution is characterized by shape parameter 𝜏 and the scale pa-
rameter 𝜃. The Weibull distribution has the cumulative distribution function:

𝐹𝑊 (𝑥; 𝜏, 𝜃) = 1 − 𝑒−( 𝑥
𝜃

)𝜏

, 𝜏, 𝜃 > 0, 𝑥 ≥ 0

and probability density function:

𝑓𝑊 (𝑥; 𝜏, 𝜃) = 𝜏𝜃−𝜏𝑥𝜏−1𝑒−( 𝑥
𝜃

)𝜏

, 𝜏, 𝜃 > 0, 𝑥 ≥ 0

For a better picture of how the density function looks like for different 𝜏 and 𝜃

observe the figures A.2 and A.3.
The hazard function is given by:

ℎ𝑊 (𝑥; 𝜏, 𝜃) = 𝜏

𝜃

(︂
𝑥

𝜃

)︂𝜏−1
, 𝜏, 𝜃 > 0, 𝑥 ≥ 0

The different behavior of the hazard function is on figure A.1. Observe that for
𝜏 = 1 the function is a constant function equal to 1

𝜃
. For 𝜏 < 1 the hazard function

rises to infinity. For 𝜏 > 1 the hazard function approaches zero.

Fig. A.1: Hazard function of Weibull distriution with 𝜃 = 0.4 fixed
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Fig. A.2: P.d.f. of Weibull distribution with 𝜃 = 1 fixed

Fig. A.3: P.d.f. of Weibull distribution with 𝜏 = 2 fixed
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A.2 Log-normal distribution
The log-normal distribution is characterized by parameters 𝜇 and 𝜎. The log-normal
distribution has the cumulative distribution function:

𝐹𝐿𝑁(𝑥;𝛼, 𝛽) = 𝜑

(︃
ln 𝑥− 𝜇

𝜎

)︃
, 𝜇 ∈ R, 𝜎 > 0, 𝑥 ≥ 0

and probability density function:

𝑓𝐿𝑁(𝑥;𝜇, 𝜎) = 1
𝑥𝜎

√
2𝜋
𝑒− (ln 𝑥−𝜇)2

2𝜎2 , 𝜇 ∈ R, 𝜎 > 0, 𝑥 ≥ 0

For a better picture of how the density function looks like for different 𝜇 and 𝜎

observe the figures A.5 and A.6.
The hazard function is given by:

ℎ𝐿𝑁(𝑥;𝜇, 𝜎) = 1
𝑥𝜎

√
2𝜋
𝑒− (ln 𝑥−𝜇)2

2𝜎2

[︃
𝜑

(︃
ln 𝑥− 𝜇

𝜎

)︃]︃−1

, 𝜇 ∈ R, 𝜎 > 0, 𝑥 ≥ 0

The behavior of the hazard function is on Figure A.4. The log-normal hazard
function approaches zero for any parameters 𝜇 and 𝜎.

Fig. A.4: Hazard function of Log-normal distriution with 𝜇 = 0.5 fixed
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Fig. A.5: P.d.f. of Log-normal distriution with 𝜎 = 1 fixed

Fig. A.6: P.d.f. of Log-normal distriution with 𝜇 = 1 fixed
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