

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

ÚSTAV MIKROELEKTRONIKY

DEPARTMENT OF MICROELECTRONICS

MIKROKONTROLÉREM ŘÍZENÝ LABORATORNÍ ZDROJ

DIGITALLY CONTROLLED LABORATORY POWER SUPPLY

BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS

AUTOR PRÁCE AUTHOR Petr Spáčil

VEDOUCÍ PRÁCE SUPERVISOR

Ing. Zoltán Szabó, Ph.D.

BRNO 2019

Bakalářská práce

bakalářský studijní obor Mikroelektronika a technologie

Ústav mikroelektroniky

Student: Petr Spáčil Ročník: 3 *ID:* 191855 *Akademický rok:* 2018/19

NÁZEV TÉMATU:

Mikrokontrolérem řízený laboratorní zdroj

POKYNY PRO VYPRACOVÁNÍ:

Prostudujte relevantní literaturu ohledně konstrukce stejnosměrných laboratorních zdrojů. Seznamte se s prací a programováním mikrokontrolérů a zaměřte se na mikrokontroléry od firmy Atmel. Podle získaných poznatků popište možné topologie laboratorních zdrojů, požadavky na ně a vyberte nejvhodnější řešení s ohledem na účinnost a rušení. Navrhněte zapojení laboratorního zdroje, který bude řízen pomocí mikrokontroléru. Měřené a nastavené hodnoty napětí a proudu budou zobrazeny na LCD panelu. Navrhněte plošné spoje. Napište firmware pro řízení a ovládání zdroje. Zdroj realizujte a oživte, měřením jeho parametry ověřte.

DOPORUČENÁ LITERATURA:

Podle pokynů vedoucího práce.

Termín zadání: 4.2.2019

Vedoucí práce: Ing. Zoltán Szabó, Ph.D. Konzultant:

> doc. Ing. Jiří Háze, Ph.D. předseda oborové rady

Termín odevzdání: 30.5.2019

UPOZORNĚNÍ:

Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické v Brně / Technická 3058/10 / 616 00 / Brno

Autor bakalářské práce nesmí při vytváření bakalářské práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.40/2009 Sb.

ABSTRAKT

Tato bakalářská práce se zabývá rozdělením a rešerší stejnosměrných zdrojů napětí. Popisuje jak zapojení zdrojů lineárních, tak zapojení zdrojů spínaných. Dále je blíže popsán 8bitový mikrokontrolér ATmega16 z rodiny mikrokontrolérů AVR firmy ATMEL. Hlavním cílem této bakalářské práce je návrh laboratorního zdroje 30V / 3A, který je v topologii spínané předregulace. Měření a zobrazování hodnot na displeji zajišťuje mikrokontrolér ATmega16.

KLÍČOVÁ SLOVA

Laboratorní zdroj, spínaný napájecí zdroj, mikrokontrolér, spínaná předregulace, ATmega16

ABSTRACT

This bachelor thesis deals with the divison and research of DC voltage sources. It also describes how linear and switch mode power supply works. The 8-bit ATmega16 microcontroller from the ATMEL family of AVR microcontrollers is further described. Part of this bachelor thesis is the desing of the laboratory power supply source 30V / 3A, which is in the topology of switched pre-regulation. The ATmega 16 microcontroller provides measurement and displaying values on the display.

KEYWORDS

Laboratory power supply, Switch-mode power supply, microcontroler, switching preregulation, ATmega16

SPÁČIL, P. *Mikrokontrolérem řízený laboratorní zdroj*. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2019. 66 s. Vedoucí bakalářské práce Ing. Zoltán Szabó, Ph.D.

Prohlášení

Prohlašuji, že svou bakalářskou práci na téma **"Mikrokontrolérem řízený laboratorní zdroj"** jsem vypracoval samostatně pod vedením vedoucího bakalářské práce a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce.

Jako autor uvedené bakalářské práce dále prohlašuji, že v souvislosti s vytvořením této bakalářské práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl nedovoleným způsobem do cizích autorských práv osobnostních a jsem si plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení § 152 trestního zákona č. 140/1961 Sb.

V Brně dne 30. května 2019

.....

podpis autora

Poděkování

Velice děkuji vedoucímu bakalářské práce Ing. Z. Szabóovi, Ph.D. za účinnou metodickou, pedagogickou a odbornou pomoc a další cenné rady při zpracování této bakalářské práce. Dále bych chtěl poděkovat vedení FEKT VUT Brno za možnost využít laboratoř SC 2.83 k měření reálných parametrů.

V Brně dne 30. května 2019

.....

podpis autora

OBSAH

S	eznam o	obrázků	.6
S	eznam (tabulek	.8
S	eznam z	zkratek	.9
Ú	vod		10
1	Line	eární napájecí zdroje	11
	1.1 '	Transformátor	11
	1.2	Usměrňovač	12
	1.3	Stabilizátor	13
	1.3.1	Parametrické stabilizátory	13
	1.3.2	2 Teorie lineárních stabilizátorů	14
	1.3.3	B Porovnání lineárních a spínaných měničů	15
2	Spín	nané zdroje napětí	16
	2.1	Spínané zdroje bez transformátoru (s indukčností)	17
	2.1.1	l Snižující měnič (buck) – step down	17
	2.1.2	2 Zvyšující měnič (boost) – step up	17
	2.1.3	3 Zvyšující a snižující měnič (cuk)	18
	2.1.4	1 Invertující měnič	19
	2.2	Jednočinné měniče s transformátory	20
	2.2.1	l Akumulující měnič – flyback	20
	2.2.2	2 Propustný měnič - forward	21
	2.2.3	3 Rezonanční měnič	23
	2.3	Dvojčinné měniče s transformátory	23
	2.3.1	1 Měnič v zapojení push-pull	23
	2.3.2	2 Měnič v zapojení polomost	24
	2.3.3	3 Měnič v zapojení plný most	26
3	Mik	rokontroléry AVR	27
	3.1	ATmega16	27
	3.1.1	l Vstupně-výstupní porty	28
	3.1.2	2 Sériový kanál SPI	28
	3.1.3	3 Interní A/D převodník	29
	3.2	Programování mikrokontroléru	29

4	Ná	vrh zdroje	. 30
4	4.1	Koncepce zdroje	30
4.2		Blokové schéma zdroje	31
4	4.3	Vstupní AC/DC měnič Mean-Well LRS 150-36	.33
4	4.4	Regulovatelný zdroj 30 V/3 A	.34
4	4.5	Stabilizátor napětí 5 V	.35
4	4.6	Měření a nastavení proudového omezení	.35
4	4.7	Mikrokontrolér a periferie	.36
4	4.8	Obvod zapínající výstup	.37
5	Fi	mware mikrokontroléru	. 38
	5.1	Základní popis programu mikrokontroléru	.38
6	Ko	nstrukce zdroje	. 39
7	М		
1	IVI	éření charakteristik zdroje	. 41
,	NI 7.1	éření charakteristik zdroje Měření charakteristik zdroje	. 41 . 41
,	7.1 7.2	éření charakteristik zdroje Měření charakteristik zdroje Účinnost zdroje	. 41 . 41 . 41
, , ,	7.1 7.2 7.3	éření charakteristik zdroje Měření charakteristik zdroje Účinnost zdroje Zvlnění výstupního svorkového napětí	. 41 . 41 . 41 . 45
,	7.1 7.2 7.3 7.4	Šření charakteristik zdroje Měření charakteristik zdroje Účinnost zdroje Zvlnění výstupního svorkového napětí Zatěžovací charakteristika zdroje	. 41 . 41 . 41 . 45 . 48
8	7.1 7.2 7.3 7.4 Zá	Šření charakteristik zdroje Měření charakteristik zdroje Účinnost zdroje Zvlnění výstupního svorkového napětí Zatěžovací charakteristika zdroje věr	. 41 . 41 . 41 . 45 . 48 . 50
, , , , , , , , , , , , , , , , , , ,	7.1 7.2 7.3 7.4 Zá terat	Šření charakteristik zdroje Měření charakteristik zdroje Účinnost zdroje Zvlnění výstupního svorkového napětí Zatěžovací charakteristika zdroje věr	.41 .41 .45 .45 .48 .50 .51
y y y y y y y y y y y y y y y y y y y	7.1 7.2 7.3 7.4 Zá terat znam	Šření charakteristik zdroje Měření charakteristik zdroje Účinnost zdroje Zvlnění výstupního svorkového napětí Zatěžovací charakteristika zdroje věr ura I příloh	.41 41 45 48 .50 .51
7 7 8 8 Lit Sez 1.	7.1 7.2 7.3 7.4 Zá terat znam Sc	Šření charakteristik zdroje Měření charakteristik zdroje Účinnost zdroje Zvlnění výstupního svorkového napětí Zatěžovací charakteristika zdroje věr ura n příloh	.41 .41 .45 .48 .50 .51 .52 .53
8 Lif Sez I. II.	7.1 7.2 7.3 7.4 Zá terat znam Sc Ná	Šření charakteristik zdroje Měření charakteristik zdroje Účinnost zdroje Zvlnění výstupního svorkového napětí Zatěžovací charakteristika zdroje věr ura n příloh hémata zapojení vrh DPS	.41 .41 .45 .48 .50 .51 .52 .53 .56
7 7 8 8 Lif Sez I. II. III.	7.1 7.2 7.3 7.4 Zá terat znam Sc Ná . Pr	Šření charakteristik zdroje Měření charakteristik zdroje Účinnost zdroje Zvlnění výstupního svorkového napětí Zatěžovací charakteristika zdroje věr n příloh hémata zapojení ůběhy výstupního zvlnění	.41 41 45 .48 .50 .51 .52 .53 .56 .58

SEZNAM OBRÁZKŮ

Obrázek 1.: Schémata usměrňovačů a zdvojovače	12
Obrázek 2.: Schéma stabilizátoru se Zenerovou diodou	13
Obrázek 3.: Základní zapojení lineárního zpětnovazebního stabilizátoru	14
Obrázek 4.: Blokové schéma spínaného zdroje	16
Obrázek 5.: Principiální zapojení snižujícího měniče	17
Obrázek 6.: Principiální zapojení zvyšujícího měniče	18
Obrázek 7.: První fáze činnosti měniče typu "cuk"	18
Obrázek 8.: Druhá fáze činnosti měniče typu "cuk"	19
Obrázek 9.: Topologie invertujícího měniče (sepnutý tranzistor Q)	19
Obrázek 10.: Topologie invertujícího měniče (rozepnutý tranzistor Q)	20
Obrázek 11.: První fáze měniče typu typu flyback (tranzistor Q sepnutý)	20
Obrázek 12.: Druhá fáze činnosti měniče typu flyback (tranzistor Q rozepnutý)	21
Obrázek 13.: Schéma propustného měniče - forward (tranzistor Q1 sepnut)	22
Obrázek 14.: Schéma propustného měniče - forward (tranzistor Q1 rozepnut)	22
Obrázek 15.: Schéma rezonančního měniče	23
Obrázek 16.: Schéma měniče v zapojení push-pull (tranzistor Q1 sepnut)	24
Obrázek 17.: Zapojení v polomostu se dvěma primárními vinutími	25
Obrázek 18.: Zapojení v polomostu s jedním primárním vinutím	26
Obrázek 19.: Zapojení měniče s plným mostem	26
Obrázek 20.: Pinout mikrokontroléru ATmega16 v pouzdře PDIP	27
Obrázek 21.: Programátor USBasp V2.0.	29
Obrázek 22.: Filtrace výstupního napětí předregulátoru	30
Obrázek 23.: Návrh zapojení laboratorního zdroje	31
Obrázek 24.: Testování čtyřřádkového displeje	32
Obrázek 25.: Vstupní AC/DC měnič Mean-Well LRS 150-36	33
Obrázek 26.: Zapojení stabilizátoru napětí LM7805	35
Obrázek 27.: Zapojení operačního zesilovače pro proudové omezení	36
Obrázek 28.: Schéma zapojení obvodu zapínající výstup	37
Obrázek 29.: Vývojový diagram firmwaru mikrokontroléru	38
Obrázek 30.: Přední panel regulovatelného zdroje	39
Obrázek 31.: Vnitřní uspořádání regulovatelného zdroje	40
Obrázek 32.: Schéma zapojení pro měření účinnosti laboratorního zdroje	42
Obrázek 33.: Graf účinnosti laboratorního zdroje	43
Obrázek 34.: Graf účinnosti laboratorního zdroje pro proudy od 0,5 A	43
Obrázek 35.: Pracoviště pro měření parametrů v laboratoři	44
Obrázek 36.: Schéma zapojení pro měření zvlnění výstupního svorkového napětí	45
Obrázek 37.: Zvlnění výstupního napětí při Uvýstupní = 30 V a Ivýstupní = 3 A	46
Obrázek 38.: Zvlnění výstupního napětí při proudovém omezení na Ivýstupní = 1 A	46
Obrázek 39.: Zvlnění výstupního napětí při Uvýstupní = 10 V a Ivýstupní = 1 A	46
Obrázek 40.: Schéma zapojení pro měření zatěžovací charakteristiky zdroje	48

Obrázek 41.: Zatěžovací charakteristika laboratorního zdroje	49
Obrázek 42.: Schéma zapojení laboratorního zdroje	53
Obrázek 43.: Schéma zapojení regulovatelného zdroje	54
Obrázek 44.: Zapojení mikrokontroléru s periferiemi	55
Obrázek 45.: Navržená DPS regulovatelného zdroje	56
Obrázek 46.: Předloha DPS pro leptání	57
Obrázek 47.: Průběh výstupního zvlnění při U _{výstupní} = 10 V a I _{výstupní} = 1 A	58
Obrázek 48.: Průběh výstupního zvlnění při $U_{výstupni} = 10$ V a $I_{výstupni} = 2$ A	58
Obrázek 49.: Průběh výstupního zvlnění při U _{výstupní} = 10 V a I _{výstupní} = 3 A	59
Obrázek 50.: Průběh výstupního zvlnění při U _{výstupní} = 20 V a I _{výstupní} = 1 A	59
Obrázek 51.: Průběh výstupního zvlnění při Uvýstupní = 20 V a Ivýstupní = 2 A	60
Obrázek 52.: Průběh výstupního zvlnění při U _{výstupní} = 20 V a I _{výstupní} = 3 A	60
Obrázek 53.: Průběh výstupního zvlnění při U _{výstupní} = 30 V a I _{výstupní} = 1 A	61
Obrázek 54.: Průběh výstupního zvlnění při U _{výstupní} = 30 V a I _{výstupní} = 2 A	61
Obrázek 55.: Průběh výstupního zvlnění při Uvýstupní = 30 V a Ivýstupní = 3 A	62
Obrázek 56.: Průběh výstupního zvlnění při proudovém omezení na 1 A	62
Obrázek 57.: Průběh výstupního zvlnění při proudovém omezení na 2 A	63

SEZNAM TABULEK

Tabulka 1.: Srovnání parametrů spínaných a lineárních zdrojů15
Tabulka 2.: Seznam přístrojů použitých při měření charakteristik zdroje41
Tabulka 3.: Naměřené hodnoty zvlnění výstupního svorkového napětí45
Tabulka 4.: Tabulka naměřených hodnot při měření zatěžovací charakteristiky64
Tabulka 5.: Tabulka naměřených hodnot účinnosti při výstupním napětí naprázdno 10 V
Tabulka 6.: Tabulka naměřených hodnot účinnosti při výstupním napětí naprázdno 20 V
Tabulka 7.: Tabulka naměřených hodnot účinnosti při výstupním napětí naprázdno 20 V

SEZNAM ZKRATEK

- AC Střídavý proud
- DC Stejnosměrný proud
- VA Voltampérová
- A/D Analog/Digital
- D/A Digital/Analog
- PWM Pulsně šířková modulace
- SPI Serial peripheral interface
- LCD Liquid crystal display
- DPS Deska plošných spojů
- p-p-peak-to-peak hodnota (napětí špička-špička)

ÚVOD

Cíl bakalářské práce je návrh laboratorního zdroje 30 V/3 A a rozbor teorie lineárních a spínaných zdrojů napětí, popis základních topologií těchto dvou typů a jejich srovnání. U lineárních a spínaných napájecích zdrojů popsat základní části, u zdrojů spínaných pak také funkci topologií měničů jak s cívkou, tak s transformátorem a doplnit je schématy.

Součástí práce je také stručné seznámení s 8bitovým mikrokontrolérem ATmega16 a jeho registry.

V rámci této bakalářské práce je jako hlavní cíl návrh laboratorního zdroje 30 V/3 A, řízeného mikrokontrolérem ATmega16. Zdroj má být navrhnut s ohledem na vysokou účinnost a nízké výstupní zvlnění.

1 LINEÁRNÍ NAPÁJECÍ ZDROJE

Cílem práce je navrhnout regulovatelný laboratorní zdroj. Historicky byly lineární zdroje dříve než zdroje spínané, které se začaly používat až na začátku 70. let 20. století. Jsou nejjednodušší z hlediska konstrukce. U lineárních napájecích zdrojů je regulace dosažena jedním nebo více polovodičovými prvky (bipolární tranzistor nebo MOSFET). Teorie lineárních stabilizátorů je popsána níže v následující kapitole.

Lineární zdroj je obvykle složen z několika základních bloků. Patří mezi ně vstupní filtr, transformátor, usměrňovač, filtr usměrněného napětí, regulátor a výstupní filtr.

1.1 Transformátor

Transformátor je elektrické zařízení, které přenáší energii mezi dvěma nebo více elektronickými obvody na základě elektromagnetické indukce. Sestává se ze dvou cívek na společném jádře, které může být např. feritové, železné nebo vzduchové. Protékající střídavý elektrický proud v jedné cívce (primární vinutí) transformátoru způsobuje měnící se magnetický tok Φ , který prochází jádrem transformátoru a indukuje elektrické napětí v cívce druhé (sekundární vinutí). Elektrický výkon tak je přenášen mezi dvěma cívkami bez galvanického spojení. Transformátor je používán pro zvýšení nebo snížení střídavého napětí. [1]

$$p = \frac{N_P}{N_S} = \frac{U_P}{U_S} \tag{1.1}$$

Kde písmeno p je převod transformátoru, N_P je počet závitů na primárním vinutí, N_S je počet závitů na sekundárním vinutí, U_P je napětí na primárním vinutí a U_S napětí na vinutí sekundárním. V případě, že p > 1 se jedná o transformátor zvyšující, při p < 1 se jedná o transformátor snižující. Když p = 1 a tedy počet závitů na primárním vinutí je shodný s počtem závitů na vinutí sekundárním, jedná se o transformátor oddělovací, kdy jediná jeho funkce je galvanické oddělení obvodů. [1]

Ideální transformátor je bezeztrátový. U reálného transformátoru se však vyskytují ztráty nakrátko (ztráty vinutí), které jsou způsobeny elektrickým odporem vodičů obou vinutí. Toto vinutí je při průchodu elektrického proudu zahříváno. Dále jsou zde ztráty naprázdno, což jsou ztráty v jádře transformátoru. Jsou složeny ze ztrát magnetizačních a ztrát vířivými proudy. Ztráty magnetizační vznikají v důsledku přemagnetování. Kolmo na směr magnetického toku Φ může protékat zkratový vířivý proud, který je důsledkem těchto ztrát vířivými proudy. [3]

1.2 Usměrňovač

V oblasti napájecích zdrojů bylo ustáleno několik zapojení usměrňovačů podle požadavků na napětí, proud a zvlnění. Základní rozdělení: Pro síťový kmitočet 50 Hz:

- jednocestný usměrňovač (vysoká napětí, malé proudy, velké zvlnění)
- dvoucestný usměrňovač (nízká napětí, velké proud, malé zvlnění)
- Graetzův usměrňovač (můstkový) (střední napětí, velké proudy, malé zvlnění)
- zdvojovač (Greinacherův) (vysoká napětí, malé proudy, velké zvlnění)
- násobič (velmi vysoká napětí, velmi malé proudy, velké zvlnění)

Pro vyšší kmitočty (okolo 100 kHz):

- jednocestný (nízká napětí, vysoké proudy, malé zvlnění)
- dvoucestný (nízká napětí, velké proudy, malé zvlnění, omezuje stejnosměrné sycení jádra transformátoru)

Schémata jednocestného, dvoucestného, Graetzova usměrňovače a zdvojovače napětí lze vidět na obrázku obrázku (Obrázek 1).

Obrázek 1.: Schémata usměrňovačů a zdvojovače.

1.3 Stabilizátor

Stabilizátory jsou obvody, které jsou schopny stabilizovat výstupní napětí nebo proud při změnách výstupního proudu, výstupního napětí a okolní teploty. Na výstupní napětí může mít však vliv např. elektromagnetické rušení nebo stárnutí a opotřebení součástek. Stabilizátor má také tendenci snižovat střídavou složku výstupního napětí (pracuje jako filtr). [4]

1.3.1 Parametrické stabilizátory

Jejich funkce je založena na principu rozdílu mezi stejnosměrným odporem a dynamickým odporem stabilizačního prvku v pracovním bodě. O parametrický stabilizátor napětí se jedná v případě, že je dynamický odpor v pracovním bodě nižší než odpor stejnosměrný (dioda v propustném směru, Zenerova dioda). O parametrický stabilizátor proudu se jedná, když naopak dynamický odpor v pracovním bodě je vyšší než odpor stejnosměrný (výstupní charakteristika tranzistoru za kolenem). [1]

Jedním ze základních parametrických stabilizátorů je stabilizátor se Zenerovou diodou. Schéma stabilizátoru lze vidět na obrázku (Obrázek 2).

U stabilizátoru se Zenerovou diodou se využívá jevu, kdy v závěrném směru dochází k rychlému nárůstu proudu při pomalém nárůstu napětí. Toto napětí je nazýváno Zenerovo napětí a tento děj je způsoben Zenerovým jevem nebo při vyšších hodnotách napětí jevem lavinovým.

Pro správnou stabilizaci je třeba taková Zenerova dioda, která má minimální teplotní závislost, to je $\alpha_{TKUZ} = 0 \ mV/K$. Diodu s touto teplotní závislostí lze najít se Zenerovým napětím kolem 6 V.

Další varianta je použít Zenerovu diodu s teplotním koeficientem $\alpha_{TKUZ} = -2 \ mV/K$ a k ní do série připojit propustně polarizovanou křemíkovou usměrňovací diodu, která má teplotní koeficient $\alpha_{TK} = -2 \ mV/K$. Tím se teplotní závislosti vykompenzují.

Stabilizátor s touto diodou pracuje tak, že při zvyšování vstupního napájecího napětí U_{IN} až na hodnotu Zenerova napětí U_{ZD} se pracovní bod dostává do kolena ve VA charakteristice a velice rychle klesá její odpor. Vstupní proud I_1 se rozděluje na proud Zenerovou diodou I_Z a proud do zátěže I_2 . Při nárůstu proudu se potom napětí zvyšuje minimálně. [1]

Obrázek 2.: Schéma stabilizátoru se Zenerovou diodou.

1.3.2 Teorie lineárních stabilizátorů

Integrovaný stabilizátor napětí se sestává ze stabilní napěťové reference a zesilovače regulační odchylky, který disponuje vysokým zesílením. Napěťová reference má přirozeně tu vlastnost, že její napětí je stabilní a vliv změny teploty přechodů a změn napájecího napětí je podstatně menší, než je vliv hodnoty referenčního napětí. Stabilizátor se snaží na výstupu držet konstantní napětí při změnách napětí vstupního. Ideální stabilizátor napětí je konstantní zdroj napětí s nulovým vnitřním odporem. V praxi je však odpor zdroje nenulový. [4]

Základem lineárního zpětnovazebního stabilizátoru napětí na obrázku (Obrázek 3). je NPN tranzistor v zapojení emitorového sledovače, operační zesilovač, zdroj referenčního napětí a zpětnovazební dělič napětí. Funguje tak, že operační zesilovač se zápornou zpětnou vazbou má za snahu udržet na obou vstupech shodná napětí. Porovnává tedy výstupní napětí (na děliči) s napěťovou referencí. Podle potřeby tedy otevírá a přivírá NPN tranzistor T_1 . V případě, že výstupní napětí klesne (vyšší zátěž), tranzistor T_1 je vybuzen větším napětím, otevře se a výstupní napětí se tak zvýší. Stabilizátor lze realizovat tak, že jako zesilovač odchylky se použije další NPN tranzistor, kde do báze povede napětí z výstupního děliče, v emitoru bude připojena Zenerova dioda jako napěťová reference a kolektor přes odpor do báze tranzistoru T_1 .

Obrázek 3.: Základní zapojení lineárního zpětnovazebního stabilizátoru.

1.3.3 Porovnání lineárních a spínaných měničů

Jsou dvě základní metody konverze napětí. U lineární regulace je regulační charakteristika dosažena jedním nebo více polovodičovými prvky (bipolární tranzistor nebo MOSFET), které jsou provozovány v lineární oblasti výstupní VA charakteristiky.

Lineární regulátory mají výhodu ve své jednoduchosti (minimum použitých okolních součástek), nízkém výstupním zvlnění a jednoduché možnosti regulace výstupního napětí. Mezi jejich nevýhody však patří nízká účinnost (s čímž je spojena obvykle nutnost použití chladičů), větší rozměry a hmotnost, neizolovaný vstup od výstupu a nemožnost konverze nahoru (tj vstupní napětí musí být vždy vyšší nebo stejné jako výstupní). I v případě nízké účinnosti se však často pro snížení napětí tam, kde rozdíl vstupního a výstupního napětí je několik Voltů nebo při nízkém odběru proudu. [4]

Na rozdíl od lineární regulace, u spínaných měničů je napěťové konverze dosaženo přepínáním jedné nebo více polovodičových součástek co nejrychleji mezi jejich sepnutým a rozepnutým stavem, kdy tranzistor je plně otevřen nebo plně uzavřen.

Mezi hlavní výhody spínaných zdrojů patří možnost konverze nahoru, vysoká účinnost, která dnes dosahuje 70 až 98 %, což zvyšuje jejich použitelnost v nízkopříkonových aplikacích a také nižší nároky na chlazení (rozměry chladiče). Účinnost se podstatně zlepšuje při dosažení spínacích kmitočtu okolo 20 kHz. Dále jejich váha a rozměry jsou menší než zdroje lineární. Nevýhodou je však jejich obecně složitější a komplikovanější návrh, a to hlavně z hlediska vysoké pracovní frekvence jednotlivých součástek, které musí na vysokých kmitočtech spolehlivě pracovat (mezní kmitočty tranzistorů a diod, rozptylové kapacity transformátorů a stejnosměrné odpory elektrolytických kondenzátorů). Další nevýhodou je zvlnění výstupního napětí a proudu díky rychlému spínání spínacích tranzistorů. Parametry spínaných zdrojů se postupně s klesající cenou použitých součástek zhoršují. Celkové srovnání lineárních a spínaných zdrojů lze vidět v tabulce (Tabulka 1).[4]

parametr	spínaný zdroj	lineární zdroj
účinnost	75 %	30 %
velikost	$0,2 \text{ W/cm}^3$	0,05 W/cm ³
váha	100 W/kg	20 W/kg
výstupní zvlnění	50 mV	5 mV
šumové napětí	200 mV	50 mV
odezva na skok	1 ms	20 µs
doba náběhu	20 ms	2 ms
cena	přibližně konstantní	roste s výkonem

Tabulka 1.: Srovnání parametrů spínaných a lineárních zdrojů

2 SPÍNANÉ ZDROJE NAPĚTÍ

Základní princip spínaných zdrojů je podobný jako u zdrojů lineárních s tím rozdílem, že spínací tranzistor může být jen ve dvou stavech – sepnutý nebo rozepnutý. Základní topologie spínaných zdrojů je naznačena na obrázku (Obrázek 4). Výstupní napětí je pomocí operačního zesilovače porovnáváno s napěťovou referencí a následně je spínací tranzistor spínán nebo rozepínán.

Spínaný zdroj se skládá z několika základních částí. Ne vždy obsahuje všechny (výstupní filtr) a často obsahuje i některé navíc (vstupní usměrňovač). Podmínkou činnosti spínaného zdroje je stejnosměrné vstupní napětí, pokud možno co nejvíce zbavené střídavé složky.

V případě, že vstupní napětí je stejnosměrné, není náročnost na vstupní filtr vysoká. Je-li však vstupní napětí střídavé (síťové napětí frekvence 50 Hz), je potřeba ho usměrnit a po usměrnění důkladně vyhladit zbytkové zvlnění napětí vstupním filtrem. Na takto nízkém kmitočtu není třeba klást vysoké nároky na usměrňovací diody, zatímco vstupní filtr musí mít dostatečné parametry. [1]

Pro transformování vstupního napětí je potřeba toto napětí nejprve převést na střídavý tvar. Toho je dosaženo vysokofrekvenčních spínacích tranzistorů – bipolárních pro frekvence do 200 kHz nebo FET tranzistorů pro frekvence do 3 MHz. Tyto spínací tranzistory ze stejnosměrného napětí spínáním a rozpínáním vytvoří obdélníkový průběh napětí.

Transformace velikosti napětí probíhá na indukčnosti nebo transformátoru. Střídavé napětí za tranzistorem je potřeba usměrnit a dostatečně vyfiltrovat jeho střídavé složky. Přitom naopak vzhledem ke vstupním obvodům jsou vysoké požadavky kladeny na usměrňovací diody, které musí správně usměrňovat průběh napětí na pracovním kmitočtu. Tyto diody by měly mít malou kapacitu přechodu a malou spínací a hlavně vypínací dobu. Na výstupní filtr již takové nároky jako na filtr vstupní nejsou. Filtrační účinky filtru na vysokém kmitočtu jsou vynikající. [1]

Obrázek 4.: Blokové schéma spínaného zdroje.

2.1 Spínané zdroje bez transformátoru (s indukčností)

Spínané zdroj bez transformátoru jsou jednou ze dvou skupin spínaných zdrojů. Jako akumulační prvek je zde použita jedna nebo více cívek, které však nejsou na společném jádře a nepracují tedy jako transformátor. U těchto typů spínaných zdrojů není vstupní a výstupní napětí galvanicky izolováno. V případě potřeby vyšších výkonů jsou však rozměry cívky příliš velké a je tak nutno užít transformátor. Mezi tyto zdroje patří měnič buck, boost, cuk (buck-boost) a měnič invertující.

2.1.1 Snižující měnič (buck) – step down

Na obrázku (Obrázek 5). lze vidět principiální zapojení snižujícího měniče. Jedná se o neizolovaný měnič dolů. Během sepnutí tranzistoru Q je proud veden z napájecího zdroje a cívku L do zátěže. Během rozepnutí tranzistoru Q se cívka L stává zdrojem napětí a proud se do zátěže uzavírá přes diodu D. V případě sepnutého tranzistoru Q výstupní napětí roste, roste i napětí na kondenzátoru C a ten se nabíjí. V případě rozepnutého tranzistoru Q se změní polarita proudu kondenzátorem, ten se vybíjí do zátěže a přičítá se k proudu tekoucího z cívky do zátěže, čímž se zmenšuje výstupní zvlnění. [4]

Výhodou zapojení je nízká cena a jednoduchost. Nevýhody spočívají v omezení rozsahu výkonů a galvanickém spojení vstupu a výstupu. Při zkratu výstupu může dojít k nenávratnému zničení tranzistoru *Q*. Střída je měnitelná od 0 do 100 %. [4]

Obrázek 5.: Principiální zapojení snižujícího měniče.

2.1.2 Zvyšující měnič (boost) – step up

Jedná se o neizolovaný měnič nahoru (zvyšující). Zvyšující měnič lze vidět na obrázku (Obrázek 6). Výstupní napětí může být pouze vyšší než je napětí vstupní. Lze také tento měnič považovat za nepřímý měnič energie. Je totiž akumulována v magnetickém poli cívky.

Během sepnutí tranzistoru Q roste proud cívkou a obvod se uzavírá přes sepnutý tranzistor. Energie je akumulována v mag. poli cívky a ta se jeví jako spotřebič. Během rozepnutí tranzistoru Q proud protéká ze vstupního zdroje napětí přes cívku a diodu D až do zátěže, ale část proudu teče do kondenzátorem C a ten se nabíjí. V tomto případě se cívka jeví jako zdroj a je spojena se vstupním zdrojem v sérii. Naindukované napětí na cívce L se sčítá se vstupním napětím, dioda D přejde do vodivého stavu. Dioda D ve fázi sepnutého tranzistoru Q zabraňuje vybíjení kondenzátoru C přes tranzistor Q.

Mezí výhody patří nízká cena, jednoduchost a možnost dosáhnout výstupního napětí vyššího než vstupního bez užití transformátoru. Při nízkých hodnotách střídy je však poměrně vysoké výstupní zvlnění. [4]

Obrázek 6.: Principiální zapojení zvyšujícího měniče.

2.1.3 Zvyšující a snižující měnič (cuk)

V literatuře je označení "cuk" užíváno pro takové měniče, jenž dokáží výstupní napětí zvyšovat i snižovat, respektive na svém výstupu dokáží udržovat konstantní napětí v případě, že vstupní napětí je vyšší nebo nižší než napětí výstupní. Výstupní napětí je opačné polarity než napětí vstupní. Činnost měniče je ilustrována na obrázcích (Obrázek 7 a Obrázek 8).

Jedná se o neizolovaný a nepřímý měnič. V první fázi je tranzistor Q rozepnutý, teče proud za vstupního zdroje v sérii s cívkou L_1 (chová se jako zdroj) přes kondenzátor C_1 , diodu D a uzavírá se opět do vstupního zdroje. Kondenzátor C_1 je nabíjen na napětí $U_{IN} + U_{L1vyp}$ nebo menší, které je určeno dobou do sepnutí tranzistoru Q. Energie magnetického pole cívky L_1 klesá, s ní i hodnota proudu, který jí protéká. V případě, že by interval rozepnutí tranzistoru Q byl dostatečně dlouhý, nabitý kondenzátor C_1 by se začal vybíjet přes cívku L_1 do vstupního zdroje. Tomu by se mělo správným časováním spínání tranzistoru Q zabránit. [4]

Obrázek 7.: První fáze činnosti měniče typu "cuk".

V druhé fázi je tranzistor Q sepnut. Jakmile je sepnut, začne proud protékat ze vstupního zdroje cívkou L_1 a přes sepnutý tranzistor Q opět do zdroje a hodnota proudu cívkou se zvyšuje. Také je kladný pól kondenzátoru C_1 spojen se zemí a může se vybíjet. Kondenzátor C_1 se vybíjí, kondenzátor C_2 se nabíjí a na cívce L_2 je napětí U_{L2zap} , které vzniklo procházejícím proudem při současném ukládání energie do jejího mag. pole. [4] Ve třetí části je opět tranzistor Q_1 rozepnut a opětovně probíhá část první s tím rozdílem, že v mag. poli cívky L_2 je uložena energie, která při rozepnutí tranzistoru Q_1 má tendenci neměnit směr proudu při otáčení polarity napětí na této cívce a tento proud protéká přes diodu D_1 a zatěžovací odpor R_Z zpět do cívky.

Tento typ měniče je užíván v případech při napájení z akumulátoru, kdy napětí toho akumulátoru je nejdřív vyšší než požadované výstupní napětí a poté nižší. Nejprve tedy měnič pracuje jako snižující a při vybitém akumulátoru jako měnič zvyšující. [4]

Obrázek 8.: Druhá fáze činnosti měniče typu "cuk".

2.1.4 Invertující měnič

Tento typ měniče má tu vlastnost, že mění polaritu výstupního napětí oproti vstupnímu. Tuto vlastnost má i měnič topologie "cuk", u kterého však obrácení polarity vyplynulo z jiného důvodu než z potřeby inverze. Invertující zapojení měniče je tedy realizovatelné jednodušeji.

Invertující měnič opět pracuje ve dvou fázích spínání tranzistoru Q. Během sepnutí tranzistoru Q (Obrázek 9.) proud začne protékat ze vstupního zdroje přes cívku L a uzavírá se opět do vstupního zdroje. Tento proud I_{Lzap} lineárně roste kvůli konstantnímu napětí vstupního zdroje a jeho orientace je stejná jako napětí na cívce U_{Lzap} , protože se v této části chová jako spotřebič. Proud do zátěže je kryt úbytkem náboje na kondenzátoru C a výstupní napětí U_{OUT} klesá. [4]

Obrázek 9.: Topologie invertujícího měniče (sepnutý tranzistor Q).

V druhé fázi, když tranzistor Q je rozepnutý (Obrázek 10.), se cívka L mění ze spotřebiče na zdroj, proud teče stejným směrem, ale napětí na cívce má obrácenou polaritu. Tím se otevře dioda D a proud pak protéká z cívky L přes diodu D, zátěž R_Z a opět přes cívku L. Při tom je kondenzátor C dobíjen a napětí na tomto kondenzátoru roste. [4]

Obrázek 10.: Topologie invertujícího měniče (rozepnutý tranzistor Q).

2.2 Jednočinné měniče s transformátory

Měniče s transformátory jsou využívány v případě, že požadujeme galvanické oddělení vstupního napětí od výstupního napětí nebo také v případě, že požadujeme vícero výstupních napětí než jedno a navzájem galvanicky odděleny. K řešení měniče s transformátorem se přistupuje také v případě, kdy rostou požadavky na výstupní výkon a při použití zapojení s cívkou by tato cívka byla příliš rozměrná. [4]

2.2.1 Akumulující měnič – flyback

Toto zapojení akumulujícího měniče pracuje v režimu, kdy přenáší energii ze vstupu na výstup. Během sepnutí tranzistoru Q (Obrázek 11.) proud protéká ze vstupního zdroje do primární cívky L_1 transformátoru T_1 a přes sepnutý tranzistor Q zpět do zdroje. Proud cívkou L_1 lineárně roste, vyvolává lineární změnu magnetického toku v jádře transformátoru (ze předpokladu, že však jádro není přesyceno) a tato lineární změna magnetického toku v jádře indukuje do sekundární cívky L_2 konstantní napětí. Vzhledem k polaritě začátků vinutí transformátoru k diodě D je tato dioda polarizována závěrně, proud přes ní neprotéká a nemůže být tak na sekundární straně transformátoru odebírána energie. Napětí výstupního kondenzátoru C klesá a ten se vybíjí do zátěže. [4]

Obrázek 11.: První fáze měniče typu typu flyback (tranzistor Q sepnutý).

Energie je v této části činnosti měniče akumulována do mag. pole cívky L₁. Množství energie W_{Tr} , které je lze do transformátoru v jednom spínacím cyklu akumulovat udává přibližně objem mag. materiálu transformátoru. Toto množství energie a objem magnetického materiálu také souvisí s výkonem do zátěže P_{OUT} a se spínací frekvencí tranzistoru Q vztahem:

$$W_{Tr} = \frac{P_{OUT}}{f_S} \left[W; \frac{W}{s}; Hz\right]$$
(2.1)

Během druhé fáze spínacího cyklu, kdy tranzistor Q je rozepnut (Obrázek 12.) se skokově mění polarita napětí na primární cívce L_1 i napětí na sekundární cívce L_2 . Opačná polarita napětí na sekundární cívce L_2 má za následek to, že dioda D je v tomto stavu polarizována v propustném směru a začíná jí protékat proud do zátěže R_Z a kondenzátoru C, který je dobíjen a výstupní napětí roste. [4]

Obrázek 12.: Druhá fáze činnosti měniče typu flyback (tranzistor Q rozepnutý).

Zapojení tohoto měniče s transformátorem je jedno z nejlevnějších a nejjednodušších v případě, že je potřeba galvanicky oddělit primární a sekundární stranu. Při potřebě získat více výstupních napětí lze použít transformátor s více sekundárními vinutími. Transformátor lze navrhnout podle následujícího vztahu:

$$U_{L1vyp} = U_{IN} + \left(\frac{N_2}{N_1}\right) * U_{OUT}$$
(2.2)

kde počet závitů primární cívky L_1 transformátoru T_1 je N_1 a počet závitů sekundární cívky L_2 transformátoru T_1 je N_2 . Zapojení tohoto typu měniče se používá pro výkony do 150 W. [4]

2.2.2 Propustný měnič - forward

Tento typ měniče je založen na opačném principu transformátoru. Pracuje v propustném režimu. Během sepnutí tranzistoru Q je energie odebírána ze sekundární cívky L_2 . Tato energie je odebírána ve stejný moment, ve který je do primární cívky L_1 energie dodávána ze vstupního zdroje. Oproti akumulačnímu měniči má následující odlišnosti:

- Transformátor může mít menší rozměry
- Po vypnutí tranzistoru Q není z transformátoru odebírána energie a jestliže v něm nějaká energie zůstala, roste napětí na primární cívce L₁ a ohrožuje rozepnutý tranzistor Q. Ten musí být chráněn ochrannými obvody nebo pro lepší účinnost rekuperačním vinutím L₃
- Výpočet transformátoru je značně složitý kvůli nelineárnosti průběhu předávání energie v čase

Měnič je izolovaná verze snižujícího (buck) měniče a může být provozováno na vyšší výkony. Při použití transformátoru T_1 je sekundární obvod galvanicky oddělen od obvodu primárního. Tento měnič je možné provozovat jako zvyšující i snižující měnič, přičemž převládá používání tohoto typu měniče jako snižující. Nárazová tlumivka L_4 společně s kondenzátorem C_1 tvoří LC filtr. Dvě fáze činnosti tohoto měniče lze vidět na obrázcích (Obrázek 13 a Obrázek 14).

Během sepnutí tranzistoru Q teče jeden proud ze vstupního zdroje U_{IN} přes primární cívku L_1 a tranzistor Q zpět do vstupního zdroje. Začátky primární vinutí L_1 a sekundární vinutí L_2 transformátoru T_1 jsou orientovány shodně, tudíž napětí na těchto cívkách mají shodnou orientaci. V této fázi je dioda D_1 polarizována v propustném směru a umožňuje průchod proudu ze sekundárního vinutí L_2 přes diodu D_1 a tlumivku L_4 , který nabíjí kondenzátor C a zároveň teče do zátěže. Cívka L_4 se chová jako spotřebič a její proud má stejnou orientaci jako napětí na této tlumivce.

Jakmile se tranzistor Q rozepne, na všech cívkách transformátoru T_1 se změní polarita napětí. Ze sekundární cívky L_2 v tuto chvíli již nemůže protékat proud diodou D_1 . Ta je v této fázi namáhána inverzním napětím. Proudový obvod tlumivkou L_4 je přerušen a z této tlumivky se stává zdroj a přechází přes ni proud před zátěž a zároveň se sčítá s proudem kondenzátoru C. Výstupní napětí U_{OUT} v této fázi klesá. [4]

Obrázek 13.: Schéma propustného měniče - forward (tranzistor Q1 sepnut).

Obrázek 14.: Schéma propustného měniče - forward (tranzistor Q1 rozepnut).

2.2.3 Rezonanční měnič

Tento typ měniče na obrázku (Obrázek 15) je v podstatě zapojení propustného měniče s tím rozdílem, že paralelně k tranzistoru Q je připojen kondenzátor C_2 . Kapacita tohoto kondenzátoru je volena s ohledem na další parazitní kapacity v obvodu (kapacita drainsource tranzistoru, parazitní kapacita cívky L_1 a parazitní kapacita spojů). Účelem této kapacity C_2 je vytvoření rezonančního obvodu společně s cívkou L_1 . Rezonanční kmitočet tohoto rezonančního obvodu by měl být volen v souvislosti se spínací frekvencí tranzistoru tak, aby při skokovém spínání tranzistoru měly obvodové veličiny spojité průběhy. [4]

Ve výsledku toto zapojení je vyšší účinnost měniče a snižování rušení. Návrh je však komplexní a kapacita kondenzátoru C_2 může být často volena až při montáži do skutečného obvodu na DPS. Zapojení měniče je používáno pro menší výkony do 40 W. [4]

Obrázek 15.: Schéma rezonančního měniče.

2.3 Dvojčinné měniče s transformátory

Tyto dvojčinné měniče s transformátory se používají v případě požadavku vyšších výstupních výkonů, které jednočinné měniče s transformátory nejsou schopny dosahovat. Nevýhodou jednočinných měničů s transformátory bylo je stejnosměrné sycení mag. jádra, které neumožní využít celou plochu hysterézní smyčky. [4]

2.3.1 Měnič v zapojení push-pull

Zapojení dvojčinného měniče push-pull na obrázku (Obrázek 16) je kombinace dvou zapojení jednočinných měničů, které jsou spojeny jedním mag. obvodem transformátoru T_1 . Tyto dvě zapojení jednočinných měničů fungují protitaktně (v případě, že je tranzistor Q_1 rozepnut, tranzistor Q_2 je sepnut a naopak). Protože vinutí jsou na společném jádře a mají stejnou polaritu a střídavě spínají tranzistory Q_1 a Q_2 , magnetické jádro transformátoru T_1 je střídavě magnetizováno a využívá se tak celé hysterezní smyčky feromag. materiálu. Pro dodání stejného výkonu do zátěže tedy stačí použít poloviční objem jádra transformátoru oproti jádru transformátoru jednočinného zapojení. Měnič pracuje ve dvou fázích. Během první fáze je tranzistor Q_1 sepnutý a tranzistor Q_2 rozepnutý. Proud teče od kladného pólu vstupního zdroje U_{IN} , vinutím cívky L_1 transformátoru T_1 a sepnutým tranzistorem Q_1 zpět do vstupního zdroje. Primární cívky vinutí L_1 a L_2 mají stejný počet závitů stejně jako L_3 a L_4 . Tranzistor Q_2 je uzavřen, namáhán závěrným napětím naindukovaným na cívce L_2 a napájecím napětím U_{IN} . Dioda D_2 je namáhána součtem napětí na sekundárních vinutích L_3 a L_4 a nevede proud. Polarita napětí na cívce L_4 však propustně polarizuje diodu D_1 a proud teče ze sekundárního vinutí cívky L_4 přes tuto diodu D_1 , tlumivku L_5 , kondenzátor C a zátěž R_Z a zpět do cívky.

Během druhé fáze spínacího procesu se stav zrcadlově mění. Tranzistor Q_2 je sepnut a tranzistor Q_1 je rozepnut. Proud v této fázi teče od kladného pólu vstupního zdroje U_{IN} přes primární vinutí L_2 , přes tranzistor Q_2 a zpět do zdroje. Dioda D_1 je namáhána závěrným napětím na vinutích L_3 a L_4 . Dioda D_2 je propustně polarizována, proud teče z vinutí L_3 přes diodu D_2 , tlumivku L_5 , kondenzátor C_1 a zátěž zpět do vinutí L_3 .

Výhodou zapojení je dvojnásobný kmitočet zvlnění na výstupu vzhledem ke spínacímu kmitočtu obvodu. Proto stačí použít ve výstupním LC filtru tlumivku o 4x menší indukčnosti, čímž se sníží počet závitů, zvýší průřez vodiče a dále se sníží ztráty měniče. Tento měnič je používán do výkonu 150 W. [4]

Obrázek 16.: Schéma měniče v zapojení push-pull (tranzistor Q1 sepnut).

2.3.2 Měnič v zapojení polomost

Variant můstkových zapojení je celá řada. Rozlišují se podle uspořádání jednotlivých prvků v mostu. Tzv. polomosty, kde polovinu mostu tvoří dva spínací tranzistory a druhou polovinu tvoří dva kondenzátory, jsou nejčastěji užívané. Toto zapojení na obrázku (Obrázek 17.) je odvozeno z dvojčinného měniče push-pull přidáním tří kondenzátorů.

Každý ze spínacích tranzistorů Q_1 a Q_2 mají své vlastní primární vinutí transformátoru T_1 a v diagonále mostu je pak bipolární elektrolytický kondenzátor s velkou kapacitou. Část impulzního proudu, který by musel jinak pokrývat vstupní zdroj $U_{\rm IN}$ je pokryta pomocí kondenzátorů C_1 a C_2 . Tranzistory jsou buzeny v protifázi se

střídou do 80 %, aby nehrozilo, že budou oba sepnuté, což by způsobilo zkrat vstupního zdroje U_{IN} .

V první fázi je kondenzátor C_1 nabitý, kondenzátor C_2 téměř vybitý a je sepnutý tranzistor Q_1 . Proud protéká od kladné svorky vstupního zdroje U_{IN} přes sepnutý tranzistor Q_1 , dále přes primární vinutí L_1 , kondenzátor C_C a kondenzátor C_2 do záporné svorky vstupního zdroje U_{IN} . Vstupní zdroj U_{IN} není ideální a napětí tohoto zdroje při dodávání proudu klesá. Nabitý kondenzátor C_1 se vybíjí tak, aby napětí na tomto kondenzátoru klesalo v souhlase s poklesem vstupního napájecího napětí U_{IN} . Tím je zajištěn dostatečně velký proud tranzistorem Q_1 při minimálním poklesu napětí vstupního zdroje U_{IN} . Kondenzátor C_2 je současně nabíjen, roste na něm napětí a zvyšuje se potenciál spojnice kondenzátorů C_1 a C_2 . Kondenzátor C_1 přenáší náboj do kondenzátoru C_2 a na konci této fáze je kondenzátor C_1 téměř vybitý a kondenzátor C_2 nabitý.

Stejně probíhá fáze při sepnutí tranzistoru Q_2 . Proud protéká z kladné svorky vstupního zdroje U_{IN} přes kondenzátor C_1 , kondenzátor C_C , primární vinutí L_2 a sepnutý tranzistor Q_2 zpět do vstupního zdroje U_{IN} . Kondenzátor C_2 předává svůj náboj kondenzátoru C_1 , na konci fáze je kondenzátor C_2 vybitý a C_1 nabitý, jako tomu bylo na začátku první fáze.

Kondenzátor C_C nemůže být klasický elektrolytický kondenzátor, protože se na něm vyskytuje napětí obou polarit. Musí mít také poměrně velkou kapacitu.

Při zvýšení odebíraného výstupního výkonu je třeba, aby bylo do transformátoru dodáváno více energie. Toho se dosáhne zvýšením úhlu otevření tranzistorů (kondenzátory C_1 a C_2 se vybíjí déle).

Lze se zbavit dvou primárních vinutí tím, že se použije transformátor s jedním primárním vinutím a toto vinutí se připojí do úhlopříčky mostu s kondenzátorem C_c , který je v tomto případě pro stejnosměrné oddělení primárního vinutí. Zapojení s jedním vinutím lze vidět na obrázku (Obrázek 18). Fáze spínání probíhají stejně. [4]

Obrázek 17.: Zapojení v polomostu se dvěma primárními vinutími.

Obrázek 18.: Zapojení v polomostu s jedním primárním vinutím.

2.3.3 Měnič v zapojení plný most

Kondenzátory C_1 a C_2 z předchozího zapojení polomostu jsou nahrazeny tranzistory, čímž vznikne zapojení do mostu plného. V diagonále mezi tranzistory je připojeno primární vinutí cívky L_1 transformátoru T_1 . Zapojení lze vidět na obrázku (Obrázek 19).

Během první fáze jsou tranzistory Q_1 a Q_4 sepnuty a tranzistory Q_2 a Q_3 rozepnuty. Proud tedy v této fázi teče od kladného pólu vstupního zdroje U_{IN} přes sepnutý tranzistor Q_1 , primární vinutí L_1 transformátoru T_1 , sepnutý tranzistor Q_4 a zpět do vstupního zdroje U_{IN} .

V druhé fázi jsou tranzistory Q_2 a Q_3 sepnuty a tranzistory Q_1 a Q_4 rozepnuty. Proud v této fázi teče od kladného pólu vstupního zdroje U_{IN} přes sepnutý tranzistor Q_2 , primární vinutí L_1 transformátoru T_1 , sepnutý tranzistor Q_3 a zpět do vstupního zdroje U_{IN} .

Protože proud tekoucí ze vstupního zdroje $U_{\rm IN}$ přes tranzistory, které v sepnutém stavu vykazují nízký odpor přechodu $R_{\rm DSON}$, je tento měnič schopen dodávat do transformátoru vyšší výkon a tím je transformátor schopen dodat vyšší výkon do zátěže (víc než 500 W). Je potřeba však zaručit správné časování spínání jednotlivých dvojic tranzistorů. [4]

Obrázek 19.: Zapojení měniče s plným mostem.

3 MIKROKONTROLÉRY AVR

Vývoj rodiny mikrokontrolérů AVR začal v roce 1996 firmou Atmel. Jsou to 8bitové RISC jednočipové mikrokontroléry založeny na upravené Harvardské architektuře. Bývají často používány pro svoji jednoduchost a nízkou cenu pro embedded aplikace. Mezi základní tři typy této rodiny patří tinyAVR (ATtiny série), megaAVR (ATmega série), XMEGA (ATxmega série). Pro svoji jednoduchost a velké množství pomocné literatury byl pro tuto práci zvolen 8bitový mikrokontrolér ATmega16.

3.1 ATmega16

Tento mikrokontrolér firmy ATMEL je 8bitový mikrokontrolér založen na architektuře AVR RISC. Je schopen provést výkonné instrukce v jednohodinovém taktu, čímž dosahuje 1 MIPS na taktu 1 MHz. Pinout mikrokontroléru ATmega16 v pouzdře PDIP lze vidět na obrázku (Obrázek 20). [5]

Obrázek 20.: Pinout mikrokontroléru ATmega16 v pouzdře PDIP.

Základní vlastnosti:

- instrukční soubor o 131 instrukcích
- 32 8bitových registrů
- čtyři 8bitové I/O porty
- interní FLASH paměť o kapacitě 16 kB, kterou lze 1000x přeprogramovat
- RAM paměť o kapacitě 1 kB
- E²PROM o kapacitě 512 B, kterou lze 100 000x přeprogramovat
- programování FLASH a E²PROM pamětí pomocí SPI nebo JTAG
- dva 8bitové čítače/časovače, jeden 16bitový čítač/časovač
- čtyři PWM kanály
- analogový komparátor a 10bitový AD převodník
- USART, SPI, TWI
- interní RC oscilátor
- napájecí napětí 4,5 až 5,5 V

3.1.1 Vstupně-výstupní porty

Mikrokontrolér ATmega16 disponuje čtveřicí 8bitových vstupně-výstupních portů. Tyto porty jsou ovládány třemi registry – DDRX, PORTX, PINX. [5]

- DDRX (data direction register) nastavením tohoto registru se určuje, zda budou porty sloužit jako vstupní nebo výstupní – např. při DDRB = 0b11110000 budou porty B7-B4 výstupní a porty B3-B0 vstupní
- PORTX tento registr ovládá logickou úroveň výstupního vývodu. V případě, že je bit definován jako vstupní, tak tento bit určuje, zda je připojen zabudovaný pullup rezistor
- PINX tento registr slouží pro čtení z pinu

3.1.2 Sériový kanál SPI

Kanál SPI (Seriál peripheral interface) zajišťuje přenos dat mezi mikrokontrolérem a periferiemi, které jsou také vybaveny touto sběrnicí. V této práci slouží výhradně k programování mikrokontroléru, tedy k přenosu HEX souboru z počítače do paměti mikrokontroléru. Schopnosti SPI mikrokontroléru Atmega16:

- plný duplex (současné vysílání a přijímání)
- třívodičový synchronní přenos
- lze volit pořadí bitů (MSB až LSB nebo LSB až MSB)

Pro přenos jsou využívány vývody MISO (Master In Slave Out), MOSI (Master Out Slave In) a SCK (Serial clock). SCK je hodinový signal (pro master výstup, pro slave vstup). MOSI je vývod, kterým jsou data z masteru vysouvány ven. Po vysunutí bajtu se generátor clocku, je nastaven bit SPIF v registru SPSR a je generováno přerušení za předpokladu, že je však nastaven bit SPIE a povoleno přerušení. [5]

3.1.3 Interní A/D převodník

Mikrokontrolér ATmega16 disponuje interním A/D převodníkem. Je používán pro měření napětí nebo jiných fyzikálních veličin po převodu na napětí bez nutnosti připojení externího A/D převodníku. Tento A/D převodník je 10bitový a pracuje algoritmem postupné aproximace. Je připojen na analogový multiplexer, díky kterému je možno snímat až 10 vstupů. Signál lze sledovat i diferenčně. [5]

A/D převodník mikrokontroléru ATmega16 vykazuje parametry:

- 10bitové rozlišení
- integrální nelinearita 0,5 LSB
- absolutní chyba +- 2 LSB
- doba převodu 65 až 260 μs
- rychlost převodu až 15 kSPS

3.2 Programování mikrokontroléru

Jako vývojové prostředí pro psaní firmwaru bylo vybráno CodeVisionAVR V3.12. Při vytvoření projektu byl nápomocen průvodce vytvořením projektu CodeWizardAVR, pomocí kterého byl nastaven takt 16 MHz, vstupní/výstupní porty, A/D převodník a také alfanumerický LCD displej. Pomocí průvodce lze v případě potřeby také nastavit externí přerušení, UART, nebo časovač.

Po napsání firmwaru v programu CodeVisionAVR je program kompilován a je proveden build. Z textový program s příponou .c se stane soubor s příponou .hex. Ten to soubor je dále pomocí programu eXtreme Burner – AVR v1.4 otevřen a programátorem USBasp (Obrázek 21) V2.0, připojeným přes USB do počítače, nahrán do FLASH paměti řídícího mikrokontroléru ATmega16.

Obrázek 21.: Programátor USBasp V2.0.

4 NÁVRH ZDROJE

4.1 Koncepce zdroje

Při navrhování regulovatelného laboratorního zdroje muselo být ihned na začátku návrhu rozhodnuto, jakou bude tento zdroj mít koncepci. V úvahu přišly dvě varianty – zdroj lineární, který se vyznačuje nízkým výstupním zvlněním, ale také nízkou účinností a velkými nároky na chlazení, nebo zdroj spínaný, který oproti zdrojům lineárním disponuje velmi vysokou účinností, avšak výstupní zvlnění je díky spínáním o vysoké frekvenci nezanedbatelné.

V případě varianty první (lineární zdroj) musí být při maximálním proudu a nízkém napětí na lineárním regulátoru mařena všechna přebytečná energie, která také musí být především ve formě tepla, efektivně odváděna do okolí. Je tedy nutné použití velkého chladiče a většina dostupných lineárních regulátorů nejsou schopny námi požadovaný ztrátový výkon v podobě tepla dlouhodobě pojmout.

Spínanému regulátoru naopak nedělá problém ztrátový výkon, protože je tento výkon díky samotné topologii spínání o dost nižší a čip i při vyšších proudech a nízkých výstupních napětích nemá s chlazením problém. Stačí tedy chladič menší. Jeho výstupní napětí však bez dodatečné filtrace obsahuje pilovité zvlnění odvíjející se od spínací frekvence.

Podle zadání bakalářské práce, kde jsou kladeny požadavky na účinnost zdroje a výstupní zvlnění je užito obou typů regulátorů pro tzv. hybridní topologii nebo také topologii spínané předregulace, kde převážná část rozdílu napětí mezi požadovaným výstupním napětím a vstupním napětím je snížena právě spínaným předregulátorem s vysokou účinností. Výstupní napětí tohoto předregulátoru je však díky vysoké spínací frekvenci nezanedbatelně zvlněno a je potřeba ho vyhladit a již zmiňovaným lineárním regulátorem snížit na minimum. Tato topologie využívá kladné vlastnosti obou typů regulátorů a potlačuje jejich vlastnosti záporné. Na obrázku (Obrázek 22) lze vidět průběh filtrace.

Obrázek 22.: Filtrace výstupního napětí předregulátoru.

4.2 Blokové schéma zdroje

Návrh zapojení laboratorního zdroje 30 V/ 3 A lze vidět na obrázku (Obrázek 23). Zdroj se skládá z několika bloků. Vstupní síťové napětí je přivedeno na hlavní vypínač a poté do AC/DC měniče Mean-Well, kde na výstupu měniče je nastavené napětí 34,5 V DC. Spínaný AC/DC měnič Mean-Well LRS-150-36 je volen kvůli nižšímu zvlnění (výrobcem udávané maximální zvlnění 200 mVp-p) a odpadá tak i těžký a prostorný transformátor společně s kondenzátory, které mají vyšší kapacitou. Dalším blokem je DC/DC step-down měnič LM2576, sloužící jako předregulátor pro lineární regulátor LM338. Z lineárního regulátoru je zavedena zpětná vazba do předregulátoru LM2576, která zajišťuje, že na výstupu LM2576 je o 2,5 V vyšší napětí než požadované výstupní napětí na výstupních svorkách zdroje. Zvlnění výstupního napětí spínaného měniče je poté lineárním regulátorem sníženo na minimum. Protože na tomto regulátoru LM338 je nízký a konstantní úbytek napětí, snižují se nároky na jeho chlazení. Z výstupu je zavedena napěťová zpětná vazba do lineárního regulátoru.

Obrázek 23.: Návrh zapojení laboratorního zdroje.

Výstupní svorkové napětí je přivedeno na vstupní pin interního A/D převodník mikrokontroléru ATmega16. Výstupní proud je snímán v podobě úbytku napětí na bočníku, převeden pomocí interního A/D převodníku na digitální hodnotu a v mikrokontroléru přepočítáván z napětí na proud pomocí známé hodnoty odporu bočníku. Naměřené hodnoty jsou poté zobrazovány na LCD displeji.

Potenciometry na panelu zdroje, slouží k nastavování výstupního napětí a k omezení výstupního proudu.

K zobrazování výstupního napětí, proudu slouží LCD displej. Jak je možno vidět na obrázku (Obrázek 24), jedná se o čtyřřádkový displej, který je schopen zobrazovat 20 znaků na řádek.

Obrázek 24.: Testování čtyřřádkového displeje

4.3 Vstupní AC/DC měnič Mean-Well LRS 150-36

Prvním blokem je vstupní AC/DC měnič Mean-Well LRS 150-36. Pomocí toho měniče je ze síťového napětí 230 VAC získáno 34,5 V DC až s 89% účinností. Vstupní střídavé napětí 230 VAC o frekvenci 50 Hz je usměrněno a vyfiltrováno. Z tohoto stejnosměrného a vyfiltrovaného napětí je dále pomocí spínacího tranzistoru uděláno střídavé napětí o proměnlivé frekvenci oscilátoru od 50 kHz do 200 kHz. Toto napětí je poté transformátorem sníženo na napětí kolem 40 V, opět usměrněno a vyfiltrováno. Na výstupu je pak měřeno napětí a v případě, že aktuální výstupní napětí není rovno požadovanému, přes zesilovač odchylky a zpětnou vazbu je měněna frekvence oscilátoru, který budí spínací tranzistor.

Díky spínanému vstupnímu zdroji odpadá z konstrukce zdroje těžký a prostorný transformátor, který sám o sobě je nákladnější než celý AC/DC měnič. Odpadají také filtrační kondenzátory o velké kapacitě. Tento zdroj lze vidět na obrázku (Obrázek 25).

Parametry:

Výkon: 154,8 W Vnější rozměry: 159 x 97 x 30 mm Výstupní proud: 4,3 A Hmotnost: 480 g Účinnost: 89 % Výstupní napětí: 32,4 V až 39,6 V DC Maximální výstupní zvlnění: 200 mV_{p-p}

Obrázek 25.: Vstupní AC/DC měnič Mean-Well LRS 150-36.

4.4 Regulovatelný zdroj 30 V/ 3 A

Dalším blokem celku je samotný regulovatelný zdroj s výstupním napětím 30 V a výstupním proudem až 3 A. Regulovatelný zdroj v základu pracuje v režimu konstantního napětí. Může ale pracovat i v režimu konstantního proudu. Schéma zapojení regulovatelného zdroje lze vidět na obrázku (Obrázek 43).

Základem regulovatelného zdroje je předregulátor LM2576HV-ADJ - *IC1*. Na vstup *I-VIN* je přivedeno napětí 34,5 VDC. Vstupní kondenzátory C_1 , C_2 a C_5 jsou tzv. bypass kapacitory a slouží jako zásobárna energie. Paralelním připojením keramického kondenzátoru C_5 se zvyšuje stabilita regulátoru při nižších teplotách. Na výstupní pin 2-*OUT* je připojena tlumivka L_1 o hodnotě indukčnosti 150 µH s dimenzováním na proud 5 A. Schottkyho dioda D_1 1N5822 je velmi rychlá dioda, která umožňuje zpětný průchod proudu tlumivkou, když je spínací tranzistor uvnitř čipu rozepnutý. Za tlumivku L_1 je připojen elektrolytický bypass kondenzátor C_3 a paralelně k němu keramický kondenzátor C_4 . Na pin 4-*FB* je zpětnou vazbou pomocí NPN tranzistoru Q_1 a poměru rezistorů R_2 a R_3 přiváděno napětí zhruba o 2,5 V vyšší, než nastavené výstupní napětí. Mezi předregulátorem a regulátorem je tedy konstantní úbytek napětí 2,5 V. Na pin 4-*FB* je také přiveden výstup *IC2B* pro nastavení proudového omezení viz Měření a nastavení proudového omezení. Pin 5-*OFF* je pro režim zapnutí přiveden na zem. Pin 3-*GND* je taktéž připojen na zem.

Na předregulátor navazuje samotný lineární regulátor LM338. Na jeho vstupní pin *1-IN* je přivedeno vyhlazené výstupní napětí předregulátoru. Toto napětí je přenášeno na výstup *OUT* a pomocí interního zesilovače odchylky regulováno na požadovanou hodnotu nastavenou pomocí potenciometru R_{15} . Diody D_2 a D_3 jsou klasické křemíkové diody 1N4004 a slouží k ochraně obvodu.

Dále je ve schématu bočník R_5 pro měření proudu a výstupní kondenzátory C_7 a C_6 pro vyhlazení výstupního napětí.

4.5 Stabilizátor napětí 5 V

Pro napájení mikrokontoléru, LCD displeje a operačních zesilovačů je použit lineární stabilizátor napětí LM7805, který při vstupním napětí větším než 7 V spolehlivě reguluje výstupní napětí na 5 V. Protože stabilizátor *IC3* poskytuje výstupní proud maximálně 100 mA není potřeba tento stabilizátor chladit. Keramické kondenzátory C_8 a C_9 slouží k vyhlazení napětí a poskytují krátkodobou zásobu energie. Dioda D_5 slouží k ochraně obvodu. Schéma zapojení stabilizátoru LM7805 lze vidět na obrázku (Obrázek 26).

Obrázek 26.: Zapojení stabilizátoru napětí LM7805.

4.6 Měření a nastavení proudového omezení

Na bočníku R_5 o hodnotě 0,07 Ω je snímán úbytek napětí. Tento napěťový úbytek je pomocí operačního zesilovače *IC2A* zapojeného jako neinvertující zesilovač zhruba 20x zesílen. Výstup zesilovače *IC2A* je přiveden na neinvertující vstup operačního zesilovače *IC2B* zapojeného jako komparátor. Na invertující vstup komparátoru *IC2B* je pomocí víceotáčkového potenciometru přivedeno napětí 0 až 5 V. Komparátor tedy porovnává hodnotu výstupního proudu v podobě napětí s požadovanou hodnotou proudového omezení. V případě, že hodnota výstupního proudu je vyšší než požadovaná, výstup komparátoru *IC2B* je přiveden do 0 V a přes Schottkyho diodu D_4 připojen na pin 4-*FB* předregulátoru LM2576. Uvnitř předregulátoru je zesilovač odchylky připojený na komparátor, kde je poté porovnáván s vnitřní napěťovou referencí 1,23 V. Těchto 0 V na komparátoru způsobí, že spínací tranzistor uvnitř čipu rozepne, výstupní napětí začne klesat až na hodnotu, kdy je výstupní proud roven námi požadovanému a pak opět tranzistor sepne. Takto probíhá regulace výstupního proudu. Schéma zapojení viz Obrázek 27.

Obrázek 27.: Zapojení operačního zesilovače pro proudové omezení.

4.7 Mikrokontrolér a periferie

Na obrázku (Obrázek 44) lze vidět schéma zapojení 8bitového mikrokontroléru ATmega16 společně s jeho periferiemi.

Napájení mikrokontroléru je přivedeno na pin VCC, který je propojen s pinem AVCC. Tento pin slouží jako napěťová reference pro interní A/D převodník pro měření výstupního svorkového napětí a výstupního proudu. Kondenzátory C_{10} , C_{11} , C_{12} , C_{13} zajišťují stabilitu napájení. K mikrokontroléru je připojen externí 16MHz krystal Q_3 , který určuje takt mikrokontroléru. K němu jsou připojeny 2 kondenzátory 22pF proti zemi.

Pro programování mikrokontroléru je na DPS konektor *SV1*. Na něho jsou připojeny piny *RST*, *SCK*, *MISO*, *MOSI*, napájení +5 V a zem. Pomocí těchto pinů je přes programátor USBASP nahráván firmware do mikrokontroléru.

V neposlední řadě je k mikrokontroléru připojen čtyřřádkový LCD displej 2004. Mikrokontrolér s displejem komunikuje pomocí sedmi pinů (*DB7*, *DB6*, *DB5*, *DB4*, *EN*, *RD*, *RS*). Další dva (anoda a katoda) slouží k podsvícení displeje. Piny VDD a VSS (*GND*) slouží k napájení displeje. Podle napětí na pinu V_0 je pak nastaven jas textu na displeji. Displej je napájen z 5V stabilizátoru. Pomocí rezistoru R_{12} je nastavena intenzita podsvícení displeje a rezistorem R_{11} je nastaven jas textu.

4.8 Obvod zapínající výstup

V případě sepnutí spínače S_1 se přes RC filtr typu dolní propust (R_{19} , C_{14}) na pinu *PB0* mikrokontroléru objeví 0 V. Když pin *PB1* je nastaven, přes bázový odpor R_{17} je sepnut NPN tranzistor T_1 . Tímto tranzistorem začne vést proud a kontakty relé K_1 jsou sepnuty, čímž se na výstupních svorkách objeví výstupní napětí regulovatelného zdroje. Dioda D_6 slouží jako ochrana při rozepínání kontaktů relé a demagnetizaci. Schéma je znázorněno na obrázku (Obrázek 28).

Obrázek 28.: Schéma zapojení obvodu zapínající výstup.

5 FIRMWARE MIKROKONTROLÉRU

5.1 Základní popis programu mikrokontroléru

V hlavičce programu jsou zahrnuty knihovny, s kterými bude kompiler pracovat. Dále jsou deklarovány proměnné, proběhne definice vstupně/výstupních portů, nastaví se A/D převodník a inicializuje displej.

Přítomnost výstupního napětí na svorkách je řízena mikrokontrolérem. Na pin PB0 je přes spínač na předním panelu zdroje přiváděno napětí 0 nebo 5 V. V případě, že spínač na předním panelu je sepnut, na výstupu *PB1* se objeví 5 V, přes bázový rezistor je sepnut tranzistor, na kontakty relé je tím přivedeno 5 V a pomocí relé je sepnut výstup.

Měření veličin probíhá pomocí interního 10bitového A/D převodníku. Měření napětí probíhá tak, že na kanál A/D převodníku je přes dělič přivedeno výstupní napětí v rozsahu 0 až 5 V a poté proběhne konverze na digitální hodnotu. Digitální hodnota 1024 po přepočtu odpovídá výstupnímu napětí 30 V. Měření proudu pak probíhá podobným způsobem s tím rozdílem, že na první kanál A/D převodníku je přiveden úbytek napětí na bočníku a zesílen pomocí diferenčního zesilovače.

Měřené veličiny jsou dále zobrazováno na displeji. Pomocí příkazu je vybrán řádek a dalším příkazem je hodnota zapsána na displej. Displej je každých 400 ms obnovován.

Vývojový diagram firmwaru mikrokontroléru je znázorněn na obrázku (Obrázek 29).

Obrázek 29.: Vývojový diagram firmwaru mikrokontroléru.

6 KONSTRUKCE ZDROJE

Bloky, ze kterých se zdroj skládá jsou vloženy do černé plastové krabičky KP30 (Z-39) z polystyrénu o rozměrech 295x215x120 mm. Skládá se ze čtyř dílů, dvě čela (záda) a dvě víka s ventilačními otvory. Čelo a záda jsou zasunuty do drážek ve spodním díle, celá krabička je pak uzavřena vložením vrchního víka a zašroubováním čtyř vrutů do drážek přes gumové nožky. [8]

Na zadním panelu se nachází konektor pro napájecí kabel s integrovanou pojistkou.

Na předním panelu se vlevo dole nachází zelený spínač s indikační doutnavkou. Konektory spínače jsou ochráněny smršťovací bužírkou, aby bylo zabráněno dotyku s živými částmi. Vedle spínače se nachází LCD displej, který je pomocí dvou 6vodičových svazků připojen na kolíkovou lištu připojenou k mikrokontroléru. Vpravo nahoře jsou víceotáčkové potenciometry. Levý potenciometr pro nastavení výstupního napětí, pravý potenciometr pro nastavení proudového omezení. Pod ovládacími prvky se nachází šroubovatelné výstupní svorky, do kterých lze zasunout kabel s krokodýlky nebo vodiče zátěže přišroubovat. Na předním panelu je také svorka připojená na ochranný vodič, která může být použita například pro připojení náramku sloužící jako ochrana proti elektrostatickému výboji při pájení polovodičových součástek. Přední panel regulovatelného zdroje se nachází na obrázku (Obrázek 30).

Obrázek 30.: Přední panel regulovatelného zdroje.

Pomocí spínače na předním panelu je připojen vstupní AC/DC měnič na síťové napětí – svorky zdroje označené L, N. Na kostru měniče je připojen také ochranný vodič PE. Měniče je pomocí šroubů M3 přichycen k plastové konstrukci, aby bylo zabráněno pohybu v krabičce a také kvůli nechtěnému dotyku s živou částí. Z výstupních svorek AC/DC měniče je vyvedeno napětí +34,5 V a 0 V na vstup DPS s regulovatelným zdrojem. Tato DPS je uchycena do krabičky pomocí distančních sloupků. Výkonnové prvky - předregulátor a regulátor, jsou šroubkem přichyceny ke chladiči s nanesenou teplovodivou pastou pro lepší přenos tepla. Výstupní napětí je přivedeno na výstupní svorky na předním panelu zdroje. Potenciometry jsou připojeny do DPS pomocí tenkých vodičů. Vnitřní uspořádání regulovatelného zdroje se nachází na obrázku (Obrázek 31).

Obrázek 31.: Vnitřní uspořádání regulovatelného zdroje

7 MĚŘENÍ CHARAKTERISTIK ZDROJE

7.1 Měření charakteristik zdroje

Mezi základní parametry laboratorního zdroje patří účinnost, zvlnění výstupního napětí a vnitřní odpor zdroje. Pro správnost návrhu zapojení a návrhu desky plošných spojů bylo nutno změřit a spočítat základní parametry regulovatelného zdroje. Pro měření byly použity 4 multimetry, digitální osciloskop a dva reostaty jako zátěž. Měřící přístroje jsou přehledně uvedeny v tabulce (Tabulka 2.)

Číslo	Název	Přístroj	Značka	Model	Evidenční číslo
1	A1 Stolní multimetr		Keysight	34450A51-B	SAP:001000281837-0000
2	V1	Stolní multimetr	Keysight	34450A51-B	SAP:001000281836-0000
3	A2	Stolní multimetr	Keysight	34450A51-B	SAP:001000281835-0000
4	OSC	Digitální osciloskop	Siglent	SDS1102X+	SDS1XECC2R0310
5	R1	Reostat 30Ω/4,5 A	Metra Blansko	-	2508651
6	R2	Reostat 30Ω/4,5 A	Metra Blansko	-	2508653
7	V2	Multimetr	UNI-T	UT139C	vlastní

Tabulka 2.: Seznam přístrojů použitých při měření charakteristik zdroje

7.2 Účinnost zdroje

Mezi základní parametry zdroje patří účinnost. Účinnost zdroje obecně je poměr výstupního výkonu ku výkonu vstupnímu neboli poměr příkonu ku výkonu.

$$\eta = \frac{p\check{r}ikon}{v\check{y}kon} \tag{7.1}$$

Nabývá hodnot 0 až 1 a obvykle je udávána v procentech. V tomto případě je účinnost laboratorního zdroje vypočítána podle rovnice (7.2)

$$\eta = \frac{P_{vstupni}}{P_{v ystupni}} = \frac{U_{vstupni} * I_{vstupni}}{U_{v ystupni} * I_{v ystupni}}$$
(7.2)

Ztrátový výkon je rozdíl vstupního výkonu a výstupního výkonu

$$P_{ztr\acute{a}tov\acute{y}} = P_{vstupn\acute{i}} - P_{v\acute{y}stupn\acute{i}}$$
(7.3)

Většina energetických ztrát ve zdroji je odvedena ve formě tepla.

Pro měření účinnosti probíhalo podle následujícího postupu. Schéma zapojení lze vidět na obrázku (Obrázek 32). Na zdroji bylo nastaveno výstupní napětí $U_{výstupní}$ jednotlivě 10, 20 nebo 30 V. Toto napětí bylo zároveň měřeno a kontrolováno voltmetrem V_1 . Pomocí sériově zapojených reostatů R_1 a R_2 jako zátěž byl nastavován výstupní proud $I_{výstupní}$ od 0 do 3 A s krokem 250 mA. Proběhlo 13 měření pro jednu hodnotu výstupního napětí $U_{výstupní}$, celkově tedy 39 měření. Proud $I_{výstupní}$ byl měřen pomocí ampérmetru A_1 . Vstupní napětí $U_{vstupní}$ bylo měřeno pomocí voltmetru V_2 a vstupní proud $I_{vstupní}$ byl měřen ampérmetrem A_2 . Z naměřených hodnot vstupního napětí a vstupního proudu byl poté vypočítán vstupní výkon. Dále byla vypočítána celková účinnost zdroje a ztrátový výkon. Z naměřených a vypočítaných hodnoty byly vytvořeny dva grafy závislosti účinnosti na výstupním proudu.

Obrázek 32.: Schéma zapojení pro měření účinnosti laboratorního zdroje.

Z grafu účinnosti laboratorního zdroje na obrázku (Obrázek 33) lze vyčíst, že se účinnost pohybuje od 40 do 87 %. Nízká účinnost je typická pro nízké výstupní proudy. Pro proudy 0,5 A a vyšší je účinnost vyšší než 50 % a pro proudy od 1 A je účinnost vyšší než 60 %. Od hodnoty výstupního proudu 1,75 A je účinnost zdroje přibližně konstantní a výrazně se nemění. Pro větší přehlednost byl vytvořen druhý graf s jiným měřítkem, kde na ose Y je vynesena účinnost od 50 do 90 % a na ose X je vynesen proud od 0,5 do 3 A. Tento graf lze vidět na obrázku (Obrázek 34). Tabulky naměřených hodnot jsou uvedeny v příloze bakalářské práce.

Nejnižší účinnosti 40,48 % bylo dosaženo při výstupním napětí 10 V a výstupním proudu 250 mA. Naopak nejvyšší účinnosti 87,10 % bylo podle měření dosaženo při výstupním napětí 30 V a výstupním proudu 1,75 A. Skutečnost, že nejvyšší účinnosti nebylo dosaženo při maximálním proudu, je způsobena nepřesným nastavením nebo odečtem vstupního proudu nebo vstupního napětí. Nejvyšší účinnost je tedy reálně dosaženo při maximálním výstupním výkonu zdroje.

Podle zadání bakalářské práce jsou nároky kladeny právě na účinnost. Maximální účinnost nejpreciznější a také nejdražších laboratorních zdrojů se pohybuje kolem 93 až 95 %. Maximální účinnost navrženého zdroje v této bakalářské práci je kolem 86 %.

Obrázek 33.: Graf účinnosti laboratorního zdroje.

Obrázek 34.: Graf účinnosti laboratorního zdroje pro proudy od 0,5 A.

Měření všech charakteristik proběhlo v laboratoři SC 2.83

Obrázek 35.: Pracoviště pro měření parametrů v laboratoři.

7.3 Zvlnění výstupního svorkového napětí

Dalším důležitým měřeným parametrem je zvlnění výstupního svorkového napětí $U_{výstupni}$. Toto zvlnění je u ideálního stejnosměrného zdroje nulové. U reálných laboratorních zdrojů je však toto zvlnění výstupního napětí nenulové. Požadavek je, aby bylo co nejnižší.

Obrázek 36.: Schéma zapojení pro měření zvlnění výstupního svorkového napětí.

Zvlnění výstupního svorkového napětí zdroje $U_{zvlnění p-p}$ bylo měřeno podle schématu zapojení na obrázku (Obrázek 36). Jde o jednoduché měření pomocí osciloskopu *OSC* připojeného na výstupní svorky zdroje. Výstupní napětí je nastaveno na požadovanou hodnot, sériovým zapojením reostatů R_1 a R_2 je nastaven požadovaný proud touto zátěží a na obrazovce osciloskopu je zobrazován průběh výstupního svorkového napětí na kterém je vidno zvlnění. Pro správné zobrazení a podrobné přiblížení je nutno na osciloskopu zvolit AC coupling. V tomto módu osciloskopu filtruje DC offset výstupního svorkového napětí a zobrazuje jen výstupní zvlnění. Zvlnění je měřeno pro výstupní svorkové napětí 10, 20 a 30 V a pro proudy 1, 2 a 3 A. Dále je měřeno zvlnění výstupního napětí při nastaveném proudu zátěží 3 A a následným omezením na 1 a 2 A.

I _{výstupní} [A]	U _{výstupní} = 10 V	U _{výstupní} = 20 V	U _{výstupní} = 30 V
-		U _{zvlnění p-p} [mV]	
1	56	64	64
2	56	72	80
3	64	80	104

Tabulka 3.: Naměřené hodnoty zvlnění výstupního svorkového napětí.

V Tabulka 3 lze vidět naměřené hodnoty zvlnění výstupního svorkového napětí. Nejnižší zvlnění bylo naměřeno při výstupním napětí 10 V a výstupním proudu 1 A a to 56 mV peak-to-peak. Naopak nejvyšší možné zvlnění bylo naměřeno při výstupním napětí 30 V a výstupním proudu 3 A a to 104 mV. Tyto hodnoty zvlnění by ani pro citlivou elektroniku připojenou na výstupních svorkách něměly být kritické.

Obrázek 39.: Zvlnění výstupního napětí při Uvýstupní = 10 V a Ivýstupní = 1 A.

Obrázek 37.: Zvlnění výstupního napětí při $U_{výstupni} = 30 V a I_{výstupni} = 3 A$.

Obrázek 38.: Zvlnění výstupního napětí při proudovém omezení na Ivýstupní = 1 A.

Kritické pro některou citlivější elektroniku by však mohlo být pracovat na napájecím napětí ze zdroje při proudovém omezení. Při omezení proudu zátěží na 1 A bylo naměřeno výstupní zvlnění 352 mV špička-špička. Průběh tohoto zvlnění lze vidět na Obrázek 38. Při nastavení hodnoty na vyšší proud se toto zvlnění snižuje až na hodnoty uvedené v předchozí Tabulka 3.

Regulace omezení výstupního proudu probíhá pomocí zpětné vazby z operačního zesilovače, jak je již popsáno v kapitole Měření a nastavení proudového omezení.

Snížit zvlnění výstupního napětí by se dalo zajistit použitím operačního zesilovače s vyšší rychlostí přeběhu. K dalšímu snížení by došlo při použití LC filtru na výstupu předregulátoru – vstupu lineárního regulátoru.

7.4 Zatěžovací charakteristika zdroje

Ideální zdroj napětí je schopen udržovat konstantní výstupní svorkové napětí při zvyšování proud zátěží. Toto výstupní napětí je tedy teoreticky konstantní při nekonečně velkém proudu zátěží. Tento ideální napěťový zdroj má tedy vstupní vnitřní odpor $R_i = 0 \Omega$.

Reálný napěťový zdroj však vykazuje určitou hodnotu vnitřního odporu $R_i > 0 \Omega$. Při zvyšování proudu zátěží tedy díky vnitřnímu odporu zdroje dojde ke snížení výstupního svorkového napětí. Vnitřní odpor reálného zdroje je vypočítán pomocí Ohmova zákona podle následující rovnice.

$$R_{i} = \frac{U_{naprázdno} - U_{výstupní}}{I_{výstupní}}$$
(7.4)

Měření zatěžovací charakteristiky (závislosti výstupního napětí $U_{výstupni}$ na výstupním odebíraném proudu $I_{výstupni}$) laboratorního zdroje bylo provedeno podle schématu na Obrázek 40. Při měření je zanedbáván velmi malý úbytek napětí na ampérmetru A_1 , protože jeho odpor je velmi nízký a je také zanedbán velmi malý proud voltmetrem V_1 , protože jeho vnitřní odpor je velmi vysoký. Měření charakteristiky proběhlo pro hodnoty výstupního napětí naprázdno $U_{naprázdno}$ 10, 20 a 30 V. Toto napětí bylo měřeno voltmetrem V_1 . Po nastavení požadovaného výstupního napětí naprázdno byla připojena zátěž. Výstupní proud $I_{výstupni}$ byl pomocí sériově zapojených reostatů R_1 a R_2 nastavován od 0 do 3 A s krokem 100 mA a měřen ampérmetrem A_1 . Po nastavení požadovaného výstupního napětí $U_{výstupni}$. Pro každou hodnotu výstupního napětí naprázdno bylo měřeno 30 hodnot výstupního napětí. Celkově tedy bylo naměřeno 90 hodnot. Z naměřených hodnot byl vypočítán vnitřní odpor zdroje R_i a vytvořena zatěžovací charakteristika zdroje. Tato charakteristika je na obrázku (Obrázek 41).

Obrázek 40.: Schéma zapojení pro měření zatěžovací charakteristiky zdroje.

Ze zatěžovací charakteristiky laboratorního zdroje je patrné, že pokles výstupního svorkového napětí $U_{výstupní}$ při výstupním proudu $I_{výstupní}$ do 2 A je minimální a to maximálně 250 mV. Při dalším zvyšování výstupního proudu však výstupní svorkové napětí klesá a liší se od požadovaného napětí $U_{naprázdno}$ až o 353 mV. Vnitřní odpor zdroje R_i podle výpočtu vychází mezi 90 až 160 m Ω .

Obrázek 41.: Zatěžovací charakteristika laboratorního zdroje

8 ZÁVĚR

V této bakalářské práci byla popsána problematika stejnosměrných napěťových zdrojů. Nejprve byly popsány základní části topologie zdroje lineárního a poté zdroje spínaného. Následovalo srovnání těchto zdrojů, jejich hlavních výhody a nevýhod.

Byly popsány funkce základních topologií spínaných zdrojů s cívkou i transformátorem a k popisům byly doplněny schémata těchto zapojení.

Nechybí také popis základních vlastností použitého mikrokontroléru ATmega16, jeho vstupně-výstupních registrů, SPI a interního A/D převodníku.

V předposlední části bylo navrženo základní blokové zapojení laboratorního zdroje 30V / 3A řízeného mikrokontrolérem ATmega16. Na vstupu zdroje je použit spínaný AC/DC měnič 230VAC / 34VDC. Tím není potřeba použít transformátor, odpadají tak i velké vyhlazovací kondenzátory a je sníženo vstupní zvlnění napětí. Zdroj pracuje v hybridní topologii, kdy spínaný zdroj s vysokou účinností zastává funkci předregulátoru. Tím je zachována vysoká účinnost. Jsou tak kladeny nižší nároky na chlazení, a zároveň díky lineárnímu regulátoru je výstupní zvlnění sníženo. Pro ovládání zdroje jsou použity potenciometry na předním panelu zdroje, měřené veličiny napětí a proudu jsou zobrazovány na LCD displeji. Výstup je řízen mikrokontrolérem.

Bylo navrženo schéma a ověřena funkčnost zapojení. Následně byla navržena DPS a poté zdroj realizován. Dále byl napsán firmware pro mikrokontrolér, zdroj byl oživen, odzkoušen a byly změřeny reálné parametry zdroje - účinnost, zatěžovací charakteristika a zvlnění výstupního svorkového napětí.

Zdroj měl být navržen s požadavky na vysokou účinnost a nízké zvlnění výstupního napětí. Podle měření nabývá účinnost hodnot až kolem 87 %. Zvlnění výstupního napětí je v rozsahu od 56 do 104 mV.

LITERATURA

- [1] KREJČIŘÍK, Alexandr. *Napájecí zdroje I.* 2. vydání. Praha: BEN technická literatura, 1996, 351 s. ISBN 80-86056-02-3.
- [2] KREJČIŘÍK, Alexandr. *Napájecí zdroje II.* 2. vydání. Praha: BEN technická literatura, 1996, 351 s. ISBN 80-8605603-1.
- [3] KREJČIŘÍK, Alexandr. *Napájecí zdroje III*. Praha: BEN technická literatura, 1999. ISBN 80-8605656-2.
- [4] KREJČIŘÍK, Alexandr. DC/DC měniče. Praha: BEN, 2001. ISBN 80-7300-045-8.
- [5] MATOUŠEK, David. Práce s mikrokontroléry ATMEL AT89C2051: [měření, řízení a regulace pomocí několika jednoduchých přípravků]. Praha: BEN - technická literatura, 2006. ISBN 80-7300-174-8.
- [6] LM338 datasheet. In: *Texas Instruments* [online]. [cit. 2019-05-29]. Dostupné z: http://www.ti.com/lit/ds/symlink/lm338.pdf
- [7] LM2576 datasheet. In: *Texas Instruments* [online]. [cit. 2019-05-29]. Dostupné z: http://www.ti.com/lit/ds/symlink/lm2576.pdf
- [8] Datasheet KP30 (Z-39). In: *GME* [online]. [cit. 2019-05-29]. Dostupné z: https://www.gme.cz/krabicka-plastova-kp30-z-39
- [9] Datasheet ATmega16. In: *GME* [online]. [cit. 2019-05-29]. Dostupné z: https://www.gme.cz/data/attachments/dsh.958-112.1.pdf
- [10] Datasheet LM7805. In: *Texas Instruments* [online]. [cit. 2019-05-29]. Dostupné z: http://www.ti.com/lit/ds/symlink/lm340.pdf
- [11] Datasheet LCD display 2004. In: *Beta Estore* [online]. [cit. 2019-05-29]. Dostupné z: https://www.beta-estore.com/download/rk/RK-10290_410.pdf

SEZNAM PŘÍLOH

Obrázek 40.: Schéma zapojení laboratorního zdroje	53
Obrázek 41.: Schéma zapojení regulovatelného zdroje	54
Obrázek 42.: Zapojení mikrokontroléru s periferiemi	55
Obrázek 43.: Navržená DPS regulovatelného zdroje	56
Obrázek 44.: Předloha DPS pro leptání	57
Obrázek 45.: Průběh výstupního zvlnění při Uvýstupní = 10 V a Ivýstupní = 1 A	58
Obrázek 46.: Průběh výstupního zvlnění při Uvýstupní = 10 V a Ivýstupní = 2 A	58
Obrázek 47.: Průběh výstupního zvlnění při Uvýstupní = 10 V a Ivýstupní = 3 A	59
Obrázek 48.: Průběh výstupního zvlnění při Uvýstupní = 20 V a Ivýstupní = 1 A	59
Obrázek 49.: Průběh výstupního zvlnění při Uvýstupní = 20 V a Ivýstupní = 2 A	60
Obrázek 50.: Průběh výstupního zvlnění při Uvýstupní = 20 V a Ivýstupní = 3 A	60
Obrázek 51.: Průběh výstupního zvlnění při Uvýstupní = 30 V a Ivýstupní = 1 A	61
Obrázek 52.: Průběh výstupního zvlnění při Uvýstupní = 30 V a Ivýstupní = 2 A	61
Obrázek 53.: Průběh výstupního zvlnění při Uvýstupní = 30 V a Ivýstupní = 3 A	62
Obrázek 54.: Průběh výstupního zvlnění při proudovém omezení na 1 A	62
Obrázek 55.: Průběh výstupního zvlnění při proudovém omezení na 2 A	63
Tabulka 4.: Tabulka naměřených hodnot při měření zatěžovací charakteristiky	64
Tabulka 5.: Tabulka naměřených hodnot účinnosti při výstupním napětí naprázdno	10 V
	65
Tabulka 6.: Tabulka naměřených hodnot účinnosti při výstupním napětí naprázdno 2	20 V
	65
Tabulka 7.: Tabulka naměřených hodnot účinnosti při výstupním napětí naprázdno 2	20 V
	66

I. SCHÉMATA ZAPOJENÍ

Obrázek 42.: Schéma zapojení laboratorního zdroje

Obrázek 43.: Schéma zapojení regulovatelného zdroje

Obrázek 44.: Zapojení mikrokontroléru s periferiemi

II. NÁVRH DPS

Obrázek 45.: Navržená DPS regulovatelného zdroje

Obrázek 46.: Předloha DPS pro leptání

III. PRŮBĚHY VÝSTUPNÍHO ZVLNĚNÍ

Obrázek 47.: Průběh výstupního zvlnění při Uvýstupní = 10 V a Ivýstupní = 1 A.

Obrázek 48.: Průběh výstupního zvlnění při $U_{výstupni} = 10 V a I_{výstupni} = 2 A$.

Obrázek 49.: Průběh výstupního zvlnění při Uvýstupní = 10 V a Ivýstupní = 3 A.

Obrázek 50.: Průběh výstupního zvlnění při Uvýstupní = 20 V a Ivýstupní = 1 A.

Obrázek 51.: Průběh výstupního zvlnění při $U_{výstupni} = 20 V a I_{výstupni} = 2 A$.

Obrázek 52.: Průběh výstupního zvlnění při $U_{výstupni} = 20 V a I_{výstupni} = 3 A$.

Obrázek 53.: Průběh výstupního zvlnění při Uvýstupní = 30 V a Ivýstupní = 1 A.

Obrázek 54.: Průběh výstupního zvlnění při $U_{výstupni} = 30$ V a $I_{výstupni} = 2$ A.

Obrázek 55.: Průběh výstupního zvlnění při $U_{výstupni} = 30 V a I_{výstupni} = 3 A$.

Obrázek 56.: Průběh výstupního zvlnění při proudovém omezení na 1 A.

Obrázek 57.: Průběh výstupního zvlnění při proudovém omezení na 2 A.

IV. NAMĚŘENÉ HODNOTY

U _{vstupní} = 34,72 V	U _{naprázdno} =	= 10 V	Unaprázdno = 20 V Unaprázdno		_o = 30 V	
I _{výstupní} [A]	U _{výstupní} [V]	$R_i [m\Omega]$	U _{výstupní} [V]	$R_i [m\Omega]$	U _{výstupní} [V]	$R_i [m\Omega]$
0,00	10,000	-	20,000	-	30,000	-
0,10	9,989	110	19,988	120	29,984	160
0,20	9,980	100	19,979	105	29,970	150
0,30	9,973	90	19,969	103	29,961	130
0,40	9,967	82	19,960	100	29,948	130
0,50	9,960	80	19,941	118	29,938	124
0,60	9,947	88	19,937	105	29,928	120
0,70	9,939	87	19,929	101	29,917	119
0,80	9,926	92	19,919	101	29,905	119
0,90	9,918	91	19,908	102	29,895	117
1,00	9,905	95	19,898	102	29,885	115
1,10	9,894	96	19,881	108	29,872	116
1,20	9,884	97	19,876	103	29,862	115
1,30	9,875	96	19,862	106	29,851	115
1,40	9,866	96	19,857	102	29,837	116
1,50	9,854	97	19,846	103	29,826	116
1,60	9,843	98	19,837	102	29,815	116
1,70	9,837	96	19,828	101	29,806	114
1,80	9,826	97	19,814	103	29,792	116
1,90	9,816	97	19,802	104	29,781	115
2,00	9,806	97	19,794	103	29,769	116
2,10	9,791	100	19,779	105	29,755	117
2,20	9,782	99	19,771	104	29,745	116
2,30	9,771	100	19,763	103	29,733	116
2,40	9,766	98	19,752	103	29,721	116
2,50	9,758	97	19,739	104	29,711	116
2,60	9,745	98	19,728	105	29,697	117
2,70	9,733	99	19,715	106	29,683	117
2,80	9,725	98	19,702	106	29,668	119
2,90	9,717	98	19,697	104	29,660	117
3,00	9,703	99	19,684	105	29,647	118

Tabulka 4.: Tabulka naměřených hodnot při měření zatěžovací charakteristiky

	I vstupní					Účinnost η	
U _{vstupní} [V]	[A]	U _{výstupní} [V]	I _{výstupní} [A]	P _{vstupní} [W]	P _{výstupní} [W]	[%]	P _{ztrátový} [W]
34,71	0,0651	10	0,00	2,260	0,0	0,00	2,26
34,68	0,1781	10	0,25	6,177	2,5	40,48	3,68
34,66	0,2802	10	0,50	9,712	5,0	51,48	4,71
34,64	0,3763	10	0,75	13,035	7,5	57,54	5,54
34,62	0,4778	10	1,00	16,541	10,0	60,45	6,54
34,59	0,5749	10	1,25	19,886	12,5	62,86	7,39
34,57	0,6746	10	1,50	23,321	15,0	64,32	8,32
34,55	0,7777	10	1,75	26,870	17,5	65,13	9,37
34,52	0,8723	10	2,00	30,112	20,0	66,42	10,11
34,50	0,9721	10	2,25	33,537	22,5	67,09	11,04
34,47	1,0886	10	2,50	37,524	25,0	66,62	12,52
34,45	1,1839	10	2,75	40,785	27,5	67,43	13,29
34,43	1,2910	10	3,00	44,449	30,0	67,49	14,45

Tabulka 5.: Tabulka naměřených hodnot účinnosti při výstupním napětí naprázdno 10 V

Tabulka 6.: Tabulka naměřených hodnot účinnosti při výstupním napětí naprázdno 20 V

	I _{vstupní}					Účinnost η	
U _{vstupní} [V]	[A]	U _{výstupní} [V]	I _{výstupní} [A]	P _{vstupní} [W]	P _{výstupní} [W]	[%]	P _{ztrátový} [W]
34,71	0,0676	20	0,00	2,346	0,0	0,00	2,35
34,67	0,2918	20	0,25	10,115	5	49,43	5,12
34,64	0,4307	20	0,50	14,919	10	67,03	4,92
34,61	0,6025	20	0,75	20,853	15	71,93	5,85
34,57	0,7688	20	1,00	26,577	20	75,25	6,58
34,54	0,9467	20	1,25	32,699	25	76,45	7,70
34,51	1,1342	20	1,50	39,141	30	76,65	9,14
34,47	1,2944	20	1,75	44,618	35	78,44	9,62
34,43	1,4927	20	2,00	51,394	40	77,83	11,39
34,41	1,6350	20	2,25	56,260	45	79,99	11,26
34,35	1,8571	20	2,50	63,791	50	78,38	13,79
34,32	2,0255	20	2,75	69,515	55	79,12	14,52
34,28	2,1913	20	3,00	75,118	60	79,87	15,12

	I _{vstupní}					Účinnost η	
U _{vstupní} [V]	[A]	U _{výstupní} [V]	I _{výstupní} [A]	P _{vstupní} [W]	P _{výstupní} [W]	[%]	P _{ztrátový} [W]
34,71	0,0709	30	0,00	2,461	0,0	0,00	2,46
34,67	0,3233	30	0,25	11,209	7,5	66,91	3,71
34,62	0,5629	30	0,50	19,488	15,0	76,97	4,49
34,57	0,8082	30	0,75	27,939	22,5	80,53	5,44
34,53	1,0692	30	1,00	36,919	30,0	81,26	6,92
34,48	1,2967	30	1,25	44,710	37,5	83,87	7,21
34,43	1,5516	30	1,50	53,422	45,0	84,24	8,42
34,39	1,7528	30	1,75	60,279	52,5	87,10	7,78
34,34	2,0475	30	2,00	70,311	60,0	85,33	10,31
34,29	2,3003	30	2,25	78,877	67,5	85,58	11,38
34,25	2,5390	30	2,50	86,961	75,0	86,25	11,96
34,20	2,8012	30	2,75	95,801	82,5	86,12	13,30
34,16	3,0470	30	3,00	104,086	90,0	86,47	14,09

Tabulka 7.: Tabulka naměřených hodnot účinnosti při výstupním napětí naprázdno 30 V