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Abstract

Efforts to improve classification algorithms are being slowed down by lack of data required
for testing. For confidentiality and security reasons it is difficult to obtain real data. Good
rule set generation tools, such as ClassBench-ng, exist. However, in order to evaluate proper
functioning, throughput, power consumption, and other properties of packet classification
algorithms, it is necessary to also use network traffic. Subject of this thesis is creating a
network traffic generator that would allow for testing of such properties using IPv4, IPv6,
and OpenFlow1.0 rules created by ClassBench-ng. The work explores different ways to
achieve this, which resulted in several versions of the generator. Those were experimented
with and evaluated. Implementation was done using Python. The primary result is a
generator combining multiple approaches to achieve the best properties of created header
traces. Another contribution of this thesis is a tool that was necessary to create for analyzing
rule sets and evaluating generated header traces.

Abstrakt

Pokrok pti zdokonalovani klasifikac¢nich algoritmu je zpomalovan nedostatkem dat potieb-
nych pro testovani. Redlna data je obtizné ziskat z dtivodu bezpecnosti a ochrany citlivych
informaci. Existuji vSak generatory syntetickych sad pravidel, jako napriklad ClassBench-ng.
K vyhodnoceni spravného fungovani, propustnosti, spotieby energie a dalSich vlastnosti
klasifika¢nich algoritmii je zapotiebi také vhodny sitovy provoz. Tématem této préce je
tvorba takového generdtoru sifového provozu, ktery by umoznil testovani téchto vlastnosti
v kombinaci s IPv4, IPv6 a OpenFlowl.0 pravidly vygenerovanymi ClassBench-ng. Prace
se zabyva riznymi zpusoby, jak toho dosdhnout, které vedly k vytvoreni nékolika verzi
generatoru. Vlastnosti jednotlivych verzi byly zkoumény fadou experimenti. Implemen-
tace byla provedena pomoci jazyku Python. Nejvyznamnéjsim vysledkem je generator,
ktery vyuziva principt nékolika zkoumanych pristupt k dosazeni co nejlepsich vlastnosti.
Dalsim prinosem je nastroj, ktery bylo nutné vytvorit pro analyzu uzitych sad klasifika¢nich
pravidel a vyhodnoceni vlastnosti vygenerovaného sitového provozu.
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Rozsireny abstrakt

Internet se ve velké ¢asti svéta stal nezbytnou sluzbou, kterda vyznamné ovliviiuje kazdo-
denni zivoty lidi. Ackoliv se Internet od svého zrodu vyznamné zménil ve zpusobu vyuziti i
v jeho dostupnosti, mnohé zdkladni principy zustéavaji i po letech stejné. Jednim takovym
prikladem je klasifikace paketu, kterd je klicovou ulohou na sitovych zafizenich. Klasi-
fikace paketu se vyuziva napriklad pfi smérovani, nebo tridéni paketil, coz z ni déla jednu
z nejbéznéjsich sitovych operaci.

Internetové protokoly, kterymi se cely Internet ridi, se neustale vyvijeji a stejné jako
struktura jednotlivych siti se stavaji slozitéjsimi. Tyto faktory a ustaviéné se zvysujici pro-
pustnost siti kladou zvysené naroky i na algoritmy slouzici ke klasifikaci paketii. Nové,
potencialné lepsi, algoritmy je tieba fadné otestovat pred nasazenim do ostrého provozu.
Takové testovani musi byt provedeno na mnozstvi a typu dat, které odpovida realnému
provozu. Takova data je ovsem obtizné ziskat. Z bezpecnostnich divodu a kvilli ochrané
osobnich tdaji nechtéji organizace zverejnovat detailni informace o sitovém provozu a
pouzitych klasifikac¢nich pravidlech.

Skutec¢nd, nebo alespon realisticka, klasifika¢ni pravidla jsou k testovani potieba, pro-
toze vykon a efektivita klasifika¢nich algoritmt je na nich zavisla. Existuje nékolik nastroju,
které generuji syntetické sady klasifika¢nich pravidel. Nejnovéjsi z nich, ClassBench-ng,
dokaze analyzovat skutecné sady pravidel a na jejich zdkladé vytvorit pravidla synteticka.
To umoznuje zachovat vlastnosti piivodnich pravidel bez jejich zvefejnéni.

K vyhodnoceni spravného fungovani, propustnosti, spotfeby energie, efektivity vyuzivani
mezipaméti a dalsich technik klasifika¢nich algoritmt na sitovych zarizenich je zapotrebi
také sifovy provoz. Konkrétné hodnoty relevantnich hlavic¢ek paketfi. Vytvoreni generatoru
takového sitového provozu je hlavnim cilem této prace.

Existuji tri hlavni nastroje slouzici k testovani klasifikacnich algoritmi. Nejstarsi z nich
je ClassBench, ktery umoznuje analyzovat skuteéné sady pravidel, vytvaret syntetické sady
pravidel a umoznuje i generovat sitovy provoz. Jeho nejvétsi nevyhodou je, ze umi praco-
vat pouze s péticemi IPv4 (zdrojova a cilova IP adresa, zdrojovy a cilovy port a protokol
vyssi vrstvy). Druhym néstrojem je FRuG, ktery je do veliké miry prizptisobitelny uzi-
vatelem. Jeho hlavni vyhodou je, ze sady pravidel, které generuje, nejsou nijak omezeny
poctem pouzitych hlavickovych poli. Je ovSem stale omezen pouze na IPv4, a navic neu-
moznuje generovat sitovy provoz. Nejnovéjsim z nastroji je ClassBench-ng. Jak uz nazev
napovida, je to nastroj, ktery do jisté miry navazuje na ptvodni ClassBench. Prtichazi s
nékolika vylepSenimi analyzy a generovani klasifikac¢nich pravidel. Déle rozsiruje funkcional-
itu o praci s IPv6 a hlavickovymi poli OpenFlow1.0.0. Neobsahuje vsak generator siftového
provozu. Jelikoz zbyvajici vlastnosti ClassBench-ng pred¢i ostatni nastroje, je generator
tvofeny v ramci této prace navrzen tak, aby byl kompatibilni pravé s ClassBench-ng.

Pozadovany generdtor ma na vstupu sadu klasifika¢nich pravidel a pozadovany pocet
hlavicek. Vystupem jsou hodnoty jednotlivych poli hlavicek. Pfed vytvorenim generatoru
sitového provozu, ktery by adekvatné testoval klasifika¢ni algoritmy bylo zapotiebi vytvorit
jeho jednoduchou verzi. Jedna se o generator, ktery splnuje veskerou zakladni funkcionalitu,
ale hodnoty hlavicek generuje bez jakékoliv optimalizace vzhledem k zddoucim vlastnostem
generovaného provozu. Je ovSem nutné, aby vytvorené hlavicky spadaly alespon do né-
jakého z pravidel vstupni sady. To je zafizeno tak, ze pro kazdou hlavicku je ndhodné
vybrano jedno z pravidel. Hodnoty hlavickovych poli jsou poté vybrany ndhodné z hodnot
povolenych timto pravidlem. Tento i vSechny dalsi verze generdtoru jsem implementoval v
jazyce Python.



V idealnim piipadé by generdtor mél vygenerovat alespon jednu hlavicku pro kazdou
odlisnou oblast ve vstupni sadé pravidel. Odlisnou oblasti se mysli kazda ¢ast sady pravidel,
kterd je tvorena unikatni kombinaci pravidel. To miize byt bud jedno individuédlni pravidlo,
nebo prekryv vice pravidel. Je mozné provést kompletni analyzu sady pravidel, ktera identi-
fikuje vSechny tyto oblasti, a vygenerovat pravé jednu hlavicku pro kazdou oblast. V zavis-
losti na poctu pravidel a prekryvii mezi nimi se tento pristup muze stat neuskutecnitelnym
kvili ¢asu potfebnému pro vSechny vypocty a vyzadovanému mnozstvi pameéti. Je tedy
treba najit rozumny kompromis mezi pokrytim oblasti a vypocetni naroc¢nosti.

Autori puvodniho nastroje ClassBench pouzili metodu, kterd se jen lehce lisi od zminéného
jednoduchého generatoru. Pro kazdou hlavicku je ndhodné vybrano jedno z pravidel, ale
hodnoty jednotlivych hlavickovych poli nejsou vybrany ze vSech povolenych hodnot timto
pravidlem. Misto toho je vzdy vybrana bud maximalni nebo minimélni hodnota. Vysled-
kem jsou tedy hlavicky odpovidajici néjakému z “rohit” daného pravidla. Tento piistup jsem
zreplikoval a rozsitil o fungovani s IPv6 a OpenFlow hlavickami. Ukézalo se, ze pokryti
oblasti touto metodou neni lepsi nez jednoduchy generator.

Po vytvoreni, implementaci a vyhodnoceni fady riznych pristupt jsem dospél ke gen-
eratoru, ktery funguje nasledovnym zptusobem. Nejprve v ndhodném poradi projde vsechna
pravidla a pro kazdé z nich vygeneruje jednu hlavicku stejnym zptisobem jako jednoduchy
generator. To slouzi predevsim k pokryti oblasti tvorenych jednim pravidlem. Zbyvajici
hlavicky jsou generovany zpusobem zamérenym na pokryti prekryvi. Hlavni myslenkou
algoritmu je tvoreni takovych hlavicek, které splnuji podminky vice pravidel najednou.

K testovani jednotlivych algoritmu byly vyuzity sady pravidel vygenerované nastrojem
ClassBench-ng. Ty svymi vlastnostmi odpovidaji redlnym sadam pravidel, jelikoz byly
vytvoreny na zakladé jejich analyz. K vyhodnoceni vysledkt jsem v jazyce Python vytvoril
nastroj, ktery analyzuje danou sadu klasifikac¢nich pravidel a poté spocité jeji pokryti vy-
generovanymi hlavickami.

Vysledny generator sitového provozu poskytuje lepsi pokryti oblasti nez vsechny ostatni
testované metody. V tomto ohledu je vyrazné lepsi nez metoda z nastroje ClassBench,
coz bylo hlavnim cilem. Z hlediska vykonu je generator podstatné pomalejsi. Jeho ¢asova
slozitost je vSak linedrni, coz je uspokojujici.
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Chapter 1

Introduction

In many places in the world, the Internet has become one of vital services that people
can hardly imagine living without. And even though it has changed significantly since
its inception, a lot of its core functionality remains working on the same principles. One
such example is packet classification. It is used for routing, packet filtering and other
applications, which makes it one of the most common operations in computer networks.

Internet protocols, that govern the Internet, and the structure of individual computer
networks are constantly becoming more complex, which raises requirements on packet clas-
sification algorithms. That is further amplified by continuously increasing throughput of
computer networks. New, potentially better, algorithms cannot be simply deployed to live
traffic. That could have disastrous consequences. They need to be properly tested first.
Testing them on realistic amounts and types of data is complicated. The absence of envi-
ronment that would allow this contributes to so called ossification of Internet infrastructure.

The first problem with testing packet classification algorithms is that it is not easy to
get rule sets that are being applied to real traffic [17]. Organizations do not want to publish
this data for confidentiality and security reasons. Real, or at least realistic, rule sets are
needed because capacity and efficiency of packet classification algorithms are subject to
the structure of the rule sets [9]. There already are some existing tools that set out to
combat this by generating synthetic rule sets. The other problem is the lack of the actual
traffic. As a matter of fact, it is not the traffic that is needed. It is only some of the header
fields of the packets. These are needed for evaluation of proper functioning, throughput,
power consumption, and effectiveness of caching and other techniques of devices employing
the classification algorithm [17]. Again, there have been attempts to solve this, but these
solutions are not sufficient considering current demands.

The first goal of this thesis is to create a header trace generator, which could be used
for dynamic analysis of the packet classification algorithm utilizing a rule set generated by
ClassBench-ng. ClassBench-ng is currently the best tool for creating synthetic rule sets,
but it has no network traffic generation functionality. The header generator is aimed to be
compatible with ClassBench-ng, so that it could eventually be incorporated in it.

The second goal is to optimize the generator to achieve the best possible coverage for
various rule sets while maintaining reasonable computational demands. A rule is considered
to be covered if at least one generated header satisfies the rule’s conditions. For proper
testing of classification algorithms it is not enough to cover individual rules. Instead, it is
desirable to also generate at least one header for all distinct regions in the rule set that are
formed by overlaps between the rules.



The following chapter, Chapter 2, introduces information regarding computer networks
with focus on topics that are most relevant to the thesis. All protocols that contain header
fields that ClassBench-ng works with, and therefore that this generator works with, are ex-
plained there. Chapter 3 is devoted to packet classification. It defines the term and presents
a brief overview of different approaches. Last section of the chapter, section 3.2, examines
existing tools that can be used for testing classification algorithms. The process of making
the first version of the network traffic generator is described in Chapter 4. This chapter
further discusses ways to analyze and evaluate the generated header trace in section 4.2,
which is necessary in order to optimize the generator. All of the major improvements that
lead to better properties of the generated trace are described in Chapter 5. Final section of
the chapter, section 5.7, outlines possible future work that could be done to further advance
the generator. The thesis is concluded in Chapter 6.



Chapter 2

Computer Networks

The main aim of this chapter is to introduce the area of computer networking and discuss
its parts that are most relevant to the thesis in detail. First, the chapter defines computer
network and presents basic terminology. That is followed by origins and brief history of
computer networks along with the driving forces behind their evolution. The rest of the
chapter contains more detailed information about current state of computer networking.
It focuses on the TCP/IP architecture which is the most widely used. It discusses its
structure, components, and some important protocols. Both versions of Internet Protocol,
and the OpenFlow protocol are discussed in greater detail, as they are the most significant
for this thesis.

Computer network is a communications network that interconnects a variety of devices
and provides a means for information exchange among them [15]. The connected devices
are called hosts or end systems. They are identified by an IP address. Interconnection is
done through communication links and packet switches. There are many types of commu-
nication links, consisting of different types of physical media and radio spectrum. A packet
switch takes a packet arriving on one of its incoming interfaces (links) and forwards it to
an outgoing interface toward its destination. Packets are essentially packages containing
information that is being sent and information necessary for successful communication (e.g.
sender’s and receiver’s IP addresses). End systems access the Internet through Internet
service providers (ISPs). Each ISP is in itself an independently managed network. It inter-
connects all of its customers’ networks, and also connects to other ISPs. These connections
ultimately form the Internet [7].

The most common networks are local area networks (LANs). They are present in
virtually all office buildings and homes. A LAN consists of a shared transmission medium
and a set of hardware and software for interfacing devices to the medium [15]. Whole
LAN is often owned by a single organization or person. Its scope is small, usually a single
building. Wide area networks (WANSs), on the other hand, extend over larger geographical
areas. They mostly serve as a connection of LANs and other types of networks.

A special case of LAN is virtual local area network (VLAN). It is a logical network that
can group devices even from different physical locations. Hosts within a VLAN commu-
nicate with each other as if they were connected to the same switch. Conversely, VLANs
can be used to create multiple networks on just one switch, which allows, for example, to
create a network for each department in a company without having to buy more network-
ing hardware and changing topology of the physical network. This can also be useful for
security and performance of the network [7]. Communication between different VLANSs is
still possible using system of VLAN tagging. As the name suggests, a tag, that identifies



VLAN to which the frame belongs, is added to the frame. Structure of the tag is discussed
further in subsection 2.1.1. Interconnection of two VLANSs, over which tagged frames are
sent, is called a trunk.

The origins of computer networking can be traced to early 1960s [7]. At the time, a tele-
phone network was the world’s dominant communication network. It used circuit switching
to transmit information, which is suitable for voice communication since it transmits at a
constant rate between a sender and a receiver. Information exchange in a computer net-
work of those times was likely to come in bursts followed by periods of inactivity. Packet
switching was invented as an efficient and robust alternative to circuit switching. The first
packet-switched computer network was designed in 1969 at the Advanced Research Projects
Agency (ARPA) in the United States [7]. It was the first direct ancestor of today’s Internet.

It is clear that in order for two computers to communicate through a complex telecom-
munication network, there must be a high degree of cooperation between them, and also
between each of them and the network. Generally, it is required that even devices from dif-
ferent vendors must be capable of communicating with each other. These and many other
factors lead to creation of Internet standards. Standards assure that there will be a large
open market for equipment and software with a wide variety of vendors, whose products can
interface and communicate with each other. There are also a few downsides to standards.
Most notably, they slow down the development of new technologies. It takes a lot of time to
create, specify and review a standard. By the time it is finished, a better alternative might
already exist. Many different groups take interest in Internet standards and participate in
their creation. Their goals are often not fully aligned. Negotiating between these groups
results in more delays. If things go well, a compromise is reached. In the opposite case, mul-
tiple conflicting standards might be created for the same thing, which can lead to further
confusion and complications [15]. Each distinct version of an Internet-related standard is
published as part of the Request for Comments (RFC) document series. The RFC series of
documents on networking began in 1969 as part of the original ARPA wide-area networking
project [1]. Nowadays, it is managed by the Internet Engineering Task Force (EITF). In
addition to Internet standards, RFCs also cover other topics related to the Internet. Other
organizations also specify standards for network components. For example, the IEEE 802
LAN/MAN Standards Committee specifies the Ethernet and wireless WiFi standards [7].

All activity taking place in the Internet that involves multiple communicating parties
is governed by protocols. They can be implemented as software, hardware or combination
of both. A protocol is a set of rules defining the communication and the structure of its
messages. Because the Internet is an incredibly complex system, network designers organize
protocols, and their implementations, into layers [7]. In a protocol architecture, the layers
are arranged in a vertical stack. Each layer performs certain tasks independently on the
other layers. Lower layers provide services to higher layers, but the implementation is
hidden to them. That allows for making changes in a layer without interfering with the
rest of them. For a successful communication, the same set of layered functions must exist
in all participating systems [15].

2.1 TCP/IP Architecture

The TCP/IP architecture is named after its two most important protocols - Transmission
Control Protocol and Internet Protocol [12]. The main goal during its creation was to
build an interconnection of networks that would provide universal communication services
over heterogeneous physical networks. This should allow communication between different



networks spread across the entire world. This worldwide set of interconnected networks is
called the Internet.

Like most networking software, the TCP/IP architecture consists of layers. TCP/IP’s
layers are Application, Transport, Internet and Network Interface layer. The term protocol
stack refers to the stack of layers. It can be used for positional comparison with other
models, such as the Open Systems Interconnection (OSI) model, which consists of seven
layers [12]. The comparison of these two models can be seen in Figure 2.1.

TCP/IP model

Application Layer

OSI| model

Application Layer

Presentation Layer

Transport Layer

Session Layer

Internet Layer

Transport Layer

Network Layer

Datalink Layer
Network Interface

Layer

Physical Layer

Figure 2.1: Comparison of TCP/IP and OSI models

Separation of functionality into layers allows for easier implementation, testing, and
provides space for possible extensions or alternative implementations. Work done by layers
is independent, but lower level layers provide functionality for those above them. They
communicate through concise interfaces.

When an application wants to send data over a network, first, an application protocol
creates a message containing the data. For example, the message can be a HI'TP response
and its data is HTML code of a website. Next, a transport layer protocol header is added
in front of the message to form a packet. Most common are TCP and UDP packets, more
on that in subsection 2.1.3. An IP header is placed in front of the packet and the newly
formed structure is called IP datagram. Finally, Ethernet frame is created by placing
Ethernet header in front of the datagram and frame check sequence, sometimes also called
frame footer, behind the end of the datagram. This process is called encapsulation. An
example of encapsulation can be seen in Figure 2.2. The entire operation is done in reverse
when the frame reaches its destination, where a header is removed at each layer and its
information used to get the message to intended application.

2.1.1 Network Interface Layer

The network interface layer is at the lowest position in the stack. It interfaces with the
network hardware and allows the traffic to flow over various kinds of physical networks.
The most widely used protocol at this layer is Ethernet. There are many reasons for its
success. It was the first widely deployed wired LAN technology. Most network adminis-



Message Data

TCP
TCP packet header Data

IP TCP

IP datagram header | header Data
Frame IP TCP Frame
Ethernet frame header | header | header | D@ footer

Figure 2.2: Example of data encapsulation

trators became familiar with it and were reluctant to switch to other LAN technologies
when they came about. Most other technologies, such as token ring, FDDI, or ATM, were
more complex and expensive than Ethernet, which further discouraged from transitioning
to them [7]. Ethernet also did not remain stagnant. When new technologies were providing
better features and properties, Ethernet adapted through new versions and never stayed
behind for long.

Ethernet uses media access control (MAC) addresses for identifying devices participat-
ing in communication. MAC address has 48 bits. It serves as a unique identifier of a
network interface card (NIC). Apart from some special addresses, the first 24 bits are or-
ganizationally unique identifier (OUI), which is used to identify manufacturer of the card.
The other 24 bits are assigned by the manufacturer to the specific NIC.

Ethernet frame consists of a preamble, destination and source addresses, type field, data
field (payload), and frame check sequence, in that order. Structure of the whole frame is
shown in Figure 2.3. Description of its fields can be seen in the list bellow.

8B 6B 6B 2B 46 - 1500 B 4B
Preamble | Destination Source Type/Length Data Frame check
address address sequence

Figure 2.3: Ethernet frame structure

e Preamble (8 bytes) This field is always set to the same value: first seven bytes
are set to a decimal value of 170, and the last byte to 171. Preamble is used for
synchronization and as a “wake up” call for receiving adapters [7].

e Destination address (6 bytes) MAC address of network interface card of a receiv-
ing device.



e Source address (6 bytes) MAC address of network interface card of a sending
device.

e Type/length (2 bytes) The type field is used to indicate which protocol is encapsu-
lated in the payload of the frame. It is also used to specify the size of certain Ethernet
frames.

e Data (46 - 1500 bytes) The data field, often referred to as payload, can be anywhere
between 46 and 1 500 bytes long. It consists of the information being sent and headers
of higher layer protocols included in the frame. If the payload’s size is below the
minimum required size, then it has to be padded to reach the 46 bytes.

e Frame check sequence (4 bytes) The frame check sequence field is a type of cyclic
redundancy check (CRC). It allows receiver of the message to detect bit errors in the
frame.

Ethernet technology provides an unreliable connectionless service to the internet layer.
Data that needs to be sent is encapsulated by the sender into an Ethernet frame, which is
then sent without prior handshaking, or connecting in any other way, with the receiver. A
receiving device runs a CRC check, but does not inform sending device about its result. If
CRC check fails, the receiver simply discards the frame [7].

Networking standard IEEE 802.1Q) defines an extended Ethernet frame format for
frames crossing VLAN trunks. The IEEE 802.1Q frame is created by inserting 802.1Q
header between the source MAC address field and the type field of a normal Ethernet
frame. Frame check sequence also has to be recalculated. As shown in figure Figure 2.4,
the 802.1Q header consists of tag protocol identifier (TPID) and tag control information
(TCI). The TCI is further split into three fields - priority, drop eligible indicator, and VLAN
identifier [6, 7].

16 b 3b 1b 12b

VLAN
identifier

Tag protocol identifier  |Priority|DEI

-
Tag control
information

Figure 2.4: 802.1Q header structure

e Tag protocol identifier (16 bits) The TPID field is used to identify the frame as
a tagged frame. It is set to a fixed hexadecimal value of 81-00.

e Priority (3 bits) Priority is a quality of service parameter. Frames with high priority
may be given precedence.

e Drop eligible indicator (1bit) The DEI field is used to indicate if a frame is
eligible to be dropped during traffic congestion.

e VLAN identifier (12 bits) This field contains a number identifying VLAN from
which the frame has been sent.



2.1.2 Internet Layer

The internet layer, sometimes also called inter-network or network layer, shields the higher
layers from the physical form of networks [12]. Instead, it provides their virtual view. It
implements host-to-host communication service and contains functions for forwarding and
routing. The internet layer is one of the most complex in the protocol stack.

When a packet arrives at a router’s input interface, it determines on which output
interface the packet should be sent. This is called forwarding. Routing is a process of
determining route from a sender to a receiver through an entire network [7]. Algorithms used
for calculating these routes are referred to as routing algorithms. Routers make decisions
based on information in their routing and forwarding tables. Those can be set up by
administrators or by already mentioned routing algorithms. The main advantage of using
algorithms is that routers can exchange routing information with each other and because
of that react to changes in network topology.

An internet layer packet is referred to as a datagram. Its structure differs based on
the protocol that is being used. The most common is Internet Protocol (IP), which comes
in two versions, IPv4 and IPv6. IPv6 was created to replace IPv4, but the transition is
taking some time. These two protocols are, due to their complexity, discussed further
in section 2.2.

Internet layer provides connectionless best-effort services. Reliability, flow control, and
error recovery, if needed, must be provided by higher level layers [12].

2.1.3 Transport Layer

The transport layer builds on functionality provided by the internet layer and plays a
central role in network architecture. It delivers data directly to applications on different
hosts using ports and sockets. It can provide additional functionality such as congestion
control, reliable data delivery, duplicate data suppression, and flow control [12].

Ports and sockets are used to determine which process, at a given host, is communicat-
ing. Each process that wants to communicate with another identifies itself by one or more
ports. Port is a 16-bit number which provides us with a range from 0 to 65535. The first
1024 numbers are reserved for privileged services and designated as so-called well-known
ports [12]. Well-known ports belong to standard services, such as Telnet or FTP (File
Transfer Protocol). They are controlled and assigned by the Internet Assigned Number
Authority (IANA) and allow clients to find services without further configuration informa-
tion. Processes access network services through sockets. A socket is a special type of file
handle, which is requested by processes from an operating system.

The two most important protocols operating on the transport layer are User Datagram
Protocol (UDP) and Transmission Control Protocol (TCP). UDP is essentially an applica-
tion interface to IP. It provides an unreliable, connectionless service to the invoking appli-
cation. No functionalities such as reliability, flow control, or error correction are present.
UDP simply maps incoming traffic based on port numbers to correct processes. Similarly,
it assigns port numbers to outgoing traffic based on the processes. That allows one appli-
cation to communicate with another. Thanks to its simplicity, UDP is very efficient, but
it requires the application to take responsibility for any other needed functionality, such as
error recovery [12]. Each UDP segment (packet) is sent with a single IP datagram. UDP
packets have an 8-byte header that is shown in Figure 2.5 It contains source and destination
port numbers, length of the packet including the header, and checksum.
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Source Destination

port port Length Checksum

Figure 2.5: UDP header structure

Transmission Control Protocol, on the other hand, provides reliable, connection-oriented
service to the invoking application. It also provides facilities, such as error recovery and flow
control. Before applications start communicating with each other, they have to establish a
connection. They do that by exchanging preliminary segments to establish parameters of
the ensuing data transfer. This process is called a “handshake” [7]. A TCP connection is
always point-to-point and provides a full-duplex service, which means that data can flow
in both directions simultaneously.

Since TCP provides more functionality than UDP, its header needs to carry more infor-
mation. It can be seen in Figure 2.6. Individual header fields are explained in the following
list.

Source port Destination port 32+32b
Sequence number 64 b
Acknowledgement number 64 b
Offset | Reserved Flags Window size 4+6+6+16b
Checksum Urgent pointer 16+16b
Options and padding

Figure 2.6: TCP header structure

e Source port (32 bits) Source port number.
e Destination port (32 bits) Destination port number.

e Sequence number (64 bits) If the SYN control bit (one of flags discussed under
the Flags field) is set, the sequence number is the initial sequence number. Otherwise
it is the sequence number of the first data byte in this segment.

e Acknowledgement number (64 bits) The acknowledgement number field is only
relevant if the ACK control bit (one of flags also discussed under the Flags field) is
set. In that case this field contains the value of the next expected sequence number.

e Offset (4 bits) The offset field indicates the position of the beginning of data.
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e Reserved (6 bits) These six bits are reserved for possible future use and should
always be set to zero.

e Flags (6 bits) The flags field consists of six control bits, also commonly called flags.
Purpose of two of them (SYN and ACK) was already mentioned. The other four are
URG, PSH, RST, and FIN. If URG is set, then the urgent pointer field is significant in
this segment. The PSH flag is an option that allows the sending application to start
sending data even if its size is smaller than the minimum transmission unit. RST is
used to reset the connection. Finally, if FIN is set, then the sender has no more data
to send.

e Window size (16 bits) The window size contains a number representing the amount
of bytes that the sender is willing to accept.

e Checksum (16 bits) In TCP checksum is calculated using both header and data
while the checksum itself is considered to be zero.

e Urgent pointer (16 bits) The urgent pointer field is only significant if the URG
flag is set, and it points to data that is urgently required.

e Options (multiple of 8 bits) and padding (variable) Options may occupy space
at the end of the TCP header and must be a multiple of 8 bits in length. They are
used for specific features enhancing the TCP protocol. Padding is used to ensure
that the TCP header ends, and data begins, on a 32-bit boundary. The padding is
composed of zeros.

2.1.4 Application Layer

The application layer lies at the very top of the TCP/IP model. It contains logic needed
to support various network applications and builds on everything provided by the lower
level layers. An application is a user process, usually cooperating with another process on
a different host. There are also use cases for communicating applications on the same host.
The interface between the application and the transport layers is defined by port numbers
and sockets [12]. Those are described in subsection 2.1.3.

2.2 Internet Layer Protocols

Internet Protocol was designed for use in interconnected systems of packet-switched com-
puter communication networks [14]. It provides means for transmitting blocks of data
called datagrams. Source and destination hosts of such communication are identified by
fixed-length addresses. Currently, two versions of Internet Protocol are being used - version
4 and 6.

The purpose of Internet Protocol is to move datagrams through an interconnected set
of networks. That is done by passing the datagrams from one point to another until the
destination is reached. The route of the datagrams is determined based on their addresses.
It can happen that a network might have its maximum packet size smaller than the size of
the datagram. To overcome this, the datagram has to be fragmented (split) into smaller
parts. Those two functions, addressing and fragmentation, are the two most fundamental
functions of Internet Protocol [14].
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2.2.1 IPv4

IPv4 utilizes fixed-length addresses of 32 bits. An address consists of two parts. The first
part is a number representing a network. The other part is a number representing a host
in the given network. The number of bits that belong to each part can differ. It is specified
by a network mask in case of classless addressing or by a class of the address in the original
classful addressing scheme which is not being used anymore. There are also address ranges
reserved for special purposes.

The protocol’s header contains all the information required for its functionality. Struc-
ture of an IPv4 header is shown in Figure 2.7. Individual header fields are explained in the
following list.

Version FIOEELs Type of service Total length 4+4+8+16b
length
Identification Flags Fragment offset 16+3+13b
Time to live Bl perlEvier Header checksum 8+8+16b
protocol

Source address 32b

Destination address 32b

Options and padding

Figure 2.7: IPv4 header structure

e Version (4 bits) This field specifies the version of a utilized protocol of the datagram.
It is used by routers and other devices to determine how to interpret the remainder
of the header.

e Header length (4 bits) Because the length of the IPv4 header is not fixed, it is
necessary to specify where the header ends and data begins. That is determined, in
part, by this value specifying the length of the header in bytes.

e Type of service (8 bits) The type of service header field is an 8-bit value introduced
to allow and identify different types of IP datagrams.

e Total length (16 bits) The total length field indicates a total length of the IP
datagram in bytes. That is the length of the header plus the length of data. Since
it is 16 bits long, the theoretical maximum size is 65535, but datagrams are usually
not larger than 1500 bytes.

e Identification (16 bits) The identification field is used to uniquely identify a group
of fragments belonging to a single IP datagram.

e Flags (3 bits) The first of the three flag bits is reserved and must always be set to
zero. The second bit is set if a sender wants to prevent fragmentation of the datagram.
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The last bit, if set, signals that this is not the last part of an incoming fragmented
datagram.

e Fragment offset (13 bits) The fragment offset field identifies the fragment location,
relative to the beginning of the original unfragmented datagram.

e Time to live (8 bits) The time to live (TTL) field is a number which ensures that
there will be no datagrams circulating in a network forever, regardless of network’s
topology. TTL is decremented by one every time the datagram is processed by a
router. If it reaches zero, then the datagram must be discarded.

e Upper layer protocol (8 bits) The upper layer protocol field is relevant only in
packet’s final destination. Its value identifies the specific transport layer protocol.

e Header checksum (16 bits) The header checksum field is used to detect bit errors.
Routers check it and usually discard faulty datagrams.

e Source address (32 bits) IP address of the original source of the datagram.
e Destination address (32 bits) IP address of the final destination of the datagram.

e Options and padding (variable) The options field is optional. There might be
zero or more options in an IPv4 datagram. They can be used to convey some extra
information about the traffic. If the options do not end on a 32-bit boundary, then
padding (octets of zeros), is appended to the end of header to make it so.

2.2.2 IPv6

Internet Protocol version 6 was designed as the successor to IPv4. A prime motivation
for this effort was the realization that the 32-bit IP address space was beginning to be
depleted. That makes IPv6’s expanded addressing capabilities one of the most important
improvements. IP address size is increased from 32 to 128 bits, which allows support of
more levels of addressing hierarchy and a much greater number of unique addresses. Several
header fields have been removed or made optional. Some other fields have also been added,
but overall the header format was simplified and allows for faster processing and handling
of packets. IPv6 encodes header options in a different way which allows for more efficient
forwarding. There are also less strict limits on the length of options and greater flexibility
for introducing new options in the future. Extensions to support authentication, data
integrity, and data confidentiality have also been added to IPv6 [3].

Addressing in IPv6 is much less complicated than the one in IPv4. IPv6 addresses are
assigned to interfaces, not nodes. There are three types of addresses: unicast, anycast, and
multicast. A unicast address identifies a single network interface. A packet sent to such
address is delivered to the interface specified by that address. Every interface is required
to have at least one unicast address. An anycast address identifies a set of interfaces. A
packet sent to such address is delivered to the closest one of the interfaces identified by
that address. The definition of distance depends on a used routing protocol. A multicast
address identifies a set of interfaces. A packet sent to such address is delivered to all of the
interfaces identified by that address. Typically, unicast and anycast addresses are composed
of two logical parts. The first 64 bits define a network prefix used for routing. The other
64 bits identify specific interface in the given network. Multicast addresses are formed in
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a different way dependent on the application. Several of them are predefined for special
purposes [5].

Optional internet layer information is encoded in separate headers. Those are called
extension headers and they are placed between the IPv6 header and the upper layer header
in a datagram. The type of an extension header is identified by a distinct value of the next
header field. Values identifying extension headers and upper layer protocols do not overlap,
which means that the next header field can also be used to indicate if the next item in the
datagram is an extension header or not. A special “no next header” value is used if there
is no upper layer header [3].

Structure of an IPv6 header is shown in Figure 2.8. A list of individual header fields
with explanations can be found below.

Version | Traffic class Flow label 4+8+20b
Payload length Next header Hop limit 16+8+8b

Source address 128 b

Destination address 128 b

Figure 2.8: IPv6 header structure

e Version (4 bits) This field specifies the version of a utilized IP protocol. In case
of IPv6 that number is, unsurprisingly, 6. It is used by routers and other devices to
determine how to interpret the remainder of the header.

e Traffic class (8 bits) The traffic class field is used by the network devices for traffic
management.

e Flow label (20bits) The flow label field is used by a source of traffic to label
sequences of datagrams that should be treated in the network as a single flow.

e Payload length (16 bits) The payload length field is a number specifying the length
of datagram’s payload in octets. The length of the payload is specified as everything
in the datagram following this IPv6 header, which includes any present extension
headers.

e Next header (8bits) The next header field serves as an identifier of the type of
header immediately following the IPv6 header. It is essentially the same as the upper
layer protocol field in IPv4.

e Hop limit (8 bits) Hop limit works like TTL in IPv4. It is a positive number that
is decremented by one on each node that forwards the datagram. A datagram is
discarded if its hop limit reaches zero. A node that is the destination of a datagram
should not discard a datagram with hop limit equal to zero, it should process it
normally instead.

e Source address (128 bits) An IPv6 address of the originator of the datagram.
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e Destination address (128 bits) An IPv6 address of the intended recipient of the
datagram.

2.2.3 ICMP

The Internet Control Message Protocol (ICMP) is an auxiliary protocol to IP. Its purpose
is to provide feedback about problems in the communication environment [13]. It does
not guarantee that a datagram will be delivered or a control message will be returned,
higher level protocols must be used in order to achieve that. The ICMP messages usually
report errors in processing of a datagram. For example when a datagram cannot reach
its destination, or when the router does not have enough buffering capacity to forward a
datagram. In order to avoid creating infinite loops of messages, no ICMP messages are sent
about other ICMP messages. Functionality provided by ICMP is used in several common
network utilities, such as traceroute or ping. Ping uses echo request and echo reply ICMP
messages to measure the round-trip time for messages sent from one device to another.
Traceroute is a tool used to determine the path datagrams follow to reach a specified host.
For that, it utilizes ICMP time exceeded messages sent by routers when received datagram’s
TTL value reaches zero.

ICMP messages are sent using the normal IP header. The information that they convey
is indicated by the message’s type and code. Type represents the main piece of information,
while code can be used for further clarification. For example, let’s have an ICMP message
with type 3 and code 3. The type tells us the destination is unreachable and the code
tells us that it is so because the port in the destination is unreachable [13]. Note that this
information does not always have to be completely correct due to usage of firewalls and
other systems interacting with the traffic.

ICMPv6

The Internet Control Message Protocol for the Internet Protocol Version 6 (ICMPv6) is
an integral part of [IPv6 and must be fully implemented by every IPv6 node. Just like its
predecessor, ICMPvV6 is used to report errors encountered in processing datagrams [2]. It
was created by taking the original ICMP and applying it to IPv6 with a number of changes.
ICMPv6 messages are grouped into two classes. These are error messages, with types from
0 to 127, and informational messages with types from 128 to 255. ICMPv6 has an IPv6
next header value of 58.

2.3 OpenFlow

OpenFlow is a protocol that allows remote administration of switches and routers of dif-
ferent vendors. It does that by programming flow tables in these devices. Even though
each vendor’s flow tables are different, the devices have a set of common functions that
run in them. One of main motivations behind OpenFlow was to allow a practical way for
experimentation with new network protocols in realistic settings [10]. This is needed to give
new ideas a chance to break through and be widely deployed. With OpenFlow, researches
can control their own network traffic flows and experiment with them without influencing
other traffic.

The remote administration of switches and routers is done using another device called
controller. A controller is a process running on a computer that is connected to the net-
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working device via a secure channel. Packets sent between them are using the OpenFlow
protocol, which provides an open and standard way of communication. There can be dedi-
cated OpenFlow switches that do not support normal Internet Layer and Network Interface
Layer processing, but also general-purpose commercial switches and routers interfacing with
the OpenFlow protocol [10].

The original version of the OpenFlow protocol worked with twelve header fields [11]
that are shown in Figure 2.9. From Ethernet, these include source and destination MAC
addresses and the type field. From IP, it utilizes source and destination IP addresses,
type of service, and upper layer protocol fields. The Transport layer provides source and
destination port numbers. On top of these, OpenFlow also works with the ingress port
number and VLAN information, specifically VLAN id and VLAN priority. Ingress port is
simply the number of the port on which a packet arrived. VLAN information is included
in special IEEE 802.1Q Ethernet frames which are discussed in subsection 2.1.1. Newer
versions of OpenFlow include more header fields. The generator of network traffic that is
the product of this thesis works only with those from version 1.0.0, as they are the ones
that ClassBench-ng works with.

Ingress port

Source Destination . .
MAC address | MAC address Ethernet type VLAN id VLAN priority
Source IP  |Destination IP| Upper layer Type of
address address protocol service
Source Destination
port number | port number

Figure 2.9: OpenFlow 1.0.0 header fields
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Chapter 3

Packet Classification

This chapter serves as an introduction to packet classification. First, it explains the term
and presents reasons why it is needed. That is followed by a short list of some of the most
common approaches to packet classification in section 3.1. Finally, section 3.2 focuses on
tools that can be used for testing of packet classification algorithms. These tools are capable
of creating synthetic rule sets that imitate properties of real rule sets.

The process of packet classification is determining a class that a packet belongs to [8].
The class is determined using selected header fields of the packet and a set of used classi-
fication rules. Each rule represents one class. Packet belongs to a class that is represented
by a rule whose conditions are satisfied by the packet. As classes may overlap, it is possible
for one packet to satisfy conditions of multiple rules. In that case, the rule with the highest
priority is usually selected. Matching conditions of header fields can be defined as one
concrete value, a range of allowed values, or as a wildcard. Wildcard means that any value
is accepted.

Packet classification is vital for proper functioning of the Internet. It is, in some way,
implemented in most networking devices serving several key purposes. The most common
use cases of packet classification are routing and packet filtering.

Routing is a process of determining packet’s route to its destination. It can be done
simply by matching IP addresses, also known as IP routing [8]. Alternatively, more header
fields can be used to determine the route in order to allow routing based on more complex
policies.

Packet filtering is mostly used in the area of networking security. It is used to decide
which traffic is allowed. Malicious or unwanted traffic is filtered out and prevented from
going through. The most common example of this is firewall, which is often present on a
border of a network and also at individual stations.

3.1 Approaches

There are many ways to approach packet classification, just like there are many different
algorithms that can be used for this purpose. Only some of those approaches and algorithms
are discussed in this thesis. The simplest, naive approach to packet classification is to
compare values from the packet sequentially against classification rules. The first matching
rule is selected as the output. That is correct behavior in case the rules are ordered according
to their priority (also called implicit priority).

17



Another approach to packet classification is to use a special kind of memory called
Ternary Content-Addressable Memory (TCAM). It is based on Content-Addressable Mem-
ory (CAM), which consists of rows addressed by their content. The output of CAM is the
address of a row that matches the input value. TCAM extends matching functionality to
so-called ternary matching. Apart from the bit values 0 and 1, it introduces the third value
“X”. Comparing this value to another one always results in a match. This is useful when
creating rules that do not care about a certain value. Without this functionality, it would
be necessary to specify the same rule for both options (0 and 1). Using the same naive
approach as before, but with TCAM, results in significantly smaller number of required
entries for the same functionality [8]. Parallelism can be used to compare values from the
packet against multiple, or even all, present rules. While this can lead to very fast search
time, it also requires more resources and consumes a lot of power. TCAM also suffers from
limited scalability to longer search keys due to its exhaustive search approach [16].

It is possible to represent classification rules using tuples. Elements of a tuple represent
the number of bits used for the specification of corresponding rule’s conditions. Real rule
sets often contain only a few combinations of specification lengths, which makes the tuple
approach viable. The number of bits used in the value, wildcard, and prefix specifications
is clear, but the value of tuple elements corresponding to the range specification is not.
The representation of utilized ranges is based on a hierarchy of non-overlapping ranges. In
the hierarchy, ranges are organized in levels from the most general to the most specific.
Each range is then represented by a pair consisting of nesting level and range ID. This pair
characterizes position of the range within the hierarchy [8].

The packet classification problem can be represented in multidimensional space, where
each dimension corresponds to one header field. Each condition of a classification rule
can be represented as an interval in the corresponding dimension. The whole rule is then
represented as a geometric body formed by those intervals [8]. It has as many dimensions
as there are utilized header fields. A packet is represented as a singular point in the space,
as it has a single value in each dimension. If the point is inside a body representing a rule,
then the packet satisfies conditions of that rule. Which rule is selected as the output, if the
packet matches more than one of them, is decided by priority, which can be implicit (given
by order of the rules).

3.2 Existing Tools for Packet Classification Testing

Packet classification is crucial networking technology and often a performance bottleneck
in routers. There are some publicly available performance evaluation tools for packet clas-
sification, but their functionality is still quite limited. The most notable ones are discussed
further in this section.

3.2.1 ClassBench

ClassBench is a set of tools for benchmarking packet classification algorithms and devices.
Its overview is shown in Figure 3.1. There are three tools in total. The first is Filter Set
Analyzer, which analyzes real rule sets and produces filter set parameter files. These files
contain statistical properties of the analyzed data. The created parameter files are then
used in the next tool called Filter Set Generator, which is probably the most important piece
in the tool suit. It produces synthetic rule sets. Apart from a parameter file, it also takes as
input a set of parameters that allow to adjust high-level parameters of the generated rule set
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by a user. The final tool in the chain is Trace Generator that produces a sequence of packet
headers with respect to the given filter set. ClassBench is probably the most used tool for
these purposes. The greatest weakness of this tool suite is that it only operates with IPv4
headers. Specifically, a 5-tuple consisting of source and destination IP addresses, source
and destination port numbers and the upper layer protocol field in an IPv4 header [17].
That was sufficient for the research community at the time of ClassBench’s creation, but
it is not anymore. More recent tools, that are discussed in the following sections, have
expanded rule set generation to include other header fields and protocols.

Seed Filter Set
Filter Set Analyzer friltaSat
A Filter Set
Parameter
Set of Benchmark File
Parameter Files (acll) 7

Filter Set Generator
size  smoothing  scope Synthetic

@ ® Filter Set

Trace Generator

scale  locality Synthetic

Header
@ Trace

Figure 3.1: Block diagram of the ClassBench tool suite, taken from [17].

3.2.2 FRuG

Flexible Rule Generator (FRuG) is an entirely user-controlled benchmarking tool for eval-
uating forwarding algorithms. It allows its users to define distributions, composition, size
and all other parameters related to the rule set generation. What makes the tool even more
flexible is that rule generation is not restricted to a fixed number of fields, which makes
it potentially useful even for future algorithms that the authors could not predict. IPv6,
which has a different header structure, is not supported by this tool.

FRuG consists of the IPv4 prefix analyzer and generator, the MAC address analyzer
and generator, the configuration file parser, and the FRuG engine. The entire structure
is shown in Figure 3.2. Input parameter files provide an interface for the user to interact
with the tool. There are three types of input files: a configuration file, a class file, and a
descriptor file. The configuration file allows the user to define how each protocol field should
appear in the generated rule set and the composition of each class of rules. In the class file
the user specifies required parameters for the fields that will appear in the generated rules.
The descriptor file can be used to further alter the structure of the generated rule sets.
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Figure 3.2: FRuG framework overview, taken from [4].

There are two modes of operation in FRuG. One is the IPv4 prefix generation mode,
which runs the IPv4 prefix analyzer and the generator. The other mode is flexible rule
generation, which is used when a configuration file and class files are specified. However,
it might also require assistance of the IPv4 generator [4]. The output of the FRuG engine
is a table of rules that follow the properties described in the input parameter files. Unlike
ClassBench, FRuG does not provide a tool capable of generating network traffic.

3.2.3 ClassBench-ng

ClassBench-ng is an open source tool that follows in footsteps of ClassBench. Compared to
the original ClassBench, the rule set generation is improved and it is capable of generating
synthetic rule sets not only for IPv4, but also for IPv6 and OpenFlow 1.0.0.

It utilizes one input file that can specify the statistical behavior for all fields that need
to be generated. The authors of ClassBench-ng analyzed real rule sets to understand their
properties. Based on this analysis, they defined the structure of input seeds that accurately
reflect characteristics of different operational scenarios. Some input seeds are provided with
the tool. ClassBench-ng is capable of creating input parameter files from real rule sets as
well. Input parameter files created in this way can then also be used to generate synthetic
rule sets. Since the parameter files only contain statistical properties of the original real
rules, they can be shared among researchers while keeping their anonymity. For that reason,
no sensitive information regarding the original real data is revealed to the public.

ClassBench-ng tries to improve the rule set generation process by iteratively building an
output rule set with characteristics as close as possible to the input seed. Just like FRuG,
ClassBench-ng currently does not provide a tool for network traffic generation [9]. Consid-
ering the precision of generated synthetic rule sets, ClassBench-ng on average outperformes
both ClassBench and FruG [8].
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Comparison of functionality of the three mentioned tools is shown in Table 3.1. Class-
Bench provides all functionality, but only for IPv4 5-tuples. FRuG is capable of generating
rule sets with up to 12 header fields chosen by a user. Therefore, it can be used to generate
OpenFlowl.0. rules, but it is capable of analyzing only some of the header fields. Overall
the characteristic of generated rule sets is more user driven. FRuG does not work with
IPv6 addresses and does not have a trace generator. ClassBench-ng can analyze rules con-
sisting of 5-tuples (only those with IPv4 addresses) and OpenFlowl.0 header fields. It can
create rule sets even for 5-tuples with IPv6 addresses, but does not contain a header trace
generator.

Analysis Rule s'et Tracej Note
generation generation
ClassBench v v v IPv4 5-tuples only
FRuG partly v X no IPv6
ClassBench-ng partly (no IPv6) v X IPv4, IPv6, OF

Table 3.1: Functionality comparison of tools for packet classification testing
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Chapter 4

Network Traffic Generation

Based on the description of existing tools, it is clear that the most current of them,
ClassBench-ng, provides the best functionality. However, compared to the original Class-
Bench, it lacks the network traffic generator. In general, there is no existing trace generator
for IPv6 5-tuple and OpenFlow header values. The lack of such tool is the motivation behind
this thesis.

As input, the generator must take all classification rules that can be created by ClassBench-
ng. That is, rules consisting of OpenFlow1.0.0 headers and 5-tuple headers made up of
source and destination IP addresses (either IPv4 or IPv6), source and destination port
numbers, and the upper layer protocol field for IPv4 or the next header field for IPv6.
Those fields are marked with green color in figures that display structure of a protocol
in Chapter 2. Header fields present in OpenFlow1.0.0 that are not included in the 5-tuples
are marked with yellow.

The simplest way to generate network traffic is to generate random headers with values
within the permitted ranges. This technique is undesirable, because it does not ensure that
every header is covered by at least one rule. This problem can be solved by using random
values within a rule, i.e., for each generated header, use random values that are within
ranges specified by a rule’s conditions. This method is further discussed in section 4.1. The
opposite approach is to perform a complete analysis of the rule set, find all intersections
between rules, and then generate a header for each unique case. Depending on the size of a
rule set and the amount of overlaps, this calculation may become virtually impossible due to
its memory requirements and time complexity. Therefore, it is necessary to find a reasonable
compromise between optimizing for rule coverage and optimizing for performance. For
example, the authors of the original ClassBench tool decided to use “corner” values. That
means selecting either the smallest or the largest value from the range specified by each
condition of a rule [17]. Headers generated in this manner should have higher chance of
matching multiple rules, which means a higher chance of covering an overlap.

4.1 Simple Network Traffic Generator

Before creating an optimized network traffic generator that would be able to adequately test
classification algorithms, it is useful to create its simplified version. Since the generator is
designed with ClassBench-ng in mind, it should be compatible with the rule sets generated
by this tool. That automatically makes it compatible with ClassBench’s rule sets as well.
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In order to keep backward compatibility, the structure of generated IPv4 headers is the
same as in the original ClassBench.

The first version of the generator could also be described as a naive version. Implemented
in Python3.8, it works with all required protocols. In a way, the naive version implements
all desired functionality, but no optimization for smarter generation, which would lead to
better testing of classification algorithms, is performed. The way this tool works can be
seen in Figure 4.1. When generating a packet header, a random rule from the input rule
set is selected (line 3). Then the generator assigns values matching that rule to the newly
created header (line 5). If a field in the rule is a range, a completely random value within
this range is picked. Finally, the rule is sent to output (line 7). This repeats until required
number of headers is generated.

1: function TRACEGEN(rules, size)

2 for i < 0 to size do

3 rule <~ GETRANDOMRULE(rules)

4: for each field in rule do

5: header|field] + GETRANDOMVALUE(rule|field])
6 end for

7 PRINTHEADER (header)

8 end for

9: end function

Figure 4.1: Pseudocode of Naive Trace Generator

Some results of testing this generator’s version using IPv4 5-tuple rule set can be seen
in Table 4.1 and using OpenFlow 1.0.0 in Table 4.2. Both rule sets consist of 1000 rules.
All presented data are averages from 10 runs. The results clearly show how increasing the
number of generated headers does not increase memory consumption. This is due to the fact
that the headers are sent to output immediately after creation and not stored anywhere.
Rules have to be stored, therefore the memory consumption is driven almost exclusively by
the size of the rule set. Execution time is not increasing exactly in proportion to the number
of generated headers. This is because a considerable portion of execution time is taken by
loading the rule set. Since the loading time remains static, generating more headers leads to
more efficient generation (larger proportion of execution time is spent on the actual process
of generating headers). This is why more headers per second are generated when more
headers are required. The generator creates IPv4 5-tuples faster than OpenFlow, because
of the smaller number of header fields.

Number of headers 10 100 1000 2000 5000
Rule coverage [%] 0,98 9,55 63,01 86,19 99,26
Overlap coverage [%] 0,18 1,27 9,22 12,32 14,13
Region coverage [%] 0,78 7,41 49,13 67,13 77,30
Peak real memory [kB] 151288 151544 151800 152188 152188
Peak virtual memory [kB] 9136 9396 9667 9969 9994
Execution time [ms] 43 52 96 143 178
Headers per second 233 1928 10367 13966 28169

Table 4.1: Results of testing naive trace generator using [Pv4 5-tuple rule set with 1000
rules.
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Number of headers 10 100 1000 2000 5000

Rule coverage [%] 1,00 9,52 62,72 86,34 99,31
Overlap coverage [%] 0,00 0,00 0,00 0,00 0,00
Region coverage [/] 0,02 0,23 1,50 2,07 2,38
Peak real memory [kB] 151288 151288 151800 151932 151932
Peak virtual memory [kB] 9136 9136 9683 9696 9856
Execution time [ms] 75 91 165 199 308
Headers per second 133 1097 6 049 10044 16247

Table 4.2: Results of testing naive trace generator using OpenFlow rule set with 1 000 rules.

4.2 Analyzing Generated Network Traffic

A mandatory step in creating an efficient network traffic generator is to analyze its outputs.
There are several criteria that can be used to evaluate the results. The overarching goal is
to provide the best possible coverage of the provided rule set.

A decent portion of the work on this thesis was spent on creating a Python script to
analyze the generated network traffic. In order to do that, the script has to analyze the
rule set first. Therefore, two most important parameters of this tool are paths to files
containing generated headers and the used rule set. These classification rules are generated
by ClassBench or ClassBench-ng. Another parameter specifies if the rules are tuples or
OpenFlow 1.0.0 rules. Tuples can be either IPv4 or IPv6. Since ClassBench does not
support IPv6 or OpenFlow, those rules will always come exclusively from ClassBench-ng.
The final parameter can be used to make the script run in an experimentation mode,
which suppresses normal output and provides results in a way that allows for further easy
automatic processing.

The first step of the evaluation tool is to load rules from the provided file into a list. For
each rule an instance of class representing a rule is created. The rules are analyzed after
all of them are loaded. Several different approaches can be taken to do this. The ones that
were utilized are further discussed in subsection 4.2.1. The next step is to check coverage
of those rules and overlaps by the generated header trace. That is done as the header fields
are being loaded, one by one, without saving them. This means that only one header at
a time is loaded in memory and it gets overwritten by the next one when it is no longer
needed. This significantly improves memory consumption of the script, especially for large
header traces. The final step is to calculate and output the results.

4.2.1 Analyzing Rules and Evaluating Rule Coverage

The first approach that was taken detects all overlaps between individual rules and keeps
track of overlaps as a list of pairs of rules. This is the simplest solution. It does not require
any explicit specification of the overlapping region, thus it is not necessary to compute
its dimensions. It allows for analyzing the coverage of given rules, rules using implicit
priority, and overlap pairs. When implicit priority is taken into account, then only the first
matching rule is covered by a header. In the opposite case, all rules that match the header
are considered to be covered. That is, if the header falls into an overlap, it covers both
rules from that overlap. Both of these variants could be useful for certain applications.
The main problem with the overlap pairs approach is that it does not really take into
consideration the possibility of more than two overlapping rules. Of course, there are
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pairs representing overlaps for all involved rules, but that is not the same as differentiating
between all distinct regions of such overlap. To better explain this, we can represent the
problem graphically, as described in section 3.1. Using two dimensions and three rules
we can get a situation shown in Figure 4.2. Each of the three rules have a part that is
not overlapping with others (red, green, blue), and parts that are overlapping with one
of the other two rules (yellow, cyan, purple). One part is shared by all three of them
(white). Ideally, when determining rule coverage, we want to be able to distinguish to
which one of those seven distinct regions a packet belongs to. That is the best way to test
the classification algorithm. The pairs approach is not able to do that. Presented with the
situation in Figure 4.2 the pairs approach would discover that rule 1 overlaps with rule 2 and
rule 3, and that rule 2 also overlaps with rule 3, but there would be no information about
the distinct region where all of them overlap. Similarly, this approach does not provide a
clue whether the overlaps are just partial (like in the example) or if one rule forming the
overlap pair is a subset of the other rule.

Rule 1

Rule 2

Figure 4.2: Example of possible overlaps among three rules

To achieve a desired level of analysis, it is necessary to not only discover overlaps between
rules, but also to be able to define them. That is why the final version of the evaluation
tool, described in following paragraphs, does not simply look for overlaps. Instead, it finds
all distinct regions and creates a rule for each of them.

Since some of rule’s conditions are ranges (IP prefixes, port numbers, etc.), they can be
specified by their maximum and minimum values, which makes it easy to test if a packet
matches the rule. This becomes impossible after splitting the rules into regions, as they
might take shapes that cannot be specified like this. An example of such shape is the “L”
shape of blue and green regions in the example shown in Figure 4.2. This problem is solved
in the evaluation tool by what could be described as layering the rules representing regions
on top of each other using explicit priority. Explicit priority can be used because implicit
priority becomes irrelevant for evaluation using distinct regions (every packet matches at
most one region rule). This way conditions can still be specified by their maximum and
minimum values.

The evaluation tool finds all distinct regions in rounds. First round begins with round
number zero. Only rules with explicit priority equal or higher than the rule number partic-
ipate in each round. Default rule priority is zero. When a partial overlap is found, the rules
that are forming it keep their values and the newly created rule (representing the overlap)
is assigned priority one higher than the round number (i.e., it goes to the next round).
This can be demonstrated on the following example where, for simplicity, rules have just a
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single integer condition. Let’s have two rules with the default priority (zero): rule A with
condition 0 to 10 and rule B with condition 5 to 15. The evaluation tool will detect the
overlap and create a new rule C with condition 5 to 10 and priority 1. The original rules are
not changed, which means that there could be a header that could satisfy all three of the
rules (e.g., with field value corresponding to the condition set to 8), but only rule C would
be marked as covered due to the priority. Therefore it works as if each rule’s condition was
specified by a range of numbers that is unique to it. If one rule is discovered to be a subset
of another, priority of the inner rule is set to one higher than the round number (it becomes
the overlap). When two rules are found to be the same, one of them is removed. Newly
created rules are added to the list of all rules at the end of the round in which they were
created (they do not participate in this round). Next round is started only if at least one
new rule has been created in the current round or if at least one rule’s priority has been
changed due to it being a subset of another rule.

In summary, five different metrics of rule set coverage have been implemented as part of
the evaluation tool. The first is the percentage of covered rules, where each packet covers
only the first rule that it matches. Next is the percentage of covered overlap pairs. The
third is essentially the combination of the previous two. It is the percentage of covered rules,
where each packet covers every rule it matches (i.e., if a packet hits an overlap, it covers all
rules forming this overlap). The fourth metric is the percentage of covered distinct region
overlaps. It is a subset of the final metric, the most important one, which is the percentage
of covered distinct regions.

Comparison of all rules with each other can be done at best with quadratic time com-
plexity. Each rule has to be loaded into memory during this process. Note that each
overlapping region is represented by a separate rule that is added to the original rule set.
Therefore, it is clear that performance is a major issue for large rule sets or rule sets with
a large number of overlaps. From a certain point, memory consumption and execution
time become infeasible. Due to the need for better performance, all methods have eventu-
ally been stripped from the tool, except the distinct regions one, which provides the most
informative data.

Other improvements have also been made. One of the most significant yet simple ones,
which leads to almost five times shorter execution time using the same data, is changing
the order of different header fields’ comparisons when looking for an overlap. For example,
comparing network prefixes is much more expensive operation than comparing protocol
numbers. Therefore, checking protocol numbers is done earlier and if they do not match,
it is clear that the rules cannot overlap. In such scenario, the comparison of prefixes is not
needed, and therefore is never invoked.

Since many algorithms rely on prefix matching only, the generator is also tested with
rule sets containing only prefixes (other fields are essentially wildcards). For such cases, a
lightweight version of the evaluation tool for evaluating generated traffic has been created.
It ignores all the irrelevant fields which significantly decreases memory consumption and
also improves performance.
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Chapter 5

Optimizing Network Traffic
Generator

After the completion of the simple generator and the tool for evaluating results, work on
improving the generator could begin. Starting with the simplest and least accurate solution
possible, it was necessary to begin by introducing techniques to improve region coverage.
Many different methods were tried and experimented with. The more useful ones are listed
in this chapter. The generator and its results are dependent on its input, specifically the
provided rule sets. Using realistic rule sets is crucial for benchmarking all the different ways
of creating header traces.

The next section, section 5.1, discusses the used rule sets. Following sections describe
the different generator versions and examine their results. Final parts of this chapter are
devoted to performance of the generator in section 5.6 and possible future improvements
in section 5.7.

5.1 Rule sets used for testing

All rule sets used for testing the generator were generated using ClassBench-ng. They were
created according to the parameters extracted from real rule sets and therefore should be
an accurate representation of rules used in real applications. All of them were analyzed in a
way described in subsection 4.2.1. The number of overlaps and distinct regions of each used
rule set can be seen in Table 5.1. An exception is the OpenFlow rule set ofl _gen_b_ 10000,
which contains too many overlaps to be analyzed in a reasonable time. For this reason,
only a part of it was used for testing rule coverage, rule set ofl _gen b_ x1000 represents
1000 rules out of the total 10000. Rule sets consisting of rules using only prefixes are also
commonly used. One for each IPv4 and IPv6 were used for testing. The fifth, and final,
rule set acl4__gen_ 1000 consists of rules represented as IPv4 5-tuples. All sizes were chosen
based on sizes of real rule sets that were used for generating the synthetic ones.

When performing tests with the generator, the number of generated headers was often
established as a certain percentage of the size of the rule set. It is reasonable to expect a
good coverage when generating for instance five times more headers as there are rules, but
in case of the OpenFlow rule set, it is necessary to generate way more headers, as there are
more than forty times more distinct regions than rules.
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Type Name Size  Overlaps Regions
IPv4 prefixes 2015 _rrc00_ipv4 gen b 100000 100000 12095 100000

IPv6 prefixes 2015 _rrc00_ipv6 gen b 10000 10000 1 10000
IPv4 5-tuples acld__gen_ 1000 1000 332 1287
OF rules ofl_gen_b_ 10000 10000 ? ?

OF rules ofl__gen_b_ x1000 1000 40800 41800

Table 5.1: Number of overlaps and regions of used rule sets

Note that the only overlaps in prefix rule sets are caused by one rule being a subset of
another, therefore no new regions are created. This stems from the way IP prefixes work.
They can never overlap without one being fully encapsulated by the other.

5.2 Corners Version

The original ClassBench paper acknowledges that there needs to be a compromise between
generating the perfect trace and a completely random one [17]. The authors came up with
the idea of generating packet headers representing the “corners” of rules. Through their
analyses, they discovered that such headers are more likely to be in an area of overlapping
rules [17]. When generating header trace, first, a random rule is selected. Then, values of
individual header fields are selected as either the smallest or the largest value of the range
specified by the rule for a corresponding dimension. The trace generator from ClassBench
also creates a variable number of copies of the created packet headers. Their amount is
sampled from Pareto distribution with two input parameters.

This version was recreated and extended to work with OpenFlow 1.0.0 as a part of this
thesis in order to experiment with it and use it as a benchmark for future versions. It was
discovered that the Corners version of the generator does not provide any better coverage
of overlaps or regions than the naive version as can be seen in Figure 5.1, which shows
comparison of coverage of the IPv4 5-tuple rule set by those two versions. The results were
nearly the same for all tested rule sets. It is no surprise when it comes to prefixes, since
each rule is either a subset/superset of another one, or it does not overlap at all. The only
improvement that corners provide is that when a header is generated based on a rule that
is a superset of another rule, the header is more likely to not belong to the inner rule.
Experiments have shown that this is not enough to make a noticeable difference.

Where an improvement of coverage could have been expected, but did not happen, is
the case of IPv4 5-tuples. This is exactly what the original ClassBench worked with. It is
possible that the characteristics of used rule sets have changed since then in such a way that
this approach is no longer effective. Table 5.2 shows results of some of the experiments.

The results of testing the Corners version of the generator using OpenFlow are shown
in Table 5.3. OpenFlow rules contain a large number of wildcards. Those are the main
contributors to overlaps. Choosing only the most extreme values of a field can actually
be counterproductive, as the absolute minimum and maximum values of specific fields are
rarely used, but end up in a generated packet header every time a rule containing a wildcard
is used. Overall the results are nearly identical with the naive version of the generator.
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Figure 5.1: Coverage of individual rules, overlaps and regions of IPv4 5-tuple rule set by
naive and Corners versions of the generator.

Number of headers 10 100 1000 2000 5000
Rule coverage [%] 0,97 9,46 63,50 86,39 99,34
Overlap coverage [%] 0,18 1,12 889 12,11 14,07
Region coverage [%] 0,77 7,30 4941 67,23 77,34

Table 5.2: Results of Corners version experiments using IPv4 5-tuple rule set with 1000
rules.

5.3 Prevent Rule Reusage

The idea behind this version is to keep track of the rules that have already been used to
generate a header and to not reuse them until a certain percentage of all rules had been
used. From the concept, it is clear that this approach only guarantees a good coverage
of individual rules, but not overlaps. Therefore, a proper coverage of regions is achieved
only if a given rule set contains a small amount of overlaps. After some testing it was
determined that ninety percent is a good amount to use before rules are allowed to be
reused. It guarantees a decent amount of coverage and it does not hinder performance.
Nearly perfect rule coverage could be achieved by going through the rules in some orderly
manner, such as from the first to the last, but that would introduce unwanted regularity
into the process. It is possible to get around this problem by removing the element of order
from the process. Following version of the generator, Prevent Rule Reusage 2, goes through
the whole rule set in a random order. There is a reason why the coverage is still only nearly

Number of headers 10 100 1000 2000 5000
Rule coverage [%] 1,00 9,55 63,14 86,54 99,36
Overlap coverage [%] 0,00 0,00 0,00 0,00 0,00
Region coverage [%] 0,02 0,23 1,51 2,07 2,38

Table 5.3: Results of Corners version experiments using OpenFlow rule set with 1000 rules.

29



perfect. It is because of situations when one rule is a subset of another. In such cases, it
is possible that the header generated based on the superset rule will actually belong to the
subset rule. As a result, the superset rule will not be covered even though a header was
created based on it.

5.4 Smart Random

Previously mentioned method is useful for covering individual rules, which in itself is not
a very complicated problem. The real issue is achieving a high degree of overlap coverage
with reasonable performance demands. One of the first ideas to achieve that was to keep
the random system, but also exploit sizes of different rules. Larger rules should, in theory,
be involved in more overlaps than the smaller ones, because they simply take up more
space. Using larger rules more often to generate headers should then lead to greater overlap
coverage.

The Size of a rule can be defined as the number of possible header field combinations
that satisfy the rule’s conditions. Calculating the exact value is not necessary to sort the
rules by size though. It is satisfactory to count how many wildcards there are in each rule
and calculate the span of ranges for IP prefixes and also port numbers in case of 5-tuples.
Remaining conditions are defined as a single value and therefore not relevant in the sorting
process.

Different levels of preference of the larger rules have been experimented with, in both
the frequency of preference and the portion of rules to be preferred. Nevertheless, none of
the various setups lead to any significant improvement of overlap coverage.

Further inspection of various rule sets revealed that overlaps can be as small as a single
value, meaning that the rules which form them intersect in a single point. This happens,
for example, when two rules differ in just two conditions, where the first condition is a
wildcard in one rule and a specific value in the other rule, and vice versa for the second
condition. This situation is more common for OpenFlow rule sets, which contain many
wildcards. As an attempt to tackle this, the next approach was to keep a portion of values
from already generated headers and then reuse them in another header. Only values that
originated from a non-wildcard field were kept. They were saved in a list and sometimes
used again in another header if the alternative was to generate a random value, i.e., when
a wildcard was present.

This quickly turned out to be insufficient. Due to the low probability of reusing the
fitting value at the right time, the improvement of overlap coverage was noticeable, but
meager. Creating a generator capable of creating headers that would cover even such
overlaps without a full analysis of the rule set requires a more complex approach, certainly
much more complex than randomly selecting values. Yet, it is necessary to not introduce
too much order into the process, which would create a bias that could skew testing of
classification algorithms in a certain direction.

Smart Random 2.0

Generating the values for each header based on a rule seemed to be the right way to go
from the beginning. It guarantees that the header will always match at least one rule and
no downsides of using it manifested themselves. Further development was mostly based
around this original idea.
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1: function TRACEGEN(rules, size, par__a,par_b)
2 wec__masks < GENERATEMASKS(rules)
3 search__limit «+ MIN(1000, size)
4 while gen num < size do
5: prim__i < GETRANDOMRULE(rules)
6 prim__rule < rules[prim__i]
7 sec_i < SELSECONDARY (prim__i, rules, search__limit,wc_masks)
8 sec_rule < rules[sec_i]
9: header <~ GENHEADER(prim_ rule, sec_rule)
10: gen_num += PRINTHEADERS(header, par__a, par__b)

11: end function

Figure 5.2: Pseudocode of the Smart Random 2.0 header trace generator.

It is possible to use more than one rule at a time to generate a header. In case of this
version, there is one extra rule used. The pseudocode of the Smart Random 2.0 header trace
generator is shown in Figure 5.2. For each rule a mask is created, where each condition
is represented by zero if it is a wildcard or one in the opposite case (line 2). The rest of
the process is repeated until the generated trace reaches the specified size. First, a random
primary rule is selected (line 5). A secondary rule is also selected at random, but if it does
not meet certain conditions in regards to the primary rule, another random rule is selected
(line 7). This could go on forever, as there might be no rules to satisfy the conditions,
which is why an upper limit must exist. This is called the search limit. After some amount
of experimentation, the search limit is set to one thousand, or the number of rules in a rule
set, for rule sets smaller than a thousand (line 3).

The conditions that must be satisfied play a key role in the whole process. The first
condition that has to be met by the secondary rule is that the logical operation and, between
its mask and the primary rule’s mask, results in a mask that consists of a maximum amount
of ones equal to three for 5-tuples and four for OpenFlow. In other words, the number
of fields where both rules have a non-wildcard value is limited to a maximum, which, if
exceeded, results in not using this secondary rule candidate. This serves as a quick filter
of rules that have an extremely low chance of overlapping with the primary rule. If a rule
passes this test, it is checked whether the two rules overlap (masks are used to check only the
necessary fields). If the secondary rule overlaps with the primary rule, a fitting secondary
rule is found. If a suitable secondary rule is not found in the maximum search limit of
attempts, then the last failed candidate is used. A header is then generated employing
both rules (line 9). The primary rule is used first. All of its non-wildcard conditions are
applied. For the rest of them, values from the secondary rule are used. If a given field
is wildcard for both rules, then a random value is generated. The header is then sent to
output. Multiple copies of it may be inserted into the trace, where the number of repetitions
is sampled form a Pareto distribution taken from the original ClassBench (line 10).

Smart Random 3.0

If there were some universally shared properties between rules that form overlaps, they
could be used to guess which rules overlap. Then, using such rules more frequently would
lead to better region coverage. In search of such properties, it was discovered that there
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are not any, but the rules that are a part of at least one overlap, often participate in more
of them.

Version 3.0 builds on the previous one. It does not change how secondary rule is selected.
Instead, improvements target the selection of the primary rule. A new parameter called
overlap focus is introduced. It determines how often should a primary rule be selected from
rules that are known to overlap instead of being chosen completely at random.

1: function TRACEGEN(rules, size, overlap__focus, par__a,par_b)

2 overlap__indices < ()

3 wc__masks < GENERATEMASKS(rules)

4 search__limit «+ MIN(1000, size)

5: while gen_num < size do

6 prim__i < SELPRIMARY (rules, overlap__focus, overlap_indices)

7 prim__rule < rules[prim__i]

8 sec_i < SELSECONDARY (prim__i, rules, search_limit,wc_masks)
9 sec_rule < rules[sec_i]

10: header <~ GENHEADER(prim__rule, sec_rule)

11: gen_num += PRINTHEADERS(header, par__a, par__b)
12: if OVERLAP(prim_ rule, sec_rule) then

13: overlap_i < overlap_i U {prim__i,sec_i}

14: end function
Figure 5.3: Pseudocode of the Smart Random 3.0 header trace generator.

The pseudocode of this version of the generator is shown in Figure 5.3. Overlapping
rules are discovered during the process of selecting a suitable secondary rule (line 8) and
their indices are added to the set of indices of known overlapping rules. The overlap focus
is a floating point number ranging from 0 to 0.9. If not specified, the default value of 0.5 is
used. Multiplied by one hundred, the overlap focus directly corresponds to the percentage
of how often the primary rule is chosen from the list of known overlapping rules.

Experiments regarding the overlap focus were mostly done with the 5-tuple rule set
acld_gen_ 1000. Figure 5.4 shows effects of varying overlap focus on overlap coverage for
several trace sizes. Note that the maximum overlap focus is very useful when not too
many headers are generated, but things begin to change when there are about as many
headers as there are rules in the used rule set. Eventually, a higher overlap focus becomes
counterproductive, as can be seen in the figure. This happens because the generator ends
up rediscovering the same overlaps instead of searching for those that are made out of rules
that have not been found to overlap yet. It is clear that there is no ultimately best value of
the overlap focus. It depends on the situation, but overall, the value 0.5 is a good middle-
of-the-road solution, which is why it was selected as the default value. Similar experiments
with OpenFlow rule sets did not bring any useful results, because almost all of their rules
participate in overlaps. For such rule sets, this version is effectively not different from the
previous one.

Smart Random 3.1

Previously mentioned versions struggle with covering overlaps that are made up of more
than just two rules. This is especially noticeable for OpenFlow rule sets, where such overlaps
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Figure 5.4: Overlap coverage of IPv4 5-tuples using Smart Random 3.0 with various overlap
focus.

commonly appear. Version 3.1 set out to address this. It strictly focuses on overlaps and
to a certain extent neglects covering individual rules.

When a pair of overlapping primary and secondary rules is found, it is not only used to
generate a header (and its copies), as described in section 5.4, but the rules are also merged
to create a new temporary rule. Merging the rules creates a rule describing their overlap.
This temporary rule is used as a new primary rule and a fitting secondary rule is looked for
in the same manner as previously. If it is found, then a combination of three overlapping
rules is discovered and used to create another header and, optionally, its copies. The overlap
focus has to be set to at least 0.2 for this to happen. This process is not repeated again,
even though it could continue forever, or at least until no more suitable rule pairs could be
found. Through experiments, it was discovered that repeating it does not lead to better
overlap coverage. It is possible that it could be advantageous for some other, specific rule
sets, but not in general.

Comparison of overlap coverage of the OpenFlow rule set ofl_gen_b_ x1000 by different
Smart Random versions can be seen in Figure 5.5. As noted earlier, version 3.0 does not
bring any improvement over 2.0 due to the nature of the rule set. The graph clearly
demonstrates how those two versions “cap” when a certain amount of headers is generated.
Further increases in trace size lead to very little increase in overlap coverage. Version 3.1,
on the other hand, keeps improving. Used trace sizes were chosen based on the total number
of distinct regions present in this rule set, which is 41 800. The overlap focus was set to its
default value of 0.5 for these and all the following experiments. Parameters of the Pareto
distribution are set to not create any redundant headers.

The corners method of packet header generation, proposed by the original ClassBench,
has zero percent coverage of overlaps in the OpenFlow rule set. That method was designed
for IPv4 5-tuples and not OpenFlow rules, as OpenFlow did not even exist back then.

The results for 5-tuples are shown in Figure 5.6. Even there, generating corner values
provides significantly worse overlap coverage than the other versions. Smart Random 3.0
and 3.1 achieve similar results, because the rule set does not contain that many overlaps,
especially those that are formed by more than two rules.
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Figure 5.5: Overlap coverage of an OpenFlow rule set using various versions of the generator.
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Figure 5.6: Overlap coverage of IPv4 5-tuples using various versions of the generator.

5.5 Combined Version

The overarching goal is to provide the best coverage of all regions. Ideas described in sec-
tion 5.3 lead to a good coverage of individual rules, while methods presented in section 5.4
focus on achieving the best overlap coverage. Naturally, the next step was to take the
advantages of both approaches and combine them together.

The combined version of the trace generator first applies principles from the Prevent
Rule Reusage 2 generator. It randomly iterates over the rules provided as input and gen-
erates a matching header (and its copies) for each of them, or stops earlier if the required
trace size is reached. If the required trace size has not been reached, then the rest of the
headers is generated using Smart Random 3.1.
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Figure 5.7: Region coverage of IPv4 5-tuples using different versions of the generator.

Comparison of region coverage of the IPv4 5-tuple rule set acld_gen_ 1000 achieved by
different versions of the generator is shown in Figure 5.7. The Combined version provides
the best region coverage for all trace sizes. Smart Random 3.1 trails behind the other
versions at first, as it focuses on overlaps and struggles to cover individual rules. At header
trace size equal to 500 % of the rule set’s size, all versions, except Smart Random 3.1,
have covered almost all individual rules. The Corners version and Prevent Rule Reusage 2
provide poor coverage of overlaps and therefore also worse coverage of all regions than the
Combined version.

Experiments with OpenFlow rule sets resulted in the greatest disparities between dif-
ferent generators. This is because all versions of the generator that use only one rule’s
conditions to create a header provide extremely poor coverage of overlaps, often none at
all. Figure 5.8 shows region coverage of the OpenFlow rule set ofl _gen_b_x1000 by dif-
ferent generator versions. The number of generated headers was chosen based on the total
number of regions present in the rule set. The Corners version and Prevent Rule Reusage 2
are not able to cover any overlaps, but they do cover all individual rules, even with just
41800 headers, which results in region coverage of 2,39 %. Smart Random 3.1 covers only
8.6 % of the individual rules when generating 418 000 headers. That is what makes it lack
behind the Combined version which provides the best overall coverage.

Since the IPv6 prefix rule set 2015_rrc00_ipv6_gen_ b 10000 contains only a single
overlap, the set of distinct regions is almost equal to the set of individual rules. That results
in the difference between region coverage by the different versions being rather small, as
shown in Figure 5.9. The header trace size equal to 500 % of the rule set’s size is enough
to almost always fully cover regions for all versions. In case of Prevent Rule Reusage 2,
and thus also for the Combined version, generating as many headers as there are rules is
usually enough to cover all regions.
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Figure 5.9: Region coverage of the IPv6 prefix rule set using different versions of the
generator.

Results of region coverage for IPv4 prefixes are shown in Figure 5.10. They are nearly
identical to those of IPv6 prefixes. The 2015_ rrc00_ipv4_gen_b_ 100000 rule set contains
more overlaps. Due to their nature, that was explained earlier, it is more likely for this
rule set that a header generated based on a superset rule will actually belong to the subset
rule. Over the 10 runs, this resulted in a few hundredths of percent lower coverage than
was achieved with the IPv6 prefixes.
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Figure 5.10: Region coverage of the IPv4 prefix rule set using different versions of the
generator.

5.6 Performance

The evaluation of trace generators’ performance is based on two metrics: memory consump-
tion and run time. Run time can be used to calculate how many headers are generated
per second, which allows for comparison of performance between rule sets of different sizes.
Introducing a similar metric for memory consumption, such as headers per kB of memory,
would not be useful, because memory consumption is not dependant on the size of the
generated header trace.

All performance experiments were conducted on a Scientific Linux server with Intel
Xeon E5-2670 processing unit running at a base frequency of 2,6 GHz. A total of about
300 MB of RAM were available for the experiments. Just like the experiments with rule set
coverage, all experiments were run ten times and the provided values are averages of those
runs.

Table 5.4 shows the number of headers that each version generated per second for
different input rule sets. In these experiments, the generator was instructed to create a
header trace ten times larger than the input rule set’s size and to not create any redundant
headers (which would lead to shorter execution times). Used rule sets are presented in
section 5.1. Results for the two OpenFlow rule sets were almost identical. To prevent
repetition, only results obtained using the ofl__gen_b_ 10000 rule set are displayed in the
table.

The advanced versions of the generator that provide very good coverage are, as expected,
significantly slower than the simple generators. Smart Random 3.0 is faster than Smart
Random 2.0, most likely because it randomly selects some rules from the list of known
overlapping rules, which is smaller than the list of all rules. This appears to be the case,
because 3.0 is evidently faster only when the input rule set contains some overlaps, but
at the same time not all rules participate in them. Prevent Rule Reusage 2 is faster
than its previous version, because it prepares the random order in which it uses rules to
generate headers and then continues generating completely randomly. The previous version
is selecting rules completely at random from the start, but until a certain point outputs
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5-tuples OpenFlow IPv4 prefixes IPv6 prefixes

Naive Version 24969 18947 27510 28130
Corners Version 27964 18432 29004 28418
Prevent Rule Reusage 12305 5276 870 5043
Prevent Rule Reusage 2 34438 19999 34005 30553
Smart Random 2.0 264 1032 126 146
Smart Random 3.0 335 1018 132 147
Smart Random 3.1 73 124 138 145
Combined Version 80 138 131 156

Table 5.4: Number of generated headers per second by different generators.

only the headers generated based on a rule that has not yet been used. The Combined
version is slightly faster than Smart Random 3.1, because it generates some headers using
the much faster Prevent Rule Reusage 2.

Getting a high number of headers generated per second was not the goal of this thesis.
Instead, it was important to achieve the best possible coverage of all present regions, while
keeping the performance at a level which allows even common machines to generate a header
trace in a reasonable time. This means that the actual number of headers per second is
not that important, but the time complexity of the algorithm is. Smart Random 3.1,
which is also used in the Combined Version, is the slowest of the algorithms. It is still
satisfactory, because it has a linear time complexity O(n), where n is the required trace
size. The complexity is linear due to the fact that the iteration of the main loop has a
constant worst-case time complexity and it is repeated at most once per each generated
header. This has been confirmed through experiments.

5-tuples OpenFlow IPv6 prefixes
real [kB] virt [kB] real[kB] virt[kB] real kB] virt kB]
Naive Version 151 800 9667 161948 19844 164240 22098
Corners Version 151800 9668 161948 19830 164 240 21984

Prevent Rule Reusage 152060 9928 163740 21700 166774 24699
Prevent Rule Reusage2 152188 9978 164680 22449 167952 25844

Smart Random 2.0 152056 9945 163970 21930 165 264 23250
Smart Random 3.0 151 800 9656 163919 21876 165 264 23 258
Smart Random 3.1 151800 9660 163484 21428 165 264 23 250
Combined Version 152 364 10156 165832 23684 168 636 26 496

Table 5.5: Memory consumption of different generators.

Memory consumption of all versions of the generator is mostly driven by the size of a
provided rule set. Peak values of real and virtual memory were measured. The reference
machine, on which all performance tests were conducted, has insufficient main memory
for the largest used rule set (IPv4 prefixes 2015_rrc00_ipv4_gen_b_100000). That lead
to extensive virtual memory usage and, therefore, completely meaningless results when
it comes to observing real memory consumption. This rule set is thus not included in
Table 5.5, which shows real and virtual memory consumption of each generator’s version.
The more sophisticated versions have slightly higher demands on memory due to some extra
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variables that they use. The 5-tuple rule set consists of 1000 rules and therefore requires
less memory than the other two rule sets, which have 10000 rules.

5.7 Possible Future Improvements

The Combined version has proven itself to be the most useful. Therefore, all future work
would focus on it, unless an overall better algorithm would be found.

When writing the code of the generator, it was important to implement proposed al-
gorithms quickly and without errors, so that they could be tested and evaluated as fast as
possible. Time played a key role, because the results of experiments with each algorithm
were needed before I could come up with new algorithms or improve the existing ones.
During development, effectiveness of the code was secondary. For all of those reasons I
decided to implement the algorithms in Python. Since the code is finished now, it could
be further optimized to be more effective. More importantly, it could be rewritten in a
different language, like C++, which should lead to faster execution speed and significantly
more efficient memory management.

Advancing the code itself is not the only way to improve the generator. Currently,
the execution time mostly hinges on the search limit constant. Decreasing this constant
would lead to better execution time, but worse region coverage. The worsening of coverage
is largely dependent on the rule set. While the current default value of search limit was
chosen based on experiments with various values, it was selected rather conservatively in
regard to preserving a high coverage. Finer tuning of the constant could potentially achieve
a better compromise between execution time and coverage. Alternatively, it could be turned
into a parameter of the generator and different users could use values that work best for
them.

Similar balancing act could be done within the function that selects a secondary rule.
Specifically, altering the maximum limit of fields where primary and secondary rules must
have a non-wildcard value for the secondary rule to be selected. Just like the search limit,
the current limit has been chosen based on a series of experiments with the main motivation
to improve execution time, but to not hinder region coverage. Decreasing the limit would
lead to faster run time, but worse coverage. Another possibility is to remove this condition
entirely, which would guarantee the best possible coverage with this algorithm, but also the
worst execution time. Depending on the circumstances, both approaches could be seen as
improvements.

Last but not least, it is also possible to achieve better performance without sacrificing
coverage through parallelization. The entire main loop of the Combined version could be
fully parallelized. If the generator was rewritten in C++, I believe that it would be possible
to create an effective parallel solution in a short period of time by using OpenMP.
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Chapter 6

Conclusion

Packet classification is one of the most common operations in computer networks. It is often
a performance bottleneck in routers. Creation of new, more efficient packet classification
algorithms is being slowed down by a lack of proper rule sets and packets to test with.

ClassBench-ng is a synthetic rule set generating tool capable of generating realistic IPv4,
IPv6 and OpenFlow 1.0.0 rules. However, there is no easy way to obtain packet header
traces that are also needed for proper evaluation of the classification algorithms and devices
that employ them. Main goal of this thesis is creation of a tool that would generate such
header traces based on rules provided by ClassBench-ng.

An ideal header trace for such testing should contain at least one header values combi-
nation for every rule and each overlap of rules in a provided rule set. It is possible to achieve
this, but only for rule sets up to a certain size. Memory consumption and computational
demands become unfeasible for larger rule sets or rule sets containing many overlaps. The
opposite approach is to generate the header values randomly, which is guaranteed to be very
fast, but the resulting coverage of rules and their overlaps is very poor. The core of my
work was to find a good compromise between those two approaches, that is, a compromise
between performance and coverage.

As a part of this thesis I devised several different approaches to header trace generation,
implemented them, and evaluated their properties. The evaluation was performed using a
tool I had made specifically for that purpose. Creation of the different generator versions
was an iterative process, where obtained results usually determined the direction of further
improvements. Final version, the Combined version, achieved the best properties of all the
implemented generators. It combines methods from two previous versions.

The two main contributions of this thesis are the evaluation tool and the final version
of the generator.

There was no specific target value that the thesis should reach. Instead, the Corners
version served as a benchmark which should be surpassed in terms of coverage, as it is the
only previously used method of this kind of header trace generation. That was successfully
achieved. Coverage provided by the final version of my generator is significantly better
compared to the Corners version. The difference is most severe with OpenFlow rule sets.
Performance-wise, the Combined version generator is considerably slower, but it has linear
time complexity, which is satisfactory. Memory consumption of the two is comparable.
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