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Abstract. Utilization of various steel grades in civil engineering allows 

designing bridges, bridge elements or simple structures according to their 

fracture mechanical properties. The service intervals of structures, which are 

going to be in use for a long time, cannot be calculated only on the basis of 

tensile and brittle fracture properties but also on the knowledge of the 

resistance to the fatigue crack growth. This contribution presents a 

comparison of the fatigue behaviour of two modern steel grades S235 J2, 

S355 J2 and a steel extracted from an old crane way. The comparison of 

these steel grades is done by fatigue crack propagation tests (the results of 

the experimental tests are described using concept of the stress intensity 

factor range ΔK). The fatigue properties are discussed and recommendations 

for the use of the steels are stated.  

1 Introduction  

The key parameters for design and manufacturing of civil engineering structures are 

structural integrity, damage tolerance, reduction of structural weight, and manufacturing cost. 

For application on new structures, a complex experimental campaign has to be performed 

before the structures are going to be built. On the other hand it is rather difficult to estimate 

the remaining fatigue life of structural elements, which are already in use, due to lack of 

knowledge of used materials and their mechanical characteristics. Similarly, the load history 

together with structural changes due to repairs or strengthening are hardly to find within 

whole structures’ service life time (e.g. the last hundred years). 

In many ways, steel bridges exhibit very similar problems like structures (in our case 

crane) in industrial facilities [1]. The fatigue assessment guideline for the estimation of the 

remaining fatigue life of steel bridges [2] is a useful tool commonly applied for condition 

assessment that complements bridge management systems. 

The aim of this contribution is to compare experimentally obtained fatigue crack growth 

rates of long fatigue cracks in two steel grades S235 J2, S355 J2 and a steel extracted from 

an old crane way and to quantify the influence of selected properties on fatigue crack 
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resistance. The fatigue crack propagation is characterized by means of crack growth curves 

experimentally determined on compact tension (CT) specimens. The experimentally obtained 

results are discussed. 

2 Materials and experimental data processing procedure  

2.1 Materials  

The chemical composition of steels S235 J2 and S355 J2 is specified in standard EN 10025-

2:2004 [3] and it is presented in Tab.1 together with an information about chemical 

composition of the old crane way steel obtained by chemical analysis performed by EDS on 

SEM TESCAN LYRA. Chemical composition of the modern S235 J2, S355 J2 was verified 

by producer and it is in agreement with the standard presented in this paper.  

 
Table 1. Chemical composition of the used steels in wt. % determined grades according to EN 10025-

2:2004 standard and obtain from by chemical analysis by EDS technique.  

Steel grade S235 J2 S355 J2 Old crane steel 

C (max. %) 0.17 0.2 0.1 

Mn (max. %) 1.4 1.6 0.5 

Si (max. %) - 0.55 - 

P (max. %) 0.03 0.03 - 

S (max. %) 0.03 0.03 - 

Cu (max. %) 0.55 0.55 - 

CEV (max. %) 0.35 0.47 - 

Other (max. %) - - - 

 

The microstructure of the three used materials is shown in Fig.1. The specimen surface 

was etched with 2 % Nital and the light optical microscope was used for structure imaging. 

 

   
a) S235 J2 b) S355 J2 c) Old crane steel 

Fig. 1. Structure of the S235 J2, S355 J2 and the old crane steel etched with 2% Nital, light optical 

microscope. 
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The average grain size with standard deviation estimated with linear intersection method 

was 18, 18 and 21 m for the S235 J2, S355 J2 and the old crane way steel, respectively. 

Mechanical properties of the studied materials determined according to EN 10002-1 standard 

[4] are summarized in Tab. 2. The tensile strengths are significantly higher for S235 and S355 

than the code value. 

 
Table 2. Mechanical properties of S235 J2, S355 J2 and steel from the old crane way mean values 

with standard deviation. 

Steel grade S235 J2 S355 J2 Old crane steel 

Young’s modulus 

[GPa] 
208.2±4.1 205.4 ±7.4 206.3±6.2 

Yield stress 

[MPa] 
276.87±0.31 381.94±6.22 271.2±2.46 

UTS 

[MPa] 
423.86±1.49 554.41±1.62 439.28±0.49 

Elongation at break 

[%] 
21.99±0.22 34.22 ±1.54  18.49±0.23 

Poisson’s ratio 

[-] 
0.3 0.3 0.3 

2.2 Experimental data processing procedure  

The fatigue crack growth experiments were carried out at a computer-controlled testing 

machine (Amsler 2 HFP with maximal load 20 kN). Tests were conducted under load control. 

The stress ratio R = Pmin/Pmax = 0.1, where Pmin and Pmax refer to the minimum and maximum 

load of a sinusoidal wave in each cycle. The controlled values for temperature and relative 

humidity were 23 ± 2 °C and 50 %, respectively. The load frequency used for the tests varied 

from 100 (for the shortest cracks) to 60 Hz (for the longest cracks). 

The fatigue crack growth resistance was characterized by Paris’ law [5], se more about 

fatigue behavior in e.g. [6], i.e. the dependence of the crack growth rate on the applied stress 

intensity factor range ΔK: 

 
𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑚,        (1) 

where C and m are the material constants and K is the stress intensity factor range given by 

ASTM [7] 

 ∆𝐾 = (𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛)√𝜋𝑎𝑌(𝑎 𝑊⁄ ),      (2) 

where max and min are the maximum and minimum applied stresses, a is the crack length 

and Y is the geometry function depended on the specimen geometry [8]. 

For the comparison of fatigue crack growth resistance of studied materials, the compact 

tension (CT) specimens according to the ASTM E647 [7] Standard were selected, see Fig. 2. 

The tested CT specimens had dimensions: L = 62.5 mm, W = 50 mm, B = 10 mm, an = 12.5 

mm, H/2 = 30 mm and the angle 1 = 60°. The experimentally determined crack length was 

the average of measurement performed on both sides of the CT specimens. The crack length 

was measured optically by using of two CCD cameras. The initial crack (notch) was oriented 

perpendicularly to the rolling direction. It is expected that rolling direction corresponds to 

purposed direction of loading (fatigue cracks initiate and grow perpendicularly to the loading 

direction), see [9]. Note that previous work on S355 [10, 11, 12] S355 J2 [13] or S355 J0 
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[14, 15] showed that the fatigue crack propagation rate seems to be independent of the rolling 

direction and resulting microstructure. 

Fig. 2. Geometry of the compact tension (CT) specimen and experimental setup. 

3 Experimental results and discussion 

On the base of obtained results, obtained and statistically evaluated fracture mechanical 

properties could be important for sensitivity analysis of civil engineering steel structures 

under fatigue load, when the properties from Paris’ law are utilized as input parameters [16-

19]. Knowledge on the fatigue crack growth rate is necessary to ensure safety service during 

the operation of the old crane and to compare the properties of the old material with the new 

ones. The old crane steel was loaded for years with a loading history that can be predicted, 

but not known precisely [20]. The diagonal structural element, from which the material was 

taken, was found with no fatigue cracks. Thus we consider the previous loading only below 

the fatigue limit of the material. Moreover, the specimens for fatigue crack growth rate 

measurements were milled and polished, where the surface (with potential microcracks) of 

the material was machined out. These facts lead us to the conclusion that the previous loading 

of the material has no significant influence on current measurements and omitting of the 

previous loading is justified. 

Table 3. Constants of Paris’ law for the S235, S355 and steel of old crane way for R=0.1. 

Steel grade S235 J2 S355 J2 Old crane steel 

C (da/dN in 

mm/cycle) 
2.0e-9 1.0e-8 5.0e-10 

m 3.26 2.71 3.59 

R2 0.91 0.99 0.90 

In particular the fatigue crack growth behaviour of particular materials is compared for 

the stress ratio R = 0.1, Fig. 3. Finally, comparison with data available in the literature is 

performed. The crack growth rates, da/dN, are plotted as a function of the stress intensity 

factor range, ΔK. The crack growth rates were computed using the seven point incremental 
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polynomial technique, as required in the ASTM E647 [7] standard. The experimental crack 

propagation data were correlated with Paris’ law, since only the crack propagation regime II 

was covered by the present experimental research. 

Table 3 summarizes the constants of the Paris’ law for the three steels for the stress ratio 

R = 0.1. The table also includes the coefficients resulting from the fitting the Eq. 1 to the 

experimental data. All determination coefficients are above 0.90, which represents very high 

correlations. The slope of the crack growth rate curve on log-log scale denotes the value of 

the exponent m and is typically found for metallic materials to lie in the range from 2 to 4 

[6,21]; for all steels investigated m lays in this interval. The crack growth data of the S355 

steel exhibit lower scatter R2 = 0.99 than that for the S235 and the steel of the old crane way 

(R2  0.9), which means higher quality of the S355 steel with respect to the both mild steels 

Fig. 3. Fatigue crack growth curves for S355J2 S235J2 and old crane way steel. 

Fig. 3 compares the fatigue crack propagation curves for the three steel grades under 

investigation. For the same geometry and same test conditions, the results show marked 

differences between the values of fatigue crack propagation rates for the same value of the 

stress intensity factor range. The difference increases with decreasing ΔK value. These results 

may be justified by the finer grain of the S235 and S355 steels (in comparison with the old 

crane way steel) which facilitates the fatigue crack propagation. 

It is interesting to note that fatigue crack propagation rates increase with increasing yield 

strength of steels, similar like reported by Jesus [10]. This implies that there is no advantage 

of using the S355 steel for structural components whose fatigue life is dominated by crack 

propagation, rather than crack initiation. This means that from fatigue crack propagation 

point of view it is more advantageous to use the S235 steel for manufacturing of structural 

components. 

4 Conclusion 

Growth of long fatigue cracks was experimentally investigated and evaluated in two standard 

steel grades (S235, S355) and a steel from an old crane way: 
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• The fatigue crack growth rates in S355 and S235 steels are higher than in steel from 

old crane way under the same stress intensity factor range, which means that the old 

steel is more resistant to the growth of long fatigue cracks. 

• The results show that it is preferable to use the S235 steel for replacement of the 

structural components in the cases where the fatigue crack growth is the decisive 

parameter for the service life.  
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