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PERSONAL NAVIGATION ALGORITHMS BASED ON
WIRELESS NETWORKS AND INERTIAL SENSORS

Zdenék Kana — Zdenék Bradaé — Petr Fiedler *

The work aims at a development of positioning algorithm suitable for low-cost indoor or urban pedestrian navigation
application. The sensor fusion was applied to increase the localization accuracy. Due to required low application cost only low
grade inertial sensors and wireless network based ranging were taken into account. The wireless network was assumed to be
preinstalled due to other required functionality (for example: building control) therefore only received signal strength (RSS)
range measurement technique was considered. Wireless channel loss mapping method was proposed to overcome the natural
uncertainties and restrictions in the RSS range measurements The available sensor and environment models are summarized
first and the most appropriate ones are selected secondly. Their effective and novel application in the navigation task, and
favorable fusion (Particle filtering) of all available information are the main objectives of this thesis.
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1 INTRODUCTION

During last decades, the fast growth in wireless com-
munication and electronics generally has enabled the de-
velopment of microsensors that can interface with sur-
roundings cordless. Since the price of these devices is de-
creasing, huge number of them concentrated in the wire-
less control network, Wireless Sensor Network (WSN),
or a general wireless communication network can be de-
ployed to cover outdoor, urban, or indoor areas.

Ubiquitous computing and growing usage of informa-
tional and electronic technologies in every-day life brings
the need of location of things and persons. The terms
like ubiquitous services, pervasive computing, networks
convergence can be heard frequently nowadays. The fast
development in the field of electronics has also enabled
the practical realizations of ideas, which fits the smart
city concept. The services are directed at the persons, in-
habitants and are locally dependent. So the localization
of the person is a crucial feature of such system.

The Global Navigation Satellite System (GNSS) or
more specifically Global Positioning System (GPS) does
not fit very well for these applications. The main dis-
advantages of GNSS are: vulnerability to disturbances,
high energy consumption, relatively high price of qual-
ity receivers, and outdoor usage restriction. Although the
last drawback can be partially overcome with the indoor
GNSS repeaters [1], the solution accuracy and the in-
stallation costs are not on an applicable level yet. Many
efforts have been concerned on development of Local Po-
sitioning System (LPS) during last years.

Seen from the perspective of wireless networks based
positioning, the LPS layout consists of Reference Nodes
(RN) and Blindfolded Nodes (BN). RNs know their ac-
tual position, which can be set up by administrator at the
installation of network or acquired by supreme position-
ing system (for example GPS in outdoor installations)

and can be called beacons or anchor nodes. BNs calcu-
late their location from measurements of ranges of RNs
or other BNs and can be called moving nodes.

There must be solved sequent tasks to locate the RF
device. Firstly the measurement/ communication tech-
nology must be chosen. Nowadays, these RF technologies
are most commonly used: RF identification, ZigBee, Ul-
tra Wideband (UWB) or Wi-Fi. Then there must exist
RNs with prior knowledge of their location, independent
on used LPS. The third step is to obtain the estimated
ranges to neighboring RNs. The range estimation can be
based on different measured physical variables: Received
Signal Strength (RSS), Time of Arrival (TOA), Time Dif-
ference of Arrival (TDOA), or Angle of Arrival (AOA).

Next, Localization Algorithm (LA) needs to be in-
volved to compute all the required coordinates of BNs.
There have been proposed many LAs: Triangulation
- usually used Least Mean Squares (LMS) approach
when over-defined condition [2, 3], Maximum Likelihood
Estimation (MLE) [4,5], Signpost — Nearest neighbor
method, Signal fingerprinting, etc.

Since the range measurement typically gives very
rough data and also the deployment of various LAs do not
return satisfactory outcomes, there has been paid a lot of
attention to utilization of several localization improving
techniques to precise the LA’s estimation. Among them
belong averaging (done in time, frequency or reciprocal
channel level), or Bayesian techniques (Bayesian filters
— BF: Kalman filter — KF, Grid-based method, particle
filter — PF, multiple use of BFs, etc) [6].

The available computational resources (modern smart-
phones are equipped with powerful processors and suffi-
cient amount of memory) enable the use of more com-
plex, precise and reliable LLAs. On the other hand, the
demand to be independent on the wireless standard and
low cost required is limiting the efforts to received sig-
nal strength (RSS) range measurement method, which is

* Department of Control and Instrumentation, Faculty of Electrical Engineering and Communication Brno University of Technology,
Technickd 3082/12, 616 00 Brno, Czech Republic, kana.zdenek@gmail.com

DOI: 10.2478/jee-2014-0031, Print ISSN 1335-3632, On-line ISSN 1339-309X (© 2014 FEI STU



194 Z. Kaiia — Z. Braddé — P. Fiedler: PERSONAL NAVIGATION ALGORITHMS BASED ON WIRELESS NETWORKS AND ...

giving back only very perturbed data. IEEE 802.15.4a, an
amendment to IEEE 802.15.4, which extends the physical
layers with UWB and chirp spread spectrum techniques
was introduced in 2006. Although these techniques en-
ables deployment of TOA and TDOA based range esti-
mation, the market with available devices is rather small,
the price is higher as compared to other technologies and
the communication is very unreliable.

The fusion with other sensors readings is a logical
approach how to increase the positioning accuracy. Since
the emphasis is put on a low cost solution the sensor set
is quite narrow: inertial sensors (gyro, accelerometer) and
magnetometer. Because the navigation algorithm must
be applicable in indoor environment, where significant
magnetic disturbances shall be assumed, the focus was
put on inertial sensors only.

There exist two basic approaches for inertial sensors
based pedestrian navigation. Firstly, a strap-down iner-
tial navigation system (SINS) [7, 8] can be used. Since the
sensors must be of low grade (cost and weight require-
ments) and the pedestrian motion is very complex to im-
plement pedestrian navigation system based on SINS is a
challenging task. The reason is that the aiding sources for
such system (LPS or GNSS) won’t be accurate enough to
estimate inertial sensors errors with their given grade and
pedestrian motion in play. There exists one very popular
solution: the inertial sensors are attached to the pedes-
trian foot [9,10]. Then a zero velocity update [7] can be
used during stance phase of stride to calibrate observable
inertial sensor’s biases.

The second approach is based on the pedestrian walk-
ing locomotion [11-13] and fits to the concept of this work
better then SINS because the inertial sensors can be at-
tached to the body of pedestrian or be worn in a pocket
(some smart phones already includes inertial sensors and
can be easily reused). The accelerometer measurements
are used to detect the steps (the step length can be esti-
mated, too) and together with gyro measurement consti-
tutes a pedometer.

Since most of the measurement errors in the RSS based
range estimation methods are due to the indoor environ-
mental effects like is shadowing and multipath a tech-
nique to estimate the values and associated uncertainties
of these effects can significantly increase the localization
accuracy of the proposed solution.

The objective of this work is to develop a navigation
algorithm, which will be implementable in the low-cost
pedestrian navigation system and the assumption of pre-
instaled RF communication network can be taken.

2 STATE OF THE ART

2.1 Wireless Network Based Positioning

In this subsection, the first task — wireless network
based positioning — is briefly described. There are two
types of coordinates, estimated BN (sometimes called an-
chor nodes) and known RN (sometimes called beacon
nodes).

The distance between nodes ¢ and j (in 2-D) could be
obtained with the use of triangulation

dij = \/(xi—Ij)Q-F(yi—yj)Q- (1)

There are described three types of variations in the
radio propagation channel [15, 16]:
e Small-scale variations (fast fading): These variations
are caused by multipath character of the channel.

e Mid-scale variations (slow fading): They are mainly
caused by shadowing and terrain contours and may
exhibit great differences; the distance between nodes
is equal.

e Large-scale variations (path loss): The increasing dis-
tance between nodes is dramatically changing the
channel’s structure and measured parameters statis-
tic. RSS location technologies are based on this fact.

The choice of range measurement method is the crucial
decision point; there can be found many comparisons in
the literature [4]. The TOA method is based on measur-
ing the time, which needs the signal to travel the distance
between transmitter and receiver. In networks where the
clocks are not synchronized is commonly used the TDOA
technique, where the first device transmits a signal to the
second, which replays on its receive. The time interval
measured on the first device consists of twice TOA and
the second device replay delay, which is either known or
measured by the second device and then transmitted to
the first device. TOA claims the use of accurate (expen-
sive) clocks and the main sources of errors are the non-line
of sight signals, which travels longer way then the main
line of sight signal.

The AOA method is reporting the angle not the dis-
tance of neighbors and requires costly antenna arrays.
The RSS method appears to be the cheapest one from all
named, but also the least accurate one. The biggest ad-
vantage of RSS method is the fact that a Received Signal
Strength Indicator (RSSI) is part of most communication
standard.

The large-scale variations [17] in power path-loss over
distance d; ; between nodes ¢ and j is observing inverse-
exponential pattern, formulated in dBm

_ d; ;
Pi,j (dBHl) = PO (dBHl) - 107’Lp log dJ (2)
0

where n,, is path-loss exponent, Fy is received power at
short reference distance dy. There is typically used a log-
normal (Gaussian if expressed in decibels) distribution
for modeling the range measurement errors.

The LA computes from the measured ranges to RNs
the position of BN.

MLE maximizes of the probability of location solution
based on the statistical character of the wireless prop-
agation channel. By taking the negative logarithm and



Journal of ELECTRICAL ENGINEERING 65, NO. 4, 2014

assuming all available measurements have the same vari-
ance, the 2-D position can be estimated as follows [4]

d? N\ 2
[X1, o TR Y1y ey Yn] = arg min (111612—’]) . (3)
150 ZniY1see s Yn] i,j

Least mean square (LMS) algorithm minimizes the
mean of differences squares and assumes identical mea-
surement error characteristics. It is a methodology, which
is appropriate also for overdetermined tasks, where there
exist more measurements, than is needed for the task to
be solvable. When the errors in measurements have the
Gaussian distribution, the LMS solution tends to MLE
solution.

When the assumption of identical measurement error
distribution does not hold the truth, the LMS can be
reformulated to WLMS.

2.2 Bayesian Filtering In Positioning

Since the “traditional” LAs (described previously)
combined with RSS range measurements does not carry
out sufficient outcomes, it is logical to proceed from snap-
solutions (represented by the MLE, LMS and WLMS
methods) to the filtered solutions. In filtered solutions,
also the path history is used (for BFs only the actual and
previous step), not only current measurements from the
sensors. The probabilistic relationships between variables
enable the utilization of conditional probability tech-
niques, eg BFs. These conditional probabilities usually
express both, the system dynamics (state evolution) and
measurement models. These models can be and in this
thesis will be used to describe the navigation system rep-
resented by the pedestrian moving along an area covered
by the RF signal from multiple RNs.

The probabilistic approach used in BF means, that the
state is not represented directly, by a numerical value, but
by the belief bel(x(t)) , which assigns a probability to each
possible solution.

Bayes filter consists of two essential steps:

(1) Prediction (Control update) — There is predicted the
next state vector bel(z(t)) according to the previ-

ous state bel(z(t — 1)) and system dynamic model

p(a(®)]a(t - 1)).
Bl(a(t)= [ pla(t) (e 1)) bel(a(t—1)da(t~1). (4

(2) Correction (Measurement update) — Sensor likelihood
(perceptual) model p(y(t)|z(t)) is used for correction
of the state predicted in the previous step.

bel(z (D)) = np(y(®) [o(®) Bel(@(®) . (5)
The PF represents the belief by a set of M weighted

random state samples (6) drawn from this probability
density function (7)

X(t) = 2M@), 22 @), ..., M), (6)

M
bel(z(t))= Z w[i]é(x - x[i]) . (7)

195
The basic variant of PF consists of these steps [14]
Vm € [1,..., M]: sample z!*(t)
~ p(a(t) [u(t), 2™ (t - 1)), (8)
wi™(t) = p(y(t) |2 (2)), (9)
X(t) = X(t) + <x[ml (t), wl™ (t)> : (10)
draw i with probability o wl(t),

(11)
(12)

Ym=1[1,...,M]:

add 2 (t) to X(t).

Initially, there is generated a set of M hypothetical
states (8), each based on the control u(t), particles from
the last step x(t — 1)) and system dynamic model
p(z(t)|u(t),z(t — 1)). To include the measurement y(t)
into the particle set, the so-called importance factor
w(t)I™ is calculated in (9) for each particle. This step
is called importance sampling. Equations (11) and (12)
are representing the re-sampling procedure. This proce-
dure draws from the set of predicted particles X(t) a set
of M new particles X(t). Particles in X(t) are distributed
according to the bel(x(t)) and in the set X(t) according

to the bel(z(t))= np(y(t)| =™ (t))bel(2(t)) .
2.3 System Dynamics And Measurement Models

System dynamics and measurements models are two
important components of BF.

There can be seen a typical pattern of vertical and
forward acceleration during the human walking on a flat
floor on Fig. 1. The peak detection can be deployed for
the step detection.

An approach for estimating the step length was pro-
posed in [11]. The walking speed can be estimated accord-
ing to the difference between maximum and minimum for
vertical and/or forward acceleration; the relationship can
be easily linearized.

Inertial sensors comprise accelerometer and gyroscope
(gyro), which measure specific force and angular rate, re-
spectively. Since 3-D navigation information is usually re-
quired, triads of these sensors are combined in an inertial
measurement unit (IMU). The general sensor error model,
which can be applied for both, gyro and accelerometer
measurements, is shown in

x=(I1-M)x+b+w (13)

where | is identity matrix (3-by-3 for 3-dimensional coor-
dinate system), x is the true value (true specific force or
angular rates) and X is measured value (sensor output).
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Vertical Increased Decreased
acceleration

Decreased Increased
Forward
acceleration Unit cycle of walking

Fig. 1. Walking stage and acceleration pattern [11]

Fig. 2. Coordinate frames

b is the bias (typically the most remarkable error), M is
the matrix of scale factors and misalignment errors, and
w states for the measurement noise, typically assumed
to be white (at least for frequency band constrained by
the vehicle dynamics) and Gaussian.

The RF propagation channel model represents the
measurement model in the application with framework
of RNs, which are transmitting the RF signal and the
BNs measures the ranges by the RSS method. As it has
been said before, the range measurement errors are typi-
cally described with a log-normal (Gaussian if expressed
in decibels) distribution.

3 PROPOSED SOLUTION

3.1 Pedestrian Dead Reckoning Tightly Fused
With RSS Based Range Measurements

Four coordinate frames will be used and are depicted
in Fig. 2.

The IMU (IMU) frame is fixed to the IMU and the ac-
celerations and angular rates are measured in this frame.
The leveled (LVL) frame has the same origin as IMU
frame but is rotated in order the z axis was pointing down;
this rotation is defined by two consecutive Euler rotations
over two angles (roll and pitch). The forward-right-down
(FRD) frame is a local leveled frame, too, this frame has
its origin in the center of gravity of the pedestrian and

the forward direction is aligned with the horizontal veloc-
ity vector projection. Although the leveled and forward-
right-down frames are translated to each other, their rel-
ative rotation can be defined by a single vertical Euler
rotation. The angle, which will be called IMU bearing,
defines this rotation and is not easy to be estimated. Al-
though some methodologies were proposed (ie [11]), the
results of them are not satisfactory. In this work the IMU
bearing will not be estimated and only vertical acceler-
ations and angular rates will be further used. The fixed
(FIX) frame is fixed to the environment, where the navi-
gation should be resolved.

The system dynamics and measurement models are
summarized in this subsection. The state space is to be
described first

[ 5 0 ol

§Astep 0Bstep 6P Sny |

(14)

The state space consists of horizontal position (7“_,];”, 7“5”) ,

heading (1)), vertical gyro bias (b/7¢ ), errors of vertical
acceleration and step length linearized relationship pa-
rameters (slope and intercept: 0Asiep, 0Bstep), error of
received reference power coarse value (§F) and error of
path loss exponent coarse value (dnp ).

The proposed discrete time system dynamics model is

described in (15).

rie () = It — 1) +sin(y(t — 1)

+ (@I = bIU(t— 1) — wll ) At) Sren
with Sjen = (Astep + 0 Astep(t — 1)) (aI72,,

~frd
- a‘z,min) AtStep

+ (Bstep + 5B8t€:0 (t - 1))At5tep + Wstep »
ry(t) = (= 1) + cos((t ~ 1)

+ (@I —blrd (t—1) —wlrd Y At)Sen
Wlth Slen = (Astep + 5Astep (t - 1)) (a,]zc?;rdzaz

~frd
- a’z,min) AtStep

+ (Bstep + 5Bstep (t - 1))At5tep + Wstep »
Y(t)=0(t = 1) + (@I = bl (t = 1) —w]!

gyr,z gyr,z

)At,

At
d d d
bl (0)= exp (Ul = D) il g
Tgyr,z,GM
At

§ Agtep(t)= exp(— )5Astep(t — 1)+ wa,.,an

TAstep
At

)5Bstep(t - 1) + WBtepGM 5

TBstep
At

TP,y

6Py (t) = eXp( )5P0(t —1) +wp,am

At
dnp(t)= exp(— 5

np

)5np(t — 1)+ wn,am (15)

where @/ is measured horizontal angular rate with cor-

responding measurement noise (wf rd ), At is system

gyr,z
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Fig. 4. Dual and full wireless channel loss mapping comparison

dynamics sampling time, Sj., is estimated step length

with corresponding estimation noise (wsiep ), Astep and

Bgiep are the slope and intercept of step length linearized

relationship coarse estimates (to fit the wide range of hu-
~frd frd
a

zZ,max Z,min
vertical acceleration maximum and minimum used to es-
timate the step length. Vertical gyro bias, errors of ver-

man walk), and a are the low-pass filtered

tical acceleration and step length linearized relationship
parameters (slope and intercept), error of received refer-
ence power coarse value, and error of path loss exponent
coarse value dynamics are modeled by first Gauss-Markov
process with corresponding time constants (7 ) and driv-
ing noises (w_ ).

The model is non-linear, but all the noises are modeled
as white and Gaussian so the sampling (representing PF
prediction) from the proposed system dynamic model is
straightforward.

The number of available RSS ranging measurements to
the RN will define the dimension of measurement vector.
The measurement model is similar for the whole measure-
ment vector

P, =
Py +8Py(t) — Li — 5y + 0n, (1) log (5, — 17 (1))

fix

1T 2
+ (Ty,RN,i - 7";]; (1)) +A2%)—wg, + wrss  (16)

where rifﬁNﬂ and T‘Z%N’i are the coordinates of RN 1,
Az is a constant to compensate the difference in the
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RN and BN height, P, is the coarse value of reference
receive power, 7, is path loss exponent coarse value, and

wgrss is receiver noise. Finally, l:l is shadowing power
loss with corresponding noise (w L 1) ), both variables will
be discussed next.

The PF was selected to be used in proposed navigation
algorithm. Since there exist many types of PF selected
implementation is described. Sampling importance re-
sampling particle filter with systematic re-sampling trig-
gered by the estimated effective sample size threshold is
to be used as part of the proposed navigation algorithm.

The sampling uncertainty is propagated based on the
state space noises as defined in the system dynamics
model (15) not based on an artificial constants as pro-
posed in [14]. The flow chart shown on Fig. 3 depicts the
simplified algorithm of fusion filter.

The accelerometer measurements are filtered with low-
pass filter with relatively long time constant to estimate
the Gravity. Then the specific force is filtered once again
(low-pass filter with relatively short time constant) to
lower the noise and the Gravity is subtracted next. Since
the low-pass filter is not able to differ Gravity from the
accelerometer bias, the bias is also inherently suppressed
via this subtraction.

The estimated Gravity is used to compute the roll &
pitch angles and both, accelerometer and gyro measure-
ments are leveled (the coordinate frame is rotated to have
the x and y axis in the horizontal plane). As stated in the
previous paragraph, the Gravity estimation includes also
the accelerometer bias and the roll & pitch will be just
coarse estimates, but will be sufficient for proposed algo-
rithms.

The vertical acceleration is used in the pedometer to
detect the step (which triggers the new filter epoch) and
to estimate the step length. The vertical angular rate and
the distance traveled comprises the control signals used
in the filter prediction step, which is propagating the par-
ticle set (representing the belief estimates from previous
step) due to the state space noises. According to the RSS
based ranging and measurement model, the samples are
weighted. Afterwords, the weighted particle set effective
sample size is enumerated and if it is lower than a pre-
defined threshold the systematic re-sampling algorithm is
applied on this particle set. In the end, the mean of es-
timated values are computed using the weighted average
of the particle set.

3.2 Dual Wireless Channel Loss Mapping

There was propose (full/exhaustive) wireless channel
loss mapping in [19] but since it is a complex algo-
rithm, the number of variables (representing the hypoth-
esis probabilities) can increase up to hundreds in the real
applications and the solution of resulting system of equa-
tions can be very computationally demanding a simpli-
fied/ approximative method is proposed next.

Firstly, list of all relevant RN to RN hypotheses for
every cell is constructed.

Secondly, when the RSS ranging is to be used, based
on the predicted pedestrian (BN) and RN ¢ positions, a
set Ql([:v,y]) of cells that intersects this measurement
is constructed. This set of cells is used to build a set of
all relevant RN to RN hypothesis H;(i,j) and the occur-
rence (M,) of each RN to RN hypothesis in these cells is
enumerated. Only two (dual) hypotheses are constructed:

e There is a single loss with these characteristics

pL=1- H (1 — Mcprnij)
i€ H: (i,5) (17)
Zi,jeH(i,j) McpRrni,j PurnNi,j
P’w,L =
Ei,jeH(i,j) Meprni,j (18)
Ng; 1
Thu,L = (1+Z—2M )0'12%55- (19)
h=1 ¢
e There is no loss
Panl_pLa (20)
Pynr =0, (21)
0123w,nL = 0'12355 (22)

where pr, and p, 1, are the probabilities/ weights, Py, 1,
and P, 7 are power losses, and opy,;, and opy,nr
are standard deviations of noise of single loss and no
loss hypothesis, respectively. orgs is the standard de-
viation of receiver measurement noise.

Because probabilities are only approximative, there
can occur a situation when the approximated probabil-
ity of single loss hypothesis is pr, > pr, thr. Where pr, thr
is a maximum probability assigned to single loss hypoth-
esis, which can be set up to 0.6. Then the single loss
hypothesis is replaced by multi loss hypothesis

N bL

- , 23

ceil(pL — prthr)+1 (23)

p’w,nL - P’w,nL (Ceﬂ(pL - pL,thr) + 1) 3 (24)
a'123111,111/ = O'IQDw,nL (Ceﬂ(pL - pL,thT) + 1) (25)

where “ceil” stands for round towards plus infinity.

There will be probably some cells in the navigation
area, which are not intersecting with any RN to RN mea-
surement; an average value is assigned to these cells. The
allocation of power into one cell will be computed and
linearly averaged over all RN to RN measurements

i jeHa(ig) PRNi jPuRN G j
N,

La'ur = (26)

where Hy(i,7) is a set of N, elements, which contains all
RN to RN measurements. If there exist Ny, cells with
no RN to RN hypothesis, both, the no-loss and single
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(multi) loss hypothesis standard deviations are updated
accordingly

(27)
(28)

~92 2
Opw,L = (UPUJ,L + Naera'ur) y

~2 2
Upme = (UPw,nL + Na'urLavr) .

Thought it might be considered also to update the
power loss (increase it by Ny Layr) it will not be pro-
posed in order to lower the dual approximation error. This
error is due to unmodeled correlations between the RN
to RN hypotheses and causes the single power loss to be
higher.

An example is used to compare the dual (approxima-
tive) wireless channel loss mapping and the full (exhaus-
tive) one. For dual wireless channel loss mapping, the
belief is represented by a sum of two weighted Gaussian
distributions (Fig. 4).

3.3 Particle Filter Based Pedestrian Navigation
Algorithm with Dual Wireless Channel Loss
Mapping

The flow chart of the complete proposed algorithm

(Particle Filter Based Pedestrian Navigation Algorithm
with Dual Wireless Channel Loss Mapping) can be seen
on Fig. 5. Firstly, the wireless channel loss map is off-line
formed based on the RSS ranging between all RNs. The
map needs to be processed and stored in one central point
of RNs.

All other computations are done in the BN. The in-
ertial measurements are preprocessed and the pedestrian
(BN) state (position, heading, etc) is predicted based on
the previous state, system dynamic model, and the con-
trol signals (inertial preprocessing block outputs). The
predicted position and dual wireless channel loss map are
used to compute the estimate of shadowing power loss for
each BN to RN measurement. This shadowing power loss
estimate, current RSS measurements, and measurement
model are employed to correct the filter prediction. Since
the a posterior belief in a PF is represented by a set of
weighted samples the means of the estimated states need
to be computed finally.

4 EXPERIMENTAL EVALUATION

4.1 Evaluation Tools

The Matlab simulation environment was selected to
evaluate the proposed algorithms. To simulate the realis-
tic sensor readings, two validation tools were employed:
Reference measurement data set and I-Prop software.

A reference measurement data set for multisensor
pedestrian navigation with accurate ground truth repre-
sents a measurement data set for testing and evaluating
multi-sensor approaches in pedestrian navigation. The
measurements include both transitions from outdoor to
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Table 1. Result of simulations

Estimation algorithm LMS WI;nl\;[LIS)p%ngDual 4-state PF 4_Sta;fa1;;§; Dual
Linear error (m) 1.063 0.601 0.717 0.660
Root mean square error (m) 1.291 0.726 0.832 0.745

Estimation algorithm 6-state PF 6—staf§ aggirf; Dual 8-state PF 8—staf§ aggirf; Dual
Linear error (m) 0.572 0.485 0.527 0.479
Root mean square error (m) 0.653 0.581 0.599 0.569

indoor and vice versa. The measurements have been car-
ried out in and around a lab and office building. Ground
truth reference points are provided with sub-centimeter
accuracy [18].

This reference measurement data set is freely provided
by the German Aerospace Center (Deutschen Zentrums
fuer Luft- und Raumfahrt - DLR) and consists of these
sensor measurements: three IMUs (two mounted to the
pedestrian foots and one in the pocket of the pedes-
trian), magnetometer, barometric altimeter, GPS and ac-
tive RFID tags. Only a part of recorded data will be used
in the evaluation, as the pedestrian walks through one
floor of an office.

I-Prop is a software tool for coverage planning of in-
door wireless systems. Propagation prediction models for
multi-floor buildings enable a coverage analysis and de-
sign of 3D picocellular networks.

Although the reference measurement data set includes
the RFID readings, the signal coverage is very weak and
the RSS measurements between the RNs are missing.
Since these measurements are crucial for the dual wireless
channel loss mapping, the I-Prop environment was com-
bined with the reference measurement data set to form a
new data set of logged/ simulated measurements needed
for proposed algorithm.
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4.2 Evaluation Definition

To evaluate the proposed solution and appropriateness
of each design decisions 6 different versions of fused nav-
igation algorithms (PF) are evaluated. The LMS snap-
shot solution based only on RSS measurements is used as
a baseline algorithm and finally, WLMS snap-shot solu-
tion based on the RSS measurements and the dual wire-
less channel loss mapping is used to assess the contribu-
tion of the mapping.

The snapshot algorithms were evaluated in every cell
of the reference trajectory, but the filtered algorithms
were evaluated every time the step was detected. Less
evaluation points for filtered algorithms, then for snap-
shot ones, will be seen, because the step length is typically
bigger than the selected grid distance.

5 RESULTS

As can be seen in Figures 6-9 and mainly in Table 1,
all design decisions were correct; the 8-state PF with dual
wireless channel loss mapping is the most accurate esti-
mator and compared to the baseline LMS the accuracy
was increased more than twice. It is also interesting that
the dual wireless channel loss mapping deployment has
comparable performance increase as the fusion with iner-
tial sensors; compare the WLMS with dual wireless chan-
nel loss mapping and all the PF without dual wireless
channel loss mapping.

One might be surprised by the high estimation accu-
racy (around 1 or even 0.5 m), it is due to high density
of simulated RNs. If a smart building, where the control
is realized via wireless network, would be assumed the
results are representative.

6 CONCLUSIONS

In this work, the focus was put on pedestrian naviga-
tion systems for indoor and urban areas. The literature
survey was conducted first. Appropriate sensor and en-
vironment models were selected and their outputs were
fused in effective and novel way. The evaluation of pro-
posed solution was done via simulations (Matlab) with us-
age of external tools (Reference measurement data set for
multisensor pedestrian navigation with accurate ground
truth and I-prop modeling environment), which assures
that not only the fusion algorithms but also the models
selected in the solution are assessed independently.

There was developed a navigation algorithm, which
is suitable for low-cost pedestrian navigation system for
indoor and urban environments where a network of wire-
less nodes was already installed. The “already installed”
should be understood in way that no special RF beacons
are required since the algorithm is based on RSS ranging
and RSSI is typically available in most modern wireless
networks.

PF was deployed to fuse all the available information.
This type of BF is able to process high non-linearities,
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which were mainly in the proposed measurement model.
The deployment of tightly integrated filter has ensured
a high fidelity of the RSS measurement error spatial dis-
tribution. A novel and accurate system dynamics model
was proposed, too. This model was incorporating correct
statistical characteristics (no magic, artificial constants
were used), had refined the step length estimation and
estimation of the main RF channel parameters.

The RN to RN measurements and their known po-
sitions were used to build a wireless channel loss map
distributed among the navigation area. The deployment
of such a map in navigation algorithms significantly in-
creases the positioning accuracy. There were proposed
two versions of wireless channel loss mapping: full (ex-
haustive) and dual (approximative). The full mapping
correctly enumerates the probabilities (weights) of each
hypothesis. The complexity of thTe full map forming algo-
rithm is a problem because the number of variables (rep-
resenting the hypothesis probabilities) can increase up to
hundreds in the real applications. Since these variables
are heavy correlated a solution of the system of equations
needs to be computed; which can be very computationally
demanding and so simplified (dual mapping) method was
proposed. The discussed computational complexity was
also the reason why only the dual (approximative) wire-
less channel loss mapping was evaluated via simulations
and stated in this work. The full/exhaustive mapping was
described in [19]. The dual approach approximates all the
possible hypothesis by just two (loss/no-loss).

The combination of main RF channel parameters es-
timation and wireless channel loss mapping represents a
novel and very effective way of RSS ranging errors elimi-
nation and easily balances out the disadvantage that the
proposed solution was not tuned on the real RF data.
Such a tuning would also be valid just for the local area
where the measurements whould have been collected. On
the contrary, the proposed approach enables an auto-
mated tuning to arbitrary environments.

Let us switch from qualitative to quantitative conclu-
sions, the proposed algorithm was able to increase the
accuracy more than twice as compared to the baseline
LMS operating on the RSS measurements! LMS, WLMS,
and 6 version of PF were evaluated. The eight-state PF
with dual mapping should be considered as an algorithm
proposed in this thesis. Based on the results, it might
be considered not to estimate the gyroscope bias. Be-
cause the pedometer parameters estimation converged for
eight-state PF but the wireless channel parameters only
for six-state PF there could be also developed a scheme
where the pedometer parameters estimation would be
controlled.

Since the evaluation of proposed solution was done
via simulations (Matlab) with usage of external tools,
it was assured that not only the fusion algorithms but
also the models selected in the solution were assessed
independently.
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Although only 2-D position estimation was proposed,
the difference between transmitter and receiver was com-
pensated in the range measurements. The 2-D approach
is well aligned with the wireless channel loss mapping,
which is also done in 2-D because the walls (the main
sources of channel loss) are typically vertical and are built
from the ground to the ceiling. For multi-floor buildings,
the navigation algorithm should be supplement with floor
detection.

The PF measurement update is triggered by the step
detection and a part from the vertical angular rate in-
tegration all the states dynamics are distretized with the
sampling rate given by this step detection. This fact might
be a problem when the pedestrian stops and the inte-
gration interval is too long for Euler integration. So for
real applications, the system dynamics update triggering
should be separated from the measurement update.
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