Efficient Gradient-Based Algorithm with Numerical Derivatives for Expedited Optimization of Multi-Parameter Miniaturized Impedance Matching Transformers

Loading...
Thumbnail Image
Date
2019-09
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Společnost pro radioelektronické inženýrství
Altmetrics
Abstract
Full-wave electromagnetic (EM) simulation tools have become ubiquitous in the design of microwave components. In some cases, e.g., miniaturized microstrip components, EM analysis is mandatory due to considera¬ble cross-coupling effects that cannot be accounted for otherwise (e.g., by means of equivalent circuits). These effects are particularly pronounced in the structures in¬volving slow-wave compact cells and their numerical opti¬mization is challenging due to expensive simulations and large number of parameters. In this paper, a novel gradi¬ent-based procedure with numerical derivatives is pro¬posed for expedited optimization of compact microstrip impedance matching transformers. The method restricts the use of finite differentiation which is replaced for se¬lected parameters by a rank-one Broyden updating for¬mula. The usage of the formula is governed by an ac¬ceptance parameter which is made dependent on the pa¬rameter space dimensionality. This facilitates handling circuits of various complexities. The proposed approach is validated using three impedance matching transformer circuits with the number of parameters varying from ten to twenty. A significant speedup of up to 50 percent is demon¬strated with respect to the reference algorithm.
Description
Citation
Radioengineering. 2019 vol. 28, č. 3, s. 572-578. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2019/19_03_0572_0578.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/
Collections
Citace PRO