Tightness of flange joints: A case study

Loading...
Thumbnail Image
Date
2020-04-01
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
IOP Publishing
Altmetrics
Abstract
One of the negative technological factors that often have a significant impact on the environment is the leakage of operating media (so-called fugitive emissions), which most often occurs at different separable joints. Therefore, high demands are placed on the joints - they must have sufficient strength to maintain pressure and other loads and also be tight enough to avoid undesired leaks. For a large part of such joints, standard flanges or flanges designed according to standards are used, in the European Union in particular according to EN 1092-1, EN 1591-1 and EN 13445-3. Although the strength of such flanges is sufficient for most applications, the basic design methods do not cover the tightness of flange joints and their emissions completely. A case inspired by industrial practice with a history of insufficient tightness resulting in leaks is investigated using FEA and EN 1591. The flange joint is modelled in software ANSYS 2019 R2 with parts of adjacent shells to take their effect into account. The goal of the analyses is estimation of gasket contact pressures resulting from load history. The pressures are directly related to the seal tightness. Lastly, effect of shell shape modification on the gasket pressures is also investigated and the results are compared with those from the original configuration. Effects of resulting pressures on seal tightness are discussed. © 2020 Institute of Physics Publishing. All rights reserved.
Description
Citation
IOP Conference Series: Materials Science and Engineering. 2020, vol. 776, issue 1, p. 1-8.
https://iopscience.iop.org/article/10.1088/1757-899X/776/1/012037
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Citace PRO