Selection of model liquid with refractive index matching for visualization of internal flow in a scaled atomizer model

Loading...
Thumbnail Image
Date
2019-06-28
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
EDP Sciences
Altmetrics
Abstract
A scaled transparent modular model of pressure-swirl (PS) atomizer was prepared from cast PMMA (Poly(methyl methacrylate), Perspex™, Plexiglas™) with the aim to achieve a better understanding of internal flow and subsequent spray formation. Because of use of high-speed imaging and Laser Doppler Anemometry (LDA) the working liquid had to be selected with respect of a refractive index matching (RIM) with the atomizer material. The liquid should be colourless and chemically non-aggressive to the model material with suitable viscosity to achieve the Reynolds number of the internal flow of the original atomizer. Froude number should be high enough to neglect the influence of gravity on the flow. An extensive search for transparent liquids and materials of enlarged models was made with a focus on RIM in performed experiments. Several liquids were chosen, and their chemical effect on PMMA was tested. Despite the successful tests that proved the liquid suit the case, the model material was damaged and the tests proved to be insufficient. For this reason, the tests were modified to better involve the stress of the bolted model. It turned out that a force effect (bolt in the thread, pre-stressed bolt connection) on the material has a significant influence on the acceleration of the chemical effect. The internal flow was examined using a high-speed camera with several liquids.
Description
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Citace PRO