Zarovnání excitabilních buněk na multielektrodových polích

Abstract
Práce se zabývá zarovnáváním excitabilních buněk na multielektrodových polích. Nejprve bylo analyzováno zarovnávání excitabilních buněk. Byly použity embryonální neurony z hippocampusu potkanů a HL-1 buňky, které jsou odvozeny z AT-1 linie nádorových myších atriálních kardiomyocytů. Zarovnávání bylo testováno na drážkovaných površích a na površích s materiály s různou buněčnou afinitou. Bylo prokázáno, že na drážkových površích se ve směru drážek zarovnávají neurony i HL-1 buňky, ale na površích s různou chemickou affinitou se zarovnávají pouze neurony. Dále byly vyrobeny vlastní multielektrodová pole, na těchto multielektrodových polích byly kultivovány HL-1 buňky a byl změřen a analyzován akčních potenciál HL-1 buněk. Cílem bylo prokázat, že je možné měřit akční potenciál na vyrobených multielektrodových polích. Pro zarovnání buněk na multielektrodovém poli bylo vyrobeno speciální multieletrodové pole s uniformním povrchem. Toto multielektrodové pole je nazýváno planární multielektrodové pole. Planární multielektrodové pole bylo vyrobeno speciálním vyrobním procesem. Vrstvy planárního multielektrodového pole byly deponovány na pomocný substrát v opačném pořadí. Pomocný substrátem pro depozici byla křemíková deska, na který byla nadeponována další pomocná vrstva zlata. Horní izolační vrstva planárního multielektrodové pole byla deponována jako první a nejspodnější vrstva substrátu byla nadeponována jako poslední. Planární multielektrodové pole i s pomocnou zlatou vrstvou bylo strhnuto s křemíku díky nízké adhezi zlata ke křemíku a planární multielektrodové pole se otočilo vzhůru nohama. Pomocná zlatá vrstva byla odstraněna mokrým leptadlem a tím bylo planární multielektrodové pole dokončeno. Na planárním multielektrodovém poli byly zarovnány HL-1 buňky do pruhů chemickou metodou pomocí kombinace otisku adhezní látky a následným potažení neotisklých ploch anti-adhezní látkou. Elektrofyziologické vlastnosti zarovnaných HL-1 buněk byly změřeny pomocí planárního multielektrodového pole. Tímto experimentem byla představena výrobní technologie pro výrobu planárních multielektrodových polí a toto planární multielektrodové pole bylo úspěšně testováno pro zarovnání HL-1 buněk na jeho povrchu kombinací otisku adhezní látky a potahování antiadhezivním činidlem.
The work deals with the alignment of excitable cells on multielectrode arrays. First, the alignment of excitable cells was analyzed. Embryonic neurons from rat hippocampus and HL-1 cells, which are derived from the AT-1 line of tumor mouse atrial cardiomyocytes, were used. Alignment was tested on ridged surfaces and on surfaces with materials with different cellular affinities. It was demonstrated, that both neurons and HL-1 cells aligned in direction of ridges on ridges surface, but only neurons aligned on surface with different chemical affinity. Further, own multielectrode arrays were made, the HL-1 cells were cultured on the multielectrode arrays, and the action potentials of the HL-1 cells were measured and analyzed. The aim was to prove that it is possible to measure the action potential on the fabricated multi-electrode arrays. A special multielectrode array with a uniform surface was made to align cells on a multielectrode array. This multielectrode array is called a planar multielectrode array. The planar multielectrode arrays were made by a special fabrication process. The layers of the planar multielectrode array were deposited on the sacrificial substrate in the reverse order. The sacrificial substrate for deposition was silicon wafer on which was deposited another sacrificial layer from gold. The upper insulating layer of planar multielectrode array was deposited first and the lowest substrate layer was deposited last. Then the planar multielectrode array with the sacrificial gold layer was peeled off from silicon due to the low adhesion of gold to silicon and planar multielectrode array turned upside down. The sacrificial gold layer was removed by a wet etchant and planar multielectrode array was finished. On a planar multielectrode array, the HL-1 cells were patterned into strips by a chemical method using a combination of microprinting of an adhesive agent and subsequent coating by an anti-adhesive agent of not microprinted areas. The electrophysiological properties of aligned HL-1 cells were measured using the planar multielectrode array. By this experiment, it was introduced fabrication technology for fabrication of planar multielectrode arrays and the planar multielectrode array was successfully tested for HL-1 cells alignment on its surface by combination of microprinting of an adhesive agent and anti-adhesive agent coating.
Description
Citation
SLAVÍK, J. Zarovnání excitabilních buněk na multielektrodových polích [online]. Brno: Vysoké učení technické v Brně. CEITEC VUT. 2021.
Document type
Document version
Date of access to the full text
Language of document
en
Study field
Pokročilé nanotechnologie a mikrotechnologie
Comittee
prof. RNDr. Radim Chmelík, Ph.D. (předseda) prof. Ing. Radimír Vrba, CSc. (místopředseda) doc. RNDr. Petr Skládal, CSc. (člen) doc. PhDr. Ing. Jaroslav Průcha, CSc., Ph.D. (člen) prof. RNDr. Tomáš Šikola, CSc. (člen)
Date of acceptance
2021-05-20
Defence
Disertační práce Ing. Slavíka se zabývá výzkumem v oblasti buněčných biosenzorů, což je velmi atraktivní oblast ne jenom pro testování nových typů léčiv pomocí biočipů, ale dokonce pro vytváření modelů onemocnění „na čipu“ použitím přeprogramovaných a diferenciovaných buněk odvozených od konkrétního pacienta. Všechny vytyčené cíle se podařilo splnit. Byly vytvořeny originální MEA čipy a byla dosažena cílená orientace buněk na těchto čipech. Zásadní zjištění byla publikována ve dvou recenzovaných článcích. Zavedení optimalizované metodiky přípravy substrátu elektrodového pole, a rovněž tak realizace metody přípravy vestavěných mikroelektrod a její kritické srovnání s jinými elektrodovými systémy je významným příspěvkem k danému vědnímu oboru. Výsledky disertační práce mají i významný potenciál pro jejich komercializaci a tím i reálné uplatnění ve vědě i v klinické medicíně. V průběhu obhajoby student prokázal své tvůrčí schopnosti v dané oblasti výzkumu. Na dotazy oponentů a členů komise odpověděl uspokojivě a prokázal výborné znalosti zkoumaného oboru.
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení
DOI
Collections
Citace PRO