Structure Tuning and Electrical Properties of Mixed PVDF and Nylon Nanofibers

Abstract
The paper specifies the electrostatic spinning process of specific polymeric materials, such as polyvinylidene fluoride (PVDF), polyamide-6 (PA6, Nylon-6) and their combination PVDF/PA6. By combining nanofibers from two different materials during the spinning process, new structures with different mechanical, chemical, and physical properties can be created. The materials and their combinations were subjected to several measurements: scanning electron microscopy (SEM) to capture topography; contact angle of the liquid wettability on the sample surface; Raman spectroscopy; X-ray photoelectron spectroscopy (XPS); and Fourier-transform infrared spectroscopy ({FT-IR}) to describe properties and their changes at the chemical level. Crystallization events were determined by differential scanning calorimetry (DSC). Furthermore, the contact angle of the wettability of the liquid on the surface was measured for the materials, and the permittivity was measured to observe the dielectric properties. The advantage of the addition of co-polymers was to control the properties of PVDF samples and understand the reasons for the changed functionality. The innovation point of this work is the complex analysis of PVDF modification caused by mixing with nylon PA6. Here we empathize that the application of nylon during the spin influences the properties and structure (polarization, crystallization) of PVDF.
Description
Citation
Materials . 2021, vol. 14, issue 20, p. 1-20.
https://www.mdpi.com/1996-1944/14/20/6096
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Citace PRO