Funkcionalizace poly(mléčné kyseliny)

Loading...
Thumbnail Image
Date
ORCID
Mark
P
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta chemická
Abstract
Teoretická část předložené dizertační práce popisuje princip radikálového roubování a faktory ovlivňující reakční průběh. Radikálové roubování poly(mléčné kyseliny) (PLA) reaktivní modifikací je vhodnou technikou přípravy biodegradabilních polymerních materiálů s rozličnými vlastnostmi. Současný stav problematiky modifikace poly(mléčné kyseliny) radikálovým roubováním v tavenině je obsahem literární rešerše včetně možných aplikací. Experimentální část se zabývá modifikací PLA anhydridem kyseliny itakonové (IAH) radikálovým roubováním v tavenině. Reakce byla iniciována 2,5-bis(tert-butylperoxy)-2,5-dimethylhexanem (L101). V první části je průběh radikálového roubování pozorován “in situ” pomocí diferenciální kompenzační kalorimetrie (DSC) a termogravimetrické analýzy (TGA). Exotermní pík na DSC záznamu odpovídá průběhu radikálové reakce, na jehož základě lze definovat aktivační energii reakce. Průběh TGA křivky “in situ” radikálové reakce umožňil detekovat vedlejší produkty vznikající v průběhu radikálové modifikace. Ve druhé části byla PLA funkcionalizována reakcí v diskontinuálním laboratorním mixéru za reakčních podmínek navržených dle poločasu rozpadu zvoleného iniciátoru a zpracovatelských podmínek PLA. Reakční teplota 190 °C byla stanovena výpočtem z Arrheniovy rovnice pro reakční čas 6 min. Uvedené reakční parametry byly zvoleny s ohledem na kinetiku rozkladu L101 a potlačení degradace PLA. Infračervená spektroskopie (FTIR) potvrdila navázání IAH na PLA řetězec na základě výskytu –CH2 vibrací s absorpčními pásy při vlnočtu 2860 a 2920 cm-1. Vzrůstající intensita absorpčního pásu 1750 cm-1 potvrdila přítomnost minoritních C=O vibrací anhydridového kruhu překrytých dominantními C=O vibracemi PLA řetězce. Nukleární magnetická rezonance (1H-NMR) nepotvrdila roubování oligomerního IAH na PLA. Koncentrace reaktantů ve zvoleném rozsahu (0.5–10 hm % IAH, 0.1–2 hm % L101) byla použita pro posouzení jejího vlivu na obsah naroubovaného IAH a míru vedlejších reakcí, např. -štěpení, větvení a síťování. Při vysoké koncentraci IAH a L101 byla potvrzena homopolymerace IAH i přes její zanedbávání v tématicky podobných studiích. Tvrzení o IAH homopolymeraci bylo podpořena výsledky kolorimetrické analýzy, charakterizací vzorků připravených polymerací IAH za podmínek radikálového roubování a termickou stabilitou frakcí extrahovaných z PLA-g-IAH. Radikálovou modifikací PLA došlo ke zvýšení flexibility polymerních řetězců díky objemné struktuře IAH navázané na PLA řetězci, což se projevilo poklesem teploty skelného přechodu (Tg). Zvýšený obsah amorfní fáze, hydrofilní chování, rozvětvená struktura a štěpení řetězců má pozitivní vliv na zvýšenou biodegradabilitu PLA-g-IAH v porovnání s nemodifikovanou PLA. Neradikálová degradace, probíhající v průběhu zpracování PLA, byla prokázána změnou tokových vlastností taveniny. Tento nežádoucí jev byl potlačen přídavkem tzv. “prodlužovače řetězců” obsahujícího reaktivní epoxy skupiny. Reakce mezi epoxy skupinami a karboxylovými skupinami byla potvrzena pomocí FTIR a změnou reologických vlastností PLA-g-IAH.
The theoretical part of proposed thesis describes principle of radical grafting as well as the most important controlling factors affecting reaction course. Radical grafting of poly(lactic acid) (PLA) via reactive modification is the most promising technique for the preparation of biodegradable polymeric materials with various properties. Actual knowledge of PLA modification via radical grafting in melt is mentioned in the literature review as well as its potential applications. Experimental part deals with functionalization of PLA with itaconic anhydride (IAH) via radical grafting in the melt. Grafting reaction was initiated by 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane (L101). In the first part, radical grafting is investigated “in situ” using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Exothermic peak on DSC thermogram reflects grafting reaction which allows calculation of activation energy of reaction. With regard to “in situ” TGA thermogram, formation of byproducts during radical modification was observed. In the second part, functionalization of PLA was achieved in discontinuous internal mixer under defined reaction conditions which were tailored to half-life time of chosen initiator and PLA processing parameters. Reaction temperature 190 °C was calculated according to Arrhenius equation and reaction time 6 min. These conditions were considered to be convenient with respect to decomposition kinetics of L101 and suppression of PLA degradation. IAH was succesfully grafted onto PLA backbone which was proved by Fourier transform infrared spectroscopy (FTIR) due to presence of –CH2 vibrations at 2860 and 2920 cm-1. Increase of integral intensity of the absorption band centered at 1750 cm-1 proved appearance of anhydride C=O vibrations overlapped by C=O vibrations of PLA backbone. Nuclear magnetic resonance (1H-NMR) did not detect oligomeric IAH grafted onto PLA. Different concentration of reactants (0.5–10 wt % of IAH, 0.1–2 wt % of L101) was applied in order to evaluate its influence on grafting yield and the extent of side reactions such as -scission, branching and crosslinking. At high concentration of both IAH and L101, IAH homopolymerization occurs although it is neglected in the most of research works. This argument is supported by colorimetric analysis, characterization of samples prepared by polymerization of IAH under grafting conditions and thermal stability of fractions extracted from PLA-g-IAH. Radical modification of PLA improves chain flexibility due to bulky IAH which was detected as a decrease of glass transition temperature (Tg). Increased content of amorphous phase, improved hydrophilicity, branched structure and chain scission enhanced biodegradability of PLA-g-IAH compared to neat PLA. Non-radical degradation during processing was proved by change of melt behaviour. This undesired effect was suppressed by addition of chain extender with reactive epoxy groups. Reaction between epoxy groups of chain extender and carboxyl groups of PLA was proved by structure analysis and change of rheological behavior of PLA-g-IAH.
Description
Citation
PETRUŠ, J. Funkcionalizace poly(mléčné kyseliny) [online]. Brno: Vysoké učení technické v Brně. Fakulta chemická. 2015.
Document type
Document version
Date of access to the full text
Language of document
en
Study field
Chemie makromolekulárních materiálů
Comittee
prof. RNDr. Josef Jančář, CSc. (předseda) prof. RNDr. Jaroslav Cihlář, CSc. (člen) doc. Ing. Lucy Vojtová, Ph.D. (člen) RNDr. Ivan Fortelný, CSc. (člen) RNDr. Ladislav Pospíšil, CSc., oponent (člen) prof. Ing. Pavol Alexy, Ph.D, oponent (člen)
Date of acceptance
2015-12-18
Defence
Předseda komise představil doktoranda a předal mu slovo. Doktorand má publikace v impaktovaných časopisech. Dále absolvoval pracovní stáž v USA spolu se svým školitelem - specialistou. Doktorand se aktivně zúčastnil XV. Mezioborového setkání mladých biologů, biochemiků a chemiků a mezinárodní konference "Annual Conference Brno 2014: Frontiers in Life and Material Sciences". V první části obhajoby doktorand v rámci své powerpointové prezentace představil výsledky své dizertační práce. V druhé části obhajoby byly přečteny posudky, které byly kladné a doporučovaly předloženou práci k obhajobě. Na závěr doktorand zodpověděl všechny položené dotazy.
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení
DOI
Collections
Citace PRO