Interpenetrated Magnesium–Tricalcium Phosphate Composite: Manufacture, Characterization and In Vitro Degradation Test

Loading...
Thumbnail Image
Date
2017-04-01
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg
Altmetrics
Abstract
Magnesium and calcium phosphates composites are promising biomaterials to create biodegradable load-bearing implants for bone regeneration. The present investigation is focused on the design of an interpenetrated magnesium–tricalcium phosphate (Mg–TCP) composite and its evaluation under immersion test. In the study, TCP porous preforms were fabricated by robocasting to have a prefect control of porosity and pore size and later infiltrated with pure commercial Mg through current-assisted metal infiltration (CAMI) technique. The microstructure, composition, distribution of phases and degradation of the composite under physiological simulated conditions were analysed by scanning electron microscopy, elemental chemical analysis and X-ray diffraction. The results revealed that robocast TCP preforms were full infiltrated by magnesium through CAMI, even small pores below 2 lm have been filled with Mg, giving to the composite a good interpenetration. The degradation rate of the Mg–TCP composite displays lower value compared to the one of pure Mg during the first 24 h of immersion test.
Magnesium and calcium phosphates composites are promising biomaterials to create biodegradable load-bearing implants for bone regeneration. The present investigation is focused on the design of an interpenetrated magnesium–tricalcium phosphate (Mg–TCP) composite and its evaluation under immersion test. In the study, TCP porous preforms were fabricated by robocasting to have a prefect control of porosity and pore size and later infiltrated with pure commercial Mg through current-assisted metal infiltration (CAMI) technique. The microstructure, composition, distribution of phases and degradation of the composite under physiological simulated conditions were analysed by scanning electron microscopy, elemental chemical analysis and X-ray diffraction. The results revealed that robocast TCP preforms were full infiltrated by magnesium through CAMI, even small pores below 2 lm have been filled with Mg, giving to the composite a good interpenetration. The degradation rate of the Mg–TCP composite displays lower value compared to the one of pure Mg during the first 24 h of immersion test.
Description
Citation
Acta Metallurgica Sinica (English Letters). 2017, vol. 30, issue 4, p. 319-325.
https://link.springer.com/article/10.1007%2Fs40195-017-0560-0
Document type
Peer-reviewed
Document version
submittedVersion
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
(C) The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg
Citace PRO