Initial Design and Quick Analysis of SAW Ultra–Wideband HFM Transducers

Loading...
Thumbnail Image
Date
2017-09
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Společnost pro radioelektronické inženýrství
Altmetrics
Abstract
This paper presents techniques for initial design and quick fundamental and harmonic operation analysis of surface acoustic waves ultra–wideband hyperbolically frequency modulated (HFM) interdigital transducer (IDT). The primary analysis is based on the quasi–static method. Quasi–electrostatic charge's density distribution was approximated by Chebyshev polynomials and the method of Green’s function. It assesses the non uniform charge distribution of electrodes, electric field interaction and the end effects of a whole transducer. It was found that numerical integration (e.g. Romberg, Gauss–Chebyshev) requires a lot of machine time for calculation of the Chebyshev polynomial and the Green’s function convolution when integration includes coordinates of a large number of neighboring electrodes. In order to accelerate the charge density calculation, the analytic expressions are derived. Evaluation of HFM transducer fundamental and harmonics' operation amplitude response with simulation single–dispersive interdigital chirp filter structure is presented. Elapsed time of HFM IDT with 589 electrodes simulations and 2000 frequency response point is only 54 seconds (0.027 s/point) on PC with CPU Intel Core I7–4770S. Amplitude response is compared with linear frequency modulated (LFM) IDT response. It was determined that the HFM transducer characteristic is less distorted in comparison with LFM transducer.
Description
Citation
Radioengineering. 2017 vol. 26, č. 3, s. 682-690. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2017/17_03_0682_0690.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Collections
Citace PRO