Surface PEGylation and PASylation to regulate nanoparticle interactions with biological environment

Loading...
Thumbnail Image
Date
2017-12-31
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Mendel University in Brno
Abstract
Many researchers are developing nanocarriers in order to minimalize side effects of cytotoxic drugs during cancer treatment via chemotherapy. Nanocarriers can serve as a suitable platform for targeted drug delivery. To overcome their failure in in vivo use, the effects of surface modifications (PEGylation and PASylation) of natural nanocarriers based on apoferritin were tested in this work. Various properties of these modified apoferitin nanoparticles were studied, such as their size or degree of hemolysis. TEM characterization was also performed. The formation of hard coronas on these particles in plasma environment was evaluated using SDS-PAGE electrophoresis. The best biocompatibility results were obtained using apoferritin nanoparticles with PEG surface modification.
Description
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
(C) Mendel University in Brno
DOI
Citace PRO