hNET as a target for neuroblastoma nanomedicine

dc.contributor.authorCharousová, Markétacs
dc.contributor.authorDostálová, Simonacs
dc.contributor.authorHaddad, Yazan Abdulmajeed Eyadhcs
dc.contributor.authorStrmiska, Vladislavcs
dc.contributor.authorKřížková, Soňacs
dc.contributor.authorHynek, Davidcs
dc.contributor.authorMilosavljević, Vedrancs
dc.contributor.authorAdam, Vojtěchcs
dc.contributor.authorHeger, Zbyněkcs
dc.date.accessioned2018-08-23T10:52:54Z
dc.date.available2018-08-23T10:52:54Z
dc.date.issued2017-12-31cs
dc.description.abstractChemotherapy often results in various side effects, which can negatively affect health. Neuroblastoma, one of the most common types of childhood cancer, is but one of the examples, where side effects of chemotherapeutic treatment lower the quality of patient's life. Modern way how to fight that is to enclose cytotoxic drug into some nanocarrier and its targeting to receptors overexpressed in membranes of cancer cells. Apoferritin (Apo), a natural protein cage, is very suitable as a nanocarrier, as it has no toxicity, immune system does not react to it, and drug can easily be loaded into its cavity. We enclosed ellipticine, clinical tested anti-cancer drug, into Apo cavity (creating ApoElli). The percentage of encapsulation was 61 % and size and transmission electron microscopy analysis showed the preserved Apo ~12 nm icosahedral structure after this encapsulation. Then we modified Apo outer surface with in silico-modelled peptides with hNET affinity and tested its toxicity and hemolytic activity. ApoElli modified with anti-hNET peptides was able to internalize into neuroblastoma cells and to deliver the drug. However, it proved to be safe for human RBC, unlike pure ellipticine, which caused observable hemolysis at the same concentration.en
dc.formattextcs
dc.format.extent878-883cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationMendelNet 2017. 2017, p. 878-883.en
dc.identifier.isbn978-80-7509-529-9cs
dc.identifier.other148740cs
dc.identifier.urihttp://hdl.handle.net/11012/84184
dc.language.isoencs
dc.publisherMendel University in Brnocs
dc.relation.ispartofMendelNet 2017cs
dc.relation.urihttps://mendelnet.cz/artkey/mnt-201701-0099_hNET-as-a-target-for-neuroblastoma-nanomedicine.php?back=/magno/mnt/2017/mn1.php?secid=4cs
dc.rights(C) Mendel University in Brnocs
dc.rights.accessopenAccesscs
dc.subjectEllipticineen
dc.subjecthemolysisen
dc.subjectnanoconstructen
dc.subjectneuroblastomaen
dc.subjecttoxicityen
dc.titlehNET as a target for neuroblastoma nanomedicineen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-148740en
sync.item.dbtypeVAVen
sync.item.insts2020.03.30 16:58:35en
sync.item.modts2020.03.30 15:51:59en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Chytré nanonástrojecs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MendelNet_mnt2017010099.pdf
Size:
429.73 KB
Format:
Adobe Portable Document Format
Description:
MendelNet_mnt2017010099.pdf