Mechanisms of plastic deformation and fracture in coarse grained Fe-10Al-4Cr-4Y2O3 ODS nanocomposite at 20-1300°C

Abstract
The coarse-grained Fe-10Al-4Cr-4Y2O3ODS nanocomposite (denoted as FeAlOY) has been developed by the authors and shows promising potential for high-temperature structural applications at 1000-1300 & DEG;C. Compared to classical ODS alloys, the FeAlOY contains ten times higher volume fraction of the stable Y2O3 nanodispersion, which gives the alloy its high-temperature strength. Furthermore, the high content of Al in the matrix guarantees excellent oxidation resistance. In practice, one can expect that the FeAlOY is loaded in the temperature range of 20-1300 & DEG;C due to intermittent device operation. To ensure a safe operation, it is necessary to determine the tensile strength and ductility of the FeAlOY in the whole temperature range and detect the dominant mechanisms of strengthening, plastic deformation, and fracture in the characteristic temperature ranges. Above 1100 & DEG;C the FeAlOY reaches ultimate tensile strength of 100 MPa and plasticity of 1%. However, in the temperature range of 400-600 & DEG;C, the plasticity can climb above 40%. The achieved results can also be utilized for the design of the FeAlOY pieces shaping by hot pressing. & COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Description
Citation
Journal of Materials Research and Technology-JMR&T. 2023, vol. 24, issue 1, p. 4863-4874.
https://www.sciencedirect.com/science/article/pii/S2238785423008256
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
Citace PRO