prof. Ing. Josef Štětina, Ph.D.
VUT FSI v Brně, Energetický ústav

OPONENTSKÝ POSUDEK
disertační práce

Název: Automatizace geodetických měření a jejich datová analýza

Práci předkládá: Ing. Michal VOJKŮVKA

Téma předložené doktorské disertační práce je vysoce aktuální, protože při počítáči řízeném měření vzniká snadněji velké množství dat, ale jejich využitelnost je velmi závislá na automatizované datové analýze a také na jejich automatizované prezentaci. Dosažené výsledky práce jsou cenné právě tím, že byly dotaženy do reálných aplikací a jsou využívány v praxi.

První kapitola práce se věnuje současněmu stavu řešené problematiky a student se podrobně seznámil s dokumentací výrobců geodetických přístrojů a podrobně je popsal software firmy Trimble. Právě podrobné seznámení s řešením této firmy bylo studentovi inspirací. Další část se věnuje komunikačním rozhraní, ukládáním dat a webovským technologiím. Součástí této režírku bylo i seznámení s příslušnými normami z oblasti geodetického měření.

Další část práce se věnuje zvoleným metodám a použitým technologiím. Z hlediska měřicí techniky byly využitý nivelační přístroje Leica, roboticá totální stanice TOPCON a pro měření zrychlení byla testována vývojová deska TRIAX. Dále je zde popsána úplná sada přístrojů pro měření meteorologických veličin (teplota, vlhkost, barometrický tlak, směr a rychlost větru, solární záření a měření slážek). Dále následuje stručný popis dalších hardwarových prostředků. Popis týkající se popisu AD převodu je stručný a nepopisující problémy konkrétního řešení. V této kapitole není informace o tenzometrických měření, přestože je o nich dále zmínka. Chybí mi zde zmínka o protokolu OPC, který je v oblasti sčeru dat pod operačními systémy Windows průmyslovým standardem a je otázka zda by nebyl využitelný v oblasti geodetických měření. Na část o hardwaru následuje popis týkající se softwarových prostředků. Doktorand se orientoval na použití softwarových nástrojů .NET od firmy Microsoft, což je vhodné rozhodnutí, protože tato technologie a vývojové nástroje jsou v průmyslové praxi standardem. Výhodou je, že základní vývojové nástroje jsou zdarma a platforma se v poslední době rozvíjí. Na druhé straně by stálo v práci zmínit i dnes masivně rozšířený jazyk Python a Javascript (Node.js). Doktorand se věnuje i problematice ukládání dat zde se opět správně orientoval na relační databázové řešení ve formě MS SQL Serveru, který opět lze považovat za průmyslový standard. Zde je třeba konstatovat, že data jsou vždy při měření to nejcennější a proto by bylo vhodné do systému integrovat i replikaci dat na cloudová uložiště nebo přimo integraci cloudu. Jistě by také bylo vhodné začlenit do systému jazyk R (Server R), který je vhodné pro snadné zpracování dat a firma Microsoft ho integrovala do svého prostředí. Dále by stálo zmínit i NoSQL řešení pro ukládání dat.

Pátá kapitola se věnuje softwarové realizaci vlastního geodetického monitorovacího systému. Je zde např. popsána komunikace s geodetickými přístroji a realizace vlastního uživatelského software včetně uživatelského rozhraní, které usnadňuje práci s přístroji i se sběrem dat. Zde je otázka zda, by nebyla vhodná jistá abstrakce tj. udělat univerzální software, který by měl pro různé přístroje pouze ovladač, který by převáděl specifické
příkazy a data přístroje na jednotné API software. Tento nedostatek, ale lze přičíst dlouhodobému vývoji software, kdy teprve po dokončení asi bude snaha některého jeho části zobecnit. Jako nejzajímavější část po straně programátorů je webovská část monitorovacího systému, který využívá responzivní design, což umožňuje jeho využití i na mobilních zařízeních. Zajímavé je využití QR kódů pro identifikaci entit a tím snadnou obsluhu systému.


Velmi stručný závěr shrnuje poznatky práce a možný další rozvoj systému. Určitě, by stálo více rozvěst možnosti rozšíření a budoucí práce na systému. Případně i více okomentovat využitelnost automatizovaného zpracování geodetických dat a kam se bude podle auta práce rozvíjet automatizace měření a vyhodnocování geodetických dat.

Předložená práce netrpí jazykovými a grafickými nedostatkami a práce je přehledná. Pouze by práci prospělo, kdyby seznam použitých zdrojů, byl seřazen podle výskytu zdrojů a ne abecedně. Místo seznamu použité literatury, by byl vhodnější nadpis seznam použitých zdrojů. V případě popisu komunikace s přístroji, by bylo vhodné uvést zdroje, ze kterých se čerpalo.

Připomínky a dotazy
- Při dlouhodobých měření a automatizovaných měření je jeden z hlavních problémů detekce výpadku měření a diagnostika odlehlých hodnot. Jak je tato problematika řešena v předložených softwarových řešeních?
- Při dlouhodobých měřeních se v průběhu času mění i kalibrace nebo-li přečet na měřených hodnot na správnou fyzikální veličinu. Je vhodné ukládat přímo měřené hodnoty i kalibrace v čase odděleně a přečet na správné hodnoty provádět až při zobrazování nebo exportu hodnot nebo ukládat a pracovat už s přečtenými daty? Můžete uvést jaké výhody a nevýhody po vy odběr vás mají oba způsoby?
- Při realizaci systémů pro analýzu dat z různých zdrojů, kde data vznikají s různou frekvencí, jsou problémy jak tyto data exportovat, protože uživatelé většinou potřebují mít všechny ve stejně vzorkovací frekvenci. Umožňuje vaše softwarové řešení převzorkovat naměřená data s uživateli požadovanou frekvencí při exportu?

Závěrečné hodnocení
Doktorand prokázal, že se velmi dobře orientuje v počítačovém zpracování dat a jejich prezentaci pomocí praktických počítačových technologií. Právě propojení sběru dat, jejich ukládání a prezentaci koncovým uživatelm do jedné komplexné pojetího software je hlavním přírosem pro rozvoj vědy a techniky. Zvolené metody jsou adekvátní pro dosažení
nových poznatků. Velice mne zaujalí využití QR kódů a předpokládám, že některé z myšlenek, které jsem se dozvěděl z práce, využijí při realizaci měřičích systémů.

Doktorand publikoval celkem osm konferenčních článků, z čehož pouze jeden je evidován v databázi WoS, ale bez citačního ohlasu.

Doktorand předvedl schopnost tvůrčího přístupu k řešení komplexních úlohy zpracování inženýrských dat a jejich prezentaci. Doktorand splnil cíle disertační práce. V práci jsou správně použity citace na použité zdroje. Disertační práce splňuje podmínky zákona o vysokých školách pro závěrečné práce doktorského studia, proto doporučuji, aby byla přijata komise k obhajobě. Po úspěšném obhájení navrhuji, aby byla doktorandovi udělena vědecká hodnost PhD.

V Brně 29. září 2017

prof. Ing. Josef Štětina, Ph.D.
Oponent