Oponentní posudek disertační práce

<table>
<thead>
<tr>
<th>Studijní program:</th>
<th>P3917 SOUDNÍ INŽENÝRSTVÍ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studijní obor:</td>
<td>3917V001 SOUDNÍ INŽENÝRSTVÍ</td>
</tr>
<tr>
<td>Uchazeč:</td>
<td>Ing. et Ing. Petr Billek</td>
</tr>
<tr>
<td>Název disertační práce:</td>
<td>Rozvoj a využití nedestructivních metod z hlediska soudního inženýrství</td>
</tr>
</tbody>
</table>

Článek 46 odst. 4 Studijního a zkušebního řádu VUT v Brně:
Oponent se v posudku vyjádří zejména:
a) k aktuálnosti tématu disertační práce,
b) zda disertační práce splnila stanovený cíl,
c) k postupu řešení problému a k výsledkům disertační práce s uvedením konkrétního přínosu doktoranda,
d) k významu pro práci nebo rozvoj oboru,
e) k formální úpravě disertační práce a její jazykové úrovni,
f) zda disertační práce splňuje podmínky uvedené v § 47 odst. 4 zákona,
g) zda student prokázal nebo neprokázal třetí schopností v dané oblasti výzkumu a zda práci splňuje nebo nesplňuje požadavky standardně užívané na disertační práce v daném oboru.
Bez tohoto závěru je posudek neplatný.
Hodnocení laskavě provedte textem a dále písemně X do odpovídající šedé buňky.

1. Forma disertační práce ve smyslu čl. 42 odst. 1 Studijního a zkušebního řádu VUT v Brně:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) samostatná práce zpracovaná podle čl. 42 odst. 2 a 4 Studijního a zkušebního řádu VUT v Brně, obsahující výsledky řešení vědeckého úkolu, nebo</td>
<td>X</td>
</tr>
<tr>
<td>b) tematicky uspořádaný soubor uveřejněných prací.</td>
<td></td>
</tr>
</tbody>
</table>

Jsou-li v souboru uveřejněných prací dle písm. b) práce, jichž je doktorand spoluautorem, je vymezen podíl doktoranda a je doložen prohlášením spoluautoreň o jeho přínosu k jednotlivým pracím?

- ano
- ne

2. Aktuálnost námětu disertační práce

<table>
<thead>
<tr>
<th>X</th>
<th>práce je velmi aktuální</th>
<th>... aktuální</th>
<th>... není aktuální</th>
</tr>
</thead>
</table>

Zdůvodnění: Aktuálnost námětu disertační práce vyplývá z objektivní nezbytnosti nedestructivního vyšetřování stavebních konstrukcí pro potřeby soudního inženýrství. Z původně obecně formulovaného tématu, zachovaného v názvu disertační práce, se autor specializuje na homogenitu drátěkobetonu, používanost v posledních letech jako moderní stavební materiál i pro nosné konstrukce.

*) (2) Disertační práce se člení zejména na tyto části:
a) přehled o současném stavu problematiky, která je předmětem disertační práce,
b) cíl disertační práce,
c) výsledky disertační práce s uvedením nových poznatků, jejich analýzou a jejich význam pro realizaci praxi nebo pro další rozvoj vědeckého oboru,
d) seznam použití literatury,
e) seznam vlastních prací vztahujících se k tématu disertační práce,
f) souhrn v českém a anglickém jazyce zpravidla v rozsahu jedné strany.
Součástí disertační práce může být rovněž dokumentace inženýrských nebo uměleckých děl.
(4) Disertační práce musí obsahovat původní a uveřejněné výsledky nebo výsledky přijaté k uveřejnění.
3. Splnění cílů disertace

| X | disertace splnila cíl | disertace splnila cíl částečně | disertace nesplnila cíl |

Zdůvodnění: Disertační práce splnila stanovany cíl, podrobně vymezený včetně dílčích cílů a postupů v její části 2. Tento cíl odpovídá přiloženému jehostrátnovému zadání práce; název práce je podstatně obecnější.

4. Postup řešení problému a výsledky disertace

| vynikající | X | nadprůměrné | průměrné | podprůměrné | slabé |

Zdůvodnění: Postup řešení problému, zahrnující teoretický úvod do problematiky, dominantní experimentální složku, numerické simulace a naznačení možného uplatnění v soudním inženýrství, je přiměřený upřesněnoumu cíli disertace. Vlastní práce v rozsahu 125 stran (bez započtení příloh), seznámačící s dosaženými výsledky, je (mimo úvodních 13 stran s formálními náležitostmi) věcně členěna na 9 částí: 1) obecný úvod (14 stran), 2) vymezení cílů práce a metod řešení (3 strany), 3) přehled nezbytných poznatků o magnetických vlastnostech materiálů (11 stran), 4) vývoj nové nedestraktivní metody (14 stran), 5) problematiku přípravy a struktury vzorků s použitím průmyslového tomografu (16 stran), 6) vlastní experimentální analýzu (9 stran), 7) simulační výpočty s využitím software ANSYS (15 stran), 8) navrženou metodiku měření (7 stran) a 9) shrnivici závěr (4 strany). Formální část (10) obsahuje přehled používaných zdrojů (10 stran), zbývající části (11 až 15) tvoří rozličné seznamy (9 stran) a příloha DVD s videem z průmyslového tomografu.

Konkrétní přínos doktora: Vlastní práci doktora, jelikož se studovánou problematikou zabývá nejméně od září 2011 (odkdy odkazuje na své působení na Ústavu stavebního zkušebnictví FAST VUT v Brně) odrážejí zejména části 4) až 9). Za původní lze považovat navrženou metodiku měření s aplikací Hallovy sondy, validovanou výstupy z průmyslového tomografu a numerickými simulacemi, což dokladá i přiložený užitný vzor Hloubková sonda pro stanovení homogenity drátkobetonu (společně s L. Hobstem a O. Antonem) a rozsah publikační činnosti.

5. Původnost dosažených výsledků – výsledky jsou:

| původní | X | převážně původní | zčásti původní | nejsou původní |

Zdůvodnění: Původní jsou zejména výsledky související s vývojem a testováním sondy pro ověřování homogenity drátkobetonu a návrhem navazující metodiky. Prezentované výsledky z ostatních oblastí, zejména teorie elektromagnetického pole a metod numerického a statistického zpracování naměřených dat, vycházejí z tradičních postupů, jejichž případná inovace ve spolupráci s odborníky z naznačených oblastí by mohla přinést další pokrok ve zkoumané problematice.

6. Uplatnitelnost výsledků disertační práce pro rozvoj oboru Soudní inženýrství a další badání:

| vynikající | X | nadprůměrná | průměrná | podprůměrná | slabá |

Zdůvodnění: Potřebnost nedestraktivního zjišťování homogenity drátkobetonových a konstrukcí pro soudní inženýrství je nesporná; nevhodné rozmístění drátků ve struktuře materiálu vede při namáhání tahem ke vzniku mikroskopických defeků i makroskopických trhlin, způsobujících podstatné snížení životnosti takových konstrukcí. Méně pozornosti je věnováno například případnému nežádoucímu směrovému uspořádání drátků, jež může rovněž snižovat únosnost konstrukce; to lze nicméně chápat i jako příležitost pro další výzkum.
7. Uplatnitelnost výsledků disertační práce ve výuce:

<table>
<thead>
<tr>
<th>vynikající</th>
<th>nadprůměrná</th>
<th>průměrná</th>
<th>podprůměrná</th>
<th>slabá</th>
</tr>
</thead>
</table>

Zdůvodnění: Práce přináší nové výsledky, které jsou prakticky užitečné, při vhodné prezentaci srozumitelné pro současné studenty USI i FAST VUT, s potenciálem obohatit a motivovat je v jejich vlastním studiu i odborné práci. Překážkami reálného uplatnění mohou být jistá neuzavřenost problematiky a pragmatické priority ve výuce. Za vhodný pro zminěný účel lze považovat (autorem zmiňovaný) kurz Nedestructivní metody zkoušení ve stavebnictví na FAST VUT v rámci celoživotního vzdělávání.

8. Uplatnitelnost výsledků disertační práce pro znaleckou, resp. technickou praxi:

<table>
<thead>
<tr>
<th>vynikající</th>
<th>nadprůměrná</th>
<th>průměrná</th>
<th>podprůměrná</th>
<th>slabá</th>
</tr>
</thead>
</table>

9. Publikování výsledků disertační práce - výsledky publikovány

<table>
<thead>
<tr>
<th>byly</th>
<th>byly částečně</th>
<th>nebyly</th>
<th>nelze zjistit</th>
</tr>
</thead>
</table>

Zdůvodnění: Výsledky disertační práce byly publikovány (podle uvedeného seznamu autorových publikací) v 1 časopise zařazeném v databázi Scopus, v 6 dalších domácích časopisech, v 1 konferenčním sborníku zařazeném v databázi Web of Science (2 přispěvky), v 9 českých, 4 slovenských a 2 jiných zahraničních konferenčních sbornících a také v 7 sbornících domácích studentských konferencí, navíc vznikl i 1 užitný vzor; mimo studentské konference vždy ve spolupráci s dalšími autory. Publikační činnost je tedy rozhodně, vzhledem k jejímu převážnému omezení na ČR a SR nelze nicméně očekávat povědomí o dosažených výsledcích v mezinárodním měřítku.

10. Formální úprava disertační práce a její jazyková úroveň:

<table>
<thead>
<tr>
<th>vynikající</th>
<th>nadprůměrná</th>
<th>průměrná</th>
<th>podprůměrná</th>
<th>slabá</th>
</tr>
</thead>
</table>

11. Hodnocení tezi disertační práce* – úroveň tezi disertační práce je:

<table>
<thead>
<tr>
<th>vynikající</th>
<th>nadprůměrná</th>
<th>průměrná</th>
<th>podprůměrná</th>
<th>slabá</th>
</tr>
</thead>
</table>

Zdůvodnění: Teze v (poměrně značném) rozsahu 39 stran odpovídají obsahu i formě předložené disertační práce, a to včetně výše zmínovaných nedokonalostí, namátkou kuriózního použití znaku ~ pro přibližnou rovnost (str. 12). Formálně jsou mimoto nadbytečné prádné údaje ISBN a ISSN na str. 2. Jinak lze teze ocenit i jako přehledový text, jenž může oslovit širší okruh odborníků.

12. Celkové hodnocení disertační práce

Tvůrci schopnosti v dané oblasti výzkumu student: prokázal | X | neprokázal

Požadavky standardně kladené na disertační práce v daném oboru práce: splňuje | X | nesplňuje

Disertační práce podmínky uvedené v § 47 odst. 4**) zákona č. 111/1998 Sb., o vysokých školách: splňuje | X | nesplňuje

Celková úroveň disertační práce je:

<table>
<thead>
<tr>
<th>vynikající</th>
<th>nadprůměrná</th>
<th>průměrná</th>
<th>podprůměrná</th>
<th>slabá</th>
</tr>
</thead>
</table>

Zdůvodnění: Práce je završením dlouhodobého úsilí autora o důkladné zpracování (aspoň částečně) nedestructivní metodiky pro zjišťování rovnoměrnosti rozložení drátků ve ztvrdlém drátkobetonu, podpořeného rozsáhlou experimentální činností i fyzikálně zdůvodněnými výpočtovými simulacemi. Její vybrané části obsahují původní výsledky, jež jsou i v současné podobě využitelné pro praxi, ale naznačují rovněž příležitost pro navazující výzkum.

13. Disertační práci k obhajobě
doporučuji | X | nedoporučuji

Otázky k obhajobě:

1. Z fyzikální a matematické formulace problému v části 3.4 vyplývá, že při znalosti (relativní) permeability drátů a matrice a při schopnosti jisté výpočtové homogenizace materiálových vlastností (jak naznačují na různých úrovních obecnosti zejména literární

*) Článek 44 Studijního a zkušebního řádu VUT v Brně - Teze disertační práce:
(1) Teze disertační práce obsahují ve stručně formě základní myšlenky, metody, výsledky a závěry disertační práce ve strukturu stejně jako u disertační práce.
**) (4) Studium se řádně ukončuje státní doktorskou zkouškou a obhajobou disertační práce, kterými se prokazuje schopnost a připravenost k samostatné činnosti v oblasti výzkumu nebo vývoje nebo k samostatně teoretické a tvůrčí umělecké činnosti. Disertační práce musí obsahovat původní a uveřejněné výsledky nebo výsledky přijaté k uveřejnění.
odkazy [24] až [32]) bychom dokázali určit pro simulovaný pokus s Hallovou sondou rozložení magnetické indukce, resp. intenzity. Umíme-li naopak některou z těchto veličin aspoň lokálně změřit, bylo by odtud možno také zpětně kvantitativně určit předem neznámý objemový podíl drátků v materiálové struktuře; matematicky jde o speciální typ tzv. inverzní úlohy. Jaké jsou teoretické a praktické obtíže takového přístupu? Lze tuto úvahu propojit s korelačními křivkami (prakticky jen přímkami) pro kalibrační vzorky podle části 6?

2. Pro nedestraktivní (resp. částečně destruktní) zjišťování struktury vláknobetonů (nejen těch s ocelovými drátky) se v současnosti využívají i jiné přístupy: jmenovitě přímé fotografické či radiografické (mimo nákladné tomografické) nebo nepřímé elektromagnetické s harmonickým buzením, zatímco v navržené metodice se pracuje výhradně se stacionárním magnetickým polem. Jak lze zhodnotit přednosti a omezení navržené metodiky ve srovnání s těmito (a případně i dalšími) konkurenčními přístupy?

Datum: 8. září 2019

Podpis oponenta: