
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF MECHANICAL ENGINEERING
FAKULTA STROJNÍHO INŽENÝRSTVÍ

INSTITUTE OF AUTOMATION AND COMPUTER SCIENCE
ÚSTAV AUTOMATIZACE A INFORMATIKY

SOFTWARE FOR EFFICIENT USE OF MATERIAL
IN 2D MACHINING
SOFTWARE PRO EFEKTIVNÍ VYUŽITÍ MATERIÁLU PŘI 2D OBRÁBĚNÍ

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. ONDŘEJ ŠVANDA
AUTOR PRÁCE

SUPERVISOR Ing. et Ing. STANISLAV LANG, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2020

Fakulta strojního inženýrství, Vysoké učení technické v Brně / Technická 2896/2 / 616 69 / Brno

Zadání diplomové práce
Ústav: Ústav automatizace a informatiky

Student: Bc. Ondřej Švanda

Studijní program: Strojní inženýrství

Studijní obor: Aplikovaná informatika a řízení

Vedoucí práce: Ing. et Ing. Stanislav Lang, Ph.D.

Akademický rok: 2019/20

Ředitel ústavu Vám v souladu se zákonem č.111/1998 o vysokých školách a se Studijním
a zkušebním řádem VUT v Brně určuje následující téma diplomové práce:

Software pro efektivní využití materiálu při 2D obrábění

Stručná charakteristika problematiky úkolu:

Práce je zaměřena na problematiku efektivního využití materiálu při vytváření obrobků z plechu
(technologií pálení laserem či plasmou, vyjiskřování či frézování). Snahou je docílit vhodného
rozložení výrobních plánů tak, aby využití zdrojového plechu bylo co nejvyšší. Uvažován přitom má být
i plech, který již byl použit a nachází se v něm zakázané oblasti, tj. díry po výrobě předchozích
obrobků. Problematikou využití zbytků plechu se má zabývat tato práce.

Cíle diplomové práce:

Proveďte stručnou rešerši v oblasti 2D obrábění.
Nastudujte metody SW reprezentace objektů (v 2D prostoru).
Proveďte průzkum dostupných nástrojů řešících uvedenou problematiku.
Vyberte či navrhněte metodu pro umisťování dvourozměrného objektu od ohraničené plochy
zahrnující zakázané oblasti.
Zvolte si vhodný framework pro tvorbu vlastní aplikace, implementujte vybrané algoritmy.
Zhodnoťte dosažené výsledky a diskutujte možnosti využití vytvořeného softwaru, případně možnosti
dalšího rozšíření jeho funkcionality.

Seznam doporučené literatury:

ERICSON, Christer. Real-time collision detection. Boston: Elsevier, 2005. ISBN 978-155-8607-323.

YANG, Fangkai. Collision Detection between Dynamic Rigid Objects and Static Displacement Mapped
Surfaces in Computer Games [online]. Stockholm: Royal Institute of Technology School of
Engineering Sciences, 2015 [cit. 2019-10-26]. Dostupné z:
http://www.diva-portal.org/smash/get/diva2:839269/FULLTEXT01.pdf

Fakulta strojního inženýrství, Vysoké učení technické v Brně / Technická 2896/2 / 616 69 / Brno

Termín odevzdání diplomové práce je stanoven časovým plánem akademického roku 2019/20

V Brně, dne

L. S.

doc. Ing. Radomil Matoušek, Ph.D.

ředitel ústavu

doc. Ing. Jaroslav Katolický, Ph.D.
děkan fakulty

Summary
This thesis aims to familiarize the reader with 2D CNC machining and various methods of
describing and manipulating planar geometry. Later, the Nesting problem is introduced,
and different methods of approaching its solution are described. The practical part covers
an implementation of a custom nesting software, that attempts to place selected irregular
shapes into an irregular container in an effective way. Finally, an evaluation of said
software is conducted and its possible practical applications are also mentioned.

Abstrakt
Tato práce si klade za cíl obeznámit čtenáře s 2D CNC obráběním a rozličnými metodami
popisu a manipulace s dvojrozměrnými objekty. Poté je představen tzv. Nesting problém
a jsou popsány různé metody přístupu k jeho vyřešení. Praktická část pokrývá imple-
mentaci vlastního nesting softwaru, jenž je schopný efektivně rozmístit nepravidelné tvary
do nepravidelné ohraničené plochy. Na závěr je provedeno zhodnocení řečeného softwaru
a také je zmíněno jeho možné využití v praxi.

Keywords
2D machining, G-Code, material utilisation, Nesting problem, optimisation, spatial anal-
ysis, No-Fit Polygon

Klíčová slova
2D obrábění, G-Code, využití materiálu, Nesting problem, optimalizace, prostorová analýza,
No-Fit Polygon

ŠVANDA, O. Software for efficient use of material in 2D machining. Brno University
of Technology, Faculty of Mechanical Engineering, 2020. 61 p. Supervisor Ing. et Ing.
Stanislav Lang, Ph.D.

Affidavit
I hereby declare that this Master’s thesis is my original work and has been written by
me under the guidance of my supervisor Ing. et Ing. Stanislav Lang, Ph.D., using the
resources listed in the bibliography.

Brno, 26. 6. 2020 Bc. Ondřej Švanda

Acknowledgements
I would like to express my sincerest thanks to my supervisor Ing. Stanislav Lang for his
guidance and helpful remarks on the topic, and to both him and his colleague Ing. Kamil
Růžička from the company B+R for the opportunity to work on this interesting task.

I would also like to thank my girlfriend, Veronika Baršová, for her much needed
emotional support during these times.

Bc. Ondřej Švanda

Contents
1 Introduction 3

2 2D Machining 5
2.1 CNC Routing . 5
2.2 Laser Cutting . 6
2.3 Plasma cutting . 6
2.4 Water Jet Cutting . 7
2.5 Wire EDM . 7

3 Representation of Objects in 2D 9
3.1 Raster representation . 9
3.2 Vector representation . 9

4 G-Code 11
4.1 History . 11
4.2 Syntax . 11
4.3 Commands . 12

5 Spatial Analysis 15
5.1 Shapes . 15
5.2 Spatial Operations . 16

5.2.1 Relationships . 17
5.2.2 Simplification and Bounding volumes 17
5.2.3 Operations . 18

6 The Nesting Problem 21
6.1 Definition . 21
6.2 Existing Solution Methods . 21

6.2.1 Binary Tree Bin Packing . 22
6.2.2 Rectilinear Grid Genetic Algorithm 23
6.2.3 Bottom Left Greedy Heuristic . 25
6.2.4 The No-Fit Polygon . 25
6.2.5 A Note on Advanced Methods . 26

7 Existing software 27
7.1 SigmaNEST . 27
7.2 NestFab . 27
7.3 TruNest . 28
7.4 MyNesting . 28
7.5 SVGnest . 29
7.6 Deepnest . 29

8 Implementation 31
8.1 Task Specification . 31
8.2 Software Tools . 31
8.3 Program Architecture . 32
8.4 G-Code Parser . 33
8.5 Optimiser . 34

8.5.1 Initial Placement . 35
8.5.2 Local Placement Optimisation . 38

8.6 Export . 40
8.7 GUI . 41

9 Evaluation 45
9.1 Benchmark 1 . 45
9.2 Benchmark 2 . 47
9.3 Improvements and Future Work . 49

10 Conclusion 51

Literature 53

List of Figures 57

List of Abbreviations and Symbols 59

Contents of Electronic attachment 61

1. INTRODUCTION

1. Introduction
An effective use of material is a big topic in any industry. More so in CNC machining,
where computers control the manufacturing processes of a large quantity of components.
It is desirable to minimise the amount of unused source material, because, naturally, the
costs add up in the long run.

The aim of this Master’s thesis is to create such program, that would enable re-use
of material, from which parts could has been already cut out, using 2D CNC machining
processes.

In the theoretical part will be covered a basic introduction into planar machining,
and ways to represent two-dimensional objects in software. It will be further discussed
how these representations can be used for a spatial analysis and how they can be applied
in various methods.

Several methods and approaches to the so called Nesting problem will be explored
and some existing solutions for this problem will be listed.

The practical part will describe an approach to an implementation of said software,
using the programming language Python. A thorough evaluation of the program’s per-
formance will be carried out and its strengths and shortcomings will be discussed, along
with possible enhancements and practical applications.

3

2. 2D MACHINING

2. 2D Machining
The term machining refers to any process where a piece of a raw material (called a
workpiece) is formed into the desired shape by a controlled gradual removal of material.
These machining processes are also collectively referred to as subtractive manufacturing,
as opposed to forging or casting, where the source material is deformed into the target
shape, or additive manufacturing as in 3D printers.

Despite many machining power tools still being manually controlled by the operator,
in the modern times, most of them are controlled programmatically by a computer (Com-
puter Numerical Control – CNC). The first NC machines were built in the 1940s and the
program was “stored” on a punched tape, that was fed into the controller. [34] With the
rise of digital computers and microcontrollers, true CNC machines soon emerged. Most
CNC machines today are programmed by a language called G-Code (see Chapter 4).

While CNC machines can have an arbitrary number of axes of motion, this thesis is
only concerned about 2D (or planar) machining, where just the X and Y dimensions are
used. There are multiple types of 2D machining tools but the essential principle under
which they operate is as follows: The source workpiece1 is laid flat on the machine bed,
and a cutting tool head that moves relative2 to the bed frame cuts out pieces of the
material. Due to the nature of this method, it is apparent that there is a need to arrange
the cutting plan in such way, that the residual material after the parts are cut out is
minimised, which is the aim of this thesis.

In the following sections are described and compared different machines used for 2D
machining. [40]

2.1. CNC Routing

Figure 2.1: CNC wood router [5]

1Usually a flat sheet of material like metal or wood
2Either the head or the bed can move, or both

5

2.2. LASER CUTTING

While the CNC router is essentially a 3-axis machining tool, it is often used to cut
flat shapes, so it is listed here. The machine consists of a moveable head that holds a
spindle on which various routing or milling bits are to be attached. The head moves in
the horizontal X-Y plane, while the spindle can be lifted or lowered on the Z axis. It can
be used to cut and engrave various hard materials like wood, plastics or some composites,
and depending on the strength of the device, even aluminium or steel.

2.2. Laser Cutting

Figure 2.2: Laser cutting a city map [11]

Laser cutting is one of the most precise methods used to cut materials. It works by
focusing a high powered laser beam onto the workpiece, which almost instantly melts or
evaporates the material in the affected area. As the width of the beam is generally less
than half a millimetre, it is used where tight tolerances are required. The disadvantage
of this method is that for a clean cut, the material must be placed within the depth of
focus of the laser, which is generally relatively small, making this method unsuitable for
thicker materials.

2.3. Plasma cutting
This technique requires a electrically conductive material as the work piece, so it is best
suited to cut metals like steel, aluminium, brass or copper. It works by creating an
electrical arc from the cutting head to the workpiece, completing an electrical circuit with
a grounding clamp attached to the metal. This arc ionizes the superheated gas blown
under a high pressure from a focused nozzle (creating what is called a plasma) towards
the work piece. As electrical current flows through the plasma, it delivers enough energy
to melt through the workpiece, while the molten metal is being blown away. While not as
precise as laser cutting, it can be used to cut through up to 15 cm thick metals. Despite
being the least precise method, it is the fastest one with respect to workpiece thickness.

6

2. 2D MACHINING

Figure 2.3: Plasma cutter in operation [1]

2.4. Water Jet Cutting

Figure 2.4: Detail of a waterjet cutting stainless steel [35]

Of all the other methods, a waterjet cutter is capable of cutting through the widest
range of materials. The cutting is done by using a very high pressure jet of water, which
erodes the material while also washing it out. With the addition of an abrasive substance
into the stream, it is able to cut very hard materials like granite. The greatest advantage
of this method is that it does not add any heat into the system, making it suitable for
applications, where the materials being cut are sensitive to high temperatures.

2.5. Wire EDM
EDM stands for Electrical Discharge Machining and like plasma cutting, it works on the
principle of creating a electrical circuit through the work piece, and is therefore only
applicable to conductive materials. Also known as spark machining, the cutting is done
by creating high voltage difference between an electrode and the work piece, while being

7

2.5. WIRE EDM

Figure 2.5: Wire EDM cutting a thick piece of material [26]

submerged in an dielectric cooling liquid, and closing the distance between the two until
a spark (electrical discharge) is created. A rapid sequence of discharges is what removes
the material. A Wire EDM is a version of this machine where the electrode is a wire
that is reeled between two spools to avoid excessive wear on a single segment. The spools
are positioned on opposite sides of the workpiece, which is placed on a bed that moves it
around. While being the most precise method, it is also the slowest, but the maximum
thickness of the workpiece can reach almost up to 100 cm.

8

3. REPRESENTATION OF OBJECTS IN 2D

3. Representation of Objects in 2D
There exist multiple ways of representing 2D objects, all of which can be divided into two
well known categories – vector and raster – both of which approaches have been used in
2D shape placement optimisation problems. This chapter outlines the differences between
them and mentions some of their use and application in literature.

3.1. Raster representation
The earliest packing and nesting algorithms were concerned about squares and rectan-
gles [4]; in this case it is useful to describe the object either simply as width and height
or in the form of a grid-like structure. This representation is however not limited only to
those, actually, an arbitrary shape can be approximated using a rectilinear grid.

Figure 3.1 shows a raster approximation of an irregular shape. It can be seen that
when the sides are not aligned to the grid the discretization effect makes the object larger
than it in reality is. It is also apparent that among other disadvantages there only exist
4 rotations of a shape. This approach is further discussed in Section 6.2.2.

Figure 3.1: Raster representation of a 2D shape

3.2. Vector representation
Vector, or rather mathematical, representation is used to store the description of how to
construct the shape rather than storing every “pixel” of it. Each shape can be represented
as a combination of basic geometrical primitives such as circles, rectangles, arcs, line
segments or Bezier curves. Storing only the mathematical description greatly reduces

9

3.2. VECTOR REPRESENTATION

the memory needed, but there is a trade-off with more computational power needed to
analyse (or draw) them.

• SVG
The most pronounced and widespread representative is the Scalable Vector Graphics
format. It stores the graphical representation in the form of a XML markup file in
a tree structure. Similar (often proprietary) formats with the same idea exist. The
SVG format is also used for the input data presented to the open-source nesting
software SVGnest [32], more in Chapter 7 (Existing software).

• Polygons
Polygons can be thought of as a subset of the vector representation methods because
they only use straight line segments to represent the boundary of shapes. They are
also a great compromise between computing power and precision as it is much faster
to compute a linear interpolation between two points than it is to find an arbitrary
point on a curve.
Given that polygons are capable of approximating arbitrary shapes to some finite
precision, they are almost exclusively used for spatial analysis. The usual format in
which this kind of data is exchanged is called a Well-Known Text (WKT). Chap-
ter 5 (Spatial Analysis) goes more into detail on this.

• G-Code
G-Code is language used to control computer numerical control (CNC) machines.
It is used to describe the paths the machine has to make to create the target shape.
But in a way, it also contains a vector representation of the shapes that are to be
machined. The next chapter (4) goes a bit more in depth on this topic.

10

4. G-CODE

4. G-Code
G-Code (also known as the NC-Code or ISO Code) is the most widespread programming
language used to control CNC machines in computer-aided manufacturing (CAM). The
name comes from the fact that most program instructions are prefixed by the letter G
(see 4.3). While the language’s structure is standardised by the ISO, there exist many
different flavours and implementations of the language with subsets or extensions to the
standard instruction set that were adapted to suit various machining tools: from lathes,
mills, laser or waterjet cutters to 3D printers.

4.1. History
The first version of a numerical control programming language was developed at the MIT
in the late 1950s. In the following years many implementations that used a variant of
G-Code were developed by various organisations. The final official version was standard-
ised in the United States in 1980 under the name RS-274-D by the EIA. Other countries
either adapted or extended the standard and so the G-Code is also known as the ISO 6983
or DIN 66025.

The diversity of standards naturally caused some incompatibilities and there was a
movement to standardise the industry on machine controllers manufactured by FANUC
group [42]. The diversity has never really been resolved but in the modern days, G-Code is
rarely written by hand but is most of the time generated using a CAM software and used
as a translation layer between the computer and the machine with the use of a machine-
specific post processor1. Although some manufacturers hide the G-Code generation in
their control software from the user [39], it is often being used under the hood.

The early G-Code was a rigid list of instruction that directly translated into move-
ments of the machine, but has since evolved into a full Turing-complete programming
language with most of the functions of modern higher level languages with user defined
variables, loops or conditional operators. Manufacturers also often allow the G-Code
program to access some of the controller data via predefined variables. [38]

4.2. Syntax
The code is stored as a plain text file and the instructions are interpreted by the order
they appear in. A command consists of a single letter and a number identifier followed
by one or more parameters called addresses that also typically consist of a letter and a
number, if some address is not specified 2, the default or the previously used value will
be substituted. A typical move instruction is presented in figure 4.1.

It is a common practise to use the N command to mark the line number. These
commands are ignored by the machine, but can be used by the controller to reference a
line at which some error occurred. The G indicates a command from the G set, in this
case number 1 which corresponds to a linear interpolation. The addresses X and Y mark
the target position of the machine tool head, either in global coordinates or relative to

1Analogous to a printer driver for personal computers
2Typically the feed rate

11

4.3. COMMANDS

N10 G01 X12 Y20 F500

Line number

Linear

Command body Parameters

Target Feed rate
interpolation coordinates

Figure 4.1: G-Code command example

the current position. Finally, the F address sets the feed rate (or the speed) in units per
minute at which the tool will approach the target. The units can be either millimetres or
inches and can be toggled programmatically.

Comments are delimited either by a semicolon ‘;’ until the end of the line and
multiline comments can be alternatively enclosed in parentheses “()”.

Although it is not required, for a better readability, a single line commonly contains
a single command and the addresses are delimited by a space.

N2

N6

N3

N5

N4

N1

N0 G28 ;go to home position

N1 G00 X10 Y10

N2 G01 X40 Y10

N3 G03 X40 Y30 I40 J20

N4 G02 X30 Y40 I40 J40

N5 G03 X10 Y40 I20 J40

N6 G01 X10 Y10

R1
0

R1
0

R10

10 20 30 40

10

20

30

40

Figure 4.2: Machine path from G-Code

Another common travel move is the arc interpolation (G02 and G03). In addition
to the target coordinates, it also needs another set of parameters (I and J) that mark
the center of the arc [33]. Figure 4.2 shows the machine path translated from a source
G-Code.

4.3. Commands
There are two groups of commands (or functions) in G-Code: The G (Go) commands, that
are used to control the motion and function of the system, and M (Machine) commands,
that controls the machine operation outside of movements. Table 4.1 lists some basic
commands. While the commands G68 and G92 are not that common, they will play an
important role in Section 8.6 (Export).

12

4. G-CODE

Table 4.1: Common G commands

Command Description Accepted addresses

G00 Rapid linear travel move X, Y, F
G01 Linear interpolation X, Y, F
G02 Clockwise circular interpolation X, Y, I, J, F
G03 Anti-clockwise circular interpolation X, Y, I, J, F
G20 Select inches as the unit –
G21 Select millimetres as the unit –
G28 Return to home position X, Y
G68 Rotate coordinate system X, Y, R
G90 Set absolute positioning mode –
G91 Set incremental positioning mode –
G92 Move coordinate system X, Y

M-commands are often machine-specific, they are used to set the speed of the spindle,
or in case of a laser cutter, set the intensity of the laser; turn on or off the cooling liquid
or a fan and so on. A sample of M-commands can be seen in Table 4.2.

Table 4.2: Sample of M commands

Command Description Accepted addresses

M00 Machine stop –
M02 End of program –
M03 Start spindle (CW) S
M04 Start spindle (CCW) S
M05 Stop spindle –
M06 Automatic tool change T
M07 Coolant on -
M09 Coolant off -
M30 End of program -

13

5. SPATIAL ANALYSIS

5. Spatial Analysis
In the most general sense, spatial analysis is a collection of methods of describing objects
and their relation in space. It has many applications in geography, topology and geometry.
Geospatial data are commonly exchanged in a WKT (Well-Known Text) format, which
is a text markup language designed to be readable by humans, standardised by the Open
Geospatial Consortium [25].

As has been said earlier, these methods almost exclusively work with polygons (or
polyherda in higher dimensions), and while also circles and other “curves” can be ex-
pressed using WKT, they are rarely used for computation performance purposes and
many software libraries implement them as a polygonal approximation or not at all. The
popular software libraries used for spatial analysis include:

• CGAL (Computational Geometry Algorithms Library) is the most robust and com-
plete C++ library for geometric operations in both 2D and 3D, including convex
hulls, meshes, triangulations, and many more. [9]

• GEOS (Geometry Engine, Open Source) is an open source C/C++ library for 2D
spatial analysis including validation and topology functions. It is used in many
GIS software applications and there exist many bindings that enable its use within
different programming languages like Python (Shapely), PHP (GeoPHP) or Node.js
(node-geos). [18]

• Boost.geometry is a part of the Boost collection of C++ libraries. It is the
youngest of these three, so its feature set is more limited, but it is being regarded
to as one of the most performant. [7]

5.1. Shapes
The terminology for different shape names varies slightly between implementations, so
throughout this chapter the terminology of the GEOS library will be used.

Any shape (or object in space for that matter) is associated with three sets: the
boundary, which is the set of all points laying on its boundary, the interior, which contains
all the points inside the object, and exterior, which contains every other point not in the
shape. They are all mutually exclusive and their union gives the entire space (or a plane
in 2D). Every object can be also characterised by its length and area.

The following list lists the commonly used geometric objects [17]. Their correspond-
ing WKT representation can be found in Figure 5.1.

• Point - The interior of a point object consists of a single point, while the boundary
is an empty set. Both the length and area of a point are equal to zero.

• LineString - Line string, or a polygonal chain, is a series of connected line segments.
The boundary contains the two extreme points, while the interior consist of all the
points along its length (not just vertices). While it has zero area, the length is
defined as the combined length of the line segments. An extension of a line string
is a linear ring in which the two extreme points coincide1.

1Linear rings also do not have a boundary

15

5.2. SPATIAL OPERATIONS

• Polygon - A polygon consists of an exterior linear ring and zero or more interior
rings (i.e. a polygon can have polygonal “holes”), which together make its boundary
and the interior is defined by the area between these. Polygon also the only object
with non-zero area.

Type WKT Example

Point POINT (30 10)

LineString LINESTRING (20 10, 10 20, 30 30)

Polygon

POLYGON ((30 10, 40 40, 10 20, 20 10))

POLYGON ((10 10, 40 20, 20 40, 0 20),
(10 20, 30 20, 20 30))

Figure 5.1: Example of WKT representation

It is also useful to define other constructs that act as “containers” for various geom-
etry types, such as for example a MultiPolygon which describes a collection of polygons
or a GeometryCollection as a generic container for arbitrary objects.

Another important property of objects it their validity: a object is only valid if
its interior does not cross itself or that the interior rings of a polygon do not cross its
boundary. Figure 5.2 shows an example of invalid self-intersecting objects.

Figure 5.2: Example of invalid geometry

5.2. Spatial Operations
There are various operations that can be applied to the objects, this chapter discusses the
majority of them, according to [12].

16

5. SPATIAL ANALYSIS

5.2.1. Relationships
Relationships between two objects can be defined as spatial predicates1 that are applied
to one of these object with respect to the other. Consider two objects A and B, Table 5.1
lists different spatial predicates applied to2 object A in relation to B.

Table 5.1: Spatial relationships predicates

Predicate Is true, when

Equals The object are topologically equal

Disjoint The objects have no common point

Intersects The inverse of disjoint
(i.e. A and B have at least one common point)

Touches A and B have at least one boundary point in common,
but their interiors are disjoint

Overlaps It the objects share some but no all interior points

Within All points of A lie within the interior of B

Contains The inverse of within
(i.e. All points of B lie within the interior of A)

5.2.2. Simplification and Bounding volumes
To improve the performance of computation, it is often beneficial to simplify the geome-
try, or approximate it with a simpler object. When testing for an intersection, it is also
useful to do this in two phases - the broad phase when a rough, simplified (or approxi-
mate) version of the geometry is used to avoid unnecessary computation when there is no
chance of the two intersecting, and then in a narrow phase, actually test against the true
representation. This simplified representation can be achieved in two ways – by reducing
the number of vertices along the boundary of the shape or by constructing a bounding
volume around it.

Figure 5.3: Example of a simplified polyline

1Predicate is a Boolean function, i.e. a function that returns either true or false
2Often denoted as A.predicate(B)

17

5.2. SPATIAL OPERATIONS

Polyline simplification

If the desired tolerance permits it, it is preferable to reduce the vertex count, as this allows
for significantly faster computation. The popular fast Douglas-Peucker algorithm [14] is
most often used. A disadvantage of this approach is that, as opposed to the bounding
volumes method, it does allow for false negatives1 when checking for overlap, so it must
only be used when this would not cause significant issues.

Bounding volumes

Figure 5.4: Bounding volumes (Circle, AABB, OBB, Convex hull)

• Axis-aligned Bounding Box - Being fastest to construct and very easy to test
for overlap, the AABB is almost always used as the first test to check intersection
of objects in the broad phase. It is defined by a pair of points specifying the top
left and bottom right corner.

• Minimum Rotated Rectangle - Also known a an oriented bounding box or OBB,
it is the smallest rectangle, that encloses all the points. The intersection tests are
also relatively computationally cheap, but its construction is harder than it seems.
The exact algorithm has a cubic asymptotical time complexity, so an approximate
linear time algorithm is used instead.

• Smallest Enclosing Circle - The intersection test of two circles is the simplest
one - only the distance between their centers and a sum of their radii have to be
compared. Though the calculation of the circle is not a trivial task, it also possess
the property of rotational invariance, meaning that once a smallest enclosing circle
is constructed for an object, id does not need to be recalculated when it rotates.
Most often, the Welzl’s algorithm [41] is used for its construction.

• Convex Hull - The convex hull is defined as the smallest polygon (with the shortest
circumference) which encloses a set of points. As convex shapes are best suited for
intersection testing, the convex hull is best suited for fast test without sacrificing a
lot of precision.

5.2.3. Operations
Affine transform

Affine transformations are a collection of linear operations that can be applied to an
object to transform its shape either by translation, rotation, scaling or shearing. This

1e.g. simplified objects no longer intersect even though they did before

18

5. SPATIAL ANALYSIS

section is concerned only with the first two. Any affine transformation can be described
using a transformation matrix, which when multiplied by a coordinate vector, gives the
new transformed coordinates. Let x and y be the original coordinates of point, then:

• Translation by a required offset tx and ty is defined asx′

y′

1

 =

1 0 tx
0 1 ty
0 0 1

x
y
1


• Rotation about the origin by an angle θ is defined asx′

y′

1

 =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

x
y
1


Multiple matrices can be also combined into one to achieve different transformations

at once. An object is transformed by multiplying the matrix with all its points.

Set operations

As the objects are just sets of points, all the common binary set operations can be also
applied to them. Figure 5.5 shows demonstrations of union, difference, and intersection
of two objects A and B.

A.difference(B)

A.intersection(B) A.union(B)

Shapes A and B

A

B

Figure 5.5: Example of binary operations on objects

Minkowski Addition

Also knows as the Minkowski sum, it is a binary operation that can be applied to a pair
of sets of vectors. Given objects A and B, a Minkowski addition is defined as

A⊕B = {a + b | a ∈ A,b ∈ B},

19

5.2. SPATIAL OPERATIONS

where a + b is a vector sum of all the vectors that represent points from the objects A
and B. Analogously, the Minkowski difference is defined as

A	B = {a− b | a ∈ A,b ∈ B},

or in terms of Minkowski addition as A⊕ (−B). An important property of the Minkowski
difference is that if and only if the objects A and B intersect (share a common point),
their Minkowski difference contains the origin1.

(0,0) (2,0)

(2,2)(0,2)

(-1,1)(-3,1)

(-3,2)

(-3,1) (1,1)

(1,3)

(-1,4)(-3,4)

A B A⊕ B

Figure 5.6: Minkowski sum

Buffer

The buffer of an object can be thought of a set of all points within a certain distance
from it. In computer graphics, a positive buffer is also referred to as a dilation whereas
a negative buffer is called an erosion. In mathematical terms, a positive buffer is defined
as a Minkowski sum of the object and a disc centred at the origin with a radius equal to
the size of the buffer, while a negative buffer is a difference of the shape with a positive
buffer of its boundary.

Figure 5.7: Positive and negative buffer

Figure 5.7 shows a positive buffer applied to a polyline and a negative buffer applied
to a polygon.

1Because there would exist a pair of points whose difference is 0.

20

6. THE NESTING PROBLEM

6. The Nesting Problem
6.1. Definition
The Nesting problem is a collective term for a number of cutting and packing problems,
which in general deal with finding an optimal placement of parts in a container without
overlap, minimising the unused area with respect to some criteria. These can be generally
divided into three categories:

• Bin packing problem - Given a set of shapes and a container of a fixed size,
arrange the shapes in such way that minimises the number of said containers needed
to pack all of them.

• Strip packing problem - Given a set of shapes and an “infinite” strip of material
of fixed width, arrange the shapes in such way that minimises the length of the
material needed.

• Knapsack problem - Given a set of shapes and a fixed container, find the optimal
arrangement of a subset of shapes that maximises the used area.

Various additional constraints are often needed to be defined, such as a minimal
clearance between shapes and the container’s boundary or a fixed rotation of shapes.
This is because it may be necessary to account for the cutting tool width or the kerf of
a laser; The fixed rotation constraint applies for example in the textile industry where
the pieces need to be aligned to the grain of the fabric. The latter is actually a major
simplification of the problem as opposed to the general definition where the rotation of
shapes is allowed and thus the solution space is much bigger. [24]

It is not surprising that the Nesting problem is NP-hard, [29] meaning that there is
no known algorithm that finds the optimal solution in a polynomial time, nor is there one
that determines that the found solution is, indeed, optimal. That means one can only rely
on a good heuristic to provide an objectively good solution. The next section pinpoints
some existing approaches to solving different variants of the problem. [16]

6.2. Existing Solution Methods
In general, the methods can be divided into two categories: Single pass, where the “opti-
mal” solution is found by placing all the object one by one to their respective local optima,
and iterative where the said process is often used to generate a first good solution and
then iteratively try to enhance it. These can be further divided into ones that produce
a first legal1 solution, and ones that allow for some overlap and try to minimise it with
further iterations. The common theme is, however, finding the order of placement.

As has been noted, a good heuristic is needed to ensure a good solution. According
to the empirical results in literature, a First fit decreasing is the best heuristic [15]; It says
that the best initial results are obtained by sorting the shapes by their size2 and placing

1A legal solution is one where the shapes are all placed according to the constraints (e.g. do not
overlap each other)

2This can mean the area, width, height, etc...

21

6.2. EXISTING SOLUTION METHODS

them in a decreasing order. This section outlines some of the developed solution methods
and different applicable heuristics.

6.2.1. Binary Tree Bin Packing
The easiest variant of the problem is one where both the shapes and the container are
rectangular. While this can often be a gross simplification, the algorithm for this problem
is “fairly simple” with an asymptotical complexity of O(n logn)

Figure 6.1: Binary tree bin packing

Every shape is represented by its width and height, and so is the container. The
container can also have only one of its dimensions fixed, making it a strip packing problem,
the only difference is that this way all shapes are always placed, but the algorithm stays
the same.

Figure 6.2: Comparison of different heuristics for binary tree bin packing [20]

The container itself acts as the root node of the binary tree. When the first shape is
placed, the left node represents the empty space below it and the right node represents the
empty space to the right of it. When a new shape is placed to either node, the remaining
space is split in a similar fashion and the algorithm proceeds recursively until all shapes
are placed or no shape fits the remaining space. See Algorithm 1. [20]

22

6. THE NESTING PROBLEM

In Figure 6.2 can be seen the difference in the quality of the result between a well
chosen heuristic on the left (sorted by descending area) and poorly chosen one on the
right (random order).

Algorithm 1 The Binary Tree Bin Packing Algorithm (according to [20])
Require: shapes is a sorted list of shapes
Require: root is a instance of Node with variables x, y, w, h, down, right and shape

1: procedure Pack
2: for all s from shapes do
3: node ←FindNode(root, s.w, w.h)
4: if node is not NULL then
5: node.shape ←s
6: node.down ←new Node{x← node.x,

y ← node.y + s.h,
w ← node.w
h← node.h− s.h}

7: node.right ←new Node{x← node.x+ s.w,
y ← node.y,
w ← node.w − s.w
h← s.h}

8: end if
9: end for

10: end procedure

11: function FindNode(node, w, h)
12: if node.shape is not NULL then . Node is already occupied
13: return FindNode(node.down,w, h) or FindNode(node.right, w, h)
14: else if w ≤ node.w and h ≤ node.h then . Shape fits
15: return node
16: else . Shape does not fit
17: return NULL
18: end if
19: end function

While the assumption of a rectangular container can be mostly satisfied in real
applications, for the shapes, it is rarely the case. Therefore, more advanced algorithms
that deal with irregular shapes had to be developed.

6.2.2. Rectilinear Grid Genetic Algorithm
Many methods make use of approximating the shapes using a rectilinear grid, as has been
noted in Chapter 3. The rationale behind this representation is that it allows for relatively
fast checks for overlap, which are in the worst case linear with respect to the area of the
object. On the other hand, the area grows quadratically with the size of the object, so it
is only useful with relatively small shapes that do not suffer much from the discretization
imposed by the granularity of the grid.

23

6.2. EXISTING SOLUTION METHODS

The authors of [10] proposed a genetic algorithm for solving this version of the
problem. Due to the fact that the shapes can be represented using a discrete grid, the
whole area can be simply converted to 2D matrix chromosome representation, as can be
seen in Figure 6.3.

Figure 6.3: Shape arrangement (left) vs. 2D chromosome representation (right)

Native to a genetic algorithm are the operations of mutation and crossover. The
mutation operation, in this case, creates a new arrangement by randomly changing the
position and/or rotation of a single shape, while the crossover operation is more compli-
cated. The idea is to randomly select two parents and find the largest common area1 that
can be swapped between these two, producing 2 children. This also means that not all
pairs of chromosomes are compatible for crossover.

At the end of each phase, a number of the fittest arrangements are selected. The
objective fitness function takes into account the number of edges E adjacent to an unoc-
cupied cell as well as the total wasted area A and looks as follows: α · E + (1 − α) · A,
where the parameter α controls the balance between the two metrics. The rationale is
that more closely packed sets of objects have fewer exposed edges than loosely packed
ones.

Figure 6.4: Difference between simple and complex shapes [10]

1An area of the same shape that does not cross any object in either of the two arrangements

24

6. THE NESTING PROBLEM

According to the authors, this process takes a significant amount of time and is
only applicable to smaller objects that can be well approximated by the grid. Figure 6.4
demonstrates the difference in packing quality between simple and complex shapes.

6.2.3. Bottom Left Greedy Heuristic
In many packing algorithms, the idea is to place the objects one by one to the lowest,
leftmost position in the container. The bottom left greedy heuristic was introduced in [3]
for packing arbitrary collection of rectangles, in a variant of strip packing problem, to
minimise the extra height added by any shape. It was later extended to also work with
arbitrary shaped objects.

The algorithm works thusly: first an object is “dropped” to its lowest possible
location in the container, the technique of achieving this is an issue of its own and depends
on the representation of objects; it can be as simple as finding the lowest non-occupied
space in a rectangular grid, or when working with polygons, using either some simpler
bounding shape or the No-Fit Polygon. The authors of [10] used a binary search to find
the lowest point of no intersection. Then, in a similar fashion, the shape is moved all the
way to the left and then down again and the process is repeated until it can no longer be
moved. A simple illustration can be seen in figure 6.5.

Figure 6.5: Bottom Left Greedy algorithm

There are versions of this method where the shapes are allowed to “tunnel” through
already placed pieces if there exists a legal placement position beneath them. This is
useful when the smallest shapes are placed last and fill the holes between already placed
bigger shapes. [10]

An advantage of this approach is its speed and simplicity, though naturally, in
comparison to more sophisticated methods, solutions found using this method generally
tend to be of a worse quality.

6.2.4. The No-Fit Polygon
The most advanced and accurate nesting algorithms utilise what is called a No-Fit Poly-
gon or NFP. It is a powerful data structure used for testing shapes for overlap and can
described as follows: Given a fixed polygon A, free polygon B and a reference point on
polygon B, the No-Fit Polygon of A with respect to B (denoted as NFPAB) is constructed

25

6.2. EXISTING SOLUTION METHODS

by “sliding” polygon B around A without overlap as closely as possible, tracing the posi-
tion of the reference point. The final path of the reference point, once the polygon B has
completed a whole revolution, is the resulting NFP, as is demonstrated in Figure 6.6

Reference point

Figure 6.6: No-Fit Polygon

Checking for overlap of the two polygons is then reduced to checking if a the reference
point lies within the No-Fit Polygon. If it does, the two shapes overlap; if the reference
point is on the boundary of NFPAB, then polygon B touches polygon A and finally when
it is outside, the two do not overlap or touch.

It can be shown that when both A and B are convex, the NFP can be simply
constructed as a Minkowski difference (A ⊕ −B) of both shapes. For more complicated
shapes, however, the resulting No-Fit Polygon can consist of more than one shape (con-
sider a concave shape with a large inner cavity, where the orbiting shape can be placed,
and a thin opening in which the orbiting shape does not fit), or there could be an ar-
rangement where a single additional point (consider a puzzle piece) is a part of the NFP.
For this reason advanced methods were developed, for example the Sliding approach [8]
that literally “slides” the shapes around, or a more recent one that still uses Minkowski
sums but accounts for the concavities. [6]

One disadvantage of using NFP is that it has to be generated for every pair of
objects, plus for every possible rotation of them. The former is not such an issue when
there are many copies of the same object, but the rotations are often limited to 4 or 8.

6.2.5. A Note on Advanced Methods
Given that most of the advanced nesting software is proprietary (see Chapter 7), there is
not much information about the exact methods that are being used, as they are mostly
referend to in marketing terms such as “The most powerful and advanced optimisation
algorithms”, but it is clearly more often than not a combination of the No-Fit Polygon
along with some global optimisation algorithm that iteratively searches for better solu-
tions. Genetic algorithms are often used to generate new solutions, there are also mentions
of Simulated annealing or Tabu search to allow for worse solution along the way to escape
from local minima. [24]

26

7. EXISTING SOFTWARE

7. Existing software
In the CNC world, nesting software is most of the time proprietary and targeted primarily
at large industrial customers. It is also often prohibitively expensive for hobbyists or small
businesses. Luckily, in the recent years, friendlier and open source alternatives have been
emerging. This chapter lists some of the existing nesting solutions.

7.1. SigmaNEST

Figure 7.1: SigmaNEST [36]

SigmaNEST is an industrial-grade nesting software developed by SigmaTEK. It is
intended for large factories owning tens of machines and is priced accordingly. It claims to
be the best nesting software out there and to support every cutting machine imaginable.
It has support for all the conventional machines like plasma or laser cutters, but it has
also options for tube cutting or metal bending. [36]

7.2. NestFab

Figure 7.2: NestFab [28]

Not being as much versatile as the aforementioned tool, NestFab also claims to be
the world’s most effective nesting software with the use of the Ultra-Performance option.

27

7.3. TRUNEST

It has a simpler interface and not as many functions, but that makes it easier to work
with. It also supports most of the industry standard file formats like DXF and DWG. [28]

7.3. TruNest

Figure 7.3: TruNest [2]

TruNest comes from the family of CAD products developed by Autodesk. As such,
its biggest advantage is the possibility to seamlessly integrate it with their other CAD
software like AutoCAD or Inventor. As with most industrial software, the pricing depends
to the customer’s needs. [2]

7.4. MyNesting

Figure 7.4: MyNesting [27]

MyNesting is a unique nesting service, that is provided by the NestFab engine.
It lets users freely use the optimisation engine, but the final arrangement can only be
exported to a file upon paying a certain fee. This pay-per–use model makes it accessible
to individuals and smaller businesses. [27]

28

7. EXISTING SOFTWARE

Figure 7.5: SVGnest [32]

7.5. SVGnest
As an answer to the proprietary tools, SVGnest was developed to be an accessible open-
source variant. It is written in JavaScript and runs entirely in the web browser. Due to
this, the performance is not quite as fast, and also only the SVG format is supported as the
input, but quality-wise the produced solutions are competent with those of commercial
software. [32]

7.6. Deepnest

Figure 7.6: Deepnest [13]

Deepnest is a multi-platform desktop application based on SVGnest. It was devel-
oped by the same authors and the speed-critical code was rewritten in C++, still being
open-source. In addition to this improvement, it can read and export DXF files and it
can also merge paths of neighbouring parts to save on redundant cutting passes. [13]

29

8. IMPLEMENTATION

8. Implementation
The task at hand arose from a loose cooperation with the company B+R1 in an initiative
to effectively reuse scrap material from CNC metal cutting. This chapter describes the
implementation details of a custom nesting solution that attempts to solve the problem.

8.1. Task Specification
This software is intended to find a placement of provided cutting plans inside of the
available material, also considering that the provided material might have been used and
parts of it might have been cut out. With this in mind, the problem can be placed into
the general category of a Knapsack problem, as discussed in Chapter 6.

As such, the solution should provide a set of shapes (with their respective positions)
that utilises the most of the available space. Both the shapes and the container can be
both convex and non-convex, with the addition that the container can also include “holes”
or forbidden regions.

Given that the material used is metal, a free rotation of the shapes is allowed and
there is a need for a user-definable clearance between them, preferably in a form of a
simple graphical user interface.

The input and output of the program should be able to read and produce G-Codes,
as the result is intended to be used by a CNC machine.

8.2. Software Tools
The programming language of choice was Python [31], mainly because of its interpreted
nature, which allows for testing and benchmarking pieces of code quickly without the need
for a compilation in an interactive shell or a using a Jupyter Notebook. Another reason
was the wide range of available libraries and the ease of use. In real production, though,
it would be wiser to use a compiled language instead.

A number of additional libraries was also used, namely Shapely [19] that provides a
Python interface to the GEOS spatial analysis library, and numpy [30] to simplify vector
algebra operations. PyQt5 (a Python binding for the Qt framework [37]) was used to
create the graphical front end with the help of matplotlib [22] to draw the workspace. An
additional C++ library libnfporb [21] was leveraged to create the No-Fit Polygons (which
also depends on the Boost.geometry [7] library) and thus a Python–C++ interface had to
be created using the pybind11 [23] library.

The table 8.1 lists all the software tools needed and their versions, along with their
respective license. Some of them are optional if the whole functionality is not needed; the
essential required tools are marked with an asterisk.

Additionally, the program Qt Designer was used to help layout the GUI (see Sec-
tion 8.7). Furthermore, a C++ compiler is needed to build the optional supporting NFP
library. A one-click build script for Windows users (for Microsoft Visual Studio) is pro-
vided and a guide can be found in the attached archive.

1B + R Automatizace, s.r.o

31

8.3. PROGRAM ARCHITECTURE

Table 8.1: Software tools

SW Version License

Python* 3.7.3 PSFL (BSD, GPL Compatible)
numpy* 1.16.2 BSD
matplotlib 3.0.3 BSD Compatible
Shapely* 1.6.4 BSD
PyQt5 5.9.2 GPL
pybind11 2.4.3 BSD Compatible
libnfporb 2018-5-22 GPL
Boost 1.65 Boost license (permissive)

* Essential

8.3. Program Architecture
The program is presented as a set of Python modules using an object-oriented approach.
There are basically two key components which are tied together by an unified API, upon
which a graphical user interface is built.

Optimiser Parser

API

GUI

NFP lib

Logger

Figure 8.1: Program architecture

The architecture is best described using the scheme in Figure 8.1. On the lowest
level, there is the module Parser, which is used to translate the input data into an usable
format (more on that in the next section). Next is the module Optimiser, which is the
brains of the whole application and is described in detail in Section 8.5. It can optionally
(and preferably) use the NFP generation algorithm provided by libnfporb using a Python–
C++ interface.

On top of these sits an API that provides access to their function and also implements
some helper routines that simplify calling the modules’ methods. The API module can
be itself included in any other program to leverage the underlying algorithms.

Above all that is a GUI built in Qt, that wraps everything into a ready-to-use
package with all necessary tools and options. The GUI is further described in Section 8.7.

For debugging and progress review purposes, a logger module is accessible by all
other modules. It provides an interface for logging different types of messages (debug,
info, warning, error) and can be configured which of these to show to the user.

32

8. IMPLEMENTATION

8.4. G-Code Parser
Due to the fact, that the sample input files were presented in the form of a G-Code, it was
necessary to process them into an usable format. This was achieved by a custom G-Code
parser that extracts the shapes and turns them into polygons.

Only a small subset of the G-Code instructions was needed, namely G0, G1 for travel
moves and straight lines and G2, G3 for arcs and finally G90 and G91 for toggling between
a relative and an absolute coordinate system. All other instructions, along with the Z
parameter of the move instructions, can be disregarded, as they are not important for the
conversion. User variables were also not considered in the implementation and the units
are assumed to be millimetres1.

lmax
αmax

G03 X-10 Y10 I-10 J0

Pc Ps

Pe
{ { PcPe

Figure 8.2: Approximating a counter-clockwise arc (G03) using a polyline

Because the target shape is a polygon, all arc moves (G2, G3) must be first broken
down into poly-lines. See Figure 8.2 for reference. To achieve this, the number of segments
must be determined first. This is decided by two parameters: the maximal segment length
lmax and maximal angle αmax. The smallest integer that satisfies both2 is used and the
arc is broken down to that number of points, evenly distributed along its length. The
whole procedure can be found in Algorithm 2.

In machining, it is a convention to cut out the inner holes first to ensure that the
part stays in place, and to cut the outer circumference last. Because of this, it is safe to
assume that only the last outline is accepted as the representation and all the previous
ones can be discarded. It is worth noting that this implementation relies on the fact that
only a single part is ever present in the input file.

The parser was implemented as a very simple finite state machine (Figure 8.3) with
two states: pen_up and pen_down with an internal “pen” and “canvas” where the shape
is drawn. The parser then scans through the input file and depending on the commands,
moves the pen according to the coordinates and puts it “up” or “down” depending on the

1But it does not really matter as long as the units are the same in all input files.
2For long arcs with large radii, the limiting factor would be the segment length, for smaller arcs,

which can be less accurate, it would be the maximal angle.

33

8.5. OPTIMISER

pen

up

pen

down

G1,G2,G3

G0
G1,G2,G3

G0

Start
start new outline

finish outline

add segment to outline

EOFEOF
finish outlineEnd

Figure 8.3: The parser as a FSM

type of the move instruction. Whenever the state changes to pen_down, a new outline
is created, and whenever the state changes to pen_up, the currently drawn outline is
assumed to be complete. When the parser reaches the end of a file, the last outline is
used as the shape’s representation.

Algorithm 2 Arc Approximation (assuming CCW rotation)
Require: starting point Ps = [xs, ys], end point Pe = [xe, ye] and center point Pc = [xc, yc]
Require: parameters lmax and αmax.
Require: function Rec(ρ, ϕ) that convert polar coordinates to rectangular (Cartesian)

1: procedure ApproximateArc
2: let points be empty list of points
3: let R← |PsPc| . the radius
4: let φstart ← arctan2(ys − yc, xs − yc)
5: let φend ← arctan2(ye − yc, xe − yc)
6: let α← φend − φstart . the total angle
7: let l← α ·R . the lenght of the arc
8: let N ← bmax{l/lmax, α/αmax}c . the number of segments
9: let angles be an evenly distributed set of N numbers from 0 to α

10: for all angle from angles do
11: let P ← Rec(R, φstart + angle) . point along the arc
12: append [P + Pc] to points . account for center of circle not being in origin
13: end for return points
14: end procedure

8.5. Optimiser
The optimisation engine applies the ideas of a First-fit decreasing heuristics, bounding vol-
umes and No-Fit Polygons, and extends them with a custom local placement optimisation
method.

Given a container with possible forbidden areas (called holes from now on) and
a set of shapes, the first task is to determine the order in which to place the shapes.
This is decided easily by sorting them by their area in a decreasing manner. This way

34

8. IMPLEMENTATION

the smallest shapes are placed last and ideally act like “sand” filling the gaps between
previously placed larger shapes.

8.5.1. Initial Placement
The next problem that arises is where and how to place the first shape (and any subsequent
one for that matter) and how to determine if the placement is good. There is no benefit
of placing it in the middle of the available space, so it is obvious that it would be best to
place the shape as close to the existing holes or edges of the container as possible. This
is where the hole envelope and startpolygon come into play.

Hole Envelope

The term hole envelope is not to be confused with a bounding volume; in the context of
this chapter, a hole envelope refers to a generalized form of the NFP and is a function of
two shapes A (fixed) and B (free). If a reference point of the shape B lies outside of the
hole envelope, then the two shapes definitely do not overlap, but the opposite implication
does not necessarily hold.

The reference point of an object was chosen to be the centre of the smallest enclosing
circle1. This has two benefits:

• Rotating the shape about the reference point produces very small total transla-
tion2 of the rest of its points, which makes local optimisation more effective (see
Section 8.5.2).

• If a positive buffer of the size of the smallest enclosing circle’s radius is applied to
a hole, the resulting polygon is guaranteed to be a valid hole envelope of the hole
with respect to the shape. Furthermore, the hole envelope stays invariant for an
arbitrary rotation of the shape.

Although being fast, the method of finding the hole envelope using the smallest
enclosing circle is quite inaccurate, especially for shapes that are far from being circular.
The best hole envelope of two shapes possible is the No-Fit Polygon (as follows from
Chapter 6.2.4) and for this reason, the aforementioned open source C++ library libnfporb
was leveraged. It implements an orbiting approach algorithm to the creation of a NFP.

This is a complex operation, especially for complicated shapes, but since it is writ-
ten in a compiled language, the computation is relatively fast. There are some limita-
tions though and the NFP creation sometimes unexpectedly fails for certain (complex)
shape combinations. In the case the algorithm falls back to the enclosing circle method.
Figure 8.4 highlights the difference between these two methods using a triangle as the
reference shape3.

Due to the complexity of finding NFPs of highly non-convex shapes4, it is sometimes
beneficial to use only the convex hull of them. This way the computation is fast, while still
being more precise than the smallest enclosing circle method. Two examples of shapes for

1Contrary to the first vertex, which is often used in literature
2i.e. it stays more “in place” as opposed to when a boundary point was used
3Note that the positions of the triangle were chosen arbitrarily for demonstration purposes
4The complexity highly depends on the total number of edges and non-convex regions of both shapes

35

8.5. OPTIMISER

Figure 8.4: Hole envelope using smallest enclosing circle (red) and a NFP (blue)

which the computation of a NFP would be much faster when their convex hull was used
can be seen in Figure 8.5.

Figure 8.5: Convex hull (· · ·) applied to irregular shapes

As was also stated in Chapter 6.2.4, the resulting NFP is different for any mutual
rotation of the shapes. It would be unfeasible to generate NFPs for every hole with
respect to all possible rotations of a shape, therefore only a few cases are tested for and
the fine-tuning is left to local optimisation.

Given there are often multiple copies of the same shape, the hole envelope does
not have to be generated again every time. Each hole holds a cache of all its generated
envelopes so far, so when there already exists a hole envelope for the next shape with the
corresponding rotation, it is retrieved from the cache, which greatly improves performance.

Startpolygon and Placement Policy

The startpolygon is a set of one or more polygons, such that their boundaries represent
all viable placement positions of the reference point of the shape in question, considering
the whole available area. It is the union of all the hole envelopes subtracted from the
boundary envelope.

The boundary envelope is essentially an inverse of the hole envelope. If a reference
point of a shape lies within the boundary envelope, it is guaranteed that it is positioned
wholly within the container’s bounds. In the case of using the smallest enclosing circle
as the shape representation, it can be easily constructed by applying a negative buffer of
the circle’s radius to the container’s boundary. In the case of using a NFP, the boundary
envelope is constructed by shrinking the container on each side by a length equal to the

36

8. IMPLEMENTATION

distance between the shape’s reference point and an extreme point in the corresponding
direction1.

Figure 8.6: The process of creating a startpolygon
Using hole envelopes (red · · ·) and a boundary envelope (blue · · ·) to obtain all the viable points
(red +). The grey areas represent holes; the actual shape of available material is the remaining
white region.

The simplest case is when there are no holes in the container, then the startpolygon
contains only the boundary envelope. This way the startpolygon consists of four vertices
near each corner of the container, these are the viable points2. Figure 8.6 demonstrates
the general case of creating a startpolygon by combining envelopes to obtain the viable
points. At which of these the shape will be placed is decided by the placement policy
function.

Figure 8.7: Square placed using lower-right placement policy, preferring smaller regions

Most of the time, the placement policy would be set to favour the left-most (or lower-
left-most) point, but it can be any function that takes the startpolygon as an argument.
It could for example choose the sharpest corner, or in case of multiple starting polygons,
choose a point from the smallest ones first, et cetera. Figure 8.7 shows a square placed
according to a lower-right placement policy with the preference of filling smaller regions
first.

1e.g. the right side of the container is shrunk by the difference of the shape’s x coordinate of the
rightmost point and the x coordinate of its reference point

2There is no use in placing the shape along the edges, either

37

8.5. OPTIMISER

In the case that there is a requirement for a minimal clearance between shapes,
holes and the boundary, an additional negative buffer of the required size is applied to
the startpolygon prior to applying the placement policy.

When the starting point is selected, the shape’s reference point is placed on it and a
local optimisation can start (more in Section 8.5.2). When a final location for a shape is
found, it is further considered as a hole and a next shape is ready to be placed. Algorithm 3
closely describes the process of placing a single shape.

Algorithm 3 Initial Shape Placement
Require: The shape to be placed
Require: Set of holes H and container boundary B
Require: Placement policy function pp(x)

1: procedure PlaceShape
2: let startpoints be an empty set of all viable starting points
3: for all possible rotations of shape do
4: let startpolygon be the boundary envelope for the shape
5: for all hole from H do
6: find the hole envelope for hole with respect to shape
7: startpolygon ←difference of startpolygon and hole envelope
8: end for
9: select a vertex v from startpolygon that minimises pp(v)

10: append v to startpoints, noting the current rotation
11: end for
12: from startpoints select again a vertex v that minimises pp(v)
13: return translated and rotated shape according to v
14: end procedure

8.5.2. Local Placement Optimisation
It is often the case that when a shape is placed in the initial placement phase, its sides do
not align perfectly with the holes, which wastes the available space, especially when the
number of tested rotations is low. To account for the limited number of rotations that can
be tested for, a local placement optimisation method was implemented. It trades speed
of the calculation for a more precise placement of the shape.

In principle, it works as follows: The goal is to apply small translations and rotations
to the shape, such that it maximises the alignment of its sides with the surrounding
geometry. To achieve this, it is necessary to determine the metric used to measure the
quality of the alignment. Therefore a near zone was introduced. Intuitively, a near zone is
essentially a buffer around a shape and the goodness of a placement can be then measured
by how much the near zone overlaps with the nearby holes1.

This premise alone cannot provide a satisfying result, as the intersection area of
the near zone is maximised when the shape is fully enclosed in a hole, which is highly
undesirable. To counter this, the intersection with holes and the shape itself has to be
taken into account. Given that the function A(s) represents the total area of intersection

1The bigger the area of intersection, the closer to the surrounding geometry the shape is

38

8. IMPLEMENTATION

of shape s with the surrounding geometry and sNZ is the near zone of shape s. The
quality of the alignment of shape s is then defined as

Q(s) =

{
A(sNZ), if A(s) = 0,

−A(s), otherwise.

As can be seen, when the shape itself overlaps just a little with any hole, the quality
function becomes negative and the solution is rejected.

The position of an object is fully defined by its position in a plane and its rotation
(x, y, α), therefore the optimal placement can be found by maximising the quality of
alignment function over these and becomes a three dimensional maximisation problem.
With a slight change in notation, the problem can be defined as

(x′
s, y

′
s, α

′
s) = argmax

x,y,α
Qs(x, y, α),

where x′
s, y

′
s, α

′
s are the optimal coordinates of the shape and Qs is the quality

function of shape s. In figure 8.8 can be seen an illustrative example of the course of the
function along a single axis.

Qs(xs)
x

Q

s

xs

max Qs(x)

x's

Figure 8.8: 1D demonstration of the quality of alignment function

To solve this problem, a simple greedy hill climbing algorithm was implemented.
In each step a number of random neighbouring points is generated around the current
position and the one that maximises Qs is selected. This continues until no better solution
can be generated thrice in a row.

39

8.6. EXPORT

As has been mentioned before, the center of the smallest enclosing circle of the shape
is selected as the center of rotation. This way, solutions where the shape needs to be only
slightly rotated without much translation are “closer” in the solution space to the starting
point as opposed to a situation when a boundary point would be used. In other words,
this way the solution is found by rotating the shape a bit, whereas otherwise it would
have to be rotated by the same amount and translated to accommodate for the unwanted
shift. Figure 8.9 demonstrates this.

Δα
Δα

Δx

Δy

Figure 8.9: The effect of rotating around different reference points

In figure 8.10 can be seen the desired effect of the local optimisation. On the left
is the best position found by the initial placement phase and on the right is the optimal
position found by local optimisation. Notice how the area of overlap of the near zone
gradually increases.

Figure 8.10: The desired effect of local optimisation

8.6. Export
Since the solution is intended to be ready to use, the output format should be in G-Code.
The fact that the input files are also G-Codes makes it easy for them to be “glued”
together in the resulting file. Each placed shape remembers its original file name, origin
point, its position and rotation. When read from left to right as the shapes appear in the
container, a rather efficient sequence of cutting plans is created and the original G-Code
files are then processed (and duplicated) in that order.

40

8. IMPLEMENTATION

As has been described in Chapter 4 (G-Code), the codes G68 and G92 are used for
offsetting and rotating of the coordinate system of the machine, this means that the paths
in the original files do not need to be altered at all.

The export procedure works as follows: The first G-Code file of shape s is read from
the beginning up until the first move sequence1. Then right before that, the following
sequence of commands is inserted

G92 Xxso Yyso move the coordinate system to the origin point of shape s
G00 X0 Y0 move the tool head there
G68 X0 Y0 Rαs rotate the coordinate system by angle αs around the origin

Then the file is read normally up until the last cutting move. Then the next file in a row
is opened and is skipped up until the first cutting move and the above command sequence
is inserted.

This repeats until the last file in the sequence, which is not disregarded after the
last cutting move. Instead the above sequence is added once more, filled with zeros to
reset all offsets and rotations. Then the file is read until the end2. The resulting combined
G-Code file is then ready to be fed to the CNC machine.

8.7. GUI
As has been already noted, the graphical user interface was built using the cross-platform
framework Qt. Most of the static parts of the interface were laid out using a WYSIWYG
editor called Qt Designer from which the IU can be exported in the form of a XML
markup and then loaded from within Python with the PyQt5 library. The workspace and
preview panes use the matplotlib graphical backend.

The GUI consists of several components that provide access to all the key parts of
the program. The whole application window can be seen in Figure 8.11.

Input
The input section allows the user to browse to the folder where the G-Code files are
stored, it automatically parses them and displays them in the list below. Upon clicking
on any entry, a preview of the selected shape is displayed on the bottom along with its
dimensions. Next to each shape in the list is a spin box that allows to set how many
copies of the shape should be placed. There is also a check box indicating whether the
shape’s convex hull should be used for reference instead of the true shape (Implications
of this were discussed in Section 8.5 (Optimiser)).

Workspace
In the Workspace, the user can draw and erase holes (forbidden regions, see Figure 8.11)
in the material using the provided tools. Once a solution is found, individual shapes can
also be removed from it or the whole area can be cleared. The whole workspace can also
be exported or imported from a JSON file using the workspace menu item.

1To reflect codes needed to setup the machine
2To follow the finishing procedure (turn off coolant, etc.)

41

8.7. GUI

Figure 8.11: The application window, process of drawing a hole

Figure 8.12: The application window, nesting with clearances in progress

Settings
This section is used to specify the base dimensions of a rectangular working area and the
required minimal clearances between shapes and holes or the edges of the workplace. The
clearances in effect are illustrated in Figure 8.12. The user can also select the placement

42

8. IMPLEMENTATION

policy in a form of the preferred location where to place the shapes, along with the option
to first try to fill smaller empty regions prior to placing shapes to the preferred location.

Optimiser
The optimiser section provides options to select whether to use the NFP and if so, how
many rotations of each shape to test for. A local optimisation can be also enabled here.
Upon clicking on the Start button, the optimisation algorithm is started in a separate
background thread (as to not block the I/O-bound thread and make the GUI unrespon-
sive) and a progress bar is shown indicating the progress, while the shapes are gradually
drawn into the workspace. The user can stop the operation anytime. When an arrange-
ment is found the G-Code of it can be exported using the corresponding button.

43

9. EVALUATION

9. Evaluation
For evaluation purposes, two extensive performance tests were carried out. The goal was
to determine relationships between different settings and conditions. Results of all the
benchmarks can be found in the attached archive.

In literature, the nesting quality is often measured as the ratio between the total area
of the container and the total area of shapes (container utilization). This is only applica-
ble in case of strip-packing problem, as the container’s size dynamically changes. Some
implementations “virtually” shrink the container from one side or use the x-coordinate of
the rightmost placed shape to get around this limitation.

This is also not applicable, as the placement policy could position the shapes quite
anywhere. Therefore, after all shapes have been placed, the quality of nesting is measured
as the ratio of the area of a startpolygon of the last placed shape1 and the total available
are at the beginning. This is demonstrated in Figure 9.1.

Q = 47.6 %

Figure 9.1: Startpolygon as a measure of nesting quality

9.1. Benchmark 1
The first benchmark consisted of 31 relatively simple shapes with small number of edges,
as seen in Figure 9.2. The goal was to determine the relationship between the nesting
quality and the speed, with respect to the method of creating a startpolygon and the use
of local optimisation (LO). The placement policy was set to place the shapes as much to
the left as possible. The shape of the container was the same as seen in Figure 9.1 and
was used for both benchmarks.

3 7 7 7 7

Figure 9.2: Benchmark set 1

As shown in Table 9.1, six cases of startpolygon generation were examined, each
one with local optimisation disabled and enabled. The first case (denoted “-”) was the

1As if one more copy of it would be placed

45

9.1. BENCHMARK 1

smallest enclosing circle method without the use of NFP. The other are cases of different
numbers of NFP rotations. Each case has a corresponding nesting quality (denotedQ) and
time to completion (t), the best and worst values are in bold. The values are visualized
in Figure 9.31. The last two columns indicate the relative increase in quality (IQ) and
computation time (It) between cases without and with the help of LO.

Table 9.1: Benchmark 1 results

Local optimisation
NFP Disabled Enabled Increase

rotations Q [%] t [s] Q [%] t [s] IQ [%] It [%]

- 0.4 0.4 8.5 8.7 1914.0 1903.1
1 10.3 0.9 14.7 6.3 43.4 615.8
2 14.1 1.2 15.1 7.6 7.1 517.3
4 17.7 2.1 18.2 8.5 2.5 303.4
8 17.5 3.8 19.4 9.8 10.9 159.0
16 19.6 7.4 20.6 12.1 5.0 63.2

Figure 9.3: Benchmark 1 results

-

1

2

4 8

16

-

1 2

4
8

16

0

5

10

15

20

25

0 2 4 6 8 10 12 14

Q
[%
]

t [s]

LO Disabled

LO Enabled

As can be seen, with the use of LO, the total computation time is longer by approx-
imately the same amount in all cases, but the relative increase is large. This is especially
apparent with cases where the initial Q was low2. Notably, in the first case, the com-
putation time grew almost twenty-fold, for the price of a 20 times better solution. With
more shape rotations to test for, more places become available for the next shape and the
increase in nesting quality by using LO is less visible, but the extra time is less noticeable,
too. Some notable examples can be seen in Figure 9.4

1Note that the connecting lines carry no information value. They are included only for a better
readability of the graph.

2A bad solution was found very fast.

46

9. EVALUATION

a) b)

c) d)

Figure 9.4: Notable examples of benchmark 1
a) smallest enclosing circle method without LO (worst),
b) smallest enclosing circle method with LO,
c) 4 NFP rotations without LO,
d) 16 NFP rotations with LO (best)

It is apparent from the figure that LO helps especially when the initial placement is
bad, but it still cannot improve it that much. Also, if the shapes are somewhat regular and
fit together, the solution without the use of LO looks neater, even though the measured
quality is lower.

9.2. Benchmark 2
The second benchmark focused on the difference in complexity of finding the NFP for
irregular shapes. The set of the shapes can be seen in Figure 9.5. This time, the square
was replaced with rounded square1 and a new non-convex shape with an inner cavity was
added. The point of this benchmark was to find out how this affects the performance of
finding the FNPs. There are 2 main scenarios: In the first, the shapes are used as shown
and in the second, the complex shape (second from right) is replaced by its convex hull.
Furthermore, the placement policy was changed to favour the top-right corner with the
addition of placing shapes in smaller regions first.

5 4 6 7 5

Figure 9.5: Benchmark set 2

1This increases the edge count

47

9.2. BENCHMARK 2

Table 9.2: Benchmark 2 results

Local optimisation
NFP Disabled Enabled Increase

rotations Q [%] t [s] Q [%] t [s] IQ [%] It [%]

N
on

-
co
nv

ex 2 20.0 7.5 19.1 16.0 -4.7 113.6
4 13.8 14.4 15.6 25.5 13.2 77.5
8 15.0 32.3 15.0 39.5 0.2 22.6

C
on

ve
x 2 19.3 1.4 19.1 7.6 -1.1 437.5

4 12.6 2.5 12.7 7.7 0.7 205.0
8 17.1 4.8 19.8 11.2 15.7 135.5

The results of this can be found in Table 9.2 and they are quite surprising. Not
only are the best results achieved by using only two rotations, but also in this case the
use of LO leads to a worse nesting quality. In addition, the fastest solution was also the
third-to-best (without a major difference), taking only 1.4 s, while the slowest one was on
the worse side.

Figure 9.6: Benchmark 2 results

2

4
8

2

4 8

2

4

8
2

4

8

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45

Q
[%

]

t [s]

Non-convex, LO Disabled

Non-Convex, LO Enabled
Convex, LO Disabled

Convex, LO Enabled

Looking at Figure 9.6, it is apparent that there is no significant difference between
the nesting quality with and without local optimisation. What is most noticeable, is
the increase of computation times in the non-convex scenario as the number of rotations
increase.

What is odd, though, is that most of the time 4 rotations perform the worst of all.
Looking at some of the results in Figure 9.7, this phenomenon can be explained by the
greedy nature of the algorithm. When the shapes themselves fit well together, using only
2 rotations forces the algorithm to place the shape to a locally worse position, but the

48

9. EVALUATION

next shape, rotated 180°, will fit perfectly, leaving almost no gap. Furthermore, given the
shapes fit together, there is little to no benefit of adjusting their final position just a bit,
because it lowers the change that the next shape will fit well.

a) b)

c) d)

Figure 9.7: Notable examples of benchmark 2
a) 8 NFP rotations, non-convex, with LO (slowest),
b) 4 NFP rotations, convex, with LO (second-to-worst),
c) 2 NFP rotations, non-convex, without LO, (best)
d) 2 NFP rotations, convex, with LO (fastest, third-to-best)

It appears that the placement policy also plays an important role in the nesting
quality. In the second benchmark, the shapes were preferably placed near a right-angled
corner where the holes did not affect the placement much. Whereas in the first bench-
mark, they were placed preferably in the irregular part of the container, making local
optimisation much more useful. Therefore, when operating the program, the user should
use their best judgement and setup the process accordingly. In general, more regular
containers allow for lower number of rotations and a faster solution, whereas irregular
ones do benefit from the nesting quality added by local optimisation for the price of a
longer computation.

9.3. Improvements and Future Work
It is clear that at this point, the software is capable of arranging irregular shapes into an
irregular container in a somewhat satisfying manner. However, the algorithm is still far
from perfect. Due to the greedy (first fit) nature of the algorithm, much of the solution
space remains unexplored. It would greatly benefit from a global optimisation method,
where the order of placement was iteratively altered to find even better solutions. This
could be achieved for example by implementing a genetic algorithm where the order of
placement was the genome.

Also the local placement optimisation could be improved by applying for example
the simulated annealing method, to avoid local optima (e.g. if a square, rotated by 45°,

49

9.3. IMPROVEMENTS AND FUTURE WORK

is placed in a corner, it lies in a local optimum and the current LO is unable to align it
properly). This is especially noticeable in Figure 9.7 a).

Currently, the only method of specifying the container’s shape is either by drawing
the holes by hand or by importing the board dimensions and holes from a JSON file. To
maximise the functionality, the program could be paired with a computer vision software
that is able to recognize the shape of the material directly on the machine. That way,
the operator could just select the shapes to cut and “throw” a piece of material into
the machine. The program would automatically extract its geometry, arrange the shapes
accordingly, and generate the appropriate tool paths.

A less automatic but still a great solution would be to display the image from the
camera in the background of the workspace area, so that the operator could easily trace
the holes by hand.

50

10. CONCLUSION

10. Conclusion
This Master’s thesis covered a basic theoretical background needed to understand the
Nesting problem. It outlined the different methods of 2D shape representation and spatial
analysis and gave an insight on various methods of approaching the Nesting problem, along
with examples of the existing solutions.

The practical part of this thesis describes the implementation of a nesting software,
capable of effectively placing arbitrary two-dimensional objects into a bounded region
with respect to prohibited areas and other already placed objects. This was achieved by
using a combination of both pre-existing solutions and own invention.

The program is presented as a module of the programming language Python and
can be used either as a graphical user interface application, or incorporated as an API
into any other software. Due to the nature of Python, it is directly runnable on any
platform that supports this programming language. The additional open-source library
and its Python interface can be also easily compiled for the target machine.

The software takes advantage of the No-Fit Polygon that is used to find regions
of no overlap between shapes, with the addition of a local placement optimisation that
furthermore fine-tunes the placement of a shape.

An extensive performance test was carried out, investigating different scenarios and
placement policies, and evaluating the results. It has been discovered, that for irregular
shapes and container, the local optimisation method does enhance the solution, whereas
more regular shapes benefit from being constrained to a small number of possible rotations.

Although the solutions produced by the program cannot be considered optimal, they
are objectively not bad, and at this point, the program is absolutely usable by the end
user.

51

BIBLIOGRAPHY

Bibliography
[1] All3DP. CNC Plasma Cutting – The Basics [online]. Jan

2019. [cit. 11. 6. 2020]. Available at: < www.all3dp.com/2/
cnc-plasma-cutting-all-you-need-to-know/ >.

[2] Autodesk. TruNest: Automated Nesting Software [online]. Available at: < https:
//www.autodesk.com/products/trunest/overview >.

[3] Baker, B. – Coffman, E. – Rivest, R. Orthogonal Packings in Two Dimensions.
SIAM J. Comput. 11 1980, 9, p. 846–855. doi: 10.1137/0209064.

[4] Bengtsson, B.-E. Packing Rectangular Pieces—A Heuristic Approach. The Com-
puter Journal. 08 1982, 25, 3, p. 353–357. ISSN 0010-4620. doi: 10.1093/comjnl/25.
3.353. Available at: < https://doi.org/10.1093/comjnl/25.3.353 >.

[5] Benne. Building a CNC Router [online]. Instructables, May 2019. [cit. 11. 6. 2020].
Available at: < www.instructables.com/id/Building-a-CNC-router/ >.

[6] Bennell, J. A comprehensive and robust procedure for obtaining the nofit polygon
using Minkowski sums. Computers & OR. 01 2008, 35, p. 267–281. doi: 10.2139/
ssrn.766146.

[7] Boost C++ Libraries. Boost.geometry [online]. Aug 2017. [cit. 15. 6. 2020]. Avail-
able at: < www.boost.org/doc/libs/1_65_1/libs/geometry/doc/html/index.
html >.

[8] Burke, E. et al. Complete and robust no-fit polygon generation for the irregular
stock cutting problem. European Journal of Operational Research. 05 2007, 179,
p. 27–49. doi: 10.1016/j.ejor.2006.03.011.

[9] CGAL Editorial Board. The Computational Geometry Algorithms Library [on-
line]. Feb 2020. [cit. 15. 6. 2020]. Available at: < https://www.cgal.org/ >.

[10] Chen, P. et al. Two-dimensional packing for irregular shaped objects. 36th Annual
Hawaii International Conference on System Sciences, 2003. Proceedings of the. 2003,
p. 10 pp.–.

[11] CutMaps. Laser Cut Street Map by CutMaps [online]. Youtube, December 2012.
[cit. 11. 6. 2020]. Available at: < www.youtube.com/watch?v=WdJ4KranBcw >.

[12] Davis M., A. J. Java Topology Suite, Technical Specifications. [online], March
2003. Available at: < https://github.com/locationtech/jts/blob/master/doc/
JTS%20Technical%20Specs.pdf >.

[13] Deepnest. Open source nesting software [online]. Available at: < https://
deepnest.io/ >.

53

www.all3dp.com/2/cnc-plasma-cutting-all-you-need-to-know/
www.all3dp.com/2/cnc-plasma-cutting-all-you-need-to-know/
https://www.autodesk.com/products/trunest/overview
https://www.autodesk.com/products/trunest/overview
https://doi.org/10.1093/comjnl/25.3.353
www.instructables.com/id/Building-a-CNC-router/
www.boost.org/doc/libs/1_65_1/libs/geometry/doc/html/index.html
www.boost.org/doc/libs/1_65_1/libs/geometry/doc/html/index.html
https://www.cgal.org/
www.youtube.com/watch?v=WdJ4KranBcw
https://github.com/locationtech/jts/blob/master/doc/JTS%20Technical%20Specs.pdf
https://github.com/locationtech/jts/blob/master/doc/JTS%20Technical%20Specs.pdf
https://deepnest.io/
https://deepnest.io/

BIBLIOGRAPHY

[14] Douglas, D. H. – Peucker, T. K. Algorithms for the Reduction of the Num-
ber of Points Required to Represent a Digitized Line or its Caricature. Carto-
graphica: The International Journal for Geographic Information and Geovisualiza-
tion. Dec 1973, 10, 2, p. 112–122. Available at: < https://doi.org/10.3138%
2Ffm57-6770-u75u-7727 >.

[15] Dósa, G. – Sgall, J. First Fit bin packing: A tight analysis. LIPIcs. 01 2013, 20,
p. 538–549. doi: 10.4230/LIPIcs.STACS.2013.538.

[16] Egeblad, J. – Nielsen, B. K. – Odgaard, A. Fast neighborhood search for two-
and three-dimensional nesting problems. European Journal of Operational Research.
December 2007, 183, 3, p. 1249–1266. doi: 10.1016/j.ejor.2005.11.063. Available at:
< doi.org/10.1016/j.ejor.2005.11.063 >.

[17] Elastic. Geo-Shape datatype: Elasticsearch Reference [6.2] [online]. [cit. 15. 6. 2020].
Available at: < https://www.elastic.co/guide/en/elasticsearch/reference/
6.2/geo-shape.html >.

[18] GEOS. Geometry Engine, Open Source [online]. Mar 2020. [cit. 15. 6. 2020]. Avail-
able at: < https://trac.osgeo.org/geos/ >.

[19] Gillies, S., Jun 2020. Available at: < https://shapely.readthedocs.io/en/
latest/manual.html >.

[20] Gordon, J. Binary Tree Bin Packing Algorithm [online]. May 2011. [cit. 17. 6.
2020]. Available at: < www.codeincomplete.com/articles/bin-packing/ >.

[21] Hassan, A. libnfporb, May 2018. Available at: < https://github.com/
kallaballa/libnfporb >.

[22] Hunter, J. D. Matplotlib: A 2D Graphics Environment. Computing in Science &
Engineering. 2007, 9, 3, p. 90–95. doi: 10.1109/mcse.2007.55.

[23] Jakob, W. – Rhinelander, J. – Moldovan, D. pybind11 — Seamless operability
between C++11 and Python, 2017. Available at: < https://github.com/pybind/
pybind11 >.

[24] Junior, B. A. – Pinheiro, P. R. – Saraiva, R. D. A Hybrid Methodology for
Nesting Irregular Shapes: Case Study on a Textile Industry∗. IFAC Proceedings
Volumes. September 2013, 46, 24, p. 15–20. doi: 10.3182/20130911-3-br-3021.00056.
Available at: < https://doi.org/10.3182/20130911-3-br-3021.00056 >.

[25] Lott, R. Geographic information - Well-known text representation of coordi-
nate reference systems [online]. Open Geospatial Consortium, Jul 2013. [cit. 15.
6. 2020]. Available at: < http://docs.opengeospatial.org/is/12-063r5/
12-063r5.html >.

[26] Luminoso, L. Understanding the power of wire EDM [online]. Mar 2019. [cit. 11. 6.
2020]. Available at: < www.canadianmetalworking.com/canadianmetalworking/
article/metalworking/understanding-the-power-of-wire-edm >.

54

https://doi.org/10.3138%2Ffm57-6770-u75u-7727
https://doi.org/10.3138%2Ffm57-6770-u75u-7727
doi.org/10.1016/j.ejor.2005.11.063
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/geo-shape.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/geo-shape.html
https://trac.osgeo.org/geos/
https://shapely.readthedocs.io/en/latest/manual.html
https://shapely.readthedocs.io/en/latest/manual.html
www.codeincomplete.com/articles/bin-packing/
https://github.com/kallaballa/libnfporb
https://github.com/kallaballa/libnfporb
https://github.com/pybind/pybind11
https://github.com/pybind/pybind11
http://docs.opengeospatial.org/is/12-063r5/12-063r5.html
http://docs.opengeospatial.org/is/12-063r5/12-063r5.html
www.canadianmetalworking.com/canadianmetalworking/article/metalworking/understanding-the-power-of-wire-edm
www.canadianmetalworking.com/canadianmetalworking/article/metalworking/understanding-the-power-of-wire-edm

BIBLIOGRAPHY

[27] MyNesting. Powerful Low-Cost Nesting [online]. Available at: < https://www.
mynesting.com/ >.

[28] NestFab. Powerful Automatic Nesting Software [online]. Available at: < https:
//www.nestfab.com/ >.

[29] Nielsen, B. K. – Odgaard, A. Fast neighborhood search for the nesting problem.
Technical report, Department of Computer Science, University of Copenhagen, 2003.
Technical Report 03/03.

[30] Oliphant, T. E. A guide to NumPy. Trelgol Publishing, USA. 2006.

[31] Python Software Foundation. Python Language Reference. Available at:
< http://www.python.org/ >.

[32] Qiao, J. SVGnest [online]. 2015. [cit. 9. 6. 2020]. Available at: < www.svgnest.com >.

[33] Roland DG. NC Code Reference Manual [online]. Roland DG Cor-
poration. [cit. 11. 6. 2020]. Available at: < http://docplayer.net/
34529735-Nc-code-reference-manual.html >.

[34] SAKHARE, U. The History of Computer Numerical Control (CNC)
[online]. Jun 2020. [cit. 11. 6. 2020]. Available at: < www.cnc.com/
the-history-of-computer-numerical-control-cnc/ >.

[35] Schmidt, M. Water Jet Cutting [online]. 2016. [cit. 11. 6. 2020]. Available at:
< www.michaelschmidtstudios.com/services/water-jet-cutting >.

[36] SigmaTEK. SigmaNEST Nesting Software: CAD/CAM: Automation [online]. Jun
2020. Available at: < https://www.sigmanest.com/ >.

[37] The Qt Company. Qt Documentation, 2019. Available at: < https://doc.qt.
io/ >.

[38] Tools, B. History of CNC Machining, Part 2: [online]. CNC Life, Apr
2019. [cit. 11. 6. 2020]. Available at: < https://medium.com/cnc-life/
history-of-cnc-machining-part-2-the-evolution-from-nc-to-cnc-4b9fe1653536 >.

[39] TROTEC. JobControl laser software with maximum operator comfort [online]. May
2020. [cit. 10. 6. 2020]. Available at: < www.troteclaser.com/en/laser-machines/
laser-software/jobcontrol/ >.

[40] WARDJet. Waterjet vs Laser vs Plasma vs EDM Cutting System Comparison
[online]. May 2016. [cit. 11. 6. 2020]. Available at: < www.wardjet.com/news/
waterjet-laser-plasma-wire-edm >.

[41] Welzl, E. Smallest Enclosing Disks (balls and Ellipsoids). In Results and New
Trends in Computer Science, p. 359–370. Springer-Verlag, 1991.

[42] Wikipedia. G-code [online]. Wikimedia Foundation, Jun 2020. [cit. 10. 6. 2020].
Available at: < en.wikipedia.org/wiki/G-code >.

55

https://www.mynesting.com/
https://www.mynesting.com/
https://www.nestfab.com/
https://www.nestfab.com/
http://www.python.org/
www.svgnest.com
http://docplayer.net/34529735-Nc-code-reference-manual.html
http://docplayer.net/34529735-Nc-code-reference-manual.html
www.cnc.com/the-history-of-computer-numerical-control-cnc/
www.cnc.com/the-history-of-computer-numerical-control-cnc/
www.michaelschmidtstudios.com/services/water-jet-cutting
https://www.sigmanest.com/
https://doc.qt.io/
https://doc.qt.io/
https://medium.com/cnc-life/history-of-cnc-machining-part-2-the-evolution-from-nc-to-cnc-4b9fe1653536
https://medium.com/cnc-life/history-of-cnc-machining-part-2-the-evolution-from-nc-to-cnc-4b9fe1653536
www.troteclaser.com/en/laser-machines/laser-software/jobcontrol/
www.troteclaser.com/en/laser-machines/laser-software/jobcontrol/
www.wardjet.com/news/waterjet-laser-plasma-wire-edm
www.wardjet.com/news/waterjet-laser-plasma-wire-edm
en.wikipedia.org/wiki/G-code

LIST OF FIGURES

List of Figures
2.1 CNC wood router [5] . 5
2.2 Laser cutting a city map [11] . 6
2.3 Plasma cutter in operation [1] . 7
2.4 Detail of a waterjet cutting stainless steel [35] 7
2.5 Wire EDM cutting a thick piece of material [26] 8
3.1 Raster representation of a 2D shape . 9
4.1 G-Code command example . 12
4.2 Machine path from G-Code . 12
5.1 Example of WKT representation . 16
5.2 Example of invalid geometry . 16
5.3 Example of a simplified polyline . 17
5.4 Bounding volumes (Circle, AABB, OBB, Convex hull) 18
5.5 Example of binary operations on objects 19
5.6 Minkowski sum . 20
5.7 Positive and negative buffer . 20
6.1 Binary tree bin packing . 22
6.2 Comparison of different heuristics for binary tree bin packing [20] 22
6.3 Shape arrangement (left) vs. 2D chromosome representation (right) 24
6.4 Difference between simple and complex shapes [10] 24
6.5 Bottom Left Greedy algorithm . 25
6.6 No-Fit Polygon . 26
7.1 SigmaNEST [36] . 27
7.2 NestFab [28] . 27
7.3 TruNest [2] . 28
7.4 MyNesting [27] . 28
7.5 SVGnest [32] . 29
7.6 Deepnest [13] . 29
8.1 Program architecture . 32
8.2 Approximating a counter-clockwise arc (G03) using a polyline 33
8.3 The parser as a FSM . 34
8.4 Hole envelope using smallest enclosing circle (red) and a NFP (blue) 36
8.5 Convex hull (· · ·) applied to irregular shapes 36
8.6 The process of creating a startpolygon . 37
8.7 Square placed using lower-right placement policy, preferring smaller regions 37
8.8 1D demonstration of the quality of alignment function 39
8.9 The effect of rotating around different reference points 40
8.10 The desired effect of local optimisation . 40
8.11 The application window, process of drawing a hole 42
8.12 The application window, nesting with clearances in progress 42
9.1 Startpolygon as a measure of nesting quality 45
9.2 Benchmark set 1 . 45

57

LIST OF FIGURES

9.3 Benchmark 1 results . 46
9.4 Notable examples of benchmark 1 . 47
9.5 Benchmark set 2 . 47
9.6 Benchmark 2 results . 48
9.7 Notable examples of benchmark 2 . 49

58

LIST OF ABBREVIATIONS AND SYMBOLS

List of Abbreviations and Symbols
API Application programming interface

EOF End of file

FSM Finite state machine

GIS Geographic information system

GUI Graphical user interface

CAD Computer-aided design

CAM Computer-aided manufacturing

CNC Computer numerical control

I/O Input/Output

LO Local optimisation

NFP No-Fit Polygon

WKT Well-Knows Text

WYSIWYG What you see is what you get

59

CONTENTS OF ELECTRONIC ATTACHMENT

Contents of Electronic Attachment
The attached ZIP archive contains the following folders and files:

Item Content

benchmarks/ All results and images from the benchmarks
gcodes/ Sample G-Code files
screenshots/ Images of the GUI
wasteoptimiser/ The actual nesting software implementation
README.txt Guide to using the software
README.pdf PDF version of the guide
run.py Start-up Python script

61

	Introduction
	2D Machining
	CNC Routing
	Laser Cutting
	Plasma cutting
	Water Jet Cutting
	Wire EDM

	Representation of Objects in 2D
	Raster representation
	Vector representation

	G-Code
	History
	Syntax
	Commands

	Spatial Analysis
	Shapes
	Spatial Operations
	Relationships
	Simplification and Bounding volumes
	Operations

	The Nesting Problem
	Definition
	Existing Solution Methods
	Binary Tree Bin Packing
	Rectilinear Grid Genetic Algorithm
	Bottom Left Greedy Heuristic
	The No-Fit Polygon
	A Note on Advanced Methods

	Existing software
	SigmaNEST
	NestFab
	TruNest
	MyNesting
	SVGnest
	Deepnest

	Implementation
	Task Specification
	Software Tools
	Program Architecture
	G-Code Parser
	Optimiser
	Initial Placement
	Local Placement Optimisation

	Export
	GUI

	Evaluation
	Benchmark 1
	Benchmark 2
	Improvements and Future Work

	Conclusion
	Literature
	List of Figures
	List of Abbreviations and Symbols
	Contents of Electronic attachment

