ASYMPTOTIC CHARACTERIZATION OF SOLUTIONS OF EMDEN-FOWLER TYPE DIFFERENCE EQUATION

Evgeniya Korobko
Doctoral Degree Program (2), FEEC BUT
E-mail: xkorob01@stud.feec.vutbr.cz

Supervised by: Josef Diblík
E-mail: diblik@feec.vutbr.cz

Abstract: The paper derives an asymptotic formula describing the long-time behaviour of a solution of a nonlinear Emden-Fowler type difference equation.

Keywords: Difference equation, Emden-Fowler type equation, asymptotic characterization, auxiliary system.

1 INTRODUCTION

We discuss the asymptotic behaviour of a solution of Emden-Fowler type difference equation

\[\Delta^2 u(k) \pm k^\alpha u^m(k) = 0, \] \hspace{1cm} (1)

where \(k \in \mathbb{N}(k_0) := \{k_0, k_0+1, \ldots\}, k_0 \in \mathbb{N}, k_0 > 0, u: \mathbb{N}(k_0) \to \mathbb{R}, \Delta u(k) = u(k+1) - u(k) \) is the first and \(\Delta^2 u(k) \) the second difference with \(\alpha, m \in \mathbb{R}, m > 0, m \neq 1 \). When the + sign is assumed in (1), the below result holds only if \(m = p/q \) where \(p \) and \(q \) are integer numbers such that \(p - q \) is odd. Equation (1) is a difference analogue of the Emden-Fowler differential second-order equation, known from the theory of ordinary differential equations (we refer to [4]), being significant in astrophysics, cosmology, atomic physics, and other areas.

2 MAIN RESULT

We will prove that there exists a solution \(u = u(k) \) of (1) such that

\[u(k) = ak^{-s} + bk^{-(s+1)} + O(k^{-(s+\gamma+1)}) \] \hspace{1cm} (2)

when \(k \to \infty \) where

\[a = \left\lceil s(s+1) \right\rceil^{1/(m-1)}, \quad b = as(s+2)/(s+2-ms), \quad s = (\alpha + 2)/(m-1), \] \hspace{1cm} (3)

\(\gamma \in (0, 1) \) is a fixed number and \(O \) is the Landau order symbol big “O”. The equation (1) was investigated in [3] where the existence of a solution with asymptotic behaviour determined by formula (2) was proved under the assumption that \(s \in (-2, -1) \) and \(m < 0 \). Our main result below establishes the validity of formula (2) under a different set of conditions.

Theorem 1. Let \(s > 0 \). If

\[m < \frac{(s+2)(s+3)}{s(s+1)} \] \hspace{1cm} (4)

then there exists a solution \(u = u(k) \) of equation (1) defined on \(\mathbb{N}(k_0) \), where \(k_0 \) is sufficiently large, with asymptotic behaviour determined by the formula (2).
Proof. In the proof we will refer to some parts of the paper [3]. Let
\[u(k) = a/k^s + b/(k^{s+1})(1 + Y_0(k)), \]
\[\Delta u(k) = \Delta(a/k^s) + \Delta(b/k^{s+1})(1 + Y_1(k)), \]
\[\Delta^2 u(k) = \Delta^2(a/k^s) + \Delta^2(b/k^{s+1})(1 + Y_2(k)) \]
where \(Y_i; \mathbb{N}(k_0) \to \mathbb{R}, i = 0, 1, 2 \) are new unknown functions. Then, equation (1) can be converted (for details we refer to [3, Part 3]) into a system
\[\Delta Y_0(k) = F_1(k,Y_0,Y_1) := (-s+1)k^{-1} + O(k^{-2}) + Y_0(k) + Y_1(k), \]
\[\Delta Y_1(k) = F_2(k,Y_0,Y_1) := (-s+2)k^{-1} + O(k^{-2})(ms + 2)^{-1}Y_0(k) - Y_1(k) + O(k^{-1}). \]

This will allow us to use [3, Lemma 2] (being a modification of [1, Theorem 8]) to prove Theorem 1. As the scheme of the proof is the same as that of Theorem 1 in [3], we will only emphasize in detail the parts that are different, referring the remaining parts to this source. Let \(\epsilon_i > 0, i = 1, \ldots, 4, \gamma > 0 \) and \(\beta > 0 \) be fixed. Define, as in [3, Part 4], auxiliary functions \(b_1(k) := -\epsilon_1/k^{\gamma}, c_1(k) := \epsilon_2/k^{\gamma}, b_2(k) := -\epsilon_3/k^{\beta} \) and \(c_2(k) := \epsilon_4/k^{\beta} \). To apply [3, Lemma 2], the following inequalities
\[F_1(k,b_1(k),Y_1) < b_2(k+1) - b_1(k), \]
\[F_1(k,c_1(k),Y_1) > c_2(k+1) - c_1(k), \]
\[F_2(k,Y_0,b_2(k)) < b_2(k+1) - b_2(k), \]
\[F_2(k,Y_0,c_2(k)) > c_2(k+1) - c_2(k) \]
must hold whenever \(-\epsilon_3 k^{-\beta} \leq Y_1 \leq \epsilon_4 k^{-\beta} \) in (8), (9) and \(-\epsilon_1 k^{-\gamma} \leq Y_0 \leq \epsilon_2 k^{-\gamma} \) in (10), (11). Let us find the conditions for validity of inequalities (8) – (11). As we assume \(m > 0 \) and \(s > 0 \), we have \(ms > 0, s + 1 > 0 \) obtaining:
\[F_1(k,b_1(k),Y_1) = \left(-\frac{s+1}{k} + O\left(\frac{1}{k^2} \right) \right) \cdot \left(\frac{\epsilon_1}{k^{\gamma}} + Y_1(k) \right) < \left(-\frac{s+1}{k} + O\left(\frac{1}{k^2} \right) \right) \cdot \left(\frac{\epsilon_1}{k^{\gamma}} - \frac{\epsilon_3}{k^{\beta}} \right) \]
\[< b_1(k+1) - b_1(k) = -\frac{\epsilon_1}{(k+1)^{\gamma}} + \frac{\epsilon_1}{k^{\gamma}} = \frac{\epsilon_1}{(k+1)^{\gamma}} \left(1 + O\left(\frac{1}{k} \right) \right). \]

Then we have the following
\[-\frac{s+1}{k^{\gamma+1}} \epsilon_1 + \frac{s+1}{k^{\beta+1}} \epsilon_3 + O\left(\frac{1}{k^{\beta+2}} \right) < \frac{\epsilon_1}{k^{\gamma+1}} \left(1 + O\left(\frac{1}{k^{\gamma+2}} \right) \right) \]
or, after simplifying,
\[\frac{s+1}{k^{\beta+1}} \epsilon_3 + O\left(\frac{1}{k^{\beta+2}} \right) < \frac{\epsilon_1}{k^{\gamma+1}} \left(1 + O\left(\frac{1}{k^{\gamma+2}} \right) \right). \]

If \(k \to \infty \), then the last inequality hold either if \(\gamma < \beta \), or if \(\gamma = \beta \) and \(\epsilon_3 < \epsilon_1(\gamma + s + 1)/(s + 1) \). Similarly, inequality
\[F_1(k,c_1(k),Y_1) = \left(-\frac{s+1}{k} + O\left(\frac{1}{k^2} \right) \right) \cdot \left(-\frac{\epsilon_2}{k^{\gamma}} + Y_1(k) \right) > \left(-\frac{s+1}{k} + O\left(\frac{1}{k^2} \right) \right) \cdot \left(-\frac{\epsilon_2}{k^{\gamma}} + \frac{\epsilon_4}{k^{\beta}} \right) \]
\[> c_1(k+1) - c_1(k) = \frac{\epsilon_2}{(k+1)^{\gamma}} - \frac{\epsilon_2}{k^{\gamma}} = -\frac{\epsilon_2}{k^{\gamma}} \left(1 + O\left(\frac{1}{k} \right) \right) \]

251
implies either \(\gamma < \beta \), or \(\gamma = \beta \) and \(\varepsilon_4 < \varepsilon_2 (\gamma + s + 1)/(s + 1) \). Hence, both the above inequalities hold if either \(\gamma < \beta \), or if
\[
\gamma = \beta, \quad \varepsilon_3 < \varepsilon_1 \frac{s + 1}{s + 1}, \quad \varepsilon_4 < \varepsilon_2 \frac{s + 1}{s + 1}.
\]
In much the same way we estimate (recall that \(ms > 0 \)):
\[
F_2(k, Y_0, b_2(k)) = \left(-\frac{s + 2}{k} + O \left(\frac{1}{k^2} \right) \right) \cdot \left(\frac{ms}{s + 2} Y_0(k) + \frac{\varepsilon_3}{k^2} + O \left(\frac{1}{k} \right) \right) < \frac{ms}{k} \frac{s + 2}{k} \cdot \frac{\varepsilon_3}{k^2} + O \left(\frac{1}{k^2} \right).
\]
Then, inequality
\[
\frac{ms}{k^{r+1}} \varepsilon_1 - \frac{s + 2}{k^{r+1}} \varepsilon_3 + O \left(\frac{1}{k^{r+2}} \right) < \frac{\varepsilon_4}{k^{r+1}} \quad \text{and the system of inequalities}
\]
holds if either \(\gamma > \beta \) (this case is excluded), or if \(\gamma = \beta < 1 \) and \(\varepsilon_2 < \varepsilon_4 (\gamma + s + 2)/ms \). Summing up all the conditions, we get (except for \(m > 0, s > 0 \)) the system of inequalities
\[
0 < \gamma = \beta < 1, \quad \frac{\gamma + s + 1}{s + 1}, \quad \frac{\gamma + s + 1}{s + 1} < \frac{\gamma + s + 2}{ms}, \quad \frac{\gamma + s + 2}{ms}.
\]
Then, the necessary conditions for the solvability of this system are expressed by the below inequalities
\[
0 < \gamma = \beta < 1, \quad 1 < \frac{(\gamma + s + 1)(\gamma + s + 2)}{ms(s + 1)}.
\]
As \(ms(s + 1) > 0 \), it is easy to see that the last inequality is equivalent to the following one
\[
\gamma^2 + \gamma(2s + 3) + (s + 1)(s + 2 - ms) > 0.
\]
Consider the equation
\[
\gamma^2 + \gamma(2s + 3) + (s + 1)(s + 2 - ms) = 0.
\]
Its discriminant \(D \) is positive since \(D = (2s + 3)^2 - 4(s + 1)(s + 2 - ms) = 4ms(s + 1) + 1 > 0 \) and the roots \(\gamma_\pm \) of (15) are
\[
\gamma_\pm = \frac{1}{2} \left[-(2s + 3) \pm \sqrt{4ms(s + 1) + 1} \right].
\]
Obviously \(\gamma_- < 0 \) and
\[
\gamma_+ < 1 \implies \sqrt{4ms(s + 1) + 1} < 2s + 5 \implies m < \frac{(s + 2)(s + 3)}{s(s + 1)}.
\]
The last inequality guarantees the existence of a \(\gamma \in (0, 1) \) such that inequalities (13) hold. Moreover, if a \(\gamma \in (0, 1) \) is fixed, then it is easy to show that there exist an \(\varepsilon_i > 0, i = 1, \ldots, 4 \) such that the system of inequalities (12) is satisfied. Then, by the above-mentioned results, system (6), (7) has a solution \((k, Y_1(k), Y_2(k)), k \in \mathbb{N}(k_0)\), where \(k_0 \) is sufficiently large, such that \(-\varepsilon_1 k^{-\gamma} \leq Y_0(k) \leq \varepsilon_2 k^{-\gamma}, -\varepsilon_3 k^{-\gamma} \leq Y_1(k) \leq \varepsilon_4 k^{-\gamma} \). Formula (2) follows from (5).
3 COROLLARY TO MAIN RESULT

In the following corollary, values of α and m are specified such that Theorem 1 holds.

Corollary 1. If $s > 0$ and either
i) $0 < m < 1$ and $\alpha < -2$
or
ii) $m > 1$ and
\[-2 < \alpha < \frac{1}{2} \left[-(m-1) + \sqrt{(m-1)^2 + 16m}\right],\]
then the conclusion of Theorem 1 holds.

Proof. Assumption (4) of Theorem 1 holds if
\[ms(s+1) < s^2 + 5s + 6.\]
According to formula (3), this inequality will be valid if
\[m(\alpha+2)(\alpha+m+1) < (\alpha+2)^2 + 5(\alpha+2)(m-1) + 6(m-1)^2.\]
This inequality, after some computations, turns into
\[(m-1) \left[\alpha^2 + \alpha(m-1) - 4m\right] < 0. \quad (16)\]
As $m > 0$, inequality (16) will hold if either
\[0 < m < 1, \; \alpha^2 + \alpha(m-1) - 4m > 0 \quad (17)\]
or
\[m > 1, \; \alpha^2 + \alpha(m-1) - 4m < 0. \quad (18)\]
First, analyze the inequality (17). Since $s > 0$, (3) implies $\alpha < -2$ and
\[\alpha^2 + \alpha(m-1) - 4m = (\alpha-m)(\alpha+2m) + 2(m-1)^2 - (2+\alpha) > 0.\]
That is, in the case i), inequality (16) holds and, consequently, assumption (4) of Theorem 1 is valid.

Next, analyze the inequality (18). In this case, $m > 1$ and (3) implies $\alpha > -2$. Considering the equation
\[\alpha^2 + \alpha(m-1) - 4m = 0\]
we find its roots
\[\alpha_{\pm} = \frac{1}{2} \left[-(m-1) \pm \sqrt{(m-1)^2 + 16m}\right].\]
Let us show that $\alpha_- < -2$. Obviously, $(m-1)^2 + 16m > 16$ and
\[-\sqrt{(m-1)^2 + 16m} < -4.\]
Therefore,
\[\alpha_- = \frac{1}{2} \left[-(m-1) - \sqrt{(m-1)^2 + 16m}\right] < -2.\]
Now, show that $\alpha_+ > -2$. This inequality is equivalent with
\[\sqrt{(m-1)^2 + 16m} > (m-1) - 4,\]
which holds for $1 < m \leq 5$ and, taking the second power, for $m > 5$, is equivalent with
\[(m-1)^2 + 16m > (m-1)^2 - 8(m-1) + 16,\]
which obviously holds as well. We conclude that the second inequality in (18) holds if $-2 < \alpha < \alpha_+$. Thus, the case ii) holds as well.

\[\square\]
4 EXAMPLE

Let $m = 2$, $\alpha = 1$. Then, equation (1) takes the form

$$\Delta^2 u(k) \pm ku^2(k) = 0. \quad (19)$$

By (3), we obtain $s = 3$, $a = \mp 12$, $b = \pm 80$. Condition (4) is satisfied since

$$m < (s+2)(s+3)/s(s+1) = 2.5$$

and Theorem 1 is applicable. Therefore, by formula (2), there exist two solutions to equation (1) with the asymptotic behaviour

$$u(k) = \mp 12k^{-3} \pm 80k^{-4} + O(k^{-(4+n)})$$

when $k \to \infty$ where $\gamma \in (0, 1)$ is a fixed number.

5 CONCLUSION

The results obtained generalize those published in [2] where only one case of equation (19) with the term $-ku^2(k)$ was considered. The method used seems to be efficient for further investigation of the behaviour of solutions to Emden-Fowler types of discrete equations. For example, it can be expected that new results will be achieved if the constants α and m satisfy sets of assumptions different from those described by Theorem 1. Another challenge for further investigation is the following one. Using a discretization suggested by the forward difference formula

$$\Delta f(k) = \frac{f(k+h) - f(k)}{h},$$

where f is a well-defined function and h is a step of discretization, the Emden-Fowler differential second-order equation can be transformed into a difference one. Analyze the asymptotic behaviour of the solutions to a derived difference equation and show that, for $h \to 0$, formulas describing the asymptotic behaviour give formulas known for differential Emden-Fowler equation.

ACKNOWLEDGEMENT

This research has been supported by the project of specific university research at Brno University of Technology, Faculty of Electrical Engineering and Communication, FEKT-S-20-6225.

REFERENCES