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Abstract—In this paper, the novel approach to the nonlin-
ear model predictive speed control of a permanent magnet
synchronous motor and its implementation is introduced. The
implementation is performed using general-purpose computing
on graphics processing unit. The introduced algorithm uses the
optimization method based on the differential evolution to get the
optimal increment of stator voltage. The proposed algorithm is
tested in the processor in the loop simulation with the Simscape
model for the simulation of PMSM and the Jetson Xavier
embedded device for the algorithm execution. The results show
the ability of the algorithm to ensure the reference tracking and
to keep the requested variables within their limits.

Index Terms—model predictive control, permanent magnet
synchronous motor, differential evolution optimization, general-
purpose computing, graphics processing unit, parallel computing

I. INTRODUCTION

Nonlinear model predictive control (NMPC) offers an ex-
ceptional power in the multivariable control and the im-
plementation of the constraints. On the other hand, huge
computational demands pose a challenge in the real-time
computation, which is necessary in the case of permanent
magnet synchronous motor (PMSM) control.

The research in the field mostly focuses on the acceleration
of the optimization via multicore processors [1]-[3], field
programming array (FPGA) [4]-[6], or the graphics processing
unit (GPU) [7]-[9]. A huge disadvantage of these algorithms
is their focus on a linear model. Therefore, the application
of one of these algorithms to PMSM control would require
some compromise, such as linearization of the model. This
compromise would limit the advantages of using predictive
control.

Predictive control based on the nonlinear model accelerated
through parallel computation applied to PMSM was introduced
in [10], [11]. These approaches were based on the finite control
set MPC. Thus, the optimal control law was computed by
the search across possible combinations of voltage source
inverter. This approach requires even shorter sampling time
than continuous control set methods.
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Continuous control set methods compute the specific control
value in form of input voltage based on the optimization.
The applications of parallelism in this area are usually based
on a family of optimization algorithms called population-
based algorithms. Usage of particle swarm optimization (PSO)
algorithm implemented on the FPGA was introduced in [12].
Differential evolution [13] offers one of the most simplistic
ways of the agent movement and thus has lesser computa-
tional demands than more complex algorithms. Application of
differential evolution optimization in NMPC was introduced
in [14].

General-purpose computing on GPU is a modern technique
used in many subjects of research, such as fluid simulations
and neural networks, where exceptional parallel computing
performance is needed. Population-based optimization meth-
ods are the type of problem, that can be treated similar way.
The algorithm, proposed in this article, utilizes the native
parallelism of the population-based methods and the parallel
processing power of GPU. By this, the optimization problem
can be solved in desired time and be used in PMSM control.

The remainder of this paper is organized as follows. Section
IT defines the PMSM speed control in form of an optimization
problem. The following section introduces the proposed algo-
rithm. In Section IV, the results of PIL simulations are shown
and discussed. Finally, the paper is concluded in Section V.

II. PROBLEM DEFINITION

The most important part of the nonlinear model predictive
control is the proper formulation of the optimization problem.
The standard form of the optimization problem [15]

min o (x)
st. g(x)>0 1
h(x) =0

consists of three parts. Cost function fy(x) should contain the
requirements put on the control law, e.g., ensure the tracking of
the reference signal. The nonequality constraints g(x) should
describe the limits of the variables specific to a given plant.



Finally, the equality constraint h(x) represents a model of the
controlled plant.

After the application of Euler method of discretization,
using sampling period T, the discrete model of PMSM is
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where
id, iq are stator current components in dq frame,
uq, Uy are stator voltage components in dq frame,
Wm is rotor mechanical angular speed,
I is rotor mechanical angular position,
T; is load torque,
P, is number of pole pairs,
R is stator winding resistance,
Lg,L, are rotor inductance components,
WUpys  is permanent magnet flux,
J is the moment of inertia.

III. CONTROL ALGORITHM

In the proposed algorithm, we used an incremental type of
controller. Therefore, the value of the control variable is given
by its previous value and the increment. In the case of speed
control of PMSM, the control variable is the stator voltage:

_ _ (ua(k)| | [Auqg(k)

u(k+1) =u(k) + Au(k) = [uq(k)] + [Auq(k)} 3)
The flowchart in Figure 1 outlines the computation of the op-
timal increment. The algorithm consists of four parts. During
the computation of the optima, three of them are computed
iteratively. The necessity of the real-time computation led to
the choice of ending condition based on the limitation of
the number of iterations (Nol) by the number of generations
(NoG). This choice achieves constant optimization time. The
parts of the algorithm will be described in the next sections.

A. Initialization

For the initialization of every agent, we use pseudo-random
generator with the specific seed for every call of optimization
function. In the initialization, the algorithm generates a vector
of the increment values. The value of increments is limited to
(=Upc; Upc), where Upc is the voltage of the supply. It is
unnecessary to use a larger increment because it would lead
to the exceeding of given constraint.
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Fig. 1. Algorithm flowchart

Agent a € R2?N of the optimization algorithm is then
represented by the vector

a; = [Aug(k)  Aug(k) Aug(k+N-1)]", @)

where ¢ is the index of a specific agent and N is the length
of prediction horizon. The number of agents is dependent on
the platform used for the computation. Choice of the number
as the power of two is advised, because of the used optima
search algorithm described further.

B. Prediction

By including the incremental type of controller (3) with the
standard discrete DQ-frame model of PMSM (2), following
model is used for the prediction of the future values of states
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Including Au in the equations of currents leads to the possi-
bility of using a shorter prediction horizon.



In this stage, the parallelism of the evaluation of individual
agents is used. This process is accelerated on the GPU. Results
of prediction are stored for evaluation of the cost function.

C. Cost Function Evaluation

The cost function is an essential part of every optimization
problem. In the case of model predictive control, the cost
function should represent the demands put on the controller.
The most basic demand on the controller is to ensure the
tracking of the reference signal. In our case, the reference
signal is requested mechanical angular speed w,, ,. We try to
represent

lIm |Jwm,r —wm| < €e—0;eeR, (6)
t—o0 ’

where || % || is £2 norm, in the form of the cost function.

This can be achieved by using the quadratic form. Thus,
the first part of the cost function is the cost of speed tracking
error

N

csr(k) =Y wsr(Wmr(k+1) —wn(k+4)% (D)
i=1

where wgr is a weighting coefficient of tracking error.

Similarly, in the standard approach to speed control, the
reference of the direct component of current is zero. In special
cases, a non-zero direct component is used for field weakening.
Otherwise, a non-zero value of direct part leads to unnecessary
energy consumption and makes the control less efficient. The
part of the cost function that deals with the direct part can be
also represented as a quadratic form

N
ciy(k) = Z wi, (ia(k +1))%, ®)

where w;, is the weighting coefficient of the direct component
value cost.

An optimized cost function is then the sum of the speed
tracking part (7) and the direct component of current part (8).
Matrix representation

N[ -mE 0
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X = [wm,r(k + Z) w’m(k + Z) Zd(k + Z)}

is sufficient for the unconstrained optimization problem. How-
ever, the defined problem consists of two specific constraints.

The first constraint is the limitation of the stator current
vector, such that £ norm of the vector is smaller than rated
current Ir. Figure 2 shows the set of plausible values of the
stator current. The well-known formula of the closed disk in
Cartesian coordinates describes the given set perfectly. We
can use this formula to derive the standard form of inequality
constraint

g1 =iy + i, — I3<0. (10)
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Fig. 2. Set of plausible values of the stator current

Similarly, the limitation of allowed input voltage is repre-
sented by a disk with radius given by the voltage of the supply
Upc. Thus, the inequality constraint of the voltage is

g2 = ug +ul — Upe=0.

(1)

To deal with the constraints, we use logarithmic barrier func-
tion [16] to expand the cost function. The constraints (10, 11)
are represented as costs

N
cr(k) = —log(Ig —ig(k+i) —i2(k +i)ws  (12)
=1
N
cu(k) = —wulog(Upe — uf(k + i) — ul(k +1)), (13)
=1

where w; and wy are the weighting coefficients of the
constraints costs.

Finally, used cost function representing specific agent a is
given by the sum of the costs (9),(12) and(13)

C(k,a) = c(k) + c1 (k) + cu (k). (14)

D. Differential Evolution Adaptation

The section of Differential Evolution Adaptation consists of
two parts: the search for minimal cost function and the agent
movement.

1) Search for minima: In this stage, the demand for the
count of agents in the power of two is utilized. We use the
parallel algorithm based on the halving of the given array.
In every instance, every thread performs one comparison and
stores the result in a new array. The length of the new array is
half of the original one. Figure 3 visualizes this parallel search.
With this approach, every thread must perform P comparisons
for the array of length 27, With the single thread computation,
it would be 2¥ — 1. Thus, the search for minima is faster and
more efficient.

2) Agent Movement: The method of movement of the
agents is based on [17] with minor changes. Random choice of
individuals is omitted, all agents are drawn towards the agent
with the lowest cost function.



Fig. 3. Visualization of a parallel search for minima

Whether position changes or not is decided randomly by
the rule

if i < t,
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where ¢ is the index of a specific agent and j is the index of
dimension which is supposed to change. Parameter ¢, € (0; 1)
is threshold rate chosen during the implementation. Rate
r € (0;1) is a uniformly distributed random variable generated
during every agent movement stage. Parameter s € (0;1)
defines the size of the step during movement.

IV. SIMULATION RESULTS

This section covers the evaluation of the proposed
algorithm. We tested the proposed algorithm using the PIL
simulation with Jetson Xavier and the Simscape model. Firstly,
the implementation and parameters of the used algorithm
are described. Secondly, the results of the simulation are
presented.

A. Implementation

Figure 4 shows the topology of the simulation. The UDP
protocol was used for the communication between Simscape
model and Jetson board. The vector x,, (k) transferred from
the model to CPU consists of measured states i,(k), iy(k),
ic(k), wm/(k), W (k) and 9(k). The ARM in Jetson board
deals with the communication and transformation of measured
states to states used in voltage increment optimization

. . T
Xm(k’):[ld g Wm Wmyr Ud uq] ) (16)

where u4 and u, contain the previous values of the action
value. The vector x(k) is then stored in the GPU memory
and the optimization is performed. After that, the increment
is added to the previous value of the voltage and the result is
sent to the Simscape model.

Table I shows the parameters of the Differential Evolution
algorithm. Both the number of agents and the number of
generations affect the time of the computation. The effect
of the number of generations is obvious and for the systems
with fast dynamics, such as PMSM, should be set as low as
possible. The effect on the computation time caused by the
number of agents is more significant during the search for the
minima. The necessity to check all agents creates a bottleneck

Jetson Xavier

Xm(k)

ARM v8.2

Simscape Model

Volta GPU

Fig. 4. Simulation topology

TABLE I
PARAMETERS OF DIFFERENTIAL EVOLUTION
Parameter | Value
Number of Agents 512

Number of Generations | 20
tr 0.5
s 0.6

in algorithm execution and slows it down. The usage of parallel
search described previously mitigates this effect. Although,
the number of agents is still limited by the used hardware. To
achieve the best performance, the number of agents should not
exceed the number of available threads, which is dependent
on the number of CUDA cores of used GPU. The rule of
thumb says that for every CUDA core 16 threads are available.
We chose the values of the parameters ¢, and s based on the
recommendation in [18].

The parameters of the control algorithm are shown in the
Table II. The lower bound of the length of the prediction
horizon is given by the used model. The maximal value is
limited by the requirement of short computation time. The
maximal measured execution time, in this case, was 73 ps.
Therefore, the sampling time was set to 100 ps.

B. Results

The algorithm was tested on the model of PMSM with
the parameters in Table III. We tested the behavior of the
controlled motor on defined requested angular speed. The
initial ramp led to the value of rated angular speed. After
settling, in ¢ = 0.1s, the load torque changed from 0 Nm
to 25 Nm. This tested the ability of the control algorithm to
compensate the most common disturbance in motor control

TABLE I
PARAMETERS OF THE CONTROLLER

Parameter | Value

wsT 0.1

w;, 0.1

wr 1

wy 1

N 4

Ts 100 ps



TABLE III
PARAMETERS OF PMSM

Parameter | Value

Rs 091

Ly 0.01 H

Lg 0.01 H

Upar 1.44 Wb

Pp 3

J 2.35 x 1073 kgm?
[ 120 rads™!

Upc 560 V

Ir 5 A

100

50

Wi, Wi, [rad s

-50

—100

Fig. 5. Results of the experiment; black - reference, red - measured speed.

- load torque. In time ¢ = 0.15s, another ramp was used to
change the value of angular speed to —100rads~!. During
this transfer, we tested the ability of the algorithm to slow the
motor down and to change the sense of rotation. After settling,
the value of load torque changed to 0 N m. After that, the sense
of rotation changes again and the angular speed reaches the
value of 50 rads™!.

Figure 5 shows the results of the experiment. The controller
was able to ensure the reference tracking. Reaching the rated
angular speed led to a 3% overshoot and highly damped os-
cillations. After transition effects, the controller achieved zero
control error. After the change of load torque, the controller
was able to compensate it. The second transition resulted in
a 2 % overshoot with no oscillations. Also, the controller was
able to compensate the second change of load torque. The last
transition had a similar result.

Figure 6 shows the currents during the experiment. The
value of the direct component of current, 74, fluctuated 0, as
requested. The quadrature component, 7,4, illustrates the behav-
ior of angular speed. Initially, the value raised to generate the
torque and to increase the angular speed. After the requested
speed was reached, the value of i, dropped. The presence
of oscillations led to oscillations of angular speed. In time
t = 0.1s, the value of ¢, raises again to compensate the change
of the load torque. During the transition, the lesser value of i,
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Fig. 6. Currents during the experiment; blue - i4, red - 4.
<

Fig. 7. Current in dq reference frame

led to the requested change of the angular speed. The value
of the current changed again during the second change of the
load torque and the last transition.

Figures 7 and 8 show the ability of the controller to keep the
requested variables within their limits. As mentioned before,
in the case of the PMSM control, these variables are voltage
and current. As the figures show, the controller was able to
ensure it.

V. CONCLUSION

This paper proposed a novel approach to the application
of model predictive control for speed control of permanent
magnet synchronous motor. This approach draws on the well-
known population-based method of optimization - differential
evolution. The proposed algorithm utilizes native parallelism
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Fig. 8. Voltage in dq reference frame

of given method. The optimal increment of the stator voltage
is computed using general-purpose computing on the GPU by
parallel threads for every agent.

The proposed algorithm was tested in the PIL simulation
with the Simscape model for the simulation of the voltage
source inverter and PMSM, while the embedded device Jetson
Xavier was used for the execution of the control algorithm.
Settings of the algorithm, such as sampling period and the
number of agents, were chosen according to the limitations
brought by the real computation hardware.

The simulation showed the ability of the controller to ensure
tracking of the requested angular speed and to compensate the
disturbance signal. In Section IV, the ability to keep specified
variables within defined limits was discussed.

During the writing of this paper, works on the implementing
algorithm on the real physical system are performed. The
implementation brings up new challenges. These are the design
of a proper interface for the communication between drive and
board with GPU and the mitigation of latency caused by the
system operating the GPU board.
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