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Abstract

There has been some recent interest in investigating the hyperbolic-cotangent types
of di�erence equations and systems of di�erence equations. Among other things
their solvability has been studied. We show that there is a class of theoretically
solvable di�erence equations generalizing the hyperbolic-cotangent one. Our
analysis shows a bit unexpected fact, namely that the solvability of the class is based
on some algebraic relations, not closely related to some trigonometric ones, which
enable us to solve them in an elegant way. Some examples of the di�erence
equations belonging to the class which are practically solvable are presented, as well
as some interesting comments on connections of the equations with some iteration
processes.
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1 Introduction
As usual, byN, N0, Z, R, andC we denote the sets of natural numbers, nonnegative in-

tegers, integers, real numbers, and complex numbers, respectively, whereas the notation

l = s,t , whens,t ∈ Z ands≤ t , is used instead of writings≤ l ≤ t , l ∈ Z.

Now we present some motivations for the investigation in this paper and several inter-

esting connections among some classes of di�erence equations and iteration processes.

1.1 A quick overview of some old results on solvability
After discovering some solvable classes of linear di�erence equations and presenting a

few basic methods for solving them (see, for example, [4, 6, 7, 9, 15, 16]), some researchers

started investigating solvability of some classes of nonlinear di�erence equations and sys-

tems of di�erence equations.

An important paper in this direction, as well as in solvability theory in whole, is [17] by

Laplace, where he, among several other ones, investigated the solvability of the di�erence

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article•s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article•s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.



Stevíc et al.Journal of Inequalities and Applications       (2021) 2021:184 Page 2 of 12

equation

xn+1 = x2
n … 2, n ∈N0. (1)

It should be mentioned that the method for showing the solvability of the equation used

by Laplace is based on some simple algebraic relations. He presented the initial valuex0

in the form

x0 = α +
1
α

,

and by calculating “rst few members ofxn found a general solution to the equation in

terms ofα andn.

It is interesting to note that by employing the change of variables

xn = 2̂xn, n ∈N0,

equation (1) becomes

x̂n+1 = 2̂x2
n … 1, n ∈N0,

which resembles the double angle identity for the cosine function. This fact suggests its

solvability. Namely, one can expect that a sequence of cosines satis“es the equation. Bear-

ing in mind that

cos z =
1
2

(

eiz +
1
eiz

)

,

it becomes clear why the use of the quantityα + 1
α

enabled Laplace to solve equation (1).

Laplace did not give the explanation, but it was realized by researchers of the time that

di�erence equations which have forms to some trigonometric formulas could be solvable.

Later books, besides solvability of some classes of linear di�erence equations, also men-

tion some of solvable nonlinear ones (see, e.g., [5, 10, 12, 14, 18…21]), but to a small extent.

1.2 Solvability of some equations and iteration processes
Di�erence equations naturally appear in many areas of science, among other ones, in nu-

merical mathematics for iteration processes serving for calculating some quantities such

as roots of some functions (see, e.g., [8, 11]). One of root-“nding algorithms is the secant

method. Recall that if the initial valuesx0, x1 are real, to “nd a root of a functionf , one

can construct the line through the points (x0,f (x0)) and (x1,f (x1)) and “nd the intersection

point of the line with the x-axis, that is, the root of the linear function

y = f (x1) +
f (x1) …f (x0)

x1 …x0
(x …x1),

which is equal to

x2 = x1 …f (x1)
x1 …x0

f (x1) …f (x0)
.
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Repeating the procedure for the points (x1,f (x1)) and (x2,f (x2)), and so on, we obtain the
iteration process

xn+2 = xn+1 …f (xn+1)
xn+1 …xn

f (xn+1) …f (xn)

=
f (xn+1)xn …f (xn)xn+1

f (xn+1) …f (xn)
, n ∈N0, (2)

for the secant method.
It is an interesting fact that if in (2) we choose the function

f (x) = x2 …a, (3)

then after some simple calculations we get

xn+2 =
xn+1xn + a
xn+1 + xn

, n ∈N0, (4)

which is an iteration process for calculating the square root of numbera (it is a root of
function (3)).

Another interesting fact is that equation (4) is solvable in a closed form. Moreover, the
equation belongs to the class of theoretically solvable di�erence equations

xn+k =
xn+lxn + a
xn+l + xn

, n ∈N0, (5)

wherek,l ∈N0, l < k (see [26, 35]).
These facts suggest that equation (5) can be also obtained from an iteration process. In-

deed, if in the following modi“cation of the secant iteration process (with delayed indices)

xn+k = xn+l …f (xn+l )
xn+l …xn

f (xn+l ) …f (xn)

=
f (xn+l )xn …f (xn)xn+l

f (xn+l ) …f (xn)
, (6)

for n ∈ N0, we choose function (3), we really get equation (5). Of course, the process is
determined if the initial valuesxj , j = 0,k … 1 are given.

One of the facts that suggest solvability of the di�erence equations in (5) is that they
look like the cotangent sum formula. Note also that whena �= 0 a linear change of vari-
ables reduces the equation to the casea = 1, which exactly looks like the cotangent sum
formula. For some generalizations to systems of cotangent-type di�erence equations, see,
for example, recent papers [30, 33] and the related references therein.

Some other recent results on solvability and invariants of di�erence equations and
systems and their applications can be found, for example, in [3, 13, 22…25, 27…29, 31…
33, 35, 37] and the references therein.

1.3 Our aim
Motivated by all the above mentioned, here we consider the following class of di�erence
equations:

xn+k =
xn+lxn …ab

xn+l + xn …a …b
, n ∈N0, (7)
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where k ∈ N, l ∈ N0, l < k, a,b ∈ C and xj ∈ C, j = 0,k … 1, which naturally generalizes

equation (5).

Our aim is to show that equation (7) is theoretically solvable, and that it is a conse-

quence of some pure algebraic relations which are essentially not closely connected to

some trigonometric type relations. This shows that the solvability of equation (5) also re-

lies on the same algebraic relation.

2 Main results
This section presents our main results in this paper. We study the solvability of equation

(7) by considering several cases separately.

Case a= b = 0. If a = b = 0, then equation (7) becomes

xn+k =
xn+lxn

xn+l + xn
, n ∈N0. (8)

By using the change of variables

xn =
1
un

, n ∈N0, (9)

equation (8) is transformed to the following one:

un+k = un+l + un, n ∈N0, (10)

which is a homogeneous linear di�erence equation with constant coe�cients ofkth order.

It is well known that the linear di�erence equations with constant coe�cients are theo-

retically solvable (see, for example, [4,5,10,12,18…21]), from which theoretical solvability

of equation (8) follows. This fact and the fact that by using the change of variables (9) equa-

tion (8) is transformed to equation (10) are well known. For example, in [2, Problem 8.16.9]

a special case of equation (8) with k = 2 is solved in this way. Moreover, such equations

frequently appear (see, for example, recent paper [30]). Therefore, the case is of no special

interest. Nevertheless, some special cases of equation (8) will be solved in a closed form

later in the paper.

From now on we consider equation (7) under the following assumption:

a �= 0 or b �= 0. (11)

Case a+ b = 0. If a + b = 0 and (11) holds, then equation (7) becomes

xn+k =
xn+lxn + a2

xn+l + xn
, n ∈ N0, (12)

which is a special case of equation (5). As we have already mentioned, the solvability of

equation (5) has been thoroughly investigated (see [26, 35]). Hence, we will not consider

this case in the paper. Note also that since (11) holds, froma + b = 0, we havea = …b �= 0.

Case a�= 0 or b �= 0, a �= b. In this case equation (7) no more has a form of cotangent-

sum formula. Since we do not have a typical trigonometric formula hint for suggesting its

solvability, another hint should be found.
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First, note that the “xed points of the equation satisfy the algebraic equation

x∗ =
(x∗)2 …ab
2x∗ …a …b

, (13)

from which it easily follows that

x∗
1 = a and x∗

2 = b.

This observation together with the form of equation (7) suggests to consider the follow-

ing quantities/sequences:

xn …x∗
1 and xn …x∗

2

for n ∈N0.

From (7) and by some simple calculations, it follows that

xn+k …b =
xn+lxn …b(xn+l + xn) + b2

xn+l + xn …a …b
, n ∈N0, (14)

and

xn+k …a =
xn+lxn …a(xn+l + xn) + a2

xn+l + xn …a …b
, n ∈N0. (15)

From (14) and (15) we easily obtain

xn+k …b
xn+k …a

=
(xn+l …b)(xn …b)
(xn+l …a)(xn …a)

, n ∈N0. (16)

By using the change of variables

zn =
xn …b
xn …a

, n ∈N0, (17)

equation (16) is transformed to

zn+k = zn+lzn, n ∈ N0. (18)

It is also known that equation (18) is theoretically solvable. Namely, its solvability is

closely related to the solvability of equation (10). Some books on di�erence equations

wrongly suggest taking the logarithm of both sides of the equation and then application

of the change of variables

ŷn = ln zn, n ∈ N0. (19)

This is only justi“ed if all zn are positive numbers. Fortunately, there are some correct

procedures for “nding closed form formulas for general solution to equation (18). We

have use them, for example, in [34] (see also the related references therein).
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Equation (10) is certainly practically solvable ifk ≤ 4. Fork ≥ 5, the characteristic poly-

nomial λk …λl … 1 associated with the equation can be certainly solved by radicals when

k ≤ 4. However, ifk ≥ 5, then by a known theorem [1], it need not be solvable.

Hence, fork ≤ 4, closed form formulas for solutions to equation (10), and consequently

closed form formulas for solutions to equation (18), can be found. We can use such ob-

tained formulas in the formula

xn =
azn …b
zn … 1

, n ∈N0, (20)

which easily follows from (17).

Hence, we can claim that the following special cases of equation (18) are certainly prac-

tically solvable: 1)k = 2, l = 1; 2)k = 3, l = 1; 3)k = 3, l = 2; 4)k = 4, l = 1; 5)k = 4, l = 2;

6) k = 4, l = 1. The equation in these cases has been solved in some of our papers (see, e.g.,

[34]) and the following result holds.

Theorem 1 The following statements hold.

(a) General solution to equation (18) with k = 2 and l = 1 is given by the formula

zn = zfn
1 zfn…1

0 , n ∈N0,

where fn is the Fibonacci sequence (see, e.g., [38]).
(b) General solution to equation (18) with k = 3 and l = 1 is given by the formula

zn = zαn…3
2 zαn…2

1 zαn…4
0 , n ∈N0,

where the sequence αn is given by

αn =
3

∑

j=1

tn+3
j

P′
3(tj)

, n ∈ Z, (21)

where P3(t) = t3 …t … 1and tj , j = 1,3, are its zeros.
(c) General solution to equation (18) with k = 3 and l = 2 is given by the formula

zn = zβn…2
2 zβn…4

1 zβn…3
0 ,

where the sequence βn is given by

βn =
3

∑

j=1

tn+2
j

Q′
3(tj)

, n ∈ Z, (22)

where Q3(t) = t3 …t2 … 1 = 0and tj , j = 1,3, are its zeros.
(d) General solution to equation (18) with k = 4 and l = 1 is given by the formula

zn = zγn…5
3 zγn…4

2 zγn…3
1 zγn…6

0 ,
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where the sequence γn is given by

γn =
4

∑

j=1

tn+5
j

R′
4(tj)

, n ∈ Z, (23)

where R4(t) = t4 …t … 1 = 0and tj , j = 1,4, are its zeros.
(e) General solution to equation (18) with k = 4 and l = 2 is given by the formulas

z2n = zfn
2 zfn…1

0 , n ∈N0,

z2n+1 = zfn
3 zfn…1

1 , n ∈ N0,

where fn is the Fibonacci sequence.
(f ) General solution to equation (18) with k = 4 and l = 3 is given by the formula

zn = zδn…3
3 zδn…6

2 zδn…5
1 zδn…4

0 ,

where the sequence δn is given by

δn =
4

∑

j=1

tn+3
j

S′
4(tj)

, n ∈ Z, (24)

where S4(t) = t4 …t3 … 1 = 0and tj , j = 1,4, are its zeros.

From Theorem1, and by using (20) as well as relation (17) with n = 0,3, we obtain the
following result.

Theorem 2 Consider equation(7). Assume that a,b ∈ C, a �= b, and a + b �= 0. Then the
following statements hold:

(a) Assume that k = 2, l = 1. Then the general solution to equation (7) is given by

xn =
a( x1…b

x1…a)fn( x0…b
x0…a)fn…1…b

( x1…b
x1…a)fn( x0…b

x0…a)fn…1… 1
, n ∈N0,

where fn is the Fibonacci sequence.
(b) Assume that k = 3, l = 1. Then the general solution to equation (7) is given by

xn =
a( x2…b

x2…a)αn…3( x1…b
x1…a)αn…2( x0…b

x0…a)αn…4…b

( x2…b
x2…a)αn…3( x1…b

x1…a)αn…2( x0…b
x0…a)fn…1… 1

, n ∈N0,

where the sequence αn is given by (21).
(c) Assume that k = 3, l = 2. Then the general solution to equation (7) is given by

xn =
a( x2…b

x2…a)βn…2( x1…b
x1…a)βn…4( x0…b

x0…a)βn…3…b

( x2…b
x2…a)βn…2( x1…b

x1…a)βn…4( x0…b
x0…a)βn…3… 1

, n ∈N0,

where the sequence βn is given by (22).
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(d) Assume that k = 4, l = 1. Then the general solution to equation (7) is given by

xn =
a( x3…b

x3…a)γn…5( x2…b
x2…a)γn…4( x1…b

x1…a)γn…3( x0…b
x0…a)γn…6…b

( x3…b
x3…a)γn…5( x2…b

x2…a)γn…4( x1…b
x1…a)γn…3( x0…b

x0…a)γn…6… 1
, n ∈N0,

where the sequence γn is given by (23).
(e) Assume that k = 4, l = 2. Then the general solution to equation (7) is given by

x2n =
a( x2…b

x2…a)fn( x0…b
x0…a)fn…1…b

( x2…b
x2…a)fn( x0…b

x0…a)fn…1… 1
, n ∈ N0,

x2n+1 =
a( x3…b

x3…a)fn( x1…b
x1…a)fn…1…b

( x3…b
x3…a)fn( x1…b

x1…a)fn…1… 1
, n ∈N0,

where fn is the Fibonacci sequence.
(f ) Assume that k = 4, l = 3. Then the general solution to equation (7) is given by

xn =
a( x3…b

x3…a)δn…3( x2…b
x2…a)δn…6( x1…b

x1…a)δn…5( x0…b
x0…a)δn…4…b

( x3…b
x3…a)δn…3( x2…b

x2…a)δn…6( x1…b
x1…a)δn…5( x0…b

x0…a)δn…4… 1
, n ∈N0,

where the sequence δn is given by (24).

Remark1 Equation (7) in the casek = 4, l = 2 is a di�erence equation with interlacing
indices [36], and its general solution is obtained by the general solution to equation (7) in
the casek = 2, l = 1. Namely, the subsequences (x2n)n∈N0 and (x2n+1)n∈N0 are two di�erent
solutions of equation (7) in the casek = 2, l = 1. The “rst solution has the initial values
x0 and x2, whereas the second solution has initial valuesx1 and x3. From this we see that
these two solutions are not connected to each other.

Case a= b �= 0. Sincea = b �= 0, equation (7) becomes

xn+k =
xn+lxn …a2

xn+l + xn … 2a
, n ∈N0, (25)

wherek ∈N, l ∈N0, l < k, a ∈C \ {0}, andxj ∈ C, j = 0,k … 1.
In this case equation (13) has only one solutionx∗ = a. Hence, it is not possible to use

the method in the previous case.
On the other hand, we have

xn+k …a =
xn+lxn …a(xn+l + xn) + a2

xn+l + xn … 2a

=
(xn+l …a)(xn …a)
xn+l …a + xn …a

(26)

for n ∈N0.
Equation (26) strikingly suggests a use of the change of variables

yn = xn …a, n ∈N0, (27)

by which the equation is transformed to equation (8) wherexn is replaced withyn.
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From (9) and (27) we see that the change of variables

xn = a +
1
un

, n ∈N0, (28)

transforms equation (26) to equation (10).

Equation (10) when max{k,l} ≤ 4 is solvable in a closed form, and the following result

holds.

Theorem 3 The following statements hold.

(a) General solution to equation (10) with k = 2 and l = 1 is given by the formula

un = fnu1 + fn…1u0, n ∈N0,

where fn is the Fibonacci sequence.
(b) General solution to equation (10) with k = 3 and l = 1 is given by the formula

un = αn…3u2 + αn…2u1 + αn…4u0, n ∈N0,

where the sequence αn is given by (21).
(c) General solution to equation (10) with k = 3 and l = 2 is given by the formula

un = βn…2u2 + βn…4u1 + βn…3u0,

where the sequence βn is given by (22).
(d) General solution to equation (10) with k = 4 and l = 1 is given by the formula

un = γn…5u3 + γn…4u2 + γn…3u1 + γn…6u0,

where the sequence γn is given by (23).
(e) General solution to equation (10) with k = 4 and l = 2 is given by the formulas

u2n = fnu2 + fn…1u0, n ∈N0,

u2n+1 = fnu3 + fn…1u1, n ∈N0,

where fn is the Fibonacci sequence.
(f ) General solution to equation (10) with k = 4 and l = 3 is given by the formula

un = δn…3u3 + δn…6u2 + δn…5u1 + δn…4u0,

where the sequence δn is given by (24).

Proof These statements can be easily anticipated and essentially obtained by Theorem1.

Namely, by using the natural connection (19) between positive solutions to product-type

di�erence equations and some solutions to the corresponding linear di�erence equations,

we see that the above statements follow from the corresponding ones in Theorem1 for
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the case of such initial values (the solutions to equation (10) with real-valued initial val-

ues correspond to some uniquely de“ned solutions to equation (18) with positive initial

values). But since equation (10) is linear, the above formulas are not only its solutions for

such initial values, but are obviously solutions for all complex-valued initial values from

which all the statements follow. �

Remark2 All the statements in Theorem3 can be also easily proved by the method of in-

duction. However, the method does not explain the given representations for the solutions

to equation (10), unlike the above given proof.

From Theorem3 and by using relation (28), we obtain the following result.

Theorem 4 Consider equation(7). Assume that a= b ∈ C \ {0}. Then the following state-

ments hold.

(a) General solution to equation (7) with k = 2 and l = 1 is given by the formula

xn = a +
1

fn
x1…a + fn…1

x0…a

, n ∈N0,

where fn is the Fibonacci sequence.
(b) General solution to equation (7) with k = 3 and l = 1 is given by the formula

xn = a +
1

αn…3
x2…a + αn…2

x1…a + αn…4
x0…a

, n ∈N0,

where the sequence αn is given by (21).
(c) General solution to equation (7) with k = 3 and l = 2 is given by the formula

xn = a +
1

βn…2
x2…a + βn…4

x1…a + βn…3
x0…a

,

where the sequence βn is given by (22).
(d) General solution to equation (7) with k = 4 and l = 1 is given by the formula

xn = a +
1

γn…5
x3…a + γn…4

x2…a + γn…3
x1…a + γn…6

x0…a

,

where the sequence γn is given by (23).
(e) General solution to equation (7) with k = 4 and l = 2 is given by the formula

x2n = a +
1

fn
x2…a + fn…1

x0…a

, n ∈ N0,

x2n+1 = a +
1

fn
x3…a + fn…1

x1…a

, n ∈N0,

where fn is the Fibonacci sequence.
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(f ) General solution to equation (7) with k = 4 and l = 3 is given by the formula

xn = a +
1

δn…3
x3…a + δn…6

x2…a + δn…5
x1…a + δn…4

x0…a

,

where the sequence δn is given by (24).

Remark3 Note that the previous consideration holds also in the casea = 0. This means

that Theorem4 gives also general solution to equation (7) in the casea = b = 0.

Remark4 For l = 0, equation (7) becomes a di�erence equation with interlacing indices

and is reduced to the casel = 0 andk = 1. In the casel = 0 andk = 1, a di�erence equation
of “rst order is obtained which is solved as explained above. We leave the case to the reader

as an exercise.
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