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The pinched hysteresis loops drawn in the voltage–current, voltage–
charge, and flux–current characteristics belong to well-known finger-
prints of the memory elements known as the memristor, memcapacitor,
and meminductor. It is shown that generating such loops is in fact a
natural attribute of all nonlinear elements from Chua’s table, and that
the hysteresis need not necessarily be a manifestation of the internal
memory of the element. A generalised homothety theorem is intro-
duced, which describes the regularities of such a hysteresis and its fre-
quency dependence.
Introduction: The so-called (α, β) higher-order elements, organised in
Chua’s table [1], a part of which is shown in Fig. 1, are the fundamental
building blocks for modelling nonlinear systems. The (α, β) element is
defined by a generally nonlinear constitutive relation (CR) between the
circuit variables denoted by the symbols v(α) and i(β), where α and β are
integers. The variables represent multiple time-domain derivatives (for
positive integers) or integrals (for negative integers) of voltage v and
current i. For a voltage-controlled (α, β) element, the CR can be
described by the nonlinear function

i(b) = F(v(a)). (1)
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Fig. 1 Chua’s table of fundamental elements (cutout). Location of resistor
(0, 0), capacitor (0, −1), inductor (−1, 0), memristor (−1, −1), memcapacitor
(−1, −2), and meminductor (−2, −1) in table. TIQ = time-domain integral of
charge, TIF = time-domain integral of flux

In the case of the current-controlled element, the analysis and results
are dual, and therefore they will not be shown in this Letter.

For the memristor, which is the (−1, −1) element, the CR (1) rep-
resents a relationship between the charge q = i (−1) and the flux w= v(−1)

q = F(w). (2)

The equivalent description is state-dependent Ohm’s law

i = g(w)v, w =
∫
v dt (3)

where g(w) = dF(w)/dw is a memductance, which is dependent on the
flux as the time-domain integral of voltage. It is well known that such
dependence is the cause of the v−i pinched hysteresis loop of the mem-
ristor. Several fingerprints of the loops were enunciated, the best known
of them concerning the disappearance of the loop area of the memristor
with CR (2), when the frequency of periodical driving voltage or current
with limited signal levels tends to infinity. This fingerprint follows
directly from state-dependent Ohm’s law (3): For zero voltage, the
current must also be zero (the loop is then pinched at the origin). If
the frequency of the voltage waveform increases towards infinity, the
swing of the flux, i.e. the integral of voltage, must decrease towards
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zero, and the memductance g approaches the constant value (this is a
sign of the linear resistor, which does not exhibit hysteretic behaviour).

As shown in [2], memcapacitors and meminductors exhibit formally
the same mathematical models as the models (2) and (3) for a memristor.
That is why the above fingerprint also holds for these elements after
interchanging the appropriate constitutive variables.

Another view of the hysteretic effects of memristors is introduced in
[3], whereas the classical fingerprint assumes memristor excitation via
voltage or current, thus in the (v, i) space, the memristor in [3] is
driven by a signal of the charge or flux type, thus in the (w, q) space
of its constitutive variables. Then, an n-times accelerated signal with
its amplitude preserved generates the (v, i) pinched hysteresis loop,
which is a homothetic entity with respect to the original loop, with
the homothetic centre at the v–i origin and the scale factor n. The
loop area increases with the square of the frequency.

The aim of this Letter is to show that the theorem of the homothety
can be generalised to the behaviour of an arbitrary (α, β) element
from Chua’s table. This may be surprising at the first glance, because,
according to the current knowledge, the effect of pinched hysteresis
loops is typical just of memristors, memcapacitors, and meminductors,
the notion being that such a hysteresis differentiates these elements
from the classical resistors, capacitors, and inductors.

Hysteretic manifestations of (α, β) element in the (v(α+1), i(β+1)) space:
Differentiating the CR (1) of the (α, β) element and a simple rearrange-
ment yield a mathematical model of its behaviour in the (v(α+1), i (β+1))
space

i(b+1) = g v(a)
( )

v(a+1), v(a) =
∫
v(a+1) dt (4)

where g(v(α)) = dF(v(α))/dv(α) is a differential parameter of the (α, β)
element, which depends on the integral variable v(α). This parameter
is therefore analogous to the flux-dependent memductance in (3).

It is obvious that the memristor model (3) is a special case of the
model (4) for (α, β) = (−1, −1), and that the structure of the model (4)
directly results in the ability to generate hysteresis loops pinched at
the origin of (v(α+1), i(β+1)) coordinates: (4) resemble state-dependent
Ohm’s law, because the quantities v(α+1) and i (β+1) are coupled via a
function g, which is analogous to memductance (3), and g is modulated
by the integral variable v(α), which resembles the flux in (3).

Excitation of the (α, β) element in the (v(α+1), i(β+1)) space: Fig. 2a
shows a block diagram derived from the model (4), illustrating the
mechanism of driving the (α, β) element by the signal v(α+1) and gener-
ating the response i (β+1). Since this structure is equivalent to the struc-
ture of ideal memristor (3), the v(α+1) and i (β+1) waveforms must
exhibit all the known memristor fingerprints including the feature of
diminishing hysteresis in the (v(α+1), i (β+1)) space if the frequency of
the excitation v(α+1) increases towards infinity.
Excitation of the (α, β) element in the (v(α), i(β)) space: The block
diagram in Fig. 2b, which corresponds to this excitation, is derived
directly from the CR (1) of the element: the response i (β) to the exci-
tation v(α) is given by the algebraic relation F(). The quantities v(α+1)

and i(β+1) are then derived from v(α) and i (β) via differentiating with
respect to time.
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Fig. 2 Block diagram for driving (α, β) element in space

a (v(α+1), i(β+1) )
b (v(α), i (β) )

The driving signal v(α)(t) causes a pinched hysteresis loop in the
(v(α+1), i(β+1)) space. Now consider the driving signal v(α)(nt), where
the number n > 0 models the contraction (for n > 1) or expansion (for
n < 1) of the time axis, alias the acceleration or deceleration of the
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signal v(α). Let us denote the transition from the excitation v(α)(t) to the
excitation v(α)(nt) as v(α)(t)→ v(α)(nt).

The response i (β) will be i(β)(nt) = F(v(α)(nt)) or i(β)(t)→i (β)(nt).
Differentiating the signals v(α) and i (β) with respect to time yields the

respective relations for the signals v(α+1) and i (β+1): v(α+1)(t)→ n
v(α+1)(nt), i (α+1)(t)→ n i(α+1)(nt).

This means, for example, that doubling the frequency of the driving
signal results in doubling the levels of both signals v(α+1) and i(β+1).
This follows from the frequency-dependent gain of ideal differentiating
elements from Fig. 2b. The frequency therefore affects the hysteresis
loops in the (v(α+1), i (β+1)) space such that the scales of the axes are
modified. From the geometric point of view, when the frequency
changes, an arbitrary point on the original loop shifts along a line
which goes through this point and the origin of the coordinates, in the
direction from the origin (for n > 1), or towards the origin (for n < 1).
The ratio of the distances of the new and original points from the
origin is given by the ratio of frequencies. Then, the corresponding hys-
teresis loops are homothetic with the homothetic centre at the origin and
with the scale factor n. The ratio of the areas of two homothetic entities
is n2 [3]. Starting from this knowledge, we can state the homothety
theorem for (α, β) elements:

The movement of the operating point in the (v(α), i(β)) space along the
nonlinear CR of an (α, β) element from Chua’s table is accompanied by
the movement of the operating point in the (v(α+1), i(β+1)) space along a
pinched hysteresis loop. The loops that correspond to the driving signals
of the same levels but various frequencies are homothetic entities with
the homothetic centre at the origin of the (v(α+1), i (β+1)) space, and the
scale factor equal to the ratio of frequencies. The areas within the
lobes of the loops increase with the square of the frequency.
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Fig. 3 i–v Characteristic of nonlinear resistive two-terminal device, wave-
forms of voltage, current, and their time derivatives, and homothetic hyster-
esis loops pinched at (v(1), i(1)) origin for various frequencies of sinusoidal
excitation v

Note that the hysteresis loops of the (α, β) element appear in a space
which corresponds to the CR of a different (α + 1, β + 1) element:
namely, the element which is located in Chua’s table at the nearest sub-
sequent position from the original element along the diagonal with the
parameter β–α in the direction which corresponds to increasing
indices α and β (see Fig. 1). That is why the hysteretic behaviour of
memristor, memcapacitor, and meminductor is observable in the space
of the CRs of their classical variants (resistor, capacitor, and inductor).
According to this rule, the hysteresis, for example, of the classical resistor,
must appear in the space of the (1, 1) element, thus within the (v(1), i(1))
coordinates.
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Simulation: Consider the nonlinear resistive two-terminal device in
Fig. 3 consisting of a linear resistor and an Si diode in parallel. If the
diode is in the off state, which is true for any voltage of less than ca
0.5 V, then the resulting i–v characteristic copies the linear characteristic
of the resistor. For higher voltages, the current is intensely increasing.
The i–v characteristic in Fig. 3 was obtained via the simulation
program with integrated circuit emphasis (SPICE) simulation for
0.7 V sinusoidal excitation with a very low repeating frequency of
1 Hz, when the waveforms are not affected by the dynamical parameters
of the diode. The (v(1), i (1)) pinched hysteresis loops for frequencies of 1,
2, and 3 Hz in Fig. 3 confirm the validity of the generalised homothety
theorem. The waveforms of the derivatives of the voltage and current
illustrate the reasons for the appearance of the hysteresis: at time instants
when the signal v(1) repeatedly intersects a concrete level, the signal i(1)

takes different values. The i(1) against v(1) relationship cannot be
therefore unambiguous.

When driving a two-terminal device by the v(1) signal with fixed
amplitude and variable frequency, then the increasing frequency
would result in decreasing the amplitude of the terminal voltage. If
the voltage decreased below ca 0.5 V, the device would behave as a
linear resistor without hysteresis. This confirms that, when driving a
nonlinear resistor in the (v(1), i (1)) space, the classical fingerprint
about diminishing hysteresis applies when the frequency increases
beyond all bounds.

Conclusion: The movement of the operating point of an arbitrary (α, β)
element from Chua’s table in the (v(α), i (β)) space, i.e. in the space of its
nonlinear CR, is automatically accompanied by drawing a hysteresis
loop pinched at the origin of the (v(α+1), i (β+1)) space. The true cause
of the hysteresis is the nonlinearity of the CR of the element, not the
memory effect, which is known for memristors, memcapacitors, and
meminductors, and is a mere consequence of this nonlinearity.
Driving an arbitrary (α, β) element by a signal with a fixed level
whose frequency increases up to infinity, then, for excitation in the
(v(α), i(β)) space, the hysteresis loops are governed by the classical fin-
gerprint known for the memristors (diminishing hysteresis), whereas
when driving the element in the (v(α+1), i (β+1)) space, the generalised
homothety theorem is applied.
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