POVRCHOVÉ ÚPRAVY HLINÍKOVÝCH SLITIN
SURFACE TREATMENT OF ALUMINIUM ALLOYS

DIPLOMOVÁ PRÁCE
MASTER'S THESIS

AUTOR PRÁCE
Bc. JIŘÍ PETR

VEDOUcí PRÁCE
Ing. MARTIN ZMRZLÝ, PhD.

BRNO 2013
Zadání diplomové práce

Číslo diplomové práce: FCH-DIP0770/2012
Akademický rok: 2012/2013

Ústav: Ústav chemie materiálů

Student(ka): Bc. Jiří Petr

Studijní program: Chemie, technologie a vlastnosti materiálů (N2820)
Chemie, technologie a vlastnosti materiálů (2808T016)

Ing. Martin Zmrzlý, Ph.D.

Konzultant:...

Název diplomové práce:
Povrchové úpravy hlínkových slitin

Zadání diplomové práce:
Rešerše v oblasti předuprav hlínkových slitín a adheze povlaků na těchto slitinách
Návrh charakterizačních metod
Pozorování vlivu koncentrace a doby expozice na povrch a adhezní vlastnosti slitín - kyselé moření
Pozorování vlivu koncentrace a doby expozice na povrch a adhezní vlastnosti slitín - titaničitanová pasivace

Termín odevzdání diplomové práce: 3.5.2013

Diplomová práce se odevzdává ve třech exemplářích na sekretariát ústavu a v elektronické formě vedoucímu diplomové práce. Toto zadání je přílohou diplomové práce.

Bc. Jiří Petr
Student(ka)

Ing. Martin Zmrzlý, Ph.D.
Vedoucí práce

prof. RNDr. Josef Jančařík, CSc.
Ředitel ústavu

prof. Ing. Jaromír Havlíček, DrSc.
Děkan fakulty

V Brně, dne 31.1.2013
**ABSTRAKT**


**ABSTRACT**

The thesis is focused on the surface treatment used for the preparation of aluminium alloys for the adhesive bonding. The theoretical part can be divided into three chapters. The first of them deals with aluminium alloys, the second one speaks about the adhesive bonding. The surface treatment itself, especially the conversion coating issues, is discussed in the last chapter. The experimental part is focused on the optimization of a two-step titanium and zirconium based conversion coating technology. In the first part, the aluminium alloy is analysed by the glow discharge optical emission spectroscopy. The second part of the experiment deals with the first step of the technology, acidic deoxidation. The objective was to examine the influence of the exposure time on the morphology of the alloy surface and the shear strength of adhesive joints. In the last part of the experiment, the conversion coatings are prepared and characterised by the scanning electron microscopy and energy dispersive spectroscopy.

**KLÍČOVÁ SLOVA**

Povrchová úprava, slitiny hliníku, titan, zirkonium, lepení.

**KEYWORDS**

Surface treatment, aluminium alloys, titanium, zirconium, adhesive bonding.
POHLED

Prohlašuji, že jsem diplomovou práci vypracoval samostatně a že všechny použité literární zdroje jsem správně a úplně citoval. Diplomová práce je z hlediska obsahu majetkem Fakulty chemické VUT v Brně a může být použita ke komerčním účelům jen se souhlasem vedoucího diplomové práce a děkana FCH VUT.

___________________________
podpis studenta

PODĚKOVÁNÍ

1. ÚVOD


Využití hliníku a jeho slitin v konkrétních aplikacích se neobejde bez technologií spojování. Vedle nejříznejších metod svařování se v poslední době dostává k dispozici také lepení, které je v řadě případů výhodnější. Mezi jeho hlavní klady patří mj. výrazně snížení rizika elektrochemické korozy díky dielektrické povaze adheziv a jednodušší dodržení rozměrových tolerancí, jelikož nedochází k distorzím vlivem svářecího tepla. Lepené spoje navíc vykazují značnou tuhost, odolnost vůči nárazům a jsou také schopny absorbovat vysoké množství energie, což je velice žádoucí např. v automobilovém průmyslu. V neposlední řadě jsou tyto spoje schopny tlumit vibrace a v případě plošných dílců poskytují také lepší zvukově izolační vlastnosti [3]. Velký vliv na mechanickou odezvu lepeného spoje, a to především z dlouhodobého hlediska po vystavení koroznímu prostředí, má však příprava povrchu hliníkové slitiny, jelikož přirozeně vzniklá vrstva oxidu hlinitého je k tomuto účelu nevyhovující [4, 5]. Tuto vrstvu je třeba odstranit a nahradit novou, pevnou, souvislou a korozně odolnou oxidickou vrstvou, tzv. konverzním povlakem. Mezi nejpoužívanější metody patřilo po dlouhá léta tzv. chromátování, avšak vzhledem k obsahu karcinogenního šestimocného chromu je toto postupně nahrazováno ekologicky šetrnějšími metodami [6].

Renomovaná společnost se zaměřením na chemické produkty je dodavatelem dvojstupňové technologie depozice konverzní vrstvy na bázi titanu na hliníkové slitiny. Prvním krokem je současné odmaštění a kyselá deoxidace přípravkem A, který je založen na kyselině sírové ( > 25 %) a neionogenních povrchově aktivních látkách. Následují dva oplachové kroky a vlastní konverzní úprava přípravkem B, který obsahuje kyselinu sírovou (30 – 50 %), kyselinu hexafluorotitaničitou (1 – 5 %) a hydrogen difluorid amonný (1 – 5 %). Postup je dokončen opět dvojnásobným oplachem, přičemž druhý oplach se provádí v demineralizované vodě.

Přípravek C je založen na kyselině hexafluorozirkoničité a je v praxi využíván k přípravě konverzní vrstvy na bázi zirkoníka. Jedná se o konkurenční produkt přípravku B a může být zařazen do výše uvedené technologie na místo něho. Pomocí obou přípravků jsou na povrchu hliníku vytvářeny povlaky patřící do společné skupiny konverzních povlaků na bázi titanu a zirkoníka.

Předkládaná diplomová práce je zaměřena na optimalizaci procesu přípravy konverzních vrstev na bázi titanu a zirkoníka vzhledem k mechanickým vlastnostem lepeného spoje.
2. TEORETICKÁ ČÁST

2.1. Slitiny hliníku

Hliník, jakkoli je to výjimečný kov, nedosahuje v čistém stavu takových vlastností, které by umožňovaly jeho praktické použití. Proto se v praxi přistupuje k jeho legování nejrůznějšími prvky. Jedná se především o měď a hořčík, které upravují jeho nedostatečné mechanické vlastnosti (mez pevnosti čistého hliníku leží v oblasti pouhých 40–50 MPa), ale i o jiné prvky, ovlivňující např. korozní odolnost, slévatelnost, elektrickou vodivost atd. Vzniklé slitiny se rozdělují dle způsobu zpracování na slitiny k odlévání a k tváření, druhý typ lze ještě jemněji rozdělit na slitiny vytvrditelné a nevytvrditelné (viz Obr. 1) [7, 8]. V rámci této práce, nebude-li uvedeno jinak, bude pojmem slitina hliníku chápána slitina určená k tváření, vytvrditelná.

Měď a hořčík (a některé další prvky) zlepšují mechanické vlastnosti výsledné slitiny principem precipitačního nebo disperzního zpevnění (vytvrzování). Podmínkou vytvrzování je rostoucí závislost rozpustnosti legujícího prvku v primárním tühém roztoku na teplotě a optimální množství legury v systému.

Obr. 1) Výseč fázového diagramu systému hliník – měď s vyznačenými oblastmi jednotlivých typů hliníkových slitin (diagram převzat z [7]).
Ne všechny příměsové prvky v hliníku dopomáhají k zisku lepších mechanických vlastností a jsou proto chápány jako nečistoty. Mezi nejběžnější nečistoty v hliníkových slitinách patří železo. To tvoří s hliníkem intermetalickou sloučeninu Al<sub>3</sub>Fe, která negativně ovlivňuje plastické a únavové vlastnosti slitin.

U mědi legovaných slitin železo působí negativně ještě z důvodu vyvazování mědi do intermetalické sloučeniny Al<sub>7</sub>FeCu<sub>2</sub>. Dochází tak k ochuzování primárního tuhého roztoku o měď a poklesu pevnostních charakteristik [7].

2.1.1. Chemické složení slitin hliníku

Chemické složení je určujícím parametrem pro zařazování slitin hliníku do skupin dle ČSN EN 573-1 [9]. Tato norma rozděluje slitiny na bázi hliníku, určené pro tváření, do devíti skupin. První skupina (EN AW 1xxx) náleží hliníku o čistotě min. 99 %, přesná čistota je přitom definována pomocí třetí a čtvrté číslice označení, tyto číslice jsou stejné jako dvě číslice vpravo za desetinnou čárkou minimálního obsahu hliníku v procentech. Druhá číslice označení pak odpovídá stupni řízeného ovlivnění obsahu běžných nečistot.

Zbývajících osm skupin (2xxx a vyšší) odpovídá výše legovaným slitinám, jejich rozdělení je provedeno na základě hlavního legujícího prvku, resp. skupiny prvků (viz Tabulka 1). Druhá číslice jejich označení určuje prvotní slitinu a její modifikace, třetí a čtvrtá číslice nemá zvláštní význam, slouží pouze k rozlišení různých slitin ve skupině [9].

Tabulka 1) Rozdělení hliníkových slitin dle ČSN EN 573-1 [9].

<table>
<thead>
<tr>
<th>číslo skupiny</th>
<th>označení slitin</th>
<th>hlavní legující prvek (skupina prvků)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EN AW 1xxx</td>
<td>(min. 99% hliník)</td>
</tr>
<tr>
<td>2</td>
<td>EN AW 2xxx</td>
<td>měď</td>
</tr>
<tr>
<td>3</td>
<td>EN AW 3xxx</td>
<td>mangan</td>
</tr>
<tr>
<td>4</td>
<td>EN AW 4xxx</td>
<td>křemík</td>
</tr>
<tr>
<td>5</td>
<td>EN AW 5xxx</td>
<td>hořčík</td>
</tr>
<tr>
<td>6</td>
<td>EN AW 6xxx</td>
<td>hořčík a křemík</td>
</tr>
<tr>
<td>7</td>
<td>EN AW 7xxx</td>
<td>zinek</td>
</tr>
<tr>
<td>8</td>
<td>EN AW 8xxx</td>
<td>jiné prvky</td>
</tr>
<tr>
<td>9</td>
<td>EN AW 9xxx</td>
<td>neobsazená řada</td>
</tr>
</tbody>
</table>


2.1.1.1. Chemické vlastnosti hliníku

Problematika chemických vlastností hliníku je velmi široká. Nepatří sem pouze technologie výroby a reaktivita hliníku jako prvku, ale také celá chemie jeho sloučení. Hliník je třetím nejzastoupenějším prvkem v zemské kůře [11], sloučenin je tedy velké
množství a jsou využívány v řadě aplikací, včetně např. chemické katalýzy, výroby cementu a keramiky atd. Vzhledem k rozsahu této práce bude pojednáno pouze o chemických vlastnostech souvisejících s jeho povrchovou úpravou.

Standardní elektrodový potenciál hliníku je \(-1,662\) V (reakce \(Al \leftrightarrow Al^{3+} + 3 e^-\)), což hliník řadí mezi neušlechtilé kovy mezi zinek (\(-0,763\) V) a hořčík (\(-2,363\) V). Navzdory tomu je čistý hliník na vzduchu i v čisté vodě poměrně stálý, pasivuje se totiž tenkou vrstvou oxidu hlinitého (\(I_1\), která brání dalšímu přístupu kyslíku nutného pro depolarizační reakci v rámci korozního děje [12]. Tato oxidická vrstva má však pouze omezenou tvrdost a je proto snadno mechanicky poškoditelná. Pro další zlepšení korozní odolnosti se tak využívají nejrůznější metody povrchové úpravy, o kterých bude pojednáno dále.

\[
4 \text{Al} + 3 \text{O}_2 \rightarrow 2 \text{Al}_2\text{O}_3 \quad (I_1)
\]

Jsou-li ve vodě, do které byl vnořen hliníkový dílec, přítomny ionty ušlechtilých kovů, dochází k tzv. cementaci, tj. zrychlenému rozpouštění hliníkové matrice a současnému vylučování ušlechtilého kovu na povrchu hliníku (\(2.\) [12]).

\[
2 \text{Al} + 3 \text{Cu}^{2+} \rightarrow 2 \text{Al}^{3+} + 3 \text{Cu} \quad (2.)
\]

V neoxidujících kyselinách a zásadách je čistý hliník velmi dobře rozpustný, produktem reakce je v případě kyselin příslušná hlinitá sůl a vodík (\(3.\)), v případě zásad pak příslušný tetrahydroxohlinitan a vodík (\(4.\)). V oxidujících kyselinách se hliník zpravidla pasivuje za vzniku hydratovaného oxidu hlinitého, reakce je principiálně analogická reakci (\(I_1\)).

\[
2 \text{Al} + 3 \text{H}_2\text{SO}_4 \rightarrow \text{Al}_2(\text{SO}_4)_3 + 3 \text{H}_2 \quad (3.)
\]
\[
2 \text{Al} + 2 \text{NaOH} + 6 \text{H}_2\text{O} \rightarrow 2 \text{Na}[\text{Al(OH)}_4] + 3 \text{H}_2 \quad (4.)
\]

Korozní odolnost hliníku, stejně jako jeho odolnost vůči působení kyselin je negativně ovlivněna přítomností legur. Hliníkové slitiny jsou tak podstatně hůře korozně odolné než čistý hliník. Nejmarkantnější je tento rozdíl v případě slitin v systému Al–Cu, tyto slitiny jsou tak málo odolné, že se v praxi velmi často přístupuje k jejich plátování čistým hliníkem nebo některou z odolnějších slitin. Důvodem snížené odolnosti legovaného hliníku je vznik korozních mikročlánků, jelikož většina intermetalických sloučenin mezi hliníkem a legurami, resp. částice legur samotné, má vůči hliníkku katodický charakter [7, 12].

Složení pasivní vrstvy vznikající reakcí (\(I_1\)) závisí na konkrétních podmínkách její tvorby. Vrstva může být tvořena korundem (\(\text{Al}_2\text{O}_3\)), ale také nejrůznějšími hydratovanými formami, např. \(\text{AlO(OH)}\), případně až amorfním \(\text{Al(OH)}_3\). Pro povrchovou úpravu hliníku je podstatné, že ať už je pasivní vrstva jakékoliv formy, vždy má amfoterní charakter, tj. reaguje jak s kyselinami, tak se zásadami dle rovnice (\(5.\)), resp. (\(6.\)). Těchto reakcí se využívá v technologiích alkalického moření a kyselé deoxidace v rámci povrchových úprav [7].

\[
\text{Al}_2\text{O}_3 + 6 \text{HCl} \rightarrow 2 \text{AlCl}_3 + 3 \text{H}_2\text{O} \quad (5.)
\]
\[
\text{Al}_2\text{O}_3 + 2 \text{NaOH} + 3 \text{H}_2\text{O} \rightarrow 2 \text{Na}[\text{Al(OH)}_4] \quad (6.)
\]

2.1.1.2. Intermetalické sloučeniny hliníku

V předchozím odstavci bylo řečeno, že intermetalické sloučeniny hliníku s legujicími prvky zpravidla snižují korozní odolnost hliníkových slitin, jelikož obvykle mají vůči hliníkku katodický charakter. Tyto sloučeniny však ovlivňují také depozici konverzních vrstev, zde se totiž také jedná o elektrochemický děj [13, 14].
základním intermetalickým sloučeninám, které se ve slitinách hliníku vyskytují, některé z nich už byly zmíněny v úvodu kapitoly 2.1.

Struktura vytvrzených slitin hliníku se skládá z více fází, které je možné typově rozdělit na několik skupin. Matrici tvoří primární tuhý roztok α, jedná se o substituční tuhý roztok legujících prvků v hliníku. Vedle matrice jsou u vytvrzených slitin vždy přítomny ještě intermetalické sloučeniny hliníku s hlavním legujícím prvky. Tyto sloučeniny zpravidla vznikají vlastním vytvrzováním během stárnutí. Jejich složení je možné vyčíst z rovnovážných fázových diagramů systémů hliník – hlavní legující prvek [7].

Dalším typem fází ve vytvrzených slitinách hliníku jsou intermetalické sloučeniny hliníku a jednoho nebo více vedlejších příměsovéch prvků, které se sep.oděli na zpevnění slitiny. Sloučeniny této kategorie však mohou obsahovat i hlavní legující prvek, příkladem budiž zmiňovaná intermetalická sloučenina Al7FeCu2. Tyto sloučeniny jsou obecně nežádoucí, mohou způsobit jednak snížení korozní odolnosti, ale také zhoršení mechanických vlastností. Ve slitinách hliníku se mohou vyskytovat také intermetalické sloučeniny bez obsahu hliníku, které jsou tvořeny pouze legujícími prvkými, ať už hlavními (Mg2Si) nebo příměsovémi [7].

Stručný přehled všech tří typů sloučenin je uveden v Tabulce 2, včetně jejich relativního elektrochemického charakteru vůči hliníku.

Tabulka 2) Některé intermetalické sloučeniny ve slitinách hliníku a jejich charakter vůči hliníkové matrici [7, 13].

<table>
<thead>
<tr>
<th>typ sloučeniny</th>
<th>intermetalická sloučenina</th>
<th>charakter vůči hliníku</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al + majoritní legující prvek</td>
<td>Al3Mg2</td>
<td>anodický</td>
</tr>
<tr>
<td></td>
<td>Al2MgSi</td>
<td>anodický</td>
</tr>
<tr>
<td></td>
<td>Al2Cu</td>
<td>katodický</td>
</tr>
<tr>
<td></td>
<td>Al6Mn</td>
<td>katodický</td>
</tr>
<tr>
<td>Al + minoritní legující prvek</td>
<td>Al7FeCu2</td>
<td>katodický</td>
</tr>
<tr>
<td></td>
<td>Al2CuMg</td>
<td>katodický</td>
</tr>
<tr>
<td></td>
<td>Al(Fe,Mn)Si</td>
<td>katodický</td>
</tr>
<tr>
<td></td>
<td>Al3Fe</td>
<td>katodický</td>
</tr>
<tr>
<td></td>
<td>Al1Ni</td>
<td>katodický</td>
</tr>
<tr>
<td>sloučeniny legujících prvků bez obsahu Al</td>
<td>Mg2Si</td>
<td>anodický</td>
</tr>
<tr>
<td></td>
<td>MgZn2</td>
<td>anodický</td>
</tr>
</tbody>
</table>

Posledním typem fází přítomných ve struktuře vytvrzených slitin hliníku jsou klasické strukturní vady. Může se jednat např. o póry, trhliny, oxidické blány, oxidické vměstky, cizorodé nekovové vměstky pocházející z vyzdivek pece, nerozpustěné kovy nebo předslitiny atd. [7].

2.1.1.3. Slitina EN AW 5754

Slitina EN AW 5754, resp. EN AW 5754 [AlMg3] patří mezi slitiny hliníku určené pro tváření, jejichž hlavním legujícím prvkem je hořčík (řada 5xxx). Předepsané chemické složení slitiny je uvedeno v Tabulce 3. Materiál je dodáván ve všech obvyklých formách a nachází užití zejména v konstrukční oblasti (např. výroba dopravních prostředků), ale také např. při svařování a výrobě drátů pro mechanické použití. Slitina se nepoužívá v elektrotechnice,
výrobě fólií a přířezů pro plechovky a uzávěry. Materiál je možno používat pro výrobu předmětů určených k přímému styku s potravinami [15].

Tabulka 3) Předepsané složení slitiny EN AW 5754 v hm. % [15].

<table>
<thead>
<tr>
<th></th>
<th>Si (max)</th>
<th>Fe (max)</th>
<th>Cu (max)</th>
<th>Mg (max)</th>
<th>Cr (max)</th>
<th>Zn (max)</th>
<th>Ti (max)</th>
<th>Mn+Cr (max)</th>
<th>zbytek jednotlivé (max)</th>
<th>zbytek celkem (max)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,40</td>
<td>0,40</td>
<td>0,10</td>
<td>2,6–3,6</td>
<td>0,30</td>
<td>0,20</td>
<td>0,15</td>
<td>0,10–0,6</td>
<td>0,05</td>
<td>0,15</td>
</tr>
</tbody>
</table>

Z předepsaného složení slitiny je patrné, že hlavní intermetalickou sloučeninou bude zcela jistě sloučenina Mg₂Al₃ (viz též Obr. 2). Z anodických intermetalických sloučenin ještě při zvýšené koncentraci křemíku přichází v úvahu sloučeniny Al₂MgSi nebo Mg₂Si. Klíčové se však zdají být limity pro koncentraci mědi a železa, jelikož v případě nadbytku těchto prvků mohou vznikat katodické sloučeniny Al₂CuMg, Al₇FeCu₂ nebo i Al₃Cu a Al₃Fe.

Obr. 2) Fázový diagram systému hliník – hořčík s vyznačeným složením slitiny EN AW 5754 (převzato z [7]).

2.1.2. Aplikace slitin hliníku

Jedním z největších odběratelů hliníkových slitin je automobilový průmysl. V současné době jsou hliníkové slitiny hmotnostně druhým nejpoužívanějším materiálem po oceli, avšak nejmodernější a nejluxusnější vozy obsahují již drtivou většinu hliníkových komponent [16, 17].

V současné době jsou slitiny na bázi hliníku jedním z nejobvyklejších materiálů v leteckém průmyslu. Série 2xxx je doporučována pro konstrukční prvky vystavené vyšším teplotám,
série 7xxx naopak pro prvky vystavené nízkým teplotám a pro maximálně zatížené součásti konstrukce. Pro méně zatěžované komponenty se využívají nejčastěji slitiny série 3xxx, 5xxx a 6xxx. Tvářené hliníkové slitiny jsou též velice často využívány v kosmickém průmyslu, který s letectvím úzce souvisí, v loďarství a v dalších odvětvích průmyslu dopravních prostředků [16].

Přibližně 20 % světové produkce hliníku je využito v konstrukci budov. Pro dokončení výčtu nejobvyklejších aplikací hliníku je nutné zmínit také elektrotechnický průmysl a obaly.

2.1.3. Svařitelnost slitin hliníku

Vzhledem k zadání práce bude v této kapitole pojednáno pouze o svařitelnosti hliníkových slitin. Mezi další technologické vlastnosti patří např. tvářitelnost, obrobitelnost, slévatelnost atd.


Mezi další problémy při svařování materiálů na bázi hliníku patří jejich vynikající tepelná vodivost, relativně nízký modul pružnosti a vysoká rozpustnost vodíku v tavenině. Dobrý odvod tepla ze svarové oblasti způsobuje snížení efektivity jejího ohřevu. Nízký modul pružnosti hliníku a jeho slitin oproti uhlikové oceli zase stojí za zvýšenou náchylností k deformacím svarů a celých svařovaných konstrukcí. Další problémy se objevují u některých vytvrzditelných slitin (např. v systému Al MgCu nebo Al ZnMgCu), které při teplotách nad 200 °C ztrácí své mechanické vlastnosti v důsledku vzniku trhlin za tepla. Po vyřešení těchto problémů je navíc nutné počítat s tím, že struktura odlišnosti spoje od základního materiálu a defekty v něm obsažené mají vliv na mechanické a unavové vlastnosti spoje a také na jeho korozní odolnost. Svarový spoj tak do facto rozhoduje o vlastnostech celého svařovaného dílce, jelikož ve většině případů má horší vlastnosti než základní materiál [7, 19].
2.2. Spojování hliníkových slitin lepením

Je zřejmé, že spojování hliníku a jeho slitin svařováním je poněkud problematické. Spojování lepením nabízí řadu výhod, z nichž některé byly zmíněny již v úvodu této práce. Pravděpodobně nejvýznamnější z nich je možnost spojování slitin hliníku s jinými materiály, a to i nekovovými. Svařování hliníku např. s ocelí je možné, ale je velmi technologicky náročné [20].

Spojování lepením nabízí řadu výhod, z nichž některé byly zmíněny již v úvodu této práce. Pravděpodobně nejvýznamnější z nich je možnost spojování slitin hliníku s jinými materiály, a to i nekovovými. Svařování hliníku např. s ocelí je možné, ale je velmi technologicky náročné [20]. Elektricky vodivé spojení dvou kovů o různých elektrochemických potenciálech navíc vystavuje systém zvýšenému riziku koroze i v nepříliš agresivních podmínkách. Spojení materiálů adhezivem je nevodivé, korozi vlivem makročlánků je tak zamezeno. Mezi další důležité výhody lepených spojů patří zvýšení tuhosti a rázové houťevnatosti, dosažení rovnoměrného rozložení napětí v systému, zamezení distorzím spojovaných dílů a možnost automatizace procesu. Dalšími, relativně méně významnými výhodami jsou zvukově izolační vlastnosti a schopnost tlumení vibrací [3, 5, 21].


2.2.1. Teorie adheze

Existuje řada teorií adhezního spojení materiálů, v případě spojování kovů se však jako nejrelevantnější jeví teorie adsorpční [5]. Tato teorie ustanovuje jako podmínku pro vznik adhezního spojení dostatečně těsný molekulární kontakt mezi adhezivem a adherendem. Je-li podmínka splněna, mohou mezi oběma materiály působit interakce, které zajišťují vlastní spojení. Nejběžnějšími druhy těchto interakcí jsou van der Waalsovy síly a acido-bazické interakce (dle Lewisovy teorie kyseliny a zásad) [22]. Jedná se o sekundární vazby, oproti primární chemické vazbě jsou tyto interakce slabé, jejich energie se pohybují řádově v desítkách kJ·mol⁻¹ oproti stovkám kJ·mol⁻¹ v případě chemické vazby. Primární chemické vazby se však na mezifázovém rozhraní mohou také vytvořit a je-li tomu tak, bývá pevnost a životnost adhezního spoje značně zlepšena [5, 23]. Jako příklad lze uvést zvýrazně zlepšení spojení mezi adhezivem a hliníkovou matricí, kterého je dosaženo přídavkem organosilanů jako aditiv do adheziva. Tyto tvoří s hliníkem kovalentní můstky Si–O–Al [24].

Jako u každého procesu je i u adsorpcí molekul adheziva na povrch adhezentu energetická bilance popsána změnou Gibbsovy energie ΔGads (viz rovnice 7.) [25]. Adsorpcí polymerů (tj. zde adheziv) je spojena s poklesem entropie systému ΔSads v důsledku snižení počtu možných konformací molekuly polymeru adsorbované na povrchu adhezentu oproti molekule vyskytující se volně v roztoku nebo tavenině. Tento jev klade na druhý člen rovnice (7.), změnu entalpie systému ΔHads, požadavek dostatečně zápornosti tak, aby celková změna Gibbsovy energie byla záporná a proces adsorpcí probíhal za daných podmínek samovolně.

\[
\Delta G_{ads} = \Delta H_{ads} - T \cdot \Delta S_{ads} 
\]  

(7.)

Bylo zjištěno, že jedinými sekundárními mezimolekulárními interakcemi, které poskytují dostatečně exotermní proces adsorpcí, jsou interakce acido-bazické. Jinými slovy, acido-bazické vazebné interakce značně usnadňují adsorpci adheziv na povrch adhezentu [26].
Jedním z cílů termodynamiky, lomové mechaniky a dalších vědních oborů, zabývajících se adhezi, je vytvoření metodiky pro predikci a testování mechanické odezvy lepených spojů. K tomuto problému je možno přistoupit různými způsoby. V následujících odstavcích budou zmíněny některé z nich.

Za podmínky nepřítomnosti chemických vazeb je Dupréovou rovnicí (8.) možné definovat tzv. adhezní práci \( W_a \). Jedná se o vratnou práci potřebnou k izotermnímu rozdělení dvou kondenzovaných fází A a B o jednotkové ploše mezifázového rozhraní tak, že z mezifázového rozhraní o povrchové energii \( \gamma_{ab} \) vzniknou dva nové povrchy o povrchových energiích \( \gamma_a \) a \( \gamma_b \) [5].

\[
W_a = \gamma_a + \gamma_b - \gamma_{ab}
\] (8.)

Hodnota adhezní práce dává představu o termodynamické stabilitě spojení, nic však neříká o kinetice jeho selhání. Naměřené pevnosti lepených spojů zpravidla nejsou ani v nejideálnějších případech s hodnotami adhezní práce přímou souvislost, jelikož běžné testovací metody i praktické použití spojů implikují viskoelastické a plastické energetické ztráty v adhezivu a adherendu [5].

K problematice predikce mechanických vlastností lepených spojů lze přistupovat i z hlediska zmiňované adsorpční teorie. Adsorpce může být popsána tzv. Langmuirovou izotermou ve tvaru dle rovnice (9.), kde \( c \) je koncentrace látky v prostředí, \( \Gamma \) je rovnovážná koncentrace látky adsorbované na adsorbentu, \( \Gamma_m \) je maximální možná koncentrace adsorbované látky (tj. počet volných míst na povrchu adsorbentu) a \( K \) je rovnovážná konstanta adsorpce [27].

\[
\frac{c}{\Gamma} = \frac{1}{\Gamma_m \cdot K} + \frac{c}{\Gamma_m}
\] (9.)

Proměřením Langmuirovy izotermy při dvou různých teplotách lze získat dvě hodnoty rovnovážné konstanty \( K(T_1) \), resp. \( K(T_2) \). Závislost rovnovážné konstanty adsorpce \( K \) na teplotě vyjadřuje Van’t Hoffova rovnice (10.), kterou lze po integraci napsat ve tvaru (11.), kde \( R \) je univerzální plynová konstanta a \( T \) je teplota [25].

\[
\frac{d \ln K}{dT} = \frac{\Delta H^{\text{ads}}}{RT^2}
\] (10.)

\[
- \Delta H^{\text{ads}} = \frac{RT_1 T_2}{T_2 - T_1} \ln \frac{K(T_2)}{K(T_1)}
\] (11.)

Fowkes [28] vyslovil hypotézu, že entalpie acido-bazické interakce \( \Delta H^{ab} \) se rovná entalpii adsorpce. Za tohoto předpokladu lze z hodnot adsorpcí entalpí odhadovat koeficienty \( E \) a \( C \) z Drago-Waylandovy rovnice (12.) a předpovídat tak pevnost mezifázových acido-bazických vazeb, které souvisí s mechanickou odevzou lepeného spoje [22, 29].

\[
- \Delta H^{ab} = E_a E_b + C_a C_b
\] (12.)

Mechanická odevza adhezního spoje může být charakterizována také lomovou energií \( G \) potřebnou ke zvětšení trhliny o jednotku plochy. Závislost této energie na prahové hodnotě energie \( G_0 \), rychlosti zatěžování v a teplotě \( T \) vyjadřuje rovnice (13.) [30].

\[
G = G_0 \cdot [1 + f(v, T)]
\] (13.)
Prahová hodnota $G_0$ odpovídá minimální energii potřebné pro šíření defektu a souvisí s vnitřní (chemickou) pevností adhezního spoje. Funkce $f(v,T)$ vyjadřuje energii disipovanou v adherendech, obvykle nabývá hodnot podstatně vyšších než 1. Z tvaru rovnice (13.) je patrné, že jakékoliv energetické ztráty reprezentované touto funkcí tak vedou k podstatněmu zvýšení pevnosti spoje [30].

2.2.2. Faktory ovlivňující počáteční pevnost lepeného spoje

Je zřejmé, že adheze tvoří velice komplexní problematiku, při které hraje roli řada faktorů. Myšlenkově je lze rozdělit na faktory ovlivňující počáteční pevnost lepeného spoje a na faktory ovlivňující schopnost spoje si tuto počáteční pevnost udržet, tedy jeho životnost. Do první skupiny lze zařadit geometrii povrchu adherendů, jejich kohezní soudržnost, čistotu a smáčivost daným adhesivem, dále pak faktory spojené s jakostí adhesiva, tj. jeho polymerační stupeň, homogenita, viskozita a podmínky při jeho vytvrzování, a v neposlední řadě také konstrukční parametry spoje, kam patří také tluost'ka adherendů a vrstvy adheziva. Mezi další faktory patří např. teplotní dělková roztažnost adherendů, homogenita, viskozita a podmínky při jeho vytvrzování, tj. míra smrštění během vytvrzování, morfologie a složení částic plniva v adhezivu atd. [31].

Postihnutí celé problematiky a všech faktorů přesahuje rámec této práce, v následujících odstavcích budou tedy rozvedeny pouze některé z nich.


horší mechanickou odezvu než spoje připravené z jinak upravovaných povrchů. K hodnocení byla použita metodika lomové mechaniky.

Mezi další důležité faktory ovlivňující pevnost lepeného spoje patří také tloušťka adhersená a adhezní. Perreira a kol. [33] se zabývali vlivem povrchové úpravy a tloušťky adhersená na kvazistatickou1 a únavovou pevnost lepeného spoje. Pracovním materiálem byla slitina EN AW 6082-T6 ve formě plechů o tloušťce 1,0, resp. 1,5 mm. Povrch materiálu byl buď leptán směsí Na2Cr2O7 : H2SO4 : H2O (75 : 275 : 650 g) po dobu 30 min za teploty 60–65 °C s následnými oplachy, nebo broušen brusným papírem o zrnitosti P220. Lepené spoje byly připraveny užitím dvojkomponentního lepidla Araldite 420A/B na epoxidové bázi. Na základě experimentálních výsledků byly kolektivem autorů formulovány následující závěry.

Leptání adhersená uvedenou směsí vede k jemnějšímu povrchu než mechanické broušení. V případě kvazistatického testování spojů vykazovaly nejlepší odezvu vzorky o tloušťce adhersená 1,5 mm podrobené povrchové úpravě leptáním, dle autorů je to způsobeno nižší mírou plastické deformace adhersená, jelikož tato způsobuje velké deformace v adhezní a stojí za selháním spoje2. V případě testování únavové pevnosti byla tendence ohledně tloušťky adhersená opačná, lepší odezvy dosaženo při 1,0 mm. Povrchová úprava leptáním se však i zde jevila lépe než mechanické broušení. Pokles tuhosti spojů během cyklického zatěžování byl v dobré shodě s naměřenými únavovými pevnostmi.

Vlivu tloušťky adhezní se ve své práci [34] věnoval Davies a kol. Adherseny ze slitiny EN AW 2017 byly po povrchové úpravě broušením brusným papírem o zrnitosti P120 a acetonovém oplachu spojovaly opět adhezním Araldite 420 na epoxidové bázi. Tloušťka adhezní přitom u jednotlivých vzorků pokrývala interval 0,2–1,3 mm. Litím a následným vytvrzením byly připraveny těž vzorky samotného adhezní. Vzorky byly podrobeny mikroskopickému pozorování, diferenční kompenzační kalorimetrii, dynamicko-mechanické analýze, nanoindentačním testování, Ramanově spektrometrii a měření pevností. Bylo zjištěno, že rostoucí tloušťka adhezní nemá žádný významný vliv na jeho strukturu, mezifázovou oblast ani na rozložení defektů v něm obsažených. Nanoindentační testy a Ramanova spektrometrie sice v adhezní odhalily jisté odchylky, avšak tyto se vyskytovaly pouze v úzkém pásmu poblíž mezifázového rozhraní, které rozměrově odpovídalo drsnosti povrchu adhersená. Naproti tomu naměřené pevnosti spojů vykazovaly zřejmou závislost na tloušťce adhezní, závislost byla nejvýznamnější u vzorků podrobených čistě tahovému napětí, u vzorků podrobených tahové-smykovému a smykovému napětí tloušťka adhezní takový vliv neměla. Vzhledem ke všem skutečnostem je zřejmé, že tyto závislosti nebyly způsobeny odchylkami ve struktuře a složení adhezní, ale spíše v rozdílné koncentraci napětí. Při použití geometrii testování autoři doporučují jako mezní tloušťku adhezní hodnotu 0,6–0,8 mm.

2.2.3. Faktery ovlivňující životnost lepeného spoje

Počáteční vysoká pevnost lepeného spoje může být dosažena bez jakýchkoli úprav nebo jen s jednoduchými povrchovými úpravami adhersená [5]. Pro praktické aplikace je však nezbytné udržení dostatečné pevnosti po celou dobu provozu lepeného výrobku.

---

1 Kvaizistatické testování, tj. např. testování smykových pevností lepených spojů, je charakterizováno nízkou rychlosti deformace. Působící napětí je proto chápáno jako statické, jakkoli dokonale statické není.
2 Při kvazistatickém testování smykových pevností lepených spojů na adhersenách s nízkou mezi kluzu je při vyšších napětech pozorována plastická deformace adhersená v místě spoje.

Sugiman a kol. se ve své práci [35] zabývali efektem snížení unavové životnosti lepených spojů v důsledku působení vlhkosti. Testovanými systémy byly jednak jednoduché lepené spoje namáhané ve smyku a jednak laminované dílce, složené z šesti vrstev adherendu s mezivrstvami adhesiva, namáhané v ohybu. V obou případech byla adherend slitina EN AW 2024-T3 a adhesivem epoxidový systém FM 73M OST ve formě filmu. Před nanesením lepidla byl adherend podroben povrchové úpravě, která spočívala v leptání roztokem oxidu chromového a v anodické oxidaci v kyselině fosforečné. Degradace vlivem vlhkosti byla simulována ponorem spojů do destilované vody o teplotě 50 °C po dobu jednoho roku a dvou let. Doba jednoho roku dle autorů v případě jednoduchých lepených spojů dané geometrie postačuje k plnému nasycení vlhkostí, laminátové dílce naopak nejsou nasyceny ani po dvou letech. Po uplynutí časových intervalů byly spoje podrobeny cyklickému mechanickému namáhání o frekvenci 5 Hz a součiniteli nesymetrie cyklu 0,11. Maximální aplikované napětí původně odpovídalo 40, 50, resp. 60 % naměřené kvazistatické pevnosti spoje. Bylo zjištěno, že v případě obou systémů byla unavová životnost po jednom roce degradace ve vlhkém prostředí proti nedegradovaným spojům silně snížena. Rozdíly mezi jedním a dvěma roky byly naopak zanedbatelné, z čehož lze usuzovat na přímý vliv stupně nasycení lepeného spoje vlhkosti na unavovou životnost. I po dvou letech degradace však lepené spoje selhávaly v důsledku kohezního porušení v adhesivu, což lze přičíst na vrub použité vysoce kvalitní povrchové úpravě adherendu. Práce byla doplněna vytvořením numerického modelu popisujícího danou problematiku, model vykazoval dobrou shodu s naměřenými daty.

Vlhkost může do systému pronikat několika způsoby. Může se jednat o přímou difuzi objemem adhesiva, mezifázovou difuzi na rozhraní adhesiva a adherendu a kapilární efekty v důsledku přítomnosti trhlin a defektů v adhesivu nebo konverzní vrstvě. Mechanismus působení vlhkosti může být také různý. Přítomnost vody může způsobit plastifikaci adhesiva a vést tak ke snížení jeho schopnosti přenášet zátěž [36]. Je-li adhesní spojení zajištěno pouze sekundárními vazbami, může působením vody dojít k porušení těchto interakcí a ryzé mezifázovému selhání [5]. Vzhledem k termodynamické nestabilitě vrstvy oxidu hlinitého (viz Tabulka 4), jakožto produktu většiny konverzních úprav na povrchu hliníkového substrátu, ve vlhkém prostředí může také docházet k tvorbě hydratovaných forem tohoto oxidu nebo až hydroxidu hlinitého (viz. rovnice 14. a 15.), které mají jednak vyšší molární objem (viz Tabulka 4), takže působí ve vrstvě nežádoucí pnutí, a jednak vykazují poměrně malou kohezní pevnost, což usnadňuje tvorbu a růst trhlin [4, 37, 38].

\[ \text{Al}_2\text{O}_3 + \text{H}_2\text{O} \rightarrow 2 \text{AlOOH} \]  \hspace{1cm} (14.)

\[ \text{AlOOH} + \text{H}_2\text{O} \rightarrow \text{Al(OH)}_3 \]  \hspace{1cm} (15.)

Součinitel nesymetrie cyklu odpovídá poměru minimálního napětí ku maximálnímu napětí.
### Tabulka 4) Některé fyzikálně chemické vlastnosti vybraných sloučenin hliníku

<table>
<thead>
<tr>
<th>sloučenina</th>
<th>modifikace</th>
<th>standardní sloučovací entalpí při teplotě 298,15 K $\Delta H^0_{f} \text{[kJ mol}^{-1}\text{]}$</th>
<th>molární objem při teplotě 298,15 K a tlaku 101,325 KPa $V_m \text{[10}^{-3}\text{m}^{3}\text{mol}^{-1}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Al}_2\text{O}_3$</td>
<td>korund</td>
<td>$-1676$</td>
<td>$2,535$</td>
</tr>
<tr>
<td>$\text{AlOOH}$</td>
<td>boehmit, diaspor</td>
<td>$-1976$, $-2001$</td>
<td>$3,986$, $3,636$</td>
</tr>
<tr>
<td>$\text{Al(OH)}_3$</td>
<td>gibbsit</td>
<td>$-2564$</td>
<td>$6,555$</td>
</tr>
</tbody>
</table>

Na stabilitu konverzní vrstvy oxidu hliníitého na povrchu hliníku může mít ve vlhkém prostředí vliv i typ adhesiva, jelikož produkty reakce vody s jistými složkami adhesiva mohou tuto vrstvu napadat. Jako příklad lze uvést reakci vody s vytvrzovadly epoxidových lepidel, např. dikyandiamidem, za vzniku alkalického prostředí, které s oxidem hlinitém dále reaguje podle rovnice (6.) za vzniku tetrahydroxohlinitánů [38].

Většina selhání lepených spojů v důsledku působení prostředí je způsobena výše uvedenými faktory. Je však prokázáno, že primární příčinou může být i koroze hliníkového substrátu. Brockmann a kol. [38] např. označili tento mechanismus jako hlavní příčinu selhání lepených spojů z plátovaného hliníku.


Koroze hliníkového substrátu může mít také formu tzv. nitkové koroze, dále jen FFC (filiform corrosion). FFC se vyskytuje zpravidla pod nátěry, avšak vzhledem k jisté podobnosti nátěrových systémů s adhezními spoji lze předpokládat, že tento mechanismus se může objevovat i zde [41]. Projevy tohoto druhu koroze (nitky) nesahají do hloubky materiálu, vznikají pouze na povrchu kovu, tím spíše však mohou mít na lepený spoj destabilizující vliv.

Vznik FFC je podmíněn přítomností katodických částí v hliníkové matrice, což bylo dokázáno v práci [42] studiem binárních modelových slitin v systému Al – Fe. Bylo-li železo přítomno ve formě tuhého roztoku v hliníkové matrice, materiál nebyl vůči FFC citlivý. Po precipitaci katodických intermetalických částí Al₃Fe tepelnou úpravou však došlo k silnému napadení. Vzhledem k faktu, že všechny kleréně vyráběné hliníkové slitiny obsahují katodické částice, je základní podmínka pro FFC vždy splněna. FFC může být podpořena také přítomností povrchových vrstev odlišné struktury. Takové vrstvy mohou vznikat např. při válcování, vrstvy mají zpravidla tloušťku do 1 μm a vyznačují se velmi jemnou distribucí intermetalických částic. Následnou tepelnou úpravou může navíc dojít k elektrochemické aktivaci vrstvy v důsledku obohacení o olovo, jakkoli je přítomno ve stopových množstvích [42, 43].

---

1 Molární objem byl vypočítán jako podíl molární hmotnosti v kg·mol⁻¹ a hustoty v kg·m⁻³ [25].
2.2.3. Epoxidová adhesiva


\[(n+2)\ \text{H}_2\text{C} = \text{O} - \text{CH}_2\text{Cl} + (n+1)\ \text{H}_2\text{O} = \text{OH} \rightarrow - (m/3)\ \text{HCl}\]

(16.)

V nevytvrzeném stavu se jedná o bezbarvé až nažloutlé viskózní kapaliny až pevné látky. Epoxidové pryskyřice lze vytvrzovat buď polyadičí sloučenin s aktivním vodíkovým atomem na epoxidové skupiny nebo polykondenzací obsažených hydroxylových skupin, možná je i polymerace epoxidových skupin. Nejčastěji využívaný je však prvně zmínovaný mechanismus. Následující rovnice (17.–18.) schematicky znázorňují princip vytvrzení epoxidové pryskyřice reakcí s polyaminem a anhydridem polykarboxylové kyseliny, které obecně patří mezi nejoblíbenější tvrdidla [44]. U polykondenzační reakce (18.) vzniká jako vedlejší produkt voda. Vzhledem k prokazatelné škodlivosti vlhkosti v lepených spojech je zřejmé, že tento faktor může mít negativní vliv na jejich životnost.

\[4\ \text{R} \rightarrow \text{HC} = \text{O} + \text{H}_2\text{N} \rightarrow \text{C} \rightarrow \text{NH} \rightarrow \text{CN}\]

(17.)

\[2\ \text{R}_1 \rightarrow \text{HC} = \text{CH} \rightarrow \text{R}_2 + \text{R}_3 \rightarrow \text{CH} \rightarrow \text{R}_4 \rightarrow \text{OH}\]

(18.)

Adhesiva na bázi epoxidových pryskyřic se vyznačují řadou výhodných vlastností, např. minimálním smrštěním během vytvrzování, značnou chemickou odolností a nízkou navlhavostí. Je třeba zmínit také jejich výborné mechanické vlastnosti a relativně dobrou adhezi k většině ostatních materiálů [44].

Vedle epoxidových pryskyřic se jako adhesiv využívá také dalších materiálů. Jedná se např. o polyuretany, fenolické pryskyřice, aminoplasty (např. melaminformaldehydové pryskyřice), nenasycené polyesterové pryskyřice a další materiály [44].
2.3. Povrchové úpravy hliníkových slitin


Je nutné podotknout, že cíle povrchové úpravy mohou být kombinovány. Jako příklad lze uvést hybridní, anorganicko-organické konverzní vrstvy, které jednak zvyšují korozní odolnost a jednak připravují povrch pro nanesení organických látek, např. barviv či lepidel.

2.2.1. Cíle povrchové úpravy jako přípravy na lepení

Pro udržení dobrých vlastností spoje po celou dobu jeho provozu je vždy určitá povrchová úprava nezbytná. Smysl této úpravy spočívá v dosažení jednoho nebo několika následujících cílů [5]:
- Odstranění povrchových vrstev. Může se jednat např. o oxidické vrstvy vzniklé tepelnými úpravami slitiny, příp. působením vlhkého prostředí nebo o znečištění povrchu spadem či obráběcími emulzemi a ochrannými oleji.
- Vytvoření kontinuální povrchové vrstvy, zpravidla oxidu, která se vyznačuje vysokou odolností vůči hydrataci, stabilitou v širokém rozsahu pH, mechanickou odolností a schopností chránit substrát před korozí.
- Zvýšení stupně molekulárního kontaktu mezi adhesivem a adherendem, např. v důsledku zvětšení plochy mezifázového rozhraní. Dle adsorpční teorie adheze je tento faktor pro dosažení pevného a odolného spoje klíčový.
- Vytvoření specifikové povrchové morfologie adherendu vedoucí ke zvýšení disipace energie z adheziva.
- Ochrana povrchu adherendu v časově prodloužení mezi povrchovou úpravou a lepením. Tato prodloužení je zpravidla limitována, k jejímu prodloužení slouží např. aplikace tzv. primerů kompatibilních s adhezivem.
2.2.2. Anodická oxidace hliníku

Anodická, neboli elektrolytická oxidace hliníku, zkráceně elox, je technologie, díky které je na povrchu hliníkové slitiny vytvořena tenká, nevodivá a velmi tvrdá vrstva oxidu hlinitého, pevně spojeného se základním materiálem. Vrstva je čirá a amorfní, elementární strukturní jednotkou jsou tetraedry AlO$_4^{5-}$. Vnitřní část vrstvy je prakticky neporovitá a izolační, z ní vychází vnější část, která je tvořena svislými sloupky materiálu s pórem uprostřed (viz Obr. 3). Ve vnějších částech jsou strukturně zakomponovány i anionty elektrolytu. Celková tloušťka vrstvy se v závislosti na technologických parametrech může pohybovat v rozmezí desetin až stovek μm [7].

Obr. 3) Model povrchové vrstvy vzniklé anodickou oxidací hliníku dle Kellera, Huntera a Robinsonova [47].

Existuje nespočet variant anodické oxidace hliníku, především vzhledem k složení použitého elektrolytu. Mezi nejčastěji používané elektrolyty patří kyselina sírová, příp. ve směsi s kyselinou šťavelovou za použití stejnosměrného napětí [7]. V leteckém průmyslu pro přípravu povrchu na lepení se však nejvíce uplatnily kyselina fosforečná (phosphoric acid anodizing, PAA) a kyselina chromová (chromic acid anodizing, CAA). Tyto povrchové úpravy obecně poskytují lepené spoje s nejlepší životností [48].

Technologie PAA vyvinutá společností Boeing využívá 10% kyseliny fosforečnou a pracovní napětí 10–15 V. Teplota se udržuje v rozmezí 21–24 °C. Vzniká porézní vrstva o tloušťce cca 0,5 μm, kromě bezvodého Al$_2$O$_3$ je ve vnějších částech vrstvy zakomponován i AlPO$_4$. Vrstva dosahuje excelentní stability ve vlhkém prostředí, přítomnost fosfátu zřejmě napomáhá k potlačení hydratace oxidu hlinitého. Porézní struktura vrstvy navíc umožňuje její penetraci nízkoviskozními lepidly, což vede k vytvoření velmi pevné mikrokompozitní struktury mezi adherendem a adhesivem [21, 37]. Nutno dodat, že v automobilovém průmyslu je PAA prováděna i za použití střídavého napětí [49].

Vrstvy vzniklé technologií CAA jsou značně tlustší, dosahují tloušťek v rozmezí 1–3 μm, a také méně porézní než v případě PAA. Povrchová morfologie vrstvy je relativně hladká, zvýšení její hrubosti lze dosáhnout použitím vyšších pracovních teplot. Za účelem zvýšení životnosti lepeného spoje je vhodné před vlastní anodickou oxidací slitinu naleptat v kyselině chromové, či fosforečné. Zatímco PAA je v oblibě zejména ve Spojených státech, CAA je využívána evropskými výrobci letadel [48].
2.2.3. Povrchová úprava chemickou cestou

Technologie anodické oxidace patří mezi elektrochemické povrchové úpravy, existuje však řada technologií, které pro vytvoření konverzních vrstev nevyžadují vložení elektrického napětí a patří tak mezi chemické povrchové úpravy [45]. Dlouhou dobu patřilo mezi nejoblíbenější tzv. žluté chromátování a další metody založené na působení pracovních lázní s obsahem šestimocného chromu (viz dále). Šestimocný chrom je však prokazatelně karcinogenní, po reakci s některými tělu vlastními antioxidanty dává vzniknout volným radikálům, které jsou schopny způsobit nevratné změny v DNA buněk. Toxicitě přispívá i jednoduchost intoxikace v důsledku jeho dobré rozpustnosti [50]. Z tohoto důvodu jsou všechny materiály šestimocný chrom obsahující a všechny technologie s ním manipulující postupně omezovány a nahrazovány. Např. dle směrnice EU platné od 1. 6. 2003 je zakázáno použití šestimocného chromu (a některých dalších látek) v automobilovém průmyslu [51, 52].

2.2.3.1. Žluté chromátování a další metody

Žluté chromátované konverzní vrstvy (chromate conversion coating, CCC) poskytují vynikající ochranu proti lokalizované korozi a díky své hrubé struktuře tvoří také příhodný povrch pro adsorpci adheziv a laků. Vrstva vzniká působením kyselých pracovních roztoků s obsahem dichromátů a fluoridů, přítomnost fluoridů je nezbytná pro snížení tloušťky oxidické vrstvy na povrchu hliníku, čímž je usnadněn přenos náboje a příběh reakce za vzniku CCC. Vlastní reakci lze formálně popsat následujícími rovnicemi [7, 13, 53].

\[
2 \text{Al} \rightarrow 2 \text{Al}^{3+} + 6 \text{e}^- \tag{19.}
\]
\[
\text{Cr}_2\text{O}_7^{2-} + 8 \text{H}^+ + 6 \text{e}^- \rightarrow 2 \text{Cr(OH)}_3 + \text{H}_2\text{O} \tag{20.}
\]

Objasnění vlivu mikrostruktury povrchu hliníkové slitiny v systému Al–Mg–Si na tvorbu CCC bylo cílem práce Lundera a kol. [13]. Práce je klíčová pro pochopení rozdílů v mechanismu tvorby CCC a konverzních povlaků na bázi titanu, příp. titanu a zirkonia. Autoři se zabývali přípravou a charakterizací CCC na technické slitině EN AW 6060-T6 a na modelové slitině Al Mg0,5Si0,4 v tepelně upraveném i neupraveném stavu. Tato modelová slitina neobsahovala částice intermetalické sloučeniny \(\alpha\)-Al(Fe,Mn)Si. CCC byl pokusně připraven i na této intermetalické sloučenině samotné. Konverzní povlak byl připraven postupem obvyklým, tj. kroky odmašťování, alkalického leptání, kyselé deoxidace a vlastní konverzní úpravy komerčním přípravkem Alodine C6100 (pH = 2, T = 25 °C, 10−180 s) s vloženými oplachovými kroky.

Pomocí potenciostatického měření byly na měřeny korozní potenciály jednotlivých materiálů vůči nasycené kalomelové elektrodě v chromátovacím přípravku. Bylo zjištěno, že korozní potenciál intermetalické částice \(\alpha\)-Al(Fe,Mn)Si ležel v oblasti \(-280\) mV, zatímco korozní potenciály obou použitých slitin dosahovaly hodnoty cca \(-600\) mV. Shoda v korozních potenciálech komerční slitiny EN AW 6060-T6 a modelové slitiny Al Mg0,5Si0,4 bez intermetalických částic \(\alpha\)-Al(Fe,Mn)Si naznačuje nezávislost mechanismu tvorby CCC na přítomnosti této sloučeniny [13].

Povrchová morfologie připravených povlaků byla pozorována pomocí rastrovací elektronové mikroskopie (scanning electron microscopy, SEM) s energiově-disperzním spektrometrem (energy dispersive spectroscopy, EDS) a transmisní elektronové mikroskopie (TEM). Povlaky byly dále analyzovány pomocí Augerovy elektronové spektroskopie (AES). Bylo zjištěno, že morfologie žlutě chromátovaného konverzního povlaku (CCC) na komerční slitině EN AW 6060-T6 je silně závislá na mikrostrukturu substrátu a obecně vykazuje
pórovitý charakter s trhlinami dosahujícími až na podkladový kov. Zejména na hranicích zrn a nad intermetalickými sloučeninami α-Al(Fe,Mn)Si bylo dosaženo velmi nízkého pokrytí. V případě tepelně upravované slitiny byl dosažený povlak podobný povlaku připravěnému na technické slitině [13].

Porovnáním povlaku na tepelně neupravované a upravované (T6) modelové slitině Al Mg0,5Si0,4 bylo prokázáno, že precipitáty Mg2Si podporují nukleaci CCC a jejich přítomnost je tak pro tuto úpravu velice žádoucí. V případě tepelně upravované slitiny byl dosažený povlak podobný povlaku připravěnému na technické slitině [13].

Další technologií manipulující s šestimocným chromem je tzv. FPL leptání (z angl. Forest Product Laboratory) vyvinuté stejnojmennou organizací. Metoda je založena na působení lázní s obsahem kyseliny sírové a dichromanu solného za teploty 65 °C po dobu 15–30 min. Produktem je cca 5 nm silná vrstva amorfního oxidu hlinitého se stopovým obsahem síry a chromu. Výsledkem je zvýšení korozní odolnosti [13].

Jako analog FPL leptání, podstatně šetrnější k životnímu prostředí, bylo vyvinuto tzv. P2 leptání. Tato povrchová úprava je založena na působení lázní složené z kyseliny sírové a síranu železnatého. Výsledkem je dvojvrstvý povlak s vnější vrstvou bohatou na chrom v obou oxidačních stavech a vnější vrstvou tvorenou částicemi síry [57].
místech materiálu v důsledku vzniku hydroxidových aniontů depolarizační reakcí (22.), srážení hydroxidu ceritého na povrchu katodických míst (23.), oxidace hydroxidu ceritého za vzniku oxidu ceritého jako konečného produktu (24.) [61]. V systému zcela jistě probíhá také hydrolýza hlinitých iontů (25.).

\[
\begin{align*}
    \text{Al} & \rightarrow \text{Al}^{3+} + 3 \text{e}^- \quad (21.) \\
    \text{O}_2 + 2 \text{H}_2\text{O} + 4 \text{e}^- & \rightarrow 4 \text{OH}^- \quad (22.) \\
    \text{Ce}^{3+} + 3 \text{OH}^- & \rightarrow \text{Ce(OH)}_3 \quad (23.) \\
    \text{Ce(OH)}_3 & \rightarrow \text{CeO}_2 + \text{H}_2\text{O}^+ + \text{e}^- \quad (24.) \\
    2 \text{Al}^{3+} + 6 \text{H}_2\text{O} & \rightarrow \text{Al}_2\text{O}_3 \cdot 3\text{H}_2\text{O} + 6 \text{H}^+ \quad (25.)
\end{align*}
\]

Ceričité konverzní povlaky patří mezi perspektivní možnosti povrchové úpravy hliníku, při své zdravotní nezávadnosti významně zvyšují korozní odolnost materiálu [62]. V průmyslové praxi však v současné době nejsou používány [63]. Problematicí ceričitých konverzních povlaků je na našem pracovišti již delší dobu věnována pozornost [62, 64, 65].

Metoda STAB 3 (surface treatment for aluminium bonding) spočívá v působení koncentrovaného roztoku hydroxidu sodného po dobu 3–10 min za normální teploty s následným ostřikem vodou. V důsledku vysokého pH pracovní lázně je na povrchu slitin s obsahem hořčíku vytvořena oxidická vrstva obohacená o tento prvek [66], což může zvyšovat stabilitu vrstvy v alkalickém prostředí epoxidových lepidel [32]. Metoda STAB 3 vykazuje lepší výsledky než FPL leptání, avšak kvality povlaků vytvořených anodizací PAA nedosahuje [66].

Saleema a kol. se ve své práci [67] zabývali podobnou metodou. Materiál EN AW 6061 byl po odmaštění v acetonu vystaven působení zředěného roztoku hydroxidu sodného (0,1 M) a ultrazvuku po dobu 5, 30, resp. 60 min za normální teploty v deionizované vodě za současného působení ultrazvuku. Takto připravený materiál byl poté po dobu 16 hod. sušen při teplotě 70 °C. Metodou byla na slitině připravena vrstva amorfního, bezvodého oxidu hlinitého s poměrně hrubou morfologií (po 30 min). Lepené spoje, připravené použitím dvojkompONENTního epoxidového adhesiva, vykazovaly uspokojivou pevnost, pohybovala se okolo 20 MPa s 20% poklesem v případě degradovaných spojů. Všechny spoje přitom selhaly kohezně ve vrstvě adhesiva.

2.2.4. Konverzní povlaky na bázi titanu a zirkonia a příbuzné metody

Konverzní úprava na bázi titanu, příp. titanu a zirkonia (dále jen Ti/Zr konverzní povlak) je jednou z bezchromových technologií tvorby konverzních povlaků používaných v průmyslové praxi [63]. Je založena na působení kyselé lázně s obsahem komplexů titanu a zirkonia, zpravidla kyseliny hexafluorotitaničité a hexafluorozirkoničité, a dalších složek. Z technologického hlediska je možné rozlišovat standardní lázně, které vyžadují zpravidla minimálně dvoustupňový oplach, přičemž poslední oplach musí být proveden poměrně kvalitní demin vodou, a tzv. bezoplachové lázně, které přinášejí značné usnadnění, co se kontroly procesu týče. Obvykle však vyžadují sušení při vyšších teplotách, což přináší dodatečné provozní a investiční náklady [7].

Jedním z problémů těchto povlaků je jejich bezbarvost. U chromátovaných dílců je na první pohled patrné, zda došlo k depozici konverzní vrstvy. Bezbarvé Ti/Zr konverzní povlaky vyžadují jiné metody kontroly, zpravidla se využívá kapkového testu. Na povrch kovu je přikápnut indikátor, který se zbarví, je-li přítomna konverzní vrstva. Intenzita zbarvení zhruba odpovídá tloušťce vrstvy [7].
Co se mechanismu vylučování Ti/Zr konverzního povlaku týče, byl dlouhou dobou předmětem výzkumu a pravděpodobně je silně ovlivněn složením pracovní lázně a dalšími faktory. Zdroj [7] uvádí následující kroky, které chemicky popisují rovnice (26.–29.):

- Moření reakce, při níž jsou působením kyselého prostředí uvolňovány hlinité ionty do pracovní lázně.
- Reakce hlinitých iontů s vodou a přítomnou komplektní sloučeninou titanu.
- Vyšražení hydratovaných oxidických vrstev hliníku a titanu na povrchu.

\[
\begin{align*}
\text{Al} + 6 \text{H}^+ & \rightarrow \text{Al}^{3+} + 3 \text{H}_2 \\
\text{Al}^{3+} + \text{H}_2\text{TiF}_6 & \rightarrow \text{Ti}^{4+} + \text{H}_2\text{AlF}_6 \\
(\text{Al}^{3+} + \text{H}_2\text{ZrF}_6 & \rightarrow \text{Zr}^{4+} + \text{H}_2\text{AlF}_6) \\
2 \text{Al}^{3+} & + 6 \text{H}_2 \rightarrow \text{Al}_2\text{O}_3\cdot3\text{H}_2\text{O} + 6 \text{H}^+ \\
\text{Ti}^{4+} & + 2 \text{H}_2 \rightarrow \text{TiO}_2 + 4 \text{H}^+ \\
(Z\text{r}^{4+} & + 2 \text{H}_2 \rightarrow \text{ZrO}_2 + 4 \text{H}^+) \\
\end{align*}
\]

Další navrhované mechanismy jsou shrnuty v následující kapitole.

2.2.4.1. Současný výzkum

Lunder a kol. se ve své práci [14] zabývali vlivem mikrostruktury povrchu hliníkových slitin v systému Al–Mg–Si na tvorbu Ti/Zr konverzního povlaku. Struktura experimentu je paralelní s prací [13], která se zabývala hodnocením žlutě chromátovaného povlaku (CCC) a byla zmiňována výše. Povlak byl připraven užitím komerčního přípravku Gardobond X4707 (4 hr, 25 °C, 90 s, pH 2,9–4,0 upraveno pomocí přípravku Gardolene 6800), kterému předcházelo odmaštění v acetonu, alkalické moření v roztoku NaOH (100 g/l, 60 °C, 50 s) a kyselá deoxidace komerčním přípravkem Alflideox 73 (4 %, 25 °C, 60 s) s vloženými oplachovými kroky. Bylo zjištěno, že na rozdíl od CCC se v případě slitiny EN AW 6060-T6 povlak primárně vytváří na a okolo intermetalických částic α-Al(Fe,Mn)Si. Ve větší vzdálenosti od těchto částic a na modelové slitině Al Mg0,5Si0,4 (bez přítomnosti těchto částic) nebylo dosaženo úplného pokrytí. Konverzní vrstva vykazovala částicový charakter.

Na základě tohoto zjištění autoři přepokládají, že se Ti/Zr konverzní povlak vytváří podobným mechanismem jako u cerátového povlaku. Proces lze popsat rovniciemi (30.–33.). Uvedené skutečnosti a předpoklady vedou k určení hlavních faktorů ovlivňujících tvorbu Ti/Zr konverzních vrstev. Jedná se o metalurgii povrchu slitiny, pH pracovní lázně a konvekční podmínky v lázní. Zvyšující se pH pracovní lázně zřejmě povede k intenzivnější tvorbě vrstvy, zatímco intenzivní konvekce bude eliminovat lokální zvýšení pH v okolí katodických intermetalik a bude tak působit proti tvorbě vrstvy. Vliv metalurgie povrchu slitiny se zdá být velmi významný, jelikož různé řady slitin hliníku obsahují různě množství různých intermetalických sloučenin s různými katodickými aktivitami. Autoři proto předpokládají, že bude nezbytný samostatný výzkum tvorby Ti/Zr konverzních vrstev na jednotlivých řadách slitin hliníku [14].
V práci [14] byla dále provedena elektrochemická měření, kterými bylo prokázáno, že jakkoli jsou intermetalické částice α-Al(Fe,Mn)Si překryty Ti/Zr konverzní vrstvou, jejich katodická aktivita není potlačena. Slitina po konverzní úpravě nevykazovala zvýšenou korozní odolnost.


Autoři dospěli k následujícím závěrům. Ti/Zr konverzní povlaky poskytovaly zlepšení životnosti oproti jednodušším povrchovým úpravám, avšak nedosahovaly kvality CCC. Slitina s CCC sice vykazovala nejnižší počáteční pevnost, avšak v klínových zkouškách a testování odolnosti proti FFC si vedla nejlépe. Bylo také potvrzeno, že přítomnost katodických intermetalických částí podporuje vznik FFC. Na modelové slitině AlMg0,5Si0,4, která byla testována paralelně s technickou slitinou, k rozvoji FFC nedošlo.

Další povrchové úpravy byly podobně způsobem analyzovány v práci [69] stejného kolektivu autorů. Kromě analogických referenčních úprav se jednalo o anodickou oxidaci v horké 15% kyselině sírové, vytvoření fosfátanové konverzní vrstvy lázní o složení 100 g/l NaH2PO4, 30 g/l KMnO4 a 0,5 g/l NaF při pH 2 a standardní FPL leptání. Jako nejslibnější se jevila metoda anodické oxidace v horké kyselině sírové.

Zásadní vliv legur přítomných v hliníkové matrice na tvorbu konverzních povlaků byl potvrzen v práci [70]. George a kol. zde připravovali konverzní povlak na bázi zirkonia na speciálně připravených slitinách hliníku o různém obsahu mědi. Tyto slitiny byly připraveny metodou vakuového naprašování, obsažená měď se tedy vyskytovala spíše ve formě metastabilního tuhého roztoku v hliníku než ve formě intermetalické sloučeniny Al2Cu. Jejich složení lze podle principu popsaném v ČSN EN 573-2 [71] vyjádřit jako AlCu1, AlCu5 a AlCu25. Pro porovnání byl povlak vytvořen i na čistém hliníku. Konverzní úprava byla provedena pracovním roztokem s obsahem kyseliny hexafluorozirkoničité (0,0014 mol dm⁻³), kyseliny borité, dusičnanu draselného a kyseliny dusičné. Doba úpravy byla od 30 s do 600 s. Bylo prokázáno, že přítomnost mědi v systému nesnižuje rychlost oxidace hliníkové matrice vlivem kyselého prostředí, avšak zároveň způsobuje snížení rychlost depozice konverzního povlaku. Autoři předpokládají, že tuto skutečnost lze přičíst na vrub negativním vlivu mědi na transport kationtů skrz tvořící se vrstvu. Připravené konverzní povlaky se skládaly především z oxidu zirkoničitého. Autoři předpokládají hydratované formy, jelikož docházelo k jejich praskání pravděpodobně vlivem postupného vysušování.

(Alodine 1200S) je schopen vázat nižší množství pryskyřice než hybridní Ti konverzní povlak (Nabutan STI/310) a že oba povlaky vykazují rozdílné mechanismy adsorpce. Z výsledků lze předpokládat, že hybridní povlaky mají při použití těchto pryskyřic potenciál k dosažení lepších adhezních vlastností než povlaky čistě anorganické.

Smit a kol. [72] sledovali vliv tepelného a mechanického zatížení na korozní chování hliníkových slitin EN AW 5182 a EN AW 3003 s předem připravenými konverzními povlaky na bázi titanu. Pro připravu konverzních povlaků bylo použito jednak komerčního přípravku Alodine 1453R a jednak čisté 0,1M kyseliny hexafluorotitaničité s předleptáním směsi kyselin fluorovodíkové a sírové. Tepelné zatížení bylo simulováno vystavením vzorků teplotě 180 °C po dobu 30 min s následným volným chlazením, mechanické zatížení pak předepnutím vzorků o 10–15 %. Byla též připravena série vzorků vystavených oběma typům zatížení. Vlastní korozní chování bylo hodnoceno měřením polarizačních křivek a elektrochemickou impedančním spektrometrií na vzorcích vystavených po různé časové úseky roztoku NaCl o koncentraci 5 g/l. Měřením bylo zjištěno, že vliv zatížení konverzního povlaku na jeho korozní chování je malý, v případě tepelného a tepelně-mechanického zatížení byly naměřeny dokonce nižší korozní rychlosti než u čerstvě připraveného povlaku. Nedá se tedy předpokládat, že tyto procesy významně snižovaly výkonnost průmyslových povlaků. Korozní chování obou typů konverzních povlaků bylo velmi podobné.

Yi a kol. [63] se zabývali připravou a hodnocením zlatavé Ti/Zr konverzní vrstvy. Vrstva byla připravena působením roztoku o složení: H$_2$TiF$_6$: 2,0–3,0 g l$^{-1}$, H$_2$ZrF$_6$: 1,5–2,5 g l$^{-1}$, NaF: 2,0–3,0 g l$^{-1}$ a kyselina tříslová (C$_7$H$_5$O$_4$) : 2,0–3,0 g l$^{-1}$ po různé časové intervaly v rozmezí 7–25 min. Kyselina tříslová působila jako barvicí činidlo, fluorid sodný pak jako urychlovač tvorby vrstvy. Bylo prokázáno, že připravený povlak má dvojvrstvou strukturu, vnitřní část se skládá z hexafluoroohlinitanu sodného (Na$_3$AlF$_6$), zatímco vnější část se skládá z organokovových komplexů kyseliny gallové (C$_7$H$_6$O$_5$), jakožto hydrolyzního produktu kyseliny tříslové, s hliníkem, tianinem a zirkoniem. Oxidy Al$_2$O$_3$, 3H$_2$O a TiO$_2$, stejně jako fluorid titaničitý (TiF$_4$), se vyskytují pouze minoritně. Mechanismus tvorby konverzní vrstvy byl popsán kroky nukleace a růstu krystalů Na$_3$AlF$_6$ a následně tvorbou a srážením komplexů kyseliny gallové s přítomnými kovy. Pořadí kroků je pravděpodobně způsobeno nižší pohyblivostí objemních molekul kyseliny gallové v pracovním roztoku. Potenciodynamickým měřením bylo prokázáno snížení korozní proudu a tedy zvýšení korozní odpornosti slitiny. Zlatavá barva vrstvy poskytuje slibné řešení problémů s bezbarvostí tradičním konverzním vrstvou na bázi titanu.

Guo a kol. [73] se zabývali charakterizací konverzních povlaků připravených metodou TCP (trivalent chromium process). Tuto technologii lze také zařadit mezi metody na bázi titanu a zirkonia. Pracovní lázně technologie TCP obsahují vedle obvyklých komponent Ti/Zr konverzní úpravy (kyselina sirová, kyselina hexafluorozirkoničitá a hydrogendifluorid amonný) navíc také šíran chromitý. Mechanismus depozice TCP vrstvy a její složení je také obdobné Ti/Zr konverzním povlakům. Rovnice (30.–33.) je však nutné doplnit rovnicí (34.), která vyjadřuje vysrání hydratovaného oxidu chromitěho, který je ve vrstvě minoritně zastoupen [73, 74].

\[ 2 \text{Cr}^{3+} + 6 \text{OH}^- \rightarrow \text{Cr}_2\text{O}_3\cdot 3\text{H}_2\text{O} \quad (34.) \]

V práci [73] byly TCP vrstvy připravovány na materiálu EN AW 2024-T3 dvěma postupy. První zahrnoval alkalické moření v 15 obj. % komerčním přípravku Turco 6849 bez obsahu
křemičitanu sodného\textsuperscript{1} (15 min. při 55 °C) s následující kyselou deoxidací v 20 obj. % komerčním přípravku Turco Smut-Go NC\textsuperscript{2} (5 min. za laboratorní teploty) a vlastní deoxidací TCP povlaku pomocí komerčního přípravku Alodine 5900S (5 min. za laboratorní teploty). Druhý postup se lišil v krocích moření a deoxidace. K moření byl použit roztok křemičitanu sodného (32,4 g/l) a uhličitanu sodného (48 g/l) o pH 13,4 (2 min. při 65 °C). Křemičitan sodný tvoří po reakci s hliníkovým substrátem ochrannou vrstvu, která brání nadměrnému rozpouštění substrátu. Vrstva však zpravidla není následnými oplachovými kroky plně odstraněna, což má v některých případech negativní dopad na tvorbu povlaku metodou TCP. Deoxidace v rámci druhého postupu byla zajištěna působením působením roztoku kyseliny dusičné (72 ml/l) a komerčního přípravku Sanchem 1000 na bázi boritanu sodného (30 g/l) o pH 0,25 (3 min. při 55 °C). Do obou postupů byly vloženy také oplachové kroky [73].

Bylo zjištěno, že v případě druhého postupu zůstává i po deoxidaci na povrchu materiálu jisté množství křemíku, který má pravděpodobně vliv na roli fluoru při tvorbě konverzní vrstvy, jelikož se zpětně do druhého postupu bylo na rozdíl od postupu prvního na rozhraní vrstvy a substrátu detekováno pouze stopové množství tohoto prvku. Jiné významné rozdíly však v obou postupech zaznamenány nebyly [73].

Vrstvy dosahovaly v závislosti na deoxidaci čidlo čidlu kroky v rozmezí 40–120 nm. Struktura povlaku byla dvojvrstevná. Složení vnější vrstvy odpovídalo hydratovaným formám oxidu zírkoniového a chromitého v poměru přibližně 4:1. Vnitřní vrstva se skládala z hydratovaného oxidu, příp. oxofluoridu hlinitého. Šestimocný chrom nebyl v připravených vrstvách detekován. [73].

Pozorováním na rastrovacím elektronovém mikroskopu (SEM) autoři odhalili v připravených vrstvách hluboké trhliny, avšak experimentem bylo prokázáno, že jsou způsobeny z velké míry působením vakua v komoře SEM, které urychluje dehydrataci vrstvy. Dehydratace vlívem atmosférických podmínek probíhala rovněž, ale výrazně pomalejší. Autoři doporučují další zpracování povrchu (např. aplikaci nátěru, lepidla) do 24 hod. od úpravy. Elektrochemickými metodami bylo prokázáno, že vrstvy vzniklé postupy TCP poskytovaly zvýšenou korozní odolnost než neupravené povrchy, avšak téměř stejnou odolnost jako povrchní povrchy povrchy mořené a deoxidované. Lze tedy předpokládat, že kritickým krokem pro zvýšení korozní odolnosti je deoxidace [73].

Technologie TCP by za normálních okolností zřejmě měla potenciál stát se v praxi široce využívanou. Její skutečná perspektiva je však minimální, jelikož je plánován legislativní zákon všech sloučenin chromu bez ohledu na jejich oxidační stav [75].

2.2.4.2. Shrnutí rešerše

Na základě rešeršního průzkumu [13, 14, 46, 63, 68, 70, 72, 73] lze o Ti/Zr konverzních vrstvách vyslovit následující předpoklady. Konverzní vrstva se na povrchu slitiny vylučuje primárně na katodických intermetalických částicích a v jejich okolí v důsledku lokálního zvýšení pH v téhoto oblastech. Přítomnost katodických intermetalik tvorbu vrstvy podporuje, avšak i v takovém případě je dosažení kontinuálního pokroku problematické. Mezi hlavní faktory ovlivňující tvorbu vrstvy patří metalurgie povrchu slitiny, pH pracovní lázně a konvekční podmínky v lázní.

\textsuperscript{1} Přípravek Turco 6849 obsahuje trifosforečnan sodný a směs povrchově aktivních látek [73].
\textsuperscript{2} Přípravek Turco Smut-Go NC je založen na síranu železitém, kyselině dusičné a hydrogen difluoridu sodného [73].
Většina autorů se shoduje na tom, že složení konverzní vrstvy odpovídá hydratovaným formám oxidu hlinitého, titaničitého, příp. zirkoničitého. Vrstva má během vysychání tendenci tvořit trhliny dosahující až na substrát, je proto nutné přistoupit k dalšímu zpracování (např. lepení) brzy po konverzní úpravě.

Zvýšení korozní odolnosti hliníkové slitiny v důsledku vytvoření Ti/Zr konverzní vrstvy není zcela prokazatelné. Jakkoli se konverzní vrstva vylučuje především v oblasti katodických intermetalik, nedochází k utlumení jejich katodické aktivity. V případě lepených spojů připravených z takto upravených adherendů tedy nelze vyloučit selhání spoje v důsledku podkorodování adherendu, např. formou nitkové koroze. Pro dosažení přijatelné životnosti lepených spojů se tedy jako nutné jeví další kroky, zejména pečlivé zatmelení, které zabrání přístupu vlhkosti ke spoji.

Ti/Zr konverzní povlaky poskytují slibné adhezní podmínky. Další zlepšení může být pravděpodobně dosaženo použitím pracovních lázní s obsahem organických komponent. Produktem takové úpravy je hybridní anorganicko-organický konverzní povlak.
3. CÍLE PRÁCE

Experimentální část diplomové práce je zaměřena na využití poznatků získaných rešerší v odborné literatuře k optimalizaci zavedené technologie povrchové úpravy hliníkové slitiny EN AW 5754 ve smyslu dosažení maximálních mechanických vlastností lepených spojů. Dílčí cíle, jichž má být dosaženo, jsou:

- charakterizace chemického složení slitiny, ověření shody slitiny s ČSN EN 573-3.
- ověření vlivu doby kyselé deoxidace slitiny 1,0 obj. % roztokem přípravku A na morfologii jejího povrchu.
- stanovení případné optimální doby kyselé deoxidace slitiny vzhledem ke smykové pevnosti lepených spojů.
- příprava a charakterizace konverzních povlaků na bázi titanu působením 0,3 obj. % roztoku přípravku B.
- příprava a charakterizace konverzních povlaků na bázi zirkonia působením 0,3 obj. % roztoku přípravku C.

Zvolené koncentrace použitých přípravků a teploty, při nichž jsou povrchové úpravy prováděny, vychází z průmyslové praxe. Konverzní úprava přípravkem C byla využita z důvodu problémů při tvorbě konverzní vrstvy působením roztoku přípravku B, cílem práce však v žádném případě není srovnání obou přípravků.
4. EXPERIMENTÁLNÍ ČÁST

4.1. Charakterizace slitiny

Experiment byl proveden na materiálu EN AW 5754 [AlMg3], což je slitina hliníku legovaná průměrně 3% hořčíku, určená pro tváření. Materiál byl dodán ve formě plechů o tloušťce 1,5 mm ve tvarech hřebenů určených pro přípravu lepených spojů. Jedna strana plechů byla viditelně vybroušena, zatímco druhá strana nejeví žádné známky povrchové úpravy. Nebroušená strana byla u všech plechů chápána jako lícová a veškeré lepené spoje byly připraveny na ni. V předpokládané průmyslové praxi nelze před chemickou úpravou povrchu předpokládat jakékoliv mechanické úpravy.

Shoda materiálu s ČSN EN 573-3, předepisující jeho chemické složení, byla ověřována pomocí optické emisní spektroskopie s buzením v doutnavém výboji (GD-OES).

4.2. Kyselá deoxidace

Za účelem objasnění vlivu doby deoxidace přípravkem A na morfologii povrchu materiálu a mechanické vlastnosti lepených spojů bylo připraveno šest sérií vzorků deoxidovaných po různé časové intervale.

Před vlastní povrchovou úpravou byly z hřebenů na metalografické pile Struers Discotom 6 odřezány jednotlivé plechy určené pro lepení. Plechy byly sdruženy do dvojic a na každou dvojici byl pomocí raznic vyražen jednoznačný symbol určující číslo série (doba deoxidace v minutách) a pořadí dvojice v sérii (tj. např. 2A nebo 15C). Pro lepší manipulaci během povrchové úpravy byly jednotlivé plechy zasazeny do multiclipů (Struers), určených pro přípravu tablet pro metalografii. Tím bylo zamezeno dotyku jednotlivých plechů a byl tak zabezpečen přístup k oběma stranám plechu. Z odřezků materiálu byly této vyřezány malé kousky o rozměrech cca (20 × 40) mm určené pro deoxidaci a pozorování na rastrovacím elektronovém mikroskopu (SEM).

Přípravek A byl nařízen na 1,0 obj. % koncentrátu smíšením (12,5 ± 0,25) cm³ přípravku a (1250 ± 7,5) cm³ destilované vody. Pracovní roztok byl vytemperován pomocí termostatu a vodní lázně (pro uspořádání viz Obr. 4) na teplotu (56 ± 1) °C. Vlastní povrchová úprava probíhala následujícím způsobem:

- Odmaštění materiálu v acetonu (Lach-Ner, p.a.) za působení ultrazvuku po dobu 1 min.
- Volné oschnutí na vzduchu.
- Deoxidace materiálu připraveným pracovním roztokem A po dobu 2, 5, 8, 15, 30, resp. 60 min. Přesná doba expozice byla zaznamenána.
- Hrubý oplach deoxidovaného materiálu ponorem do větší kádinky naplněné pitnou vodou.
- Druhý oplach materiálu pod proudem pitné vody.
- Oplach materiálu etanolem (Lihovar Kojetín, 96 %) a vysušení do sucha proudem horkého vzduchu.

V rámci každé série bylo deoxidováno celkem 20 plechů a navíc vzorek pro analýzu na SEM tak, aby bylo u každé série možné připravit 10 lepených spojů. Lepení bylo ve všech případech provedeno do 30 min od dokončení povrchové úpravy. Po slepení a vytvrzení lepidla (viz kapitola 4.4.3.) byl jeden spoj v každé sérii použit pro přípravu metalografického výbrusu za účelem analýzy rozhraní adhesivum – adherend na SEM. Jako referenční série byla připravena analogická série vzorků pouze odmaštěných v acetonu za působení ultrazvuku po dobu 1 min.
4.3. Příprava konverzního povlaku

Cílem experimentu bylo vyšetřit vliv doby působení přípravku B na vlastnosti připravených konverzních povlaků na bázi titanu. Všechny vzorky byly po dobu 480 s deoxidovány postupem uvedeným v kapitole 4.2. Tato hodnota byla stanovena jako výsledek výzkumu popsaného v kapitole 4.2. (veškeré výsledky budou diskutovány níže).

Z přípravku B byly naředěny pracovní lázně o koncentraci 0,3 a 3,0 obj. % výchozího koncentrátu. Konverzní úprava probíhala po dobu 5 s, 20 s, 60 s, 300 s a 1200 s.

Postup byl opakován také za použití neředěného koncentrátu přípravku C a roztoků připravených jeho naředěním na 0,3 a 3,0 obj. %. Pro přiřazení jednotlivých písmenných označení vzorků ke konkrétní povrchové úpravě viz Tabulku 5. Takto upravené vzorky byly analyzovány pomocí rastrové elektronové mikroskopie (SEM) a energiově-disperzní spektroskopie (EDS).

Na závěr práce byl proveden ještě jeden orientační experiment. Jeho účelem bylo získat alespoň první přibližné výsledky zkoušek, jejichž provedení bude v závěru práce doporučeno ředitelům navazujících výzkumných prací. Ze vzorků upravovaných 0,3 obj. % roztokem přípravku C po dobu 20 s, 60 s a 300 s (vzorky M, N, O – viz Tabulka 5) byly připraveny lepené spoje. Jako reference byly připraveny též spoje pouze deoxidované 1,0 obj. % roztokem přípravku A po dobu 8 min. Na každý vzorek připadal v tomto případě z technických důvodů pouze jeden lepený spoj. Jednalo se o orientační měření. Detaily postupu lepení a vytvářzování lepidla jsou uvedeny v kapitole 4.4.3.
Tabulka 5) Systém značení vzorků podrobených konverzní úpravě.

<table>
<thead>
<tr>
<th>zn.</th>
<th>přípravek A 1 obj. %, 55 °C</th>
<th>přípravek B 55 °C</th>
<th>přípravek C 55 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td></td>
<td>0,3 obj. %, 5 s</td>
<td>–</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>0,3 obj. %, 20 s</td>
<td>–</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>0,3 obj. %, 60 s</td>
<td>–</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>0,3 obj. %, 300 s</td>
<td>–</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>0,3 obj. %, 1200 s</td>
<td>–</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>3 obj. %, 5 s</td>
<td>–</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>3 obj. %, 20 s</td>
<td>–</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>3 obj. %, 60 s</td>
<td>–</td>
</tr>
<tr>
<td>J</td>
<td></td>
<td>3 obj. %, 300 s</td>
<td>–</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td>3 obj. %, 1200 s</td>
<td>–</td>
</tr>
<tr>
<td>L</td>
<td></td>
<td>–</td>
<td>0,3 obj. %, 5 s</td>
</tr>
<tr>
<td>M</td>
<td>8 min</td>
<td>–</td>
<td>0,3 obj. %, 20 s</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>–</td>
<td>0,3 obj. %, 60 s</td>
</tr>
<tr>
<td>O</td>
<td></td>
<td>–</td>
<td>0,3 obj. %, 300 s</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td>–</td>
<td>0,3 obj. %, 1200 s</td>
</tr>
<tr>
<td>Q</td>
<td></td>
<td>–</td>
<td>koncentrát, 5 s</td>
</tr>
<tr>
<td>R</td>
<td>8 min</td>
<td>–</td>
<td>koncentrát, 20 s</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>–</td>
<td>koncentrát, 60 s</td>
</tr>
<tr>
<td>T</td>
<td></td>
<td>–</td>
<td>koncentrát, 300 s</td>
</tr>
<tr>
<td>U</td>
<td></td>
<td>–</td>
<td>koncentrát, 1200 s</td>
</tr>
<tr>
<td>V</td>
<td></td>
<td>–</td>
<td>3 obj. %, 20 s</td>
</tr>
<tr>
<td>W</td>
<td>8 min</td>
<td>–</td>
<td>3 obj. %, 60 s</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>–</td>
<td>3 obj. %, 300 s</td>
</tr>
</tbody>
</table>

4.4. Použité instrumentální metody a laboratorní techniky

4.4.1. GD-OES

Atomy prvků s excitovanými valenčními elektrony vyzařují při jejich deexcitací čarové spektrum elektromagnetického záření v UV/VIS oblasti. Poloha jednotlivých čar ve spektru je pro jednotlivé prvky charakteristická a spektrum proto může být využito ke kvalitativní analýze atomizovaných a excitovaných vzorků. Poměrné rozdělení intenzit čar ve spektru udává kvantitativní složení [76].

z jeho povrchu vlivem své kinetické energie odprašují materiál. Atomy vzorku se difuzním mechanismem dostávají do výboje a zde se vlivem srážek excitují. Fotony emitované při deexcitaci atomů vzorku jsou analyzovány optickým spektrometrem [76].

V této práci byl pro prvkovou analýzu slitiny použit přístroj Spectrumat GDS 750 (Leco).

4.4.2. SEM

V této práci byla všechna měření na rastrovacím elektronovém mikroskopu (SEM) provedena na přístroji JEOL JSM-7600F (viz Obr. 5). V metodě SEM je obraz získáván na základě pružných a nepružných interakcí vzorku s Proudem urychlených a elektromagneticky fokusovaných elektronů. Pomocí metody enegiové-disperzní spektroskopie (EDS), která je zpravidla v přístroji zakomponována, je možné získat informace také o chemickém složení vzorku [77].

Obr. 5) Rastrovací elektronový mikroskop JEOL JSM-7600F.

4.4.3. Příprava lepených spojů

Lepené spoje pro měření smykové pevnosti byly připraveny na licových stranách povrchově upravených plechů. Šířka překryvu byla dáná šířkou plechů a činila 25 mm, délka překryvu byla zvolena na 12 mm, avšak vzhledem k tomu, že byl každý spoj připravován zvlášť, docházelo k odchylkám. Průměrná délka překryvu byla (11,5 ± 0,7) mm. Před testováním smykové pevnosti však byly rozměry překryvu konkrétního spoje proměřeny posuvným měřidlem a při výpočtu byly uvažovány skutečné hodnoty.

Lepené spoje připravené v rámci analýzy vlivu doby kyselé deoxidace adherendu na mechanické vlastnosti lepených spojů byly připraveny za použití jednokomponentního epoxidového adhesiva ve formě rohož s bavlněnou nosnou tkaninou. Materiál je před znečištěním chráněn z jedné strany papírem a z druhé strany polymerní fólií. Doporučená skladovací teplota je −18 °C, v průběhu řešení této práce byl materiál po krátkou dobu též skladován v chladničce při teplotě cca 5 °C.

Vytrvzování adhesiva bylo provedeno v laboratorní sušárně Memmert UF110 při teplotě 150 °C po dobu 10 min. Vzhledem k poklesu teploty v důsledku vkládání spojů bylo ve všech případech vyčkáno opětovného dosažení teploty 150 °C a teprve poté bylo
odměřeno 10 min do vyjmutí vzorků. Konkrétní teplotní režimy byly u některých sérii zaznamenány a jsou uvedeny na Obr. 6.

Lepené spoje připravené na adherendech s konverzní úpravou (viz kapitola 4.3.) byly připraveny za použití dvojkomponentního epoxidového adhesiva Bison Epoxy Universal (komerčně dostupné pro užití v domácnosti). Po vytlačení obou komponent na Petriho misku byly tyto po dobu 2 min intenzivně promíchávány tyčinkou. Vlastní nanášení směsi bylo uskutečněno pomocí špachtličky. Bylo dbáno na to, aby ve všech případech byla vrstva lepidla rovnoměrně rozetřena a tvořila co nejtenčí vrstvu. Vytvrzování tohoto adhesiva bylo provedeno v laboratorní sušárně BMT Incucell V55 při teplotě 50 °C po dobu 5 hodin.

Obr. 6) Teplotní režimy během vytvrzování některých lepených spojů.

4.4.4. Testování smykových pevností lepených spojů

Smyková pevnost lepeného spoje \( \sigma_p \) je definována jako podíl maximální dosažené síly během testování \( F_{max} \) a plochy překryvu spoje \( S \) (34.). Jak již bylo řečeno, hodnota \( S \) byla získána u jednotlivých lepených spojů zvláště, měřením posuvným měřidlem. Hodnota \( F_{max} \) byla získána pomocí vyhodnocovacího softwaru, který je součástí všech použitých zařízení pro stanovení pevností v tahu.

\[
\sigma_p = \frac{F_{max}}{S}
\]  

(34.)

Testování smykových pevností lepených spojů bylo pro zhodnocení reprodukovatelnosti metody provedeno na třech různých zařízeních. Jednalo se o zařízení Zwick 1485/Roell společnosti IFE (Kematen an der Ybbs, Rakousko), zařízení Zwick-Roell Z.010 Ústavu chemie materiálů na Fakultě chemické, VUT v Brně a zařízení Instron 5985 Centra materiálového výzkumu rovněž na FCH VUT v Brně. Ve všech případech byla rychlost deformace zvolena na 1 mm·min⁻¹. Shodnost výsledků získaných na jednotlivých zařízeních
byla ověřena paralelními zkouškami. Měření probíhala se stejným časovým odstupem od přípravy lepeného spoje, přičemž tyto spoje byly připraveny všechny za použití stejných lázní, stejným postupem a stejným výzkumníkem v rámci cca 1 hodiny.

Naměřené pevnosti lepených spojů byly v rámci jednotlivých sérií podrobeny Dean-Dixonovu Q-testu odlehlých hodnot na hladině významnosti 0,05. Po vyloučení odlehlých hodnot byl ze zbývajících hodnot vypočítán aritmetický průměr $\sigma_p$ a výběrová směrodatná odchylka $s$. Výsledky byly v souladu s pravidlem 2 sigma prezentovány ve tvaru $(\sigma_p \pm 2s)$.

Zde je třeba zdůraznit, že v současnosti mnoho institucí z různých důvodů uvádí absolutní chybu měření ve tvaru $(\sigma_p \pm 1s)$. Patrně se jedná o zdánlivé, vzhledové zpřesnění prezentovaných výsledků. Je však třeba vytknout, že při tomto intervalu dosahuje spolehlivost výsledku dle Gaussovy křivky pouze 68%. Při námi užívaném tvaru $(\sigma_p \pm 2s)$ činí spolehlivost 95%. Tato forma tedy může být daleko důvěryhodněji přijímána jako skutečná hodnota chyby měření.

### 4.4.5. Příprava metalografických výbrusů

V rámci analyzy vlivu doby kyselé deoxidace na morfologii povrchu slitiny a mechanické vlastnosti lepených spojů byl z každé série připraven jeden metalografický výbrus. Slépený a vytvrzený spoj byl pro Obr. 7 pomocí nůžek na plech a metalografické pily Struers Discotom 6 zmenšen na vhodné rozměry a podélně rozpůlen. Takto upravený vzorek byl zasazen do multiclipu (Struers) a vložen do formy pro přípravu metalografického výbrusu tak, aby rovina půlíčního řezu ležela po vylisování tablety v pozorovatelné ploše. Tableta byla připravena za laboratorní teploty použitím dvojkomponentního přípravku Struers ClaroCit na bázi akrylátu.

Po vytvrzení pryskyřice byla tableta vybroušena metalografickým postupem na brusce MTH Kompakt 1031 za použití brusných papírů o snížující se hrubosti (P60, P220, P400, P800, P1200 a P2500). Broušeno bylo v jednotlivých krocích vždy ve směru kolmém na předchozí krok a minimálně tak dlouho, dokud nedošlo k odstranění všech známek po předchozím kroku. Po vybroušení nejmenšími brusnými papíry byla tableta opláchnuta vodou, následně etanolem a nakonec vysušena proudem horkého vzduchu. Tableta byla následně na stejném zařízení metalografickým postupem vyleštěna za použití textilního kotouče a diamantové pasty (jemnost leštění 1 μm).

Takto připravené metalografické výbrusy byly analyzovány na optickém mikroskopu Zeiss Axio Observer.
5. VÝSLEDKY A DISKUZE

5.1. Chemické složení slitiny


Tabulka 6) Výsledky GD-OES pracovního materiálu a jeho předepsané složení v hm. % dle ČSN EN 573-3 [15].

<table>
<thead>
<tr>
<th></th>
<th>GD-OES</th>
<th>ČSN EN 573-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>0,07</td>
<td>max. 0,40</td>
</tr>
<tr>
<td>Fe</td>
<td>0,59</td>
<td>max. 0,40</td>
</tr>
<tr>
<td>Cu</td>
<td>0,01</td>
<td>max. 0,10</td>
</tr>
<tr>
<td>Mg</td>
<td>3,3</td>
<td>2,6−3,6</td>
</tr>
<tr>
<td>Mn</td>
<td>0,31</td>
<td>max. 0,50</td>
</tr>
<tr>
<td>Cr</td>
<td>0,01</td>
<td>max. 0,30</td>
</tr>
<tr>
<td>Zn</td>
<td>0,10</td>
<td>max. 0,20</td>
</tr>
<tr>
<td>Ti</td>
<td>0,03</td>
<td>max. 0,15</td>
</tr>
<tr>
<td>∑ (Mn+Cr)</td>
<td>0,32</td>
<td>0,1−0,6</td>
</tr>
<tr>
<td>Ni</td>
<td>0,00</td>
<td>–</td>
</tr>
<tr>
<td>Pb</td>
<td>0,01</td>
<td>–</td>
</tr>
<tr>
<td>Sn</td>
<td>0,02</td>
<td>–</td>
</tr>
<tr>
<td>Ca</td>
<td>0,004</td>
<td>–</td>
</tr>
<tr>
<td>zbytek jednotlivě</td>
<td>–</td>
<td>max. 0,05</td>
</tr>
<tr>
<td>zbytek celkem</td>
<td>0,034</td>
<td>max. 0,15</td>
</tr>
</tbody>
</table>

Z výsledků je zřejmé, že obsah železa v materiálu překračuje jeho povolenou koncentraci. Železo je přitom považováno za jeden z nejškodlivějších prvků ve slitinách hliníku. Jak bylo vysvětleno výše [7], může působit jednak zhoršení mechanických vlastností a také ovlivňuje elektrochemické chování slitiny, jelikož jeho intermetalické sloučeniny mají vůči hliníku zpravidla katodický charakter [7, 13]. Tyto sloučeniny sice pravděpodobně podporují tvorbu Ti/Zr konverzních vrstev, ale také způsobují citlivost slitiny vůči korozí, která může stát za selháním lepených spojů [42].

S ohledem na zadání a cíle předkládané práce však tento výsledek neměl žádný praktický dopad. Práce je řešena ve spolupráci s výrobním podnikem. Požadavek ze strany podniku byl formulován ve smyslu výzkumu povrchové úpravy a lepených spojů na tomtéž konkrétním materiálu. Jediným závěrem z této části práce je skutečnost, že podnik byl o stavu materiálu informován.
5.2. Morfologie povrchu slitiny po kyselé deoxidaci

Pomocí rastrovací elektronové mikroskopie (SEM) byly pozorovány rozdíly v povrchové morfologii slitiny kysele deoxidované přípravkem A po různé časové úseky. Pozorované struktury jsou uvedeny na Obr. 8–11.

Je zřejmé, že doba kyselé deoxidace má na povrch slitiny výrazný vliv. S rostoucí dobou deoxidace se v důsledku napadení reliéfní mikrostruktura povrchu slitiny zvýrazňuje, čímž zřejmě dochází také k zvětšení jejího měrného povrchu. Je třeba dodat, že dle adsorpční teorie adheze je plocha povrchu adherendu důležitým, avšak nikoli jediným faktorem ovlivňujícím kvalitu adhezního spojení [5]. Mezi další faktory patří např. kohezní soudržnost povrchu a jeho schopnost přenášet mechanickou energii při namáhání lepeného spoje [31]. Tyto faktory však pomocí strukturní analýzy na SEM nelze kvantifikovat.
Obr. 8) SEM snímky morfologie povrchu slitiny EN AW 5754 po kyselé deoxidaci po dobu a) 0 min, b) 2 min, c) 5 min, d) 8 min, e) 15 min, f) 30 min a g) 60 min (zvětšení: 500×, urychlovací napětí: 10,0 kV, Everhard–Thornleyův detektor sekundárních elektronů).
Obr. 9) SEM snímky morfologie povrchu slítiny EN AW 5754 po kyselé deoxidaci po dobu a) 0 min, b) 2 min, c) 5 min, d) 8 min, e) 15 min, f) 30 min a g) 60 min (zvětšení: 2000×, urychlovací napětí: 10,0 kV, Everhard–Thornleyův detektor sekundárních elektronů).
Obr. 10) SEM snímky morfologie povrchu slitiny EN AW 5754 po kyselé deoxidaci po dobu a) 0 min b) 2 min, c) 5 min, d) 8 min, e) 30 min a f) 60 min (zvětšení: 25000×, urychlovací napětí: 10,0 kV, In-lens detektor sekundárních elektronů).
Obr. 11) SEM snímky morfologie povrchu slitiny EN AW 5754 po kyselé deoxidaci po dobu a) 0 min, b) 2 min, c) 5 min, d) 8 min, e) 30 min a f) 60 min (zvětšení: 50 000×, urychlovací napětí: 10,0 kV, In-lens detektor sekundárních elektronů).
5.3. Závislost smykové pevnosti lepených spojů na době deoxidace

Naměřené smykové pevnosti lepených spojů připravených na adherendech kysele deoxidovaných po různé časové intervale vy uvedeny v Tabulce 7 a graficky znázorněny na Obr. 12.

Tabulka 7) Výsledky testování smykových pevností lepených spojů v závislosti na době deoxidace adherendu.

<table>
<thead>
<tr>
<th>doba deoxidace $t$ [min]</th>
<th>smyková pevnost $\sigma_p$ [MPa]</th>
<th>směrodatná odchylka výběrová $s$ [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9,2</td>
<td>1,9</td>
</tr>
<tr>
<td>2,0</td>
<td>17,8</td>
<td>0,9</td>
</tr>
<tr>
<td>5,1</td>
<td>17,7</td>
<td>1,8</td>
</tr>
<tr>
<td>8,0</td>
<td>19,2</td>
<td>1,1</td>
</tr>
<tr>
<td>15,1</td>
<td>20,1</td>
<td>1,0</td>
</tr>
<tr>
<td>30,2</td>
<td>9,9</td>
<td>1,6</td>
</tr>
<tr>
<td>64,3</td>
<td>14,6</td>
<td>1,4</td>
</tr>
</tbody>
</table>

Obr. 12) Grafické znázornění závislosti smykové pevnosti lepených spojů na době deoxidace adherendů. Výsledky jsou prezentovány v podobě ($\sigma_p \pm 2s$).

Z výsledků je patrné, že uvedená závislost vykazuje maximum v oblasti 8–15 min. Lze tedy předpokládat, že deoxidace provedená právě po takové časové interval vede k nejoptimalnější morfologii povrchu. Pokles smykových pevností zaznamenaný u delších deoxidací podporuje předchozí tvrzení, že plocha povrchu adherendu není jediným faktorem ovlivňujícím kvalitu adhezního spojení [31]. U velmi členitých povrchů může naopak

Skutečnost, že sledovaná závislost vykazuje minimum v čase 30 min je pravděpodobně způsobena prostou nereprodukovatelností povrchů deoxidovaných po delší časové intervale. Konkrétně průběh závislosti v této oblasti není zřejmý a pro jeho objasnění by bylo třeba dalších měření, avšak vzhledem k prokazatelnému maximu v oblasti 8–15 min a technologické nezajímavosti delších časových intervalů toto nebylo v rámci této práce provedeno.

rostoucí charakter závislosti v intervalu 30–60 min by mohl být způsoben také periodicitou vnitřní struktury materiálu, který byl tvářen válcováním. Při deoxidaci dochází k postupnému rozpadu materiálu a je-li jeho struktura periodická, může být po různých časových intervalech deoxidace odhalen povrch s jinými vlastnostmi. S rostoucím čase deoxidace může dojít k odhalení povrchu s podobnými vlastnostmi jako měl povrch deoxidovaný po kratší úsec.

Do budoucna lze doporučit revizi smykové pevnosti po 15 minutách deoxidace (maximum křivky) a dále přibližně po 20–25 minutách deoxidace. Taková měření pomohou potvrdit či zpochybnit existenci optima při 15 minutách a platnost hypotézy o nemožnosti získání reprodukovatelných výsledků již v okolí intervalu 30 minut v důsledku různé hloubky napadení, delaminace struktury, výskytu bublin apod.

Lepené spoje připravené na deoxidovaných adherendech vykazovaly spíše kohezní mód selhání. Lomová plocha se z větší části vyskytovala ve vrstvě adhesiva, avšak ne v jeho vnitřním objemu, ale v oblasti poblíž rozhraní povrch s jinými vlastnostmi. S rostoucím časem deoxidace byla tenká vrstva adhesiva patrná, a to i pouhým okem. Na všech spojích však byly pozorovány i adhezně porušené části lomové plochy.

Na rozdíl od deoxidovaných adherendech byl v případě pouze odmaštěných adherendů (aceton) mód selhání lepených spojů adhezní. Lomová plocha se šířila podél rozhraní adherend-adhesivum, přibližně v polovině délky překryvu lepeného spoje došlo kolum v objemu adhesiva a jeho dalšímu šíření podél rozhraní na protilehlém adherendu. To patrně souvisí s geometrií deformace v místě spoje při tahové zkoušce. Lom v objemu adhesiva v polovině délky překryvu spoje byl pozorován i u deoxidovaných spojů. Charakter lomových ploch obou skupin lepených spojů je lépe patrný z fotografií, které jsou uvedeny v Příloze 1.

Na základě uvedených výsledků lze pro kyselou deoxidaci 1,0 obj. % roztokem přípravku A doporučit dobu 8 min. Po 8 min deoxidace je již téměř dosaženo maximální závislosti. Benefit plynoucí z deoxidace po dobu dalších 7 min je minimální a v technologické praxi by byl takový postup neekonomický. Navíc lze toto pásmo považovat za dostatečnou rezervu z hlediska robustnosti technologie vůči např. technologické nekázní obsluhy nebo závadě na časovači automatické linky.
Obr. 13) Fotografie fázových rozhraní v lepených spojích a) 0 min, b) 2 min, c) 5 min, d) 8 min, e) 15 min, f) 30 min a g) 60 min (optický mikroskop při zvětšení 125 ×).
Obr. 14) Fotografie fázových rozhraní v lepených spojích a) 0 min, b) 2 min, c) 5 min, d) 8 min, e) 15 min, f) 30 min a g) 60 min (optický mikroskop při zvětšení 500×).
Obr. 15) Fotografie fázových rozhraní v lepených spojích a) 0 min, b) 2 min, c) 5 min, d) 8 min, e) 15 min, f) 30 min a g) 60 min (optický mikroskop při zvětšení 1250×).
5.4. Příprava a charakterizace Ti/Zr konverzního povlaku

Připravené Ti/Zr konverzní povlaky byly pozorovány a analyzovány pomocí rastrová elektronové mikroskopie (SEM) a energiově-disperzní spektroskopie (EDS).

V Tabulce 8 jsou uvedeny výsledky EDS analýz vzorků upravovaných 0,3 obj. % přípravku C (L, M, N, O, P) a neředěným přípravkem C (Q, R, S, T). Vzhledem k předpokládané povaze konverzní vrstvy jsou uvedeny výsledky pouze pro prvky kyslík, hliník, zirkonium a fluor. Závislost koncentrací těchto prvků na době konverzní úpravy oběma roztoky je uvedena na Obr. 16 a 17. Pro úplné protokoly z EDS analýz viz Přílohu 2.

Tabulka 8) Výsledky EDS analýz vzorků povrchově upravených přípravkem C.

<table>
<thead>
<tr>
<th>vz.</th>
<th>povrchová úprava</th>
<th>O [hm. %]</th>
<th>Al [hm. %]</th>
<th>F [hm. %]</th>
<th>Zr [hm. %]</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>0,3 %, 5 s</td>
<td>5,3</td>
<td>90,7</td>
<td>0,6</td>
<td>0,7</td>
</tr>
<tr>
<td>M</td>
<td>0,3 %, 20 s</td>
<td>6,0</td>
<td>89,3</td>
<td>0,8</td>
<td>0,9</td>
</tr>
<tr>
<td>N</td>
<td>0,3 %, 60 s</td>
<td>6,8</td>
<td>87,5</td>
<td>1,3</td>
<td>1,5</td>
</tr>
<tr>
<td>O</td>
<td>0,3 %, 300 s</td>
<td>9,9</td>
<td>81,6</td>
<td>2,8</td>
<td>2,9</td>
</tr>
<tr>
<td>P</td>
<td>0,3 %, 1200 s</td>
<td>13,2</td>
<td>72,0</td>
<td>5,6</td>
<td>7,1</td>
</tr>
<tr>
<td>Q</td>
<td>konc., 5 s</td>
<td>5,6</td>
<td>73,1</td>
<td>7,1</td>
<td>11,8</td>
</tr>
<tr>
<td>R</td>
<td>konc., 20 s</td>
<td>7,2</td>
<td>55,0</td>
<td>11,9</td>
<td>24,2</td>
</tr>
<tr>
<td>S</td>
<td>konc., 60 s</td>
<td>14,8</td>
<td>15,0</td>
<td>26,2</td>
<td>43,6</td>
</tr>
<tr>
<td>T</td>
<td>konc., 300 s</td>
<td>7,6</td>
<td>49,1</td>
<td>13,1</td>
<td>29,0</td>
</tr>
</tbody>
</table>

Obr. 16) Závislost složení povrchové vrstvy materiálu na době konverzní úpravy 0,3 obj. % roztokem přípravku C.
Obr. 17) Závislost složení povrchové vrstvy materiálu na době konverzní úpravy koncentrátém přípravku C.

Z výsledků EDS analýzy je patrné, že se konverzní vrstva skládá z fluoridů a oxosloučenin zirkonia a hliníku. V případě zirkonia se patrně, v souladu s mechanismem tvorby vrstvy prezentovaným v práci [14], jedná o oxid zirkoničitý a v případě hliníku o oxid hlinitý, oxid-hydroxid hlinitý a další látky a jejich hydráty běžně se vyskytující v jeho pasivačních vrstvách [7]. V případě fluoridů půjde zejména o fluorid hlinitý, coby nejméně rozpustnou sůl tohoto druhu vznikající v systému. Fluorokomplexy zirkonia by se s ohledem na mechanismy popsané v práci [14] zde již vyskytovat neměly.

Ze závislosti koncentrace sledovaných prvků na době konverzní úpravy lze usuzovat na rychlost tvorby vrstvy. Z Obr. 17 je zřejmé, že existují minimálně dvě fáze tvorby vrstvy. První fáze, která je charakterizována intenzivní tvorbou vrstvy, přibližně v čase 60 s přechází do druhé fáze, kde je již rychlost tvorby vrstvy nižší. Je pravděpodobné, že přechod mezi fázemi nastává v momentě úplného pokrytí povrchu materiálu vrstvou. Tato domněnka je podpořena analýzou na SEM (viz Obr. 21). Z obrázků je patrné, že po 60 s působení koncentrátu přípravku C pokrývá konverzní vrstva již celý povrch.

Skutečnost, že v konverzní vrstvě vzniklé působením koncentrátu přípravku C po dobu 300 s je pomocí EDS detekována nižší koncentrace zirkonia a fluoru než v případě 60 s (viz Obr. 17) lze vysvětlit tendenci vrstvy k odlupování. Domněnka je podpořena snímky ze SEM (viz Obr. 21), kde je v případě 60 s patrné pouze popraskání vrstvy, zatímco v případě 300 s jsou už značné části vrstvy delaminované.

Dále lze předpokládat, že v případě konverzní úpravy 0,3 obj. % roztokem přípravku C nebude vzhledem k vysokému zředění roztoku rozdíl mezi oběma fázemi rychlosti tvorby

Způsob vylučování konverzní vrstvy v raných stádiích úpravy lze postihnout mapováním prvkového složení na povrchu materiálu pomocí EDS. Povrchové mapy vzorků N (0,3 obj. % C, 60 s) a Q (konc. C, 5 s) jsou uvedeny na Obr. 18. Přes nevýraznost purpurové barvy, která odpovídá zirkoniu, jsou sloučeniny tohoto prvku vylučovány od počátku rovnoměrně. Z obrázku je naopak velice zřejmé, že v případě fluoridů jde zpočátku o velmi nerovnoměrné vylučování se sklonem k částicovým strukturám. Tato skutečnost je v dobré shodě s výsledky práce [14], kde autoři dospěli k závěru, že se Ti/Zr konverzní povlaky primárně vytváří na a okolo katodických intermetalických částic.

Obr. 18) Povrchové mapy vzorků N (vlevo) a Q (vpravo), barevná legenda: zelená = hliník, modrá = fluor, purpurová = zirkonium.

Na Obr. 19–22 je znázorněna morfologie vyloučených konverzních vrstev. Je zřejmé, že konverzní úprava 0,3 obj. % roztokem přípravku C za daných podmínek nevede k vytvoření pozorovatelně souvislé vrstvy. Pozorované jsou pouze izolované ostrůvky fluoridů, situované pravděpodobně nad katodickými intermetalickými částicemi ve slitině (Obr. 20).


Z pozorované morfologie připravených konverzních vrstev nelze usuzovat na jejich schopnost podporovat adhezní spojení. Je sice zřejmé, že za technologicky proveditelných podmínek (tj. vhodného řešení koncentrátu a přijatelné doby úpravy) nelze použitím testovaného přípravku C připravit pozorovatelnou vrstvu, pozorované jsou pouze částice fluoridů, avšak EDS analýzou bylo u těchto vzorků prokázáno rovnoměrné pokrytí sloučeninami zirkoniu. Otázku zůstává, nakolik je neexistence viditelných struktur v povlaku negativní pro adhezní vlastnosti materiálu. V práci [68] vykazovaly lepené spoje připravené na adhendech s Ti/Zr konverzním povlakem nejvyšší smykovou pevnost, a to i přesto, že měli autoři potíže s dosažením úplného pokrytí povrchu touto vrstvou. I nízké, čisticové
pokrytí tak zjevně může vést k tvorbě můstků mezi adhesivem a adherendem a v konečném důsledku tak výrazně přispět ke zlepšení mechanických vlastností spoje.

Z tohoto hlediska se konverzní vrstvy připravené koncentrátem přípravku C, především ty s delší dobou expozice, nejeví příliš vhodně. Tyto vrstvy jsou dosti tlusté a mají tendenci k praskání a odlupování (viz Obr. 22S). Nízká adheze konverzního povlaku k substrátu je nežádoucí. Je však třeba zdůraznit, že tyto povlaky vznikly čistě z důvodu pozorování kinetiky procesu.

Obr. 19) SEM snímky povrchu materiálu po konverzní úpravě 0,3 obj. % roztokem přípravku C po dobu L) 5 s, M) 20 s, N) 60 s a O) 300 s (zvětšení: 1 000×, urychlovací napětí: 10,0 kV, Everhard–Thornleyův detektor sekundárních elektronů).
Obr. 20) SEM snímky povrchu materiálu po konverzní úpravě 0,3 obj. % roztokem přípravku C po dobu L) 5 s, M) 20 s, N) 60 s a O) 300 s (zvětšení: 20 000×, urychlovací napětí: 10,0 kV, Everhard–Thornleyův detektor sekundárních elektronů).

Obr. 21) SEM snímky povrchu materiálu po konverzní úpravě koncentrátem přípravku C po dobu Q) 5 s, R) 20 s, S) 60 s a T) 300 s (zvětšení: 1 000×, urychlovací napětí: 10,0 kV, Everhard–Thornleyův detektor sekundárních elektronů).
Výsledky testování smykových pevností lepených spojů připravených na adherendech podrobených konverzní úpravě (viz kapitola 4.3.) jsou uvedeny v Tabulce 9 a graficky znázorněny na Obr. 23.

Z výsledků je patrné, že jakkoliv byla v případě referenčního vzorku naměřená smyková pevnost vyšší než v případě konverzně upravených vzorků, existuje závislost mechanických vlastností lepených spojů na době konverzní úpravy adherendu 0,3 obj. % roztokem přípravku C. Význam tohoto měření spočívá v počáteční informaci pro řešitele navazujících výzkumných prací. Lze jej interpretovat tak, že efekt konverzního povlaku nebude pevnosti zvyšovat rozhodně např. v řádovém měřítku. Na druhou stranu, výsledky naznačují, že závislost na době expozice zřejmě existovat bude a bude mít smysl hledat její maximum. Uvedené orientační výsledky rozhodně nezpochybňují správnost intervalu, na kterém toto maximum může být nalezeno.

K uvedenému grafu poznamenejme, že pro orientaci a alespoň částečnou představu o rozptylech hodnot běžných při tomto typu experimentu bylo užito chybových úseček procentuálně odpovídajících statisticky nejhorším výsledkům zaznamenaným v rámci provedených experimentů (40 % v případě pevnosti spoje neošetřené, pouze odmaštěné, slitiny EN AW 5754). Dalším konkrétním jevem, který lze již komentovat mnohem podloženěji je skutečnost, že i po změně adheziva bylo pro pevnost spoje předupraveného pouze ošminutovou deoxidací dosaženo téměř stejné hodnoty, jako v úvodní části práce. To napovídá o klíčové roli kvalitně připraveného vazného reliéfu, kterému byla v předkládané práci věnována přednostní pozornost i míra vynaloženého úsilí.

Pro úplnou optimalizaci parametrů konverzní úpravy přípravkem C bude také zcela nutné závislost mechanických vlastností lepených spojů na době konverzní úpravy důkladně

**Obr. 22**) SEM snímky povrchu materiálu po konverzní úpravě koncentrátem přípravku C po dobu **Q)** 5 s, **R)** 20 s, **S)** 60 s a **T)** 300 s (zvětšení: 20 000×, urychlovací napětí: 10,0 kV, Everhard–Thornleyův detektor sekundárních elektronů).
proměřit za podmínek reprodukovatelnosti a opakovatelnosti. Jako velice vhodné pro průmyslovou praxi se dále jeví testování životnosti těchto spojů, jelikož v tomto ohledu se Ti/Zr konverzní vrstvy jeví jako problematické [14, 68, 73].

Tabulka 9) Výsledky testování smykových pevností lepených spojů v závislosti na době konverzní úpravy adherendu.

<table>
<thead>
<tr>
<th>doba konverzní úpravy t [s]</th>
<th>smyková pevnost σ_p [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>21,5</td>
</tr>
<tr>
<td>20</td>
<td>16,6</td>
</tr>
<tr>
<td>60</td>
<td>21,2</td>
</tr>
<tr>
<td>300</td>
<td>16,7</td>
</tr>
</tbody>
</table>

Obr. 23) Grafické znázornění závislosti smykové pevnosti lepených spojů na době konverzní úpravy adherendů 0,3 obj. % přípravku C. Výsledky jsou prezentovány v podobě (σ_p ± 2s).

Pomocí metod rastrovací elektronové mikroskopie (SEM) a energiově-disperzní spektroskopie (EDS) byly pozorovány a analyzovány také konverzní povlaky připravené působením přípravku B.

Na Obr. 24–26 jsou uvedeny SEM snímky upravovaných povrchů. Z obrázků je zřejmé, že také v tomto případě nedošlo na povrchu upravovaného materiálu k vyloučení pozorovatelné vrstvy. Na rozdíl od konverzních povlaků připravených působením přípravku C však v tomto případě nebylo na povrchu materiálu pomocí EDS (viz Příloha 2) detekováno žádné množství titanu, které by bylo porovnatelné s obsahem zirkonu v konverzních vrstvách připravených přípravkem C. Po úpravě 0,3 obj. % roztokem přípravku B po dobu 300 s obsahovala povrchová vrstva pouze 0,34 hm. % titanu a 0,48 hm. % fluoru. Vrstva připravená
analogickým postupem pomocí přípravku C obsahovala již 2,9 hm. % zirkonia a 2,8 hm. % fluoru. Přípravek B se tak v tomto světle jeví jako problematický.

Obr. 24) SEM snímky povrchu materiálu po konverzní úpravě 0,3 obj. % roztokem přípravku B po dobu a) 5 s, b) 20 s, c) 60 s a d) 300 s (zvětšení: 250×, urychlovací napětí: 10,0 kV, Everhard–Thornleyův detektor sekundárních elektronů).
Obr. 25) SEM snímky povrchu materiálu po konverzní úpravě 0,3 obj. % roztokem přípravku B po dobu a) 5 s, b) 20 s, c) 60 s a d) 300 s (zvětšení: 1000×, urychlovací napětí: 10,0 kV, Everhard–Thornleyův detektor sekundárních elektronů).

Obr. 26) SEM snímky povrchu materiálu po konverzní úpravě 0,3 obj. % roztokem přípravku B po dobu a) 5 s, b) 20 s, c) 60 s a d) 300 s (zvětšení: 20 000×, urychlovací napětí: 10,0 kV, Everhard–Thornleyův detektor sekundárních elektronů).
V rámci této diskuse ještě připomeňme, že v časovém rozpětí období řešení předkládané práce je lépe výsledky zařadit spíše do výzkumu ovlivnění počáteční pevnosti. V žádném případě nezpochybňujeme kvality v současnosti dodávaných prostředků pro tvorbu konverzních povlaků. Na základě výše uvedených skutečností si však dovolujeme vyslovit hypotézu, že jejich nejsilnějším účinkem bude spíše dlouhodobé udržení trvanlivosti spoje na základě ovlivnění procesů probíhajících při degradaci struktur a intermetalických častic.

**ZÁVĚR**

Na základě provedených experimentů a průzkumu výsledků nálezených v odborné literatuře lze formulovat následující závěry práce.

Obsah železa v používaném materiálu překračuje maximální přípustnou koncentraci stanovenou v ČSN EN 573-3. Tento faktor může mít negativní vliv jak na mechanické, tak na elektrochemické vlastnosti slitiny, jelikož železo zpravidla tvoří intermetalické sloučeniny katodického charakteru vůči hliníkové matrice. Lze předpokládat, že zvýšená koncentrace železa má vliv i na tvorbu konverzních povlaků na bázi titanu a zirkonia. Tyto se totiž, dle dostupných zdrojů, primárně vylučují na a okolo katodických intermetalických častic.


Na materiálu byly přípravkem C vyloučeny konverzní povlaky na bázi zirkonia. Konverzní povlaky vyloučené přípravkem C obsahují fluoridy a oxosloučeniny hliníku a zirkonia. Vzhledem k jejich tendenci k praskání lze předpokládat hydratované formy těchto sloučenin. Analýzou povlaků připravených zředěným přípravkem bylo prokázáno, že se různé komponenty konverzní vrstvy na povrchu materiálu vylučují různým mechanismem. Zatímco sloučeniny zirkonia se na povrchu materiálu vylučují rovnoměrně, fluoridy tvoří shluky situované pravděpodobně do okolí katodických intermetalických častic. Můžeme konstatovat, že v případě užití tohoto přípravku i při naředění na 0,3 obj. % vůči koncentrátu vzniká rovnoměrný povlak detekovatelný pomocí EDS spektroskopie již po pěti vteřinách ponoru. Vliv tohoto povlaku na dlouhodobou životnost epoxidových lepených spojů doporučujeme ověřit v rámci dalších prací. Navrhované rozměry hledání optima doby expozice předpokládáme na základě orientačních zkoušek pro hodnoty 20–300 s. Vzhledem k možnosti
selhání lepených spojů v důsledku koroze adherendu by bylo rovněž vhodné provést potenciodynamická měření materiálu před a po konverzní úpravě.

Konverzní úpravou přípravkem B nedošlo k vytvoření žádné struktury prokazatelně užitými mikrosokopickými a spektrálními metodami. Prostředek B pouze prokazatelně naleptává povrch slitiny, což při překročení jisté doby expozice může vést naopak k rapidnímu zhoršení kvality lepeného spoje. V uvedeném prostředku byla sice potvrzena přítomnost titanu i fluoru, zejména fluor obsahující složky jsou však přítomny v podobě značně nestálé. Nekonstatujeme v žádném případě, že je prostředek B méně kvalitní než prostředek C.

– V práci byl jednoznačně potvrzen klíčový vliv řádné deoxidace povrchu slitiny EN AW 5754 přípravkem A a byly stanoveny konkrétní hodnoty pro její provedení.

– Na základě získaných poznatků se vliv konverzních procesů jeví významný zejména pro dlouhodobé vlastnosti lepených spojů.

– Konverzní prostředky na bázi zirkonia vykazují lepší kontrolovatelnost vývoje struktury povlaku.

– Vytyčených cílů práce bylo dosaženo v plném rozsahu.
LITERATURA


[65] KOUBA, Jan, Martin ZMRZLÝ, Jakub TKACZ a Jaromír WASSERBAUER. *Konverzní povlaky na bázi ceru pro hliníkové slitiny* [přednáška]. 16.10.2012 [cit. 16.10.2012].


SEZNAM POUŽITÝCH ZKRÁTEK A SYMBOLŮ

ČSN EN Česká státní norma s platností Evropské normy
EN AW normové označení slitiny hliníku pro tváření
H28, T6 normové označení tepelné úpravy slitiny hliníku
FCC plošně středěná krychlová mřížka (z angl. face centered cubic)
$\Delta G^{\text{ads}}$ změna Gibbsovy energie spojená s procesem adsorpce
$\Delta H^{\text{ads}}$ změna entalpie spojená a procesem adsorpce
$\Delta S^{\text{ads}}$ změna entropie spojená s procesem adsorpce
$W_A$ adhezní práce
$\gamma$ povrchová energie
c koncentrace látky v prostředí
$\Gamma$ rovnovážná koncentrace látky adsorbované na adsorbentu
$\Gamma_m$ maximální možná koncentrace adsorbované látky na adsorbentu
$K, K(T)$ rovnovážná konstanta adsorpce
$T$ teplota
$E, C$ koeficienty Drago-Waylandovy rovnice
$G$ lomová energie potřebná ke zvětšení trhliny ve spoji o jednotku plochy
$G_0$ prahová hodnota lomové energie
$v$ rychlost zatěžování spoje
FFC nítková koroze (z angl. filiform corrosion)
PAA anodická oxidace v kyselině fosforečné (z angl. phosphoric acid anodizing)
CAA anodická oxidace v kyselině chromové (z angl. chromic acid anodizing)
EU Evropská unie
CCC chromátování (z angl. chromate conversion coating)
FPL technologie povrchové úpravy hliníku (z angl. Forest Product Laboratory)
P2 technologie povrchové úpravy hliníku
STAB 3 technologie povrchové úpravy hliníku (z angl. surface treatment for adhesive bonding)
ASTM normovací institut Spojených států (z angl. American Society for Testing and Materials)
SIMS-ToF hmotnostní spektrometrie sekundárních iontů s průletovým analyzátorom
TCP technologie povrchové úpravy hliníku (z angl. trivalent chromium process)
GD-OES optická emisní spektroskopie s buzením v doutnávém výboji (z angl. glow discharge optical emission spectroscopy)
SEM rastrovací elektronová mikroskopie (z angl. scanning electron microscopy)
EDS energiově disperzní spektroskopie (z angl. energy dispersive spectroscopy)
$\sigma_p$ smyková pevnost lepeného spoje
$S$ plocha překryvu lepeného spoje
$F_{\text{max}}$ maximální síla dosažená při testování smykové pevnosti lepeného spoje
$s$ výběrová směrodatná odchylka

65
SEZNAM PŘÍLOH

Příloha 1  Fotografie lomových ploch lepených spojů
Příloha 2  Protokoly z analýz na energiově disperzním spektrometru