POSUDEK OPONENTA DIPLOMOVÉ PRÁCE

Autor diplomové práce: Bc. Petr Obršlík

Bc. Petr Obršlík předložil diplomovou práci s názvem „Modelování a statická analýza stropní konstrukce v programu ANSYS“, která je zaměřena k vytvoření modelu stropní ocelobetonové konstrukce metodou konečných prvků k výpočtu normálových napětí a posunů, porovnání výsledků z programu ANSYS s výsledky ručních výpočtů statických veličin z vybraných míst zjednodušeného modelu konstrukce a porovnání hodnot extrémů napětí a posunů/průhybů s hodnotami získanými podle příslušné normy.

Po vstupních sedmi stranách (nezařazených do počtu stran práce) začíná diplomová práce obsahem (2 strany) a seznamy obrázků a tabulek (celkem 3 strany). Dvoustránkový úvod zahrnuje i cíl práce. Druhá kapitola (7 stran) představuje popisy dispozice a stropní konstrukce, skladbu stropu a podlahy, výpočet vlastní tihy nosné konstrukce a stálého zatížení. Třetí kapitolu (11 stran) tvoří statický výpočet nejvíce namáhaného nosníku konstrukce – spojitého nosníku o dvou polích. Obsahuje ruční výpočty ohybového momentu od vlastní tihy a průřezových charakteristik ideálního průřezu; jsou provedeny verifikace výpočtu s výsledky programu ANSYS – maximální normálové napětí a hmotnost nosníku. Ve čtvrté kapitole (21 stran) diplomant podrobně popisuje tvorbu modelu programu metody konečných prvků ANSYS a postup modelování konstrukce. Pátou kapitolou (15 stran) autor čtenáře provádí zadání okrajových podmínek a zatížení konstrukce – opět s dílčí kontrolou ručním výpočtem. Šestá kapitola (16 stran) obsahuje výsledky řešení dané konstrukce a posouzení mezních stavů – únosnosti a použitelnosti. V sedmé kapitole (4 strany) diplomant uvádí porovnání výpočtů extrémních hodnot napětí a přetvoření s mezními a doporučenými hodnotami v platných normách. Následují stručný závěr (1 strana), seznam zkratek (2 strany), použité zdroje (2 strany; 12 položek – neobsahuje položku ze zadání diplomové práce) a seznam osm příloh (celkem 16 stran – včetně výkresu stropu na A3 formátu.

Práci lze zhodnotit jako standardní, přehlednou a vcelku logicky členěnou, bez podstatných nedostatků. Diplomant bezpochyby splnil zadání práce, seznámil se podrobně s aspekty problematiky výpočtu a posouzení dané stropní konstrukce metodou konečných prvků v programu ANSYS s ohledem na mezní stav únosnosti a použitelnosti, přičemž si dokázal ověřit správnost vybraných výstupů programu ručním výpočtem. K diplomové práci nemám připomínek a doporučuji ji k obhajobě.

Klasifikační stupeň ECTS: B/1,5

V Brně dne 30. 1. 2014

Podpis

Klasifikační stupnice

<table>
<thead>
<tr>
<th>Klas. stupeň ECTS</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Číselná klasifikace</td>
<td>1</td>
<td>1,5</td>
<td>2</td>
<td>2,5</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>