POSUDEK OPONENTA DIPLOMOVÉ PRÁCE

Autor diplomové práce: Bc. Lucie Mechalová

Oponent diplomové práce: Ing. Daniel Marton, Ph.D.

Tématem diplomové práce bylo použití hydrologických předpovědních modelů při řízení soustavy nádrží Brno Vír I ležících v povodí řeky Svratky. Ze zadaného tématu jasně vyplývá úkol a cíl práce pro diplomantku, kterým bylo ověření dvou typů předpovědních modelů průměrných měsíčních průtoků při strategickém řízení zásobní funkce zmíněné kaskády nádrží. Předpovězená data průměrných měsíčních průtoků byla převzata z bakalářské a diplomové práce, které s uvedenou prací úzce souvisely. Řízení bylo provedeno pro tři vybrané roky a pro dva způsoby řízení. Prvním způsobem řízení bylo tzv. řízení prosté na nalepšený odtok. Prosté řízení diplomantka sestrojila sama za pomocí programu EXCEL. Druhým způsobem bylo řízení pomocí tzv. adaptivního řízení soustavy nádrží, které bylo provedeno v softwaru SOMVS. Následně bylo provedeno porovnání řízení s podkladem z předpovědních modelů s řízením na reálných datech. Na závěr bylo testováno, zda kombinace hydrologických předpovědí a pokročilého řízení soustavy nádrží jsou přínosné či nejsou.

Z předloženého textu diplomové práce je jasné, že se student zvládl vypořádáním s mnoha problémy teoretického a technického charakteru. Teoretické hledisko obnášelo osvojení principů matematického modelu zásobní funkce vodohospodářské soustavy. Technická rovina znamenala hlavně sestavení simulačního modelu v programu EXCEL a osvojení práce se softvarem SOMVS.

Předložené závěry práce, uvedené výsledky a jejich zpracování ukazují, že student problém pochopil, i když celé téma nebylo zrovna jednoduché. Diplomová práce je celkově docela přehledná. Členění jednotlivých kapitol je logicky provázáno. Menší výtka patří k popisu a provázanosti textu s tabulkami a obrázky v části Shrnutí výsledků. Zde bych pro lepší pochopení práce uváděl přesnější popis a také lepší formulace výsledků. Tab. 35. až 37. stejně jako obr. 13. až 15. krášně demonstrují přínos adaptivního řízení v kombinaci s předpovědními modely. U dalších početních výstupů bohužel chybí lepší popis dosažených výsledků, což svým způsobem snižuje celkový dojem z provedené práce. Částečně se uvedené výtky se dají pochopit vzhledem k náročnosti zadané práce. I přes tyto nedostatky v textu doporučuji diplomovou práci přijmout k obhajobě.

Otázky a připomínky:

- Tabulky 6. a 7. hodnoty odtoku z nádrže Vír I jsou vypočteny ve sloupcích 6, jsou tyto hodnoty pravdivé? Jak byla hodnota odtoku vody z nádrže v obou tabulkách počítána?
- Tabulka 9. sloupec 6 hodnoty odtoku vody z nádrže Vír. V tabulce jsou použity dvě hodnoty 0,75 m³ s⁻¹ a 0,53 m³ s⁻¹. První hodnota odtoku 0,75 m³ s⁻¹ je z textu jasná, je to požadovaný průtok pod nádrží. Co znamená druhá hodnota 0,53 m³ s⁻¹ a jak se tato hodnota obecně se odvozuje?
• Tabulka 14. průměrné odtoky pro nádrž Vír. Co jsou to za hodnoty a jak se odvozují?

• Třetí odstavec na straně 32 a tabulky 35. až 37 mezi sebou souvisí. Je tvrzení v odstavci pravdivé? Prosím o vysvětlení.

• Je možné z grafů obr. 16. až 51. vybrat ukázkové řešení pro volené roky a demonstrovat na nich výhody pokročilého adaptivního řízení soustavy nádrží Brno Vír I?

Klasifikační stupeň ECTS: B/1,5

V Brně dne 22. 1. 2015

Podpis

<table>
<thead>
<tr>
<th>Klasifikační stupnice</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Klas. stupeň ECTS</strong></td>
</tr>
<tr>
<td>Číselná klasifikace</td>
</tr>
</tbody>
</table>