MLÉKO A MLÉČNÉ VÝROBKY A JEJICH VÝZNAM VE VÝŽIVĚ
MILK AND DAIRY PRODUCTS AND THEIR IMPORTANCE IN NUTRITION

BAKALÁŘSKÁ PRÁCE
BACHELOR´S THESIS

AUTOR PRÁCE
AUTHOR
HANA ŠUBERTOVÁ

VEDOUcí PRÁCE
SUPERVISOR
DOC. ING. JIŘINA OMELKOVÁ, CSC.

BRNO 2015
Zadání bakalářské práce

Číslo bakalářské práce: FCH-BAK0908/2014
Akademický rok: 2014/2015

Ústav: Ústav chemie potravin a biotechnologií
Student(ka): Hana Šubertová
Studijní obor: Chemie a technologie potravin (B2901)

Název bakalářské práce:
Mléko a mléčné výrobky a jejich význam ve výživě

Zadání bakalářské práce:
1. Vypracujte literární přehled k dané problematice
2. Popište použité metody hodnocení
3. Zpracujte naměřené výsledky z experimentů
4. Zhodnoťte získané výsledky formou diskuse

Termín odevzdání bakalářské práce: 22.5.2015
Bakalářská práce se odevzdává v děkanem stanoveném počtu exemplářů na sekretariát ústavu a v elektronické formě vedoucímu bakalářské práce. Toto zadání je přílohou bakalářské práce.

Hana Šubertová
Student(ka)
doc. Ing. Jiřina Omelková, CSc.
Vedoucí práce
prof. RNDr. Ivana Márová, CSc.
Ředitel ústavu

prof. Ing. Martin Weiter, Ph.D.
Děkan fakulty
ABSTRAKT

Cílem této práce je rozbor složení mléka, jeho vznik, původ a místo tvorby a dále zhodnocení prospěšných i škodlivých vlastností mléka. Dalším aspektem této studie je důvod, proč bychom měli mléko konzumovat a zda je vůbec zdraví prospěšné.

V následující části práce je vypracováni literární rešerše, jak mléko a různé výrobky působí na lidskou výživu a seznámení se s problémy konzumace mléka.

V další části mé práce je popsaný průběh „cesty mléka“, tedy co všechno se děje s mlékem, jako výrobní surovinou, děje, jak probíhá technologie výroby a zpracování mléka, mléčných výrobků a polotovarů. Dále porovnání mých naměřených údajů s normovanými údaji, nebo s údaji na obalu.

ABSTRACT

This bachelor thesis is engaged in the analysis of the composition of the milk, its creation, origin and source and furthermore it is engaged in the evaluation of the beneficial and harmful properties of milk. Another aspect of this thesis is reasoning about why we should consume milk and whether it is even beneficial to health.

In the following part of this work, the literature review is created about about how milk and different products affect human nutrition and the thesis is studying the problematics of milk consumption.

The next part of my thesis describes the course of "milk route", which explains what is happening to milk as a raw material, then the technology of production and processing of milk, milk products and semi-finished products and also contains the comparison of my measured data with the standardized data, or the data on the packaging.

KLÍČOVÁ SLOVA

Mléko, výživa, mléčné výrobky, technologie zpracování mléka, obsahové látky v mléce.

KEYWORDS

Milk, nutrition, milk products, Technology of processing of milk, containis substances in milk.
PROHLÁŠENÍ
Prohlašuji, že jsem bakalářskou práci vypracovala samostatně, na základě literatury a pramenů uvedených v seznamu použité literatury. Bakalářská práce je z hlediska obsahu majetkem Fakulty chemické VUT v Brně a může být použita ke komerčním účelům jen se souhlasem vedoucího bakalářské práce a se souhlasem děkana FCH VUT.

V Brně dne

Autor: Hana Šubertová
Podpis autora: ……………………………

PODĚKOVÁNÍ
Chtěla bych srdečně poděkovat vedoucí mé bakalářské práce Doc. Ing. Jiřině Omelkové, CSc. za odborné vedení, připomínky, pomoc, a také za vždy vstřícný a tolerantní přístup, které mi poskytla při vypracovávání mé bakalářské práce.
OBSAH
Abstrakt ... 3
Abstract ... 3
Klíčová slova .. 3
Keywords .. 3
Bibliografická citace této práce ... 4
Prohlášení ... 4
Poděkování ... 4
Obsah .. 5
1. Úvod ... 8
2. Teoretická část ... 9
 2.1. Co je to vůbec mléko? .. 9
 2.1.1. Chemický pohled .. 9
 2.1.2. Fyzikální pohled ... 9
 2.1.3. Potravinářský pohled ... 9
 2.1.4. Biologický pohled ... 10
 2.2. Druhy mléka .. 12
 2.3. Složení mléka .. 12
 2.3.1. Dusíkaté látky ... 13
 2.3.2. „Obranná funkce mléka“ aneb antimikrobiální látky v mléce.................. 15
 2.3.3. Mléčný tuk .. 16
 2.3.4. Laktosa – mléčný cukr .. 17
 2.3.5. Minerály a soli .. 17
 2.3.6. Vitamíny v mléce .. 18
 2.4. Spotřeba mléka ... 19
 2.5. Kontaminace syrového mléka .. 20
 2.6. Vliv na lidské zdraví .. 20
 2.6.1. Mléko a mléčné výrobky, jako prevence osteoporózy 20
 2.6.2. Mléko jako suroviná proti prevenci zubního kazu 21
 2.6.3. Vliv konzumace mléka na tvorbu kožního tuku 21
 2.6.4. Problémy při požívání mléka aneb alergie na mléko 21
 2.6.5. Intolerance laktosy .. 21
 2.7. Mléčné výrobky a jejich dělení .. 22
 2.7.1. Tekuté mléčné výrobky .. 22
2.7.2. MÁSLO A MRAŽENÉ SMETANOVÉ KRÉMY ... 22
2.7.3. KONCENTROVANÉ A SUŠENÉ VÝROBKÝ .. 23
2.7.4. KYSANÉ MLÉČNÉ VÝROBKÝ .. 23
2.7.5. TVAROHY A SÝRY .. 25
2.7.6. MLÉČNÉ DESERTY ... 26
2.8. BLOKY MLÉKÁRNY ... 26
2.9. TECHNOLOGICKÉ ZPRACOVÁNÍ .. 27
 2.9.1. SANITACE NEBOLI ČISTRNÍ SE OZNÁCUJE CIP (CLINIC IN PLACE) 27
 2.9.2. PŘÍJEM MLÉKA .. 27
 2.9.3. PASTERACE MLÉKA .. 28
 2.9.4. ZPRACOVÁNÍ MLÉKA A SMETANY ... 30
2.10. LABORATORNÍ METODY ... 34
 2.10.1. STANOVENÍ TITRAČNÍ KYSELOSTI SYROVÉHO MLÉKA 34
 2.10.2. STANOVENÍ AKTIVNÍ KYSELOSTI .. 34
 2.10.3. STANOVENÍ SUŠINY MLÉKA VÝPOČTEM Z HUSTOTY A OBSAHU TUKU 35
 2.10.4. STANOVENÍ NÁŠLEHU NEBOLI ŠLEHATELNOSTI SMETANY 35
 2.10.5. STANOVENÍ OBSahu SUŠINY RUTINNÍ METODOU ... 35
 2.10.6. STANOVENÍ TUKŮ GERBEROVOU NEBOLI PROVOZNÍ METODOU 35
 2.10.7. STANOVENÍ CHEMICKÝCH PARAMETRŮ INSTRUMENTÁLNÍ METODOU MILKOSCAN FT 120 ... 35
3. EXPERIMENTÁLNÍ ČÁST .. 35
 3.1. STANOVENÍ TITRAČNÍ KYSELOSTI SYROVÉHO MLÉKA .. 35
 3.2. STANOVENÍ AKTIVNÍ KYSELOSTI .. 36
 3.3. STANOVENÍ NÁŠLEHU SMETANY ... 36
 3.4. STANOVENÍ OBSahu SUŠINY RUTINNÍ METODOU .. 36
 3.5. STANOVENÍ OBSahu TUKU GERBEROVOU NEBOLI PROVOZNÍ METODOU 36
 3.6. STANOVENÍ CHEM. PARAMETRŮ INSTRUMENTÁLNÍ METODOU MILKOSCAN FT 120 ... 37
4. VÝSLEDKY A JEHU DISKUSE ... 37
 4.1. TECHNOLOGICKÝ ÚSEK .. 37
 4.1.1. TECHNOLOGICKÉ ZÁZNAMY Z PASTÉRU MLÉKA ... 37
 4.1.2. ZÁZNAMY Z DEZERTNÍ LINKY ... 39
 4.1.3. ZÁZNAMY Z TVAROHÁRNY .. 40
 4.2. LABORATORNÍ ÚSEK .. 42
 4.2.1. STANOVENÍ TITRAČNÍ KYSELOSTI MLÉKA A SMETANY 42
 4.2.2. STANOVENÍ AKTIVNÍ KYSELOSTI .. 42
4.2.3. Stanovení sušiny mléka výpočtem z hustoty a obsahu tuku ... 42
4.2.4. Stanovení nášlehu smetany .. 43
4.2.5. Stanovení obsahu sušiny rutinní metodou .. 43
4.2.6. Stanovení obsahu tuků Gerberovou metodou .. 43
4.2.7. Stanovení chemických parametrů instrumentální metodou Milkoscan FT 120 44
5. Závěr ... 45
6. Použité informační zdroje .. 46
7. Seznam Tabulek .. 47
8. Seznam grafů ... 48
9. Seznam obrázků .. 48
10. Seznam použitých zkratek: ... 49
1. ÚVOD

Mléko patří k základním potravinám člověka po tisíce let. Jedná se téměř o dokonalou potravinu, protože obsahuje velké množství živin, které jsou nepostradatelné pro dětskou i dospělou populaci. Mléko je významný zdroj vápníku, laktozy, lehce stravitelného tuku, velmi hodnotných bílkovin i mnoha vitaminů. Mléko slouží jako komplexfiologická tekutina, kde chemické i fyzikální vlastnosti zcela vyhovují výživovým potřebám mláďat.

V současnosti mezi lidmi kolují dva protikladné názory, kde jedna skupina je velkým příznivcem mléka, druhá, která má odlišné názory, mléko striktně odmítá a argumentuje důvody typu, že mléko patří mláďatům savců, že zahleňuje, způsobuje alergie nebo jim prostě nechutná. Někteří lidé mléko nepijí z přesvědčení, že krávy nepotřebují produkovat tak velké množství mléka, jsou díky tomu zneužívány. Existuje wellfare, což je metoda chovu, která se snaží vylepšit životní podmínky chovaných zvířat.

Lidský organismus, až na výjimky, se však časem adaptoval na tuto významnou potravinu, která je důležitým zdrojem specifických bílkovin. V budoucnosti bude nedostatkové množství kvalitních zdrojů proteinů, proto se hledají alternativní zdroje, jako jsou řasy, brouci atd. V naší době je přijem mléka snadné a dostupné řešení. V minulosti byl poměr konzumace mléka jiný, než je dnes, například naše předci konzumovali mléko a jeho produkty v mnohem větším poměru k masu, než v současné době. Může to však být způsobeno jiným druhem obživy. Přesto dnes celková spotřeba a požadavky mléka stoupá. Protože kromě již zmíněného elixíru prospěšných živin zároveň přiznivě podporuje činnost střevní mikroflóry, a díky tomu zvýšení aktivity peristaltických pohybů a samotného trávení.

Je také důležité, jaké mléko vlastně konzumujeme, tedy jak, nebo zda je upravené. Například veškeré mléko dostupné na trhu musí být pasteurované, protože syrové mléko může obsahovat i toxiny a patogenní mikroorganismy.
2. TEORETICKÁ ČÁST

V této kapitole je rozebráno, jak se na mléko dá pohlížet, tedy z jakých hledisek, dále na druhy mléka a jeho složení, následně pak, jak je na tom tato surovina se spotřebou v průběhu let, a je popsané, jak se může syrové, čerstvě nadojené mléko kontaminovat. Dále je věnována pozornost mléčným výrobkům, pak se s mlékem děje, když přijede do mlékárny jako surovina, jak se zpracovává a následně pak dostává ke spotřebiteli. Nakonec následuje vypracování rešerše, jak lze využít mléko pro lidský organismus, k čemu je dobré, a naopak, jaké jsou jeho negativní vlastnosti či vlivy.

2.1. Co je to vůbec mléko?

Na mléko se dá pohlížet z několika pohledů, a to z biologického chemického, fyzikálního a potravinářského.

2.1.1. Chemický pohled

Mléko je bílá až lehce nažloutlá kapalina, která tvoří polydisperzní systém. Jedná se o emulzi tuků ve vodě, tedy vodou a disperzní fázi. Je možné rozdělit mléko na několik fází. Molekulární fáze tvoří s vodou pravé roztoky, můžeme říci, že jde tedy o homogenní část, patří sem laktosa, fosforečnany, chloridy a citráty. Další fáze je koloidní, kterou tvoří bílkoviny a poslední, emulzní fázi tvoří tuk.

Mléko má nestálé složení jeho obsahové látky a vlastnosti se mění a závisí na zdroji suroviny, sezóně, délce od porodu mláděte a podmínkách skladování.

2.1.2. Fyzikální pohled

Mléko má proměnlivé fyzikálně-chemické vlastnosti, například hustota se pohybuje v intervalu 1029-1033 kg/m³. Jak již bylo řečeno, tato surovina závisí na aktuálním složení látek, kde vyšší množství proteinů a sacharidů zvyšují hustotu, kdežto obsah tuku ji snižuje. Například rozlišuje se jarní a zimní mléko, přičemž zimní je bohatší na tuky. Mlékárny si mohou kontrolovat, zda byl tuk dodané suroviny odebraný, nebo zda mléko nebylo zředěné přídavkem vody. Další významnou vlastností mléka je povrchové napětí, které je ve srovnání s vodou nižší, a to díky obsahu povrchově aktivních látek, jako jsou bílkoviny. Přičemž povrchové napětí závisí také na pěnivosti, jestliže se začne tvořit pěna, vzduchové bubliny se promíchají s kapalinou a tím se sníží povrchové napětí. Bod mrznutí se pohybuje v intervalu -0,53 až -0,57 °C, a teplota varu má za normálního tlaku asi 100,17 °C.

Zajímavou vlastností je kyselost, přičemž se dá rozlišit aktivní kyselost, kde se stanovuje koncentrace oxoaniových kationtů, tedy pH čerstvého syrového mléka se pohybuje v rozmezí 6,4 až 6,8, a titráční kyselost, což je titráční spotřeba 0,25 normálního hydroxidu sodného na 100 mililitrů mléka. Tento druh kyselosti ukazuje přítomnost metabolických poruch.

2.1.3. Potravinářský pohled

Mléko můžeme zařadit do jedné z třinácti potravinářských komodit, což jsou skupiny potravin, ke kterým se vztahují specifické vyhlášky a normy nařizující správné zpracování, uchovávání, správnou výrobní praxi atd.

2.1.4. Biologický pohled

Mléko se tvoří u samic savců ve vemenu obsahující mléčnou žlázu, které se vytvořilo modifikací kůže a je funkčně spojeno s pohlavní soustavou, kde úroveň vývinu vemene závisí na mnoha vlivech, jako jsou faktory typu živočišný druh a plemeno. U skotu se se rozlišují masná, mlécná a kombinovaná plemena. Mezi další faktory patří výživný stav, stáří a pohlavní cyklus jedince. U různých druhů zvířat vypadá mlécná žláz odlišně. Například u skotu se vytváří vemeno složené ze čtyř samostatných celků, kterými jsou úplně oddělené žláz zakončené strukem. Viz obrázek 1.

Obrázek 1: Kravské vemeno se čtyřmi struky (Zdroj: www.opotravinach.sk)

Mlécná žláz se zakládá již v embryonálním stádiu vývoje jedince, a co je překvapující, u obou pohlaví. Po narození samiček dojde k zanedbatelnému růstu a vývoji mléčné žlázy, minimální tvorbě tukové tkáně. V pubertě jedince dochází ke zvýšenému parenchymu vemene, ale k největšímu růstu a vývoji dochází během období gravidity. Mlécná žláz se skládá z lalůčků složených ze sekrénních alveol neboli váčků, které jsou vystlané sekrečním epitelym, což je pojivová tkáň. Skupina několika mlécných alveol tvoří lalůček, přičemž od něj vedou tubuly, zvané též kanálky, spojující se do vývodných cest – mlékovodů, které ústí do mlékojemu a strukového kanálu. Pro lepší představu a názornost anatomii vemene a mléčné žlázy vidíme níže obrázek 2. [17] [23] [24] [30]

2.1.4.1. Tvorba mléka

Samotné mléko se tvoří v sekrénním parenchymu mléčné žlázy (alveolus), přičemž jsou tyto buňky odděleny bazální membránou od tělních tekutin, jako je krev a lymfa. Pro tvorbu jednoho litru mléka
je potřeba průtoku 400 až 450 litrů krve. Jeho tvorba probíhá tak, že sekreční buňky mléčné žláz přijímají stavební částice z krve a z lymfy, které použijí k syntéze mléčného tuku, laktosy a téměř všech bílkovin. Tyto buňky zároveň dokáží z krevní plazmy přejmout vodu a selettivně minerály, což jsou anorganické látky používané na tvorbě minerálů. Sekreční buňky mléčné žláz přemění některé minerály na minerální složky mléka.

Mléčný tuk je velmi variabilní a proměnlivá složka mléka, jehož hlavní část tvoří triacylglyceroly (TAG) obsahující krátké řetězce mastných kyselin (MK). Syntéza TAG probíhá z prekurzorů glycerołu a mastných kyselin dvěma způsoby. Buď probíhá syntéza z krevních lipidů, přičemž jejich zdroj jsou lipoproteiny, kde nastává hydrolyza katalyzovaná enzymem lipoproteinlipasou čímž se mastné kyseliny, mající dlouhý uhlíkatý řetězec, štěpí na volné mastné kyseliny, monoacylglyceroly, diacylglyceroly a glycerol. Nebo další způsob syntézy TAG je „de novo“. To znamená, že produkty jsou syntetizovány z původních biomolekul reakčního procesu, přímo v sekrecním parenchymu mléčné žláz. Tento případ nastává u mastných kyselin s kratším řetězcem. Prekurzor pro syntézu MK je Acetylkoenzym A, který u přežvýkavců vzniká z kyseliny octové nebo oxidací kyseliny β-hydroxymäselné.

Laktosa se tvoří z glukosy, která je jejím prekurzem. Mléčná žláz není schopná syntézy mléčného cukru, tento proces probíhá jen v parenchymy buňek z krve. Samotná glukosa se tvoří asi z 50 – 60 % glukoneogenezi v játrech. Zbytek glukosy je tvořen z prekurzorů kyseliny propionové, což je jediná těkavá mastná kyselina využitelná k syntéze, kde její průběh je zobrazen na obrázku 3. Glukosa je vytvořená z kyseliny propanoové a prekurzorů žluktavého řetězce přežvýkavců postupně vytváří glukosu, což je výsledkem výskytu β-karotenů ve stravě a možné slabé příměši krve. Dále obsahuje velké množství sušiny, což je vhodné, aby se tvořila sebaobrana jemnější, funkční kolostra je zajištění pasivní imunity, protože je skvělým zdrojem imunoglobulinů a jiných hotových látek. Laktase je protilátky, protože je skvělým zdrojem imunoglobulinů a jiných hotových látek.

Je velmi důležité, aby se tele hned po porodu napila, protože organismus mláďat skotu není schopen v tomto tělu vytvořit imunitní reakce a nedokáže si syntetizovat vlastní protilátky. Narození mláďat probíhá z hvožďích druhů, například člověka, skot má jinou stavbu placenty, která během gravidity nedovolí přestup proti látek z matčiny krve do krve mláďete. Z toho vyplývá, že telata se rodi jako hypogamaglobulinemická, to znamená, že mají velmi nízkou hladinu immunoglobulinů v krvi. Aby se tele po porodu neubynulo na infekci, musí přijmout immunoglobuliny ve formě mleza. S rostoucím mláďtem se mění složení mleza a postupně se z něj stane pravé zralé mléko. V tomto stádiu se tele od krávy odstaví a mléko se začne využívat pro potravinářské účely.

Existuje lakační křivka, znázorněná na obrázku 3, což je závislost, která ukazuje dojivost a produktivitu krávy. Mléčná plemena skotu, jako je například Holštýnský skot, jsou používaná pouze na produkci mléka. Tato plemena mají malé množství svaloviny, ale velmi vyvinutá vemena. Proto je žádoucí, aby kráva co nejrychleji začala a po porodu byla produktivní. Z obrázku 3 je patně, že dojivost postupně klesá, až pak následuje období, kdy jedinec stoji na sucho a „k ničemu není dobrý“.
V této době se nechává opětovně zabřeznout. Průměrná kráva má 4 laktace, pak je natolik vyčerpaná, že není schopna být produktivní. [17] [21] [24] [28] [29]

Obrázek 3: Laktační křivka (Zdroj Jelínek)

2.2. Druhy mléka

Mléko je sekret vyloučený mléčnou žlázou, a podle chemického složení a obsahu převažujících bílkovin je lze zařadit do různých skupin. Rozlišují se kaseinová mléka a albuminová mléka. Kaseinové mléko obsahuje více než 75% kaseinů, a produkují je přežvýkavci mající žaludek složený z více předžaludků a žaludku. Kdežto albuminová mléka jsou produkce masožravců, býložravců a všežravců. Pro srovnání rozdílného obsahu látek u různých významných druhů savců je k dispozici tabulka 1.

Tabulka 1: Obsahové látky mléka různých druhů savců

<table>
<thead>
<tr>
<th>Druh mléka</th>
<th>Voda (85,5 - 89,5)</th>
<th>Sušina (10,5 - 14,5)</th>
<th>Laktosa (3,6 - 5,5)</th>
<th>Tuk (2,5 - 6,0)</th>
<th>Bílkoviny (2,5 - 5,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kravské</td>
<td>85,5 - 89,5</td>
<td>10,5 - 14,5</td>
<td>3,6 - 5,5</td>
<td>2,5 - 6,0</td>
<td>2,5 - 5,0</td>
</tr>
<tr>
<td>Kozí</td>
<td>84,8 - 88,8</td>
<td>11,0 - 15,0</td>
<td>4,2 - 4,6</td>
<td>3,8 - 4,2</td>
<td>3,6 - 3,8</td>
</tr>
<tr>
<td>Ovčí</td>
<td>77,8 - 81,8</td>
<td>18,2 - 22,2</td>
<td>3,5 - 4,2</td>
<td>7,2 - 10,5</td>
<td>5,5 - 7,0</td>
</tr>
<tr>
<td>Kobylí</td>
<td>87,0 - 91,0</td>
<td>8,6 - 12,6</td>
<td>6,6 - 8,6</td>
<td>1,2 - 1,6</td>
<td>1,5 - 1,9</td>
</tr>
<tr>
<td>Prasečí</td>
<td>79,0 - 83,0</td>
<td>17,0 - 20,5</td>
<td>3,1 - 6,0</td>
<td>3,9 - 9,5</td>
<td>5,3 - 7,3</td>
</tr>
</tbody>
</table>

Pak se může rozlišit mléko podle fáze laktace a to na kolostrum a zralé mléko. To má vhodné organoleptické a senzorické vlastnosti, oproti mlezivu ustálené složení, díky tomu je vhodné pro výživu člověka. [21] [28]

2.3. Složení mléka

Mléko je docela složitý systém, kde se jednotlivé složky vyskytují v různém poměru. Skládá se převážně z vody, sušiny a plynů. Syrové mléko se označuje jako sekret mléčné žlázy, který nebyl podroben ohřevu 40 °C a vyšší teplotě nebo metodě způsobující podobné účinky. Jedná se o základní zdroj výživy převážně mláďat savců, obsahující značné množství vitamínů, látek tvořící a posilující imunitu.

Složky mléka můžeme obecně rozdělit na složky původní, vznikající během látkové přeměny v mléčné žláze tedy jsou přirozenou součástí mléka, a cizorodé složky. Viz Obrázek 4.
Složení mléka

Původní složky
Hlavní:
Tuk, laktosa, voda, bílkoviny

Vedlejší:
Plyny, vitaminy, minerály, hormony, enzymy, somatické buňky

Nepůvodní složky
RIL, herbicidy, insekticidy, fungicidy, těžké kovy, dezinfekční prostředky

Obrázek 4: Schéma původu látek v mléce (Zdroj: Navrátilová, vytvořeno v programu ChemSketch)

2.3.1. Dusíkaté látky

Dusíkaté látky jsou velmi složitý komplex tvořící mléčné bílkoviny, proteiny obalů tukových kulíček, minoritní bílkoviny, enzymy a nebílkovinné dusíkaté látky. Převážnou část tvoří bílkoviny obrázek 5 a tabulka 2, jež jsou v mléčné žláze syntetizovány z esenciálních a z většiny neesenciálních aminokyselin získaných z krve. Význam proteinů je velmi rozličný, spočívá v nutriční hodnotě, biologické funkci, jako je například imunologická funkce a vitaminy vázající proteiny. Bílkoviny jsou také nepostradatelné pro technologii mléka například při výrobě kysaných výrobků a sýrů, pomáhají zajistit správný technologický proces, dokáží vázat vodu a napomáhají udržet a vytvořit lepší reologické vlastnosti výrobků.
Obrázek 5: Zastoupení dusíkatých látek (Zdroj: Ingr)

Kravské mléko obsahuje dvě velké skupiny bílkovin charakteristické svými rozdílnými biologicky aktivními účinky. Jedná se o kaseiny a syrovátkové proteiny.

Kaseiny jsou nejdůležitější a zároveň výhradní skupinou proteinů mléka, která je natolik specifická, že jinde v přírodě se s ní nenáležíme. Z technologického hlediska jsou kaseiny nepostradatelné, precipitují a denaturují při okyslení mléka při nižší hodnotě pH než 4,6. Jde o přítomné ve všech družích mléka a jedná se o jednu z nejlépe a nejdůkladněji prostudovanou skupinu bílkovin. Pro srovnání kravské mléko obsahuje asi 300 krát více kaseinu než lidské mléko.

Chemickým složením jsou kaseiny řazeny do fosfoproteinů. Kaseiny se dají rozdělit na α-, β-, κ- a γ-kaseiny, přičemž v množství než tři čtvrtiny ze skupiny proteinů v jednom litru mléka, kde poměr než tří dnezních druhů kaseinů kolísá.

Všechny tyto mléčné bílkoviny jsou agregovány do micel, což jsou kolloidní částice o velikosti 30–300 μm, přibližně kulovitého tvaru. Povrch micel je tvořen hydrofilní části, která je vně a hydrofobní části, tvořící vnitřek micely.

Kaseinová micela obsahuje přibližně 20 000 až 50 000 molekul kaseinů, což odpovídá 93 % celkové hmotnosti makromolekuly, zbytek tvoří asi 3 % vápenatých iontů, 3 % anorganického fosfátu, 2 % fosfátu vázaného jako fosfoserin, 0,4 % citrátu a 0,5 % koloidního fosforečanu vápenatého.

V jednom mililitru mléka je asi 1015 micel s plochou povrchu 5 x 10 cm², zároveň vzdálenost micel je přibližně 240 nm.

Syrovátkové bílkoviny jsou proteinové, které zůstávají v roztoku po vysražení kaseinu syřidlem nebo kyselinou, mají globulární charakter a řadí se k hydrofilním koloidům. Tvoří přibližně 20 % bílkovin mléka, denaturují při teplotě 95 °C s výdrží 20 minut. V přirozeném stavu vytvářejí relativně stabilní koloidní roztoky a jsou rozpustné při rozmezí pH, ve kterém existuje mléko jako samotné, tak zpracované. Syrovátkové bílkoviny mají vyšší nutriční hodnotu než kaseiny, která je způsobená vysokým obsahem cystinu. Mezi bílkovinami syrovátky převládají β-laktoglobulin a α-laktalbumin, což jsou proteinové představující 70 – 80 % z celkového obsahu dusíku v syrovátkových bílkovin v mléce. Další syrovátkové bílkoviny jsou sérový albumin a imunoglobuliny. Zbytek
 dusíkatých látek má nebílkovinnou povahu, kde největší podíl tvoří močovina, volné aminokyseliny, amoniak, aminocukry, kyselina močová a jiné látky přítomné ve stopovém množství.

Tabulka 2: Souhrn obsahu bílkovin v kravském mléce (Zdroj: Ng-Kwai-Hang, 2003)

<table>
<thead>
<tr>
<th>Protein</th>
<th>Molární hmotnost - M<sub>r</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>kasein αs1-CN</td>
<td>23164</td>
</tr>
<tr>
<td>kasein αs2-CN</td>
<td>25338</td>
</tr>
<tr>
<td>β-kasein</td>
<td>23983</td>
</tr>
<tr>
<td>κ-kasein</td>
<td>19038</td>
</tr>
<tr>
<td>b-laktoglobulin</td>
<td>18277</td>
</tr>
<tr>
<td>a-laktoglobulin</td>
<td>14175</td>
</tr>
<tr>
<td>Sérovy albumín</td>
<td>66267</td>
</tr>
<tr>
<td>imunoglobuliny</td>
<td>1430000 - 1030000</td>
</tr>
</tbody>
</table>

2.3.2. „Obranná funkce mléka“ aneb antimikrobiální látky v mléce

Velmi důležitou antimikrobiální látkou je laktoferin, jehož struktura je k dispozici na obrázku 6. Jedná se o glykoprotein, který působí antibakteriálně, fungicidně a antivirově na mikroorganismy v těle. Je to tedy bílkovina zabraňující množení bakterií, protože většina bakterií potřebuje ke svému množení železo a tato látku jej váže do své struktury a dokáže jej udržet i při negativních podmínkách, jako je pH o hodnotě 3,1. Laktoferin navíc dokáže poškozovat buněčné membrány bakterií, a zablokovat metabolismus prekurzorů, což způsobí zánik mikroorganismu. Tato bílkovina se přirozeně vyskytuje na povrchu sliznic, v krevním séru, v sekretech jako je hlen a slzy.

Obrázek 6: Struktura lactoferinu (Zdroj: www.bioextra.si)

Mléko také obsahuje imunoglobuliny, které jsou potřebné pro posílení imunity. Nejvíce těchto látek obsahuje kolostrum, ale s rostoucí délkou doby od porodu obsah těchto látek prudce klesá. Přesto se imunoglobuliny vyskytují v malém množství i v mléce a ty jsou mláďatům prospěšné proti
gastrointestinálním infekcím. Dospělý jedinec nemůže využít tyto látky, protože imunoglobuliny jsou příliš rozměrné a nedokáží projít stěnou sliznice střeva, která se změnila a není tak prostopána, jako v útlém věku jedince. Proto dojde k běžnému zpracování imunoglobulinů a jsou natráveny jako běžné bílkoviny.

Další velmi významnou bílkovinou je také lysozym, který se vyskytuje v těch nejsekretech, jako jsou slině, krev a mléko. Z chemického hlediska se jedná o 1,4-(β-N-acetylmuramidázu) a dokáže štěpí glykosidické vazby některých Mukopolysacharidů obsažených v peptidoglykanu v buněčně stěně gramopozitivních bakterií. Lysozym působí baktericidně a brání růstu mikroorganismů, zároveň z buněčných stěn bakterií uvolňuje aminokukry, které jsou růstovým faktorem pro *Lactobacillus bifidus* a dokáže být stabilní při velmi nízkém pH. Jeho množství je závislé na obsahu leukocytů, díky tomu při zánětech mléčné žlázy roste jeho koncentrace.

U sajících mláďat je výskyt této bílkoviny velmi důležitý z výživového hlediska, protože v jeho přítomnosti nedochází ke koagulaci koagulaci mléka, ať už mléční, ani jsou pouze se tvoří jemné vločky, které dokáže jedinec lépe strávit.

Další složkou antimikrobiálních látek, které mají tento účinek, jsou některé fokusylované oligosacharidy (obsahují L-fukosu tedy 6-deoxy-L-galaktosu), obvykle jsou přítomné v glykolipidech, nebo glykoproteinech, jsou užitečné tím, že podporují růst rodu *Bifidobacterus*, zabralují přímlučí střevních patogenů na stěnu střeva a zneškodňují některé toxiny. [9] [19] [20] [23] [24] [28] [29]

2.3.3. Mléčný tuk

Mléčný tuk se používá jako jeden z nejvýznamnějších ukazatelů kvality mléka a má složitou strukturu. Za jakostní mléko se považuje surovina s vyšším obsahem tuku, navíc vyšší tučnost mu dodává lepší organoleptické vlastnosti, tedy mléko má lahodnější chuť. Tučnější mléko má lepší reologické vlastnosti. Hlavní funkcí mléčného tuku je uspokojení energetických potřeb mláďat.

Jeho fyzikální vlastnosti jsou následující. Bod tání leží v intervalu hodnot 28-35 °C a interval bodu mrznutí je 19-26 °C. Obě teploty závisí na množství a druhu triacylglycerolů. Měrná hmotnost mléčného tuku je výrazně nižší, než u mléka, činí 930 kg.m⁻³.

Základem jsou mono- di- a triacylglyceroly, volné mastné kyseliny, fosfolipidy, steroly, estery sterolů a vitaminy rozpustné v tucích A, D, E a K. Poměrové zastoupení jednotlivých složek je uvedeno v tabulce 3. Na rozdíl od běžných tuků je v mléce vyšší obsah těkavých mastných kyselin, jedná se o kyseliny s kratším uhlíkatým řetězcem, jako je kyselina máselná, nebo kapronová.

Tabulka 3: Poměrové zastoupení jednotlivých složek v mléčném tuku (Zdroj:Navrátilová)

<table>
<thead>
<tr>
<th>složka</th>
<th>množství [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAG</td>
<td>97-98</td>
</tr>
<tr>
<td>DAG</td>
<td>0,3-0,6</td>
</tr>
<tr>
<td>MAG</td>
<td>0,02-0,4</td>
</tr>
<tr>
<td>VMK</td>
<td>0,1-0,4</td>
</tr>
</tbody>
</table>

Vitamíny rozpustné v tucích, steroly, fosfolipidy, aj.

| stopové množství |

To všechno je výhodné pro zdravotní stav konzumenta, protože tuk je uspořádaný do mikroskopických globuli o velikosti 1–12 μm a tvoří emulzi typu olej ve vodě. Globule jsou ohraňené fosfolipidovou membránou, kde je nejvíce zastoupený fosfatidylcholin, fosfatidylethanolamin, sfingomyelin. Další minoritní složky mléčných lipidů jsou steroly nebo jejich estery, z nichž nejrozšířenější je cholesterol, který slouží jako prekurzor pro vitamin D3 a tvoří až 95 % z celkového množství sterolů, a ergosterol, který je prekurzor vitaminu D2. V jednom litru mléka je obsaženo přibližně 2–6 miliard tukových globulí, což vytváří velkou plochu, a tím i vysokou reaktivitu. Syntéza mléčného tuku probíhá především z acetátu a butyrátu.
V mléce probíhá hydrolytické štěpení mléčného tuku, který se rozkládá působením nativní lipasy. Ta je inaktivovaná pasteurací a rozkládá se na volné mastné kyseliny a mono- a triacylglyceroly.

Probíhají tři druhy štěpení tuku. První druh je spontánní lipolýza, kterou uskutečňuje nativní lipasa a produkuje se v pozdní fázi laktace, během říje, nebo pokud bylo zvířeti podáno nekvalitní krmivo. Následně může probíhat indukovaná lipolýza, dochází při ní k poškození membrán tukových kuliček. Takový případ může nastat, jestliže se mléko rychle čerpá, nebo dojící zařízení nepracuje správně. Posledním typem štěpení je mikrobiální lipolýza, kde aktivní lipasy pocházejí z psychrotrofních bakterií. Lipázy jsou exoenzymy a jsou termorezistentní, tedy odolné vůči teplu.

2.3.4. Laktosa – mléčný cukr

Základní sacharid obsažený v mléce je laktosa tvořící 99% z celkového množství sacharidů. Zbytek cukrů je přítomný v mléce ve stopovém množství.

Laktosa je redukující disacharid tvořený dvěma jednotkami monosacharidů D-glukosy a D-galaktosy spojenými β-1,4-glykosidovou vazbou (viz obrázek 7). Mléčný cukr může tvořit α a β-anomery, přičemž nejstabilnější je monomer α-laktosy, který krystalizuje z vody při teplotě 93,5 °C. Laktosa může být také modifikována. Například jestliže má v názvu monohydrát, znamená to, že molekula vody je navázaná ve struktuře krystalické mřížky.

![Obrázek 7: Struktura laktosy (program ChemSketch)](image)

Mléčný cukr ovlivňuje fyzikální vlastnosti mléka, tedy mění osmotický tlak, teploty tání a tuhnutí. Význam laktosy v mléce je nepostradatelný, protože slouží jako významný zdroj energie, dodává sladkou chuť, podporuje adsorpci vápníku, používá se jako zásobní cukr pro fermentační procesy, zvyšuje nutriční hodnotu mléčných výrobků, ovlivňuje texturu jistých kondenzovaných a zmražených produktů, podílí se také na barvě, chuťi a vůni u jednotlivých výrobků. Izolovaná laktosa se používá také ve farmaceutickém průmyslu jako pomocná látku. Působí jako plnivo, pojivo i zásypové základy. Kromě těchto farmaceutických výrobků se používá jako součást živých půd pro mikrobiologické účely nebo chromatografický adsorbent.

Vedle laktosy se vyskytují v mléce ve stopovém množství, jiné sacharidy ve volné i vázané formě na proteiny, lipidy nebo fosfáty. Jedná se například o monosacharidy glukosu a galaktosu, oligosacharidy, N-acetyl-D-glukosamin, N-acetyl-D-galaktosamin, L-fukosu a N-acetyleneuraminovou kyselinu. [27]

2.3.5. Minerály a soli

Minerální látky jsou v mléce přítomné v různé formě. Mléčnou sušinu tvoří převážně organické látky a v menším měřítku látky anorganické a jejich soli. Soli zahrnují kromě minerálů také
sloučeniny organických kyselin. Tyto látky se vyskytují v mléce buď jako rozpustné soli v mléčném séru, přičemž tvoří pravý roztok, jako koloidy, nebo jsou vázány na organické složky mléka. Minerály se do mléka dostávají krvi, ovlivňují stupeň nabootnání koloidů, upravují hodnotu osmotického tlaku a koncentrace oxoniových kationtů, slouží jako aktivátory některých enzymů a jsou důležité pro udržování acidobazické rovnováhy v organizmu.

Nejvýznamnější soli mléka, jejich obsah a distribuci mezi mléčným sérem a kaseinovými micelami ukazuje tabulka 4:

Tabulka 4: Obsah solí přítomný v mléčném séru a kaseinu (Zdroj: Hui, 1993)

<table>
<thead>
<tr>
<th>Složka</th>
<th>Průměrný obsah [mg.100g⁻¹]</th>
<th>Frakce v mléčném séru:</th>
<th>Obsah v kaseinu [mmol.g⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kationty:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>48</td>
<td>0,95</td>
<td>0,04</td>
</tr>
<tr>
<td>K</td>
<td>143</td>
<td>0,94</td>
<td>0,08</td>
</tr>
<tr>
<td>Ca</td>
<td>117</td>
<td>0,32</td>
<td>0,77</td>
</tr>
<tr>
<td>Mg</td>
<td>11</td>
<td>0,66</td>
<td>0,06</td>
</tr>
<tr>
<td>aminy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anionty:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>110</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO₃⁻</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>10</td>
<td>0,53</td>
<td></td>
</tr>
<tr>
<td>PO₄³⁻</td>
<td>203</td>
<td>0,92</td>
<td>0,39</td>
</tr>
<tr>
<td>Citráty</td>
<td>175</td>
<td>1</td>
<td>0,03</td>
</tr>
</tbody>
</table>

Minerální látky se dělí podle poměru zastoupení v mléce. Vyskytují se zde majoritní a minoritní prvky. Většinově zastoupené prvky, jako je sodík, draslík, vyskytující se jako soli kyselin citronové a fosforečné, chlór, tvořící chlorid sodný nejvíce obsažen v kolostru, hořčík a vápník, vázaný ve sloučeninách s kyselinou fosforečnou a citronovou tvoří většinu minerálů. V kravském mléce se 99 % z množství vápníku nachází v mléčné plazmě a z toho asi 2/3 jsou v koloidní formě vázány na kasein.

Zbývající 1/3 představuje rozpustnou formu vápníku. Fosfor, síra a některé minoritní stopové prvky jako je železo, zinek, mangan a měď, jsou vázány na membrány tukových kuliček. Další stopové zastoupené prvky jsou nikl, kobalt, chrom, selena a jod, který se mimo jiné podílí na správně funkci hormonů štítné žlázy. Podle studie autorů Ryšavá a kol. bylo zjištěno, že mléko v ČR má nejvyšší obsah jodu a selenu oproti jiným zemím.

Obsah minerálních látek v mléce není proto významný jen z nutričního hlediska, jako například snadno vstřebatelný vápník sliznicí střevní stěny, ale hraje velmi důležitou roli v regulaci acidobazických rovnováh v mléce, a udržuje stabilní pH mléka.

2.3.6. Vitaminy v mléce

V mléce se vyskytují všechny vitaminy, viz tabulka 5, i když některé pouze ve stopovém množství. Vitaminy jsou organického původu, získávají se z potravy nebo díky střevní mikroflóře. Ve správné koncentrace jsou nepostradatelné pro správný průběh metabolismu, slouží jako esencíální biokatalyzátory některých reakcí. Dle účinku i rozdílné chemické struktury se dělí na vitaminy rozpustné v tucích, což jsou vitaminy A, D, E, K a vitaminy rozpustné ve vodě, jedná se o vitaminy skupin B, až C.
Vitaminy rozpustné v tucích jdou vitamin A, který se podílí na žlutém zbarvení mléčného tuku, vyskytuje se v mléčných výrobcích s výšší tučností, která musí být vyšší než 6 %, protože do této hodnoty dochází ke ztrátám při pasterci, výrobě UHT mléka, při sušení nebo při skladování v nevhodných obalech. Vitamin D se v mléce vyskytuje ve dvou formách a to jako D2 a D3, vznikají z prekurzorů provitaminů D UV zářením. Množství vitaminu D v mléce závisí na ročním období. Tato látka je důležitá pro resorpci vápníku ve střevě a zpětnou resorpci v ledvinách. Vitamin E je jeden z nejúčinnějších antioxidantů zabraňujících stárnutí, nádorovému bujení a podporující zárodečnou tkání. Jedná se o stabilní látku v nepřítomnosti kyslíku a oxidovaných lipidů. Vitamin K se v játrech učastní syntézy většiny koagulačních faktorů. Tvoří se také v tlustém střevě účinkem bakterií, je nestabilní při expozici světla. [1] [5] [8] [20] [23] [24] [26]

2.4. Spotřeba mléka

Tabulka 5: Vitamíny mléka

<table>
<thead>
<tr>
<th>Vitamin</th>
<th>Obsah vitaminů</th>
<th>Rozpustnost</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>retinol</td>
<td>0,3 - 1,0</td>
</tr>
<tr>
<td>D</td>
<td>kalciferol</td>
<td>0,001</td>
</tr>
<tr>
<td>E</td>
<td>tokoferol</td>
<td>0,2 - 1,2</td>
</tr>
<tr>
<td>K</td>
<td>lilo chinmon</td>
<td>0,01 - 0,03</td>
</tr>
<tr>
<td>B1</td>
<td>thiamin</td>
<td>0,3 - 0,7</td>
</tr>
<tr>
<td>B2</td>
<td>riboflavin</td>
<td>0,2 - 0,3</td>
</tr>
<tr>
<td>B6</td>
<td>pyridoxin</td>
<td>0,2 - 2,0</td>
</tr>
<tr>
<td>B12</td>
<td>korionidy</td>
<td>0,01 - 0,03</td>
</tr>
<tr>
<td>B5</td>
<td>kyselina pantothenovalová</td>
<td>0,4 - 4,0</td>
</tr>
<tr>
<td>PP</td>
<td>nacin</td>
<td>0,8 - 5,0</td>
</tr>
<tr>
<td>C</td>
<td>kyselina askorbová</td>
<td>5,0 - 20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mléčné konzervy [kg]</td>
<td></td>
<td>1,1</td>
<td>4,1</td>
<td>3,8</td>
<td>1,8</td>
<td></td>
</tr>
<tr>
<td>Tvaroh [kg]</td>
<td></td>
<td>7,2</td>
<td>17,5</td>
<td>20,6</td>
<td>32,5</td>
<td></td>
</tr>
<tr>
<td>Ostatní mléčné výrobky [kg]</td>
<td></td>
<td>187,2</td>
<td>236,2</td>
<td>187,8</td>
<td>244,0</td>
<td></td>
</tr>
<tr>
<td>Mléko a mléčné výr. (bez másla) [kg]</td>
<td></td>
<td>227,9</td>
<td>109,6</td>
<td>66,7</td>
<td>57,7</td>
<td></td>
</tr>
<tr>
<td>Mléko konzumní celkem [kg]</td>
<td></td>
<td>164,8</td>
<td>106,5</td>
<td>66,5</td>
<td>57,6</td>
<td></td>
</tr>
<tr>
<td>Kravské mléko [kg]</td>
<td></td>
<td>0,2</td>
<td>0,2</td>
<td>0,1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabulka 7: Spotřeba mléka a výrobků na osobu za rok od roku 2000 (Zdroj: www.czso.cz)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tvaroh [kg]</td>
<td>3,4</td>
<td>3,6</td>
<td>3,4</td>
<td>3,6</td>
<td>3,3</td>
<td>3,2</td>
<td>3,4</td>
<td>3,4</td>
<td>3,4</td>
<td>3,4</td>
<td>3,4</td>
</tr>
<tr>
<td>Ostatní mléčné výrobky [kg]</td>
<td>25,0</td>
<td>25,6</td>
<td>26,0</td>
<td>28,0</td>
<td>29,7</td>
<td>29,3</td>
<td>30,1</td>
<td>31,4</td>
<td>32,5</td>
<td>33,0</td>
<td>32,5</td>
</tr>
<tr>
<td>Mléko a mléčné výr. (bez másla) [kg]</td>
<td>215,0</td>
<td>214,9</td>
<td>218,3</td>
<td>220,0</td>
<td>223,3</td>
<td>230,6</td>
<td>238,2</td>
<td>239,0</td>
<td>245,5</td>
<td>250,0</td>
<td>244,0</td>
</tr>
<tr>
<td>Kravské mléko [kg]</td>
<td>59,4</td>
<td>60,4</td>
<td>63,0</td>
<td>57,5</td>
<td>62,0</td>
<td>55,7</td>
<td>54,3</td>
<td>53,1</td>
<td>55,6</td>
<td>57,9</td>
<td>57,6</td>
</tr>
</tbody>
</table>
2.5. Kontaminace syrového mléka

Další zdroje, odkud se mléko může kontaminovat je povrch mléčné žlázy, protože na jejím povrchu se vyskytuje typická kožní mikroflóra, mikroorganismy z nečistot, podestýlky a výkalků. Jedná se převážně o fekální a koliformní bakterie. Dále je možné znečištění mléka ze vzduchu, přičemž původci jsou především sporotvorné mikroorganismy, mikrokoky, G-tyčinky, korynebakterie. Do mléka se ze vzduchu mohou dostat mechanické nečistoty, jako je prach, suchá podestýlka, seno a aerosol. Dalším zdrojem znehodnocení mléka je voda, obsahující pseudomonády, koliformní bakterie, sporotvorné MO.

Víme, že nesterilní je také krmivo, které může být zdrojem plísní, spór či koliformních bakterií. Posledním zdrojem kontaminace mléka mohou být samotní pracovníci, kteří mohou tuto surovinu znehodnotit například střevními patogeny, jako jsou salmonely, kampylobaktery, *Staphylococcus aureus* a jiné mikroorganismy.[2][14][20][25]

2.6. Vliv na lidské zdraví

Některé vlastnosti a složky mléka, se podepisují na lidském zdraví. Další pohled bude rozebrání nežadoucích účinků této suroviny a problémů, kterými mohou po požití někteří jedinci trpět.

2.6.1. Mléko a mléčné výrobky, jako prevence osteoporózy

Osteoporóza je metabolické kostní onemocnění, které postihuje převážně starší ženy v období po přechodu tedy v postmenopauzalním období a v pokročilém věku mohou ji trpět i muži. Osteoporóza
je Světovou zdravotnickou organizací (World Health Organization - WHO) definována jako „progredující systémově onemocnění skeletu charakterizované stupněm úbytku kostníh hmoty a poruchami mikroarchitektury kostní tkáně a v důsledku toho zvýšenou náchylností kostí ke frakturám.“ Důležitou hlavní prevenci je příjem dostatečného množství vápníku v potravě během útlého věku až do puberty, protože tento prvek je základní složkou kostí potřebnou k jejich růstu a zpevňování. Mléko a mléčné výrobky patří mezi nejběžnější nejzdůvodnější zdroj přirozeného vyskytujícího vápníku, ve kterém však bohužel je využitelný pouze přibližně z 30%. Mléko obsahuje asi 120 mg, jogurty 140 mg a tvrůd sýry 135 – 894 mg vápníku vždy na 100 g výrobku. Tedy byla splněna doporučená denní dávka vápníku, je potřeba konzumovat 100 g tvrdého sýra u dospělých jedinců a u dětí, kde je výživová dávka vyšší, je potřeba přijmout okolo 130 g tvrdého sýra za den. Ideální kombinaci k pokrytí celodenní dávky vápníku je sklenice mléka, kysaný mléčný výrobek a plátek tvrdého sýra.

2.6.2. Mléko jako surovina proti prevenci zubního kazu

Zubní kazu je patologický proces, vznikající demineralizací zubů. Mléko a mléčné výrobky jsou důležitou složkou stravy dětské populace a gravidních žen. Díky tomu, že mléko obsahuje nejen laktosu, která je nejméně zkvasitelná ze všech jednoduchých cukrů, ale též vápník, fosfor a kasein, které snižují kariogenní potenciál laktosy, dochází ke snížení vzniku zubního kazu. Navíc mléko obsahuje protein kaseinosfopeptid, který inhibuje růst patogenních mikroorganismů Streptococcus mutans, Porphyromonas gingivalis a Escherichia coli.

2.6.3. Vliv konzumace mléka na tvorbu kožního tuku

Vědci na hamiltonské univerzitě prokázali, že sportovní zátěž a konzumace mléka mají pozitivní vliv na růst svalové hmoty v organismu. Výzkum probíhal tak, že bylo vybráno 60 netrénovaných mužů, kteří pravidelně podstupovali silový trénink. Po skončení tréninku muži konzumovali v hodinovém rozměru dvě sklenice odlučněného kravského, sójového nebo speciálního izotonického nápoje pro sportovce s obsahem sacharidů. Výzkum probíhal po dobu 3 měsíců a výsledek byl takový, že podíl svalů u mužů konzumujících mléko byl o 40 % větší než tomu bylo u skupiny konzumentů sójového mléka a o 60 % větší v porovnání se skupinou sportovců konzumujících sportovní drink. Důvodem je pravděpodobně vysoká biologická hodnota mléčného proteinu a působení nenasytěných mastných kyselin na odbourávání tuků.

2.6.4. Problémy při požívání mléka aneb alergie na mléko

Kravské mléko je potravina schopna vyvolávat alergické reakce. Může postihovat kojence a děti do tří let, kteří nepřijímají mléko jako hlavní složku jídelníku. Rozlišujeme akutní a postupnou alergii. Až u 2,5 % dětské populace je diagnostikován akutní průběh alergie. U dospělých jedinců není zjištěné, jak velké procento populace jí trpí, přesto je její průběh horší, než u dětí. Hlavní alergeny kravského mléka jsou syrovátkové proteiny. Příznaky akutní alergie se obvykle projevují do 2 hodin od konzumace, a stačí k požití velmi malé množství mléka a mléčných výrobků. Ostatní typy alergické reakce na kravské mléko nastupují opožděně, často za 1 až 2 dny po konzumaci potraviny. U tohoto typu alergie se malé množství kravského mléka může vypit, protože potíže se často objevují až po opakovaném požití. Oproti minulým dobám je zjištěno, že zda množství případů trpících tímto problémem vzrůstá, protože současně době na Balkáně trpí touto nemocí okolo 10 % populace, nebo je tento jev pouze lépe diagnostikován. Je proto možné, že v minulosti nebyla medicína na současně vědecké úrovni, a tento problém se vyskytoval ve stejně míře jako dnes, a léčí s tím normálně žili.

2.6.5. Intolerance laktyso

Laktosová intolerance je rozdílný problém, než alergie na mléko, protože jde o nealertickou přecitlivost na kravské mléko. Je to způsobeno nedostatkem nebo nepřítomností laktyso, což je enzym hydrolyzující glykosidické vazby laktyso. Mikroflóra v těždelně střevě přemění nevražený laktosu na oxid uhličitý, vodík a vodu, což vyvolává křeče, silné bolesti a vznik plynatosti. Supeň
deficiencí laktasy je různý a určuje závažnost postižení. Při lehkém průběhu intolerance laktosy dokáže jedinec tolerovat určité množství mléčných výrobků. V tomto případě je vhodná konzumace zakysaných mléčných výrobků, neboť obsahují menší množství mléčného cukru.

V celkovém měřítku je nedostatkem enzymu laktasy je postiženo přibližně 6 - 12 % populace, přičemž u některých etnických skupin se tento problém vyskytuje podstatně více, než u jiných. Například u černochů se intolerance laktosy vyskytuje až v 80 % populace.

Tento problém se obvykle řeší tak, že lidé volí různé náhrádky mléka, jako je sójové či mandlové „mléko“. Z chemického hlediska jde o zcela rozdílné tekutiny, protože jsou to látky rostlinného původu, tudíž obsahují rostlinné proteiny. Podle mého názoru tyto alternativy nemohou být z hlediska výživy plnohodnotnou náhrádkou kravského, nebo jiného živočišného mléka.[7] [9] [11] [22] [24] [31] [32] [33] [34]

2.7. Mléčné výrobky a jejich dělení

Mléčné výrobky jsou produkty, které se vyrábějí různým technologickým postupem zpracován z mléka. Jedná se o jednu z třinácti potravinářských komodit a dle vylíšky 77/2003 se mléčné výrobky dělí na následující podskupiny.

2.7.1. Tekuté mléčné výrobky

Jedná se o různé formy samotného mléka a smetan a. Z hlediska obsahu tuku lze na českém trhu zakoupit tři druhy mléka a to odtučněné, polotučné a plnotučné. Odtučněné, neboří nízko tučné mléko obsahuje 0,3 až 0,5 % tuku, polotučné mléko má tučnost 1,5 % a v plnotučném mléce se vyskytuje 3,5 % tuku. Mléko o definované tučnosti se získává mícháním odstředěného mléka, obsahující cca 0,03 % tuku, a takzvaného cisternového nebovho svozného mléka, které má přibližně 3,8 % tuku, v přesně určeném poměru.

Podle doby trvanlivosti rozlišujeme tři druhy mléka a to pasterované, poločerstvé a trvanlivé mléko. Pasterované mléko, označované také jako „čerstvé“ představuje tepelné ošetření mléka, vydrží až 6 týdnů při skladování při teplotě 4 °C. Poločerstvé mléko nebo čerstvé mléko se prodluženou trvanlivostí vydrží až 6 týdnů při teplotě 4-6 °C a jeho trvanlivost je do 10 dnů. Poločerstvé mléko má svou jakost 90 % a jeho trvanlivost se zvýší při zvýšení teploty. Čerstvá smetana je připravena a sklizená u některých značek do 150 dní. Smetana musí splňovat po pasteraci, skladovaná trvanlivá. Čerstvá smetana je produkty, které se vyrábějí v průběhu intolerance laktosy.

2.7.2. Máslá a mražená smetanové krémy

Do této podskupiny komodity patří mléko, zmírny a jiné smetanové mražené krémy. Máslá se vyrábí složením smetany, která musí obsahovat minimálně 30 % mléčného tuku. Podle množství tuku rozlišujeme právě máslá, máslá se sníženým obsahem tuku, máslá s nízkým obsahem tuku „light“, a máslá s rostlinným tukem AB. Pravé vyrobění složeného másla má obsah mléčného tuku minimálně 80%, tříctvrtečné máslá, označované též jako máslá se směsnými emulgonovaný tuky,
obsahuje 60 až 62 % tuku, málo s nízkým obsahem tuku „light“ má tučnost 39 % až 41 % tuku a málo se smetanovým zákysem obsahuje 3% zákysové smetany. Málo lze rozdělit podle trvanlivosti na čerstvé, stolní a obyčejné. Čerstvé máslo má trvanlivost 20 dní při skladování při teplotě 4 – 6 ºC, obyčejné máslo má trvanlivost zhruba 35 dní a stolní máslo lze skladovat při teplotě -18 ºC déle než rok.

Za mražený krém je považován výrobek získaný zmražením směsi skládající se z vody, mléka, smetany, cukru a dalších aditiv. Obvykle má pevnou nebo pastovitou konzistenci, která zároveň musí být jemná, hladká, krémovitá, bez hrudek, krystalů a vzduchových bublin. Mladé a smetanové mražené krémy nesmí obsahovat jiný tuk a bílkoviny, než mléčného původu. U ovocné smetanového krému se jako ovocná složka používá ovoce, dřeň, či šťáva.

2.7.3. Koncentrované a sušené výrobky

V této skupině možné nalezout kondenzované, zahuštěné mléka a smetany, a také sušené výrobky za specifických podmínek. Tyto výrobky jsou typické svým vysokým obsahem sušiny a dlouhou trvanlivostí. Té se dosáhne buď přidavkem cukru, čímž se vytvoří hypertonické prostředí, nebo sterilizací. Rozlišují se slazené a neslazené výrobky, velmi důležitým kritériem kvality je bělost produktů. Zahuštěné výrobky, jako je například salóko, karamelo, pikao, piknik, jasenka se obvykle plní plechových obalů.

Sušené mléčné výrobky jsou práškovité a vyrábí se buď pro přímou spotřebu, nebo pro průmyslové zpracování jako polotovar. Podle charakteru se rozlišují sušená mléka, sušené mléčné výrobky s chuťovými a výživovými přísadami (kojenecká strava) a mléčné krmné směsi. Řadíme zde sušenou smetanu, sušené plnotučné mléko, sušené mléko polotučné a odtučněné.

2.7.4. Kysané mléčné výrobky

V této části komodity se vyskytuje soubor všech mléčných výrobků s přídavkem ušlechtilé mléčné kultury. Tímto se získá jogurt, jogurtové mléko, kysaná smeta, kefírové mléko, podmásla, kyška a acidifilní mléko. Každý kysaný výrobek se fermentuje jinou vhodnou mléčnou či probiotickou kulturou v daném množství. Existují tři hlavní skupiny mléčných kultur a to jogurtové, smetanové a kefírové. Velmi často se používají obvykle bakterie rodů Lactobacillus, Lactococcus a Bifidobacterium. V současné době se obvykle kysaný výrobek vyrobí o požadované tučnosti se přidává mléčná kultura v hluboce zmražené lyofilizované formě, které při dané teplotě začnou být aktivní a fermentaci vyrobí požadovaný produkt. Proces fermentace a zrání se ukončí přidáním kultury. Kultury se nemusí odstranit z produktu. Dříve se používal k výrobě kysaných výrobků mléčný zákys.

Současné obecné schéma výroby kysaných výrobků je k dispozici na obrázku 8.

2.7.4.1. Zrání mléčných výrobků

Zrání je proces, při kterém probíhá fermentace, nebo hofermentované mléko, tedy už daný mléčný výrobek, získá požadovanou konzistenci, specifické aroma, a požadovanou chuť. Smetana a jogurty mohou zrát buď v kelímcu nebo na hadci. Po sklenění se o starší klasickou metodu, kde v prvních lednu vyjde pouze horký zakysaný polotovar, který se skládá z mléka a kultury, a dozrává v teplárně, což je místnost s konstantní teplotou, tlakem a vlhkostí. Také produkt dojde v jednotlivých kelímcích. Jogurty zrají po dobu šesti hodin při teplotě 49 ºC, během zrání vzniká kyselina mléčná. Tento proces se ukončí prudkým ochlazením. Touto metodou se vyrábí
například produkt Selský jogurt. Zakysaná smetana zraje při teplotě 29 °C po dobu 12 hodin. Zrání v tanku je novější metoda, přičemž do obalových materiálů se plní již vyzrálý produkt, který už má specifickou požadovanou konzistenci má jemnější chuť. Takto zabalený hotový výrobek již své vlastnosti nemění a může se uskladnit.

2.7.4.2. Výroba kysaných výrobků

Kefírové mléko je další kysaný výrobek, jehož základ tvoří kefirová zrna, což je směs bakterií a kvasinek kefirové kultury, produkující mimo jiné oxid uhličitý a minimální množství alkoholu. Kefírovou kulturu tvoří bakterie *Lactobacillus delbrückii*, *Lactobacillus casei*, *Lactobacillus acidophilus*, *Lactococcus lactis ssp. lactis*, *Lactococcus lactis ssp. cremoris*, *Kluyveromyces fragilis*, která tvoří pseudomyccelium, je docela termorezistentní, protože dokáže být aktivní do teploty 47 °C a *Candida kefir*. Acidofilní mléko je velmi kyselé, obsahuje 2 druhy kultur v poměru 1:9, jedná se o acidofilní a smetanovou kulturu, přičemž obě složky kysají zvláště. Acidofilní kulturu obvykle bývá
Lactobacillus acidophilus, což je probiotikum s inkubační teplotou 37 °C, po dobu 18 hodin, ovlivňující střevní mikroflóru. Podmáslí je kysaný mléčný výrobek ve formě kapaliny, která vzniká během výroby másla, má nižší tučnost než máslo, ale zůstane mu znatelné množství výživných a chuťových látek, zakysají se smetanovou kulturou. Poslední kysaný výrobek je kyška, tvoří ji zákys mléčné kultury.

2.7.5. Tvarohy a sýry
Zde se nachází výrobky tvarohového a tvarohového původu. Tvaroh je nezrající sýr získaný kyselým srážením, který převládá nad srážením syřidlem. Jedná se o koagulát mléka o požadovaném obsahu tuku. Můžeme rozlišit měkký tvaroh, který obsahuje okolo 25 % sušiny, tvrdý tvaroh, který má 32 % sušiny a vzniká bez přidavku syřidla, a termotvaroh, který je vytvořen trvanlivý, vydrží až 21 dní a vyskytuje se v něm nižší procento sušiny.

Za sýr je považován mléčný výrobek vyrobený vysrážením mléčné bílkoviny z mléka působením syřidla nebo jiných vhodných koagulačních činidel, prokysáním a oddělením podílu syrovátky. Sýry lze dělit podle mnoha kritérií například podle zrání na nezrající sýry, které dále lze rozdělit na smetanové, termizované, pařené, bílé sýry, a zrající sýry, které se mohou dále členit na plísňové, zrající pod mrazem, zrající v chladu, s anaerobním zrání v celé hmotě, s nízkodohřívanou syřeninou, eidamského typu a s tvorbou ok.

Zrající plísňové sýry mohou mít ušlechetilou potravinářskou plíseň na povrchu nebo v těstě. Tyto plísně jsou charakteristické extrémní proteolytickou a lipolytickou aktivitou, štěpí mléčný tuk na methylketony a volné mastné kyseliny, čímž ovlivňují chuť a vůni sýrů. Plísní na povrchu se obvykle mání Penicillium camemberti, a jako plíseň v těstě se nejčastěji používá Penicillium roqueforti, viz obrázek 10. Touto technologií je vyroben například hermelín, niva, camembert, roquefort, gorgonzola a jiné plísňové sýry.

Obrázek 10: Penicillium roqueforti (zdroj: Mikrobiologie potravin)
Další skupinou jsou sýry zrající pod mrazem, což jsou například Olomoucké tvarůžky. Skladují se 1-2 týdny při teplotě 15 °C, během zráhí se tvaroh mele a přidávají k němu se zrací soli. Sýry zrající v chladu se sráží při vysoké teplotě, příčemž během chladnutí prokysávají, zráhí probíhá pod fólií při teplotě 6-8 °C po dobu 4-5 týdnů. Sýry eidamského typu se vyrábějí s využitím propionové kultury, dochází k praní sýrového zrna, zráhí probíhá pod fólií při teplotě 6-8 °C po dobu 4-5 týdnů.

Sýry eidamského typu se vyrábějí s využitím propionové kultury, dochází k praní sýrového zrna, zráhí probíhá pod fólií při teplotě 6-8 °C po dobu 4-5 týdnů.

2.7.6. Mléčné deserty
Jedná se o specifickou podskupinou této komodity, jejíž produktu se vyrábí ze sladké smetany či mléka, může se jednat o šlehané výrobky, různě tepelně upravené. Patří zde: mělká rýže nebo mlečná kruhice, což je kruhice či rýže vařená v mléce resp. smetaně o minimální tučnosti 6% a buď na trhu lze koupit v samotného stavu, nebo se přidává džem s příchutí. Šlehané tvarohové krémy se vyrábějí šlehaním tvarohu a přidáním dalších aditiv, jedná se například o Kunínek, Ostraváček a Přibíňáček. Termixy se vyrábí z měkkého tvarohu, který se termizuje. Další druhy mlečných dezertů jsou různé pudíny, smetanové krémy s želé, lískoříškové mléčné krémy jako je například Monte či Olmík. [2] [3] [5] [6] [22] [29] [35] [36]

2.8. Bloky mlékárny
Mléko, když přijede do mlékárny, musí ne náležitě zpracovat a prochází následujícími výrobními úsekami, jak je zřejmé z obrázku 11.

Obrázek 11: Technologické sekce mlékárny (Vytvořeno v programu ChemSketch)

Zvláštní sekci mlékárny jsou sanitační stanice CIP.
2.9. Technologické zpracování

Tady je rozebrané, co se děje v jednotlivých blocích mlékárny. Absolvovala jsem odbornou praxi v jisté mlékárně v české republice a následné bloky jsou popsány podle tamější výroby. V této mlékárně se vyrábí většina družk mléčných výrobků kromě sýrů, másla, koncentrovaných a sušených výrobků a mražených smetanových krémů.

2.9.1. Sanitace neboli čištění se označuje CIP (clinic in place)

Před každou operací a po ní se provádí sanitace. Jedná se o několikafázové čištění. Používá se voda, hydroxid sodný a kyselina dusičná.

Většina přístrojů se nejdříve vypláchne vodou, aby vše smyly hrubé mechanické nečistoty, následně se provádí výplach hydroxidem sodným, který odstraní tuky a bílkoviny. Zařízení se opět promyje vodou. Další fáze sanitace je průplach kyselinou dusičnou, zde tato kyselina má funkci neutralizace, navíc chrání nerezové potrubí před korozí. Nakonec se vše vypláchne vodou a po uzlu takto připravená zařízení se mohou použít pro transport, uložení mléka, mléčných polotovarů a produktů.

Každá výrobní linka spadá pod některou CIP stanici. Jedná se o prostor, popřípadě speciální místnost, kde jsou umístěné koncentrované chemikálie v souladu se správným skladováním. To znamená, že veškeré chemikálie jsou umístěné na plastových paletách, v plastových barelech.

Kyselina dusičná i hydroxid sodný mají nejvyšší koncentraci 50%. Takto koncentrované látky se naředí do nerezových barelů a následně se předehřívají v předehřívačích na požadovanou teplotu a pomocí pryžového čerpadla nebo ejektoru se rozhání do potrubí, které vede do dalších částí výrobní linky. V potrubí proudí promývací kapaliny pod tlakem 3 bar. V CIP stanici se naředí hydroxid sodný na 1,5 – 2% roztok, předehřejte se na teplotu 88 °C, kyselina dusičná má výslednou koncentraci 1 – 1,5 % a teplotu 60 – 65 °C, protože takto připravené roztoky mají největší sanitární účinek.

2.9.2. Příjem mléka

Na vrátnici se registruje veškeré příchozí mléko, tedy jaké mléko přijelo, odkud je či jaké je jeho množství. Následně se stanoví hmotnost, to znamená, že se zváží auto před a po přečerpání mléka.

Do mlékárny přijíždí průměrně 13 cisteren mléka (asi 270 000 litrů) od dodavatelů a 4 cisterny pasterované smetany z jiné koprodukující mlékárny denně. Samotný příjem probíhá tak, že přijede auto s cisternou, do této cisterny se zalije objem přibližně 5 000 litrů, a tahač, který má cisternu o velikosti 10 000 litrů. Každá cisterna má automatický vzorkovací systém, který odebírá průběžně vzorky do vzorkovnic o objemu 0,5 l, navíc je k dispozici vzorkovnice z každého bazénu od různých dodavatelů, které slouží jako ukazatel jakosti mléka. Tedy při špatném výsledku analyz se snadno zjistí, které mléko bylo kontaminované, a kdo uhradí způsobené škody. Tyto vzorkovnice se testují v laboratoři této mlékárny.

Po předání vzorkovnic do místní laboratoře se mléko prověří několika zkouškami: Změří se teplota, která musí být nižší než 8 °C, přičemž ideální tepota se pohybuje v rozmezí 2 - 6 °C, dále se mléko prověřuje senzoricky, tedy zahrnuje to asi na 70 °C, a nesmí vydávat nestandardní vůni. Další metodou je stanovení aktivní i titrační kyselost, která musí být v rozmezí 7,2 – 9,8 °SH (Soxhlet-Henkel). Pokud je hodnota vyšší, jedná se už o nákyslé mléko. Záleží však na stupni nákysnutí, protože pokud má lehce vyšší hodnotu titrační kyselost, než uvádí norma, dá se použít na výrobu kysaných produktů. Jestliže, ale přesáhne tuto hodnotu titrační kyselost, než uvádí norma, dá se použít na výrobu kysaných produktů. Zároveň mléko nesmí mít menší kyselost, než 7,2 °SH, protože by mohlo dojít ke špatné sanitační účinek.

Stejným způsobem se testuje dodaná smetana. Před jejím příjmem se musí celá trasa louhovat. Kromě výše uvedeného postupu se provádí tak zvaný „doklak po smetaně“. To znamená, že pokud zůstane smetana či smetanová pěna na stěnách cisterny vytlačí se vodou.

Vždy po umístění syrového mléka nebo pasterované smetany se odebírají vzorky pro stanovení požadovaných kritérií, jako je tučnost a sušina. Další mikrobiologické testy přijímaného mléka jsou například testy na přítomnost koliformních bakterií, které se stanovují buď kulturační metodou, nebo probíhá stanovení celkového počtu mikroorganismů (CPM), který se provádí instrumentální metodou, stanovení RIL, obsah somatických buněk a stanovení množství sporulujících mikroorganismů. Jestliže je však test negativní, mléko se může čerpat do tanků na syrové mléko.

2.9.3. Pasterace mléka

Mléko se od přijetí musí pasterovat do 4 hodin od příjmu mléka. Jestliže nedojde k jeho zpracování do této doby, nebo má nižší teplotu než 8 °C, musí dojít k přechlazení mléka v deskových výměnících. Před pastericí se odebere vzorek ke stanovení pasteračního efektu.

Takto tepelně ošetřené mléko a smetana se z pastéru přečerpává buď na jednotlivé výrobní linky a zpracovává se z něj finální výrobek, nebo je použito do úchovných tanků, kde může být až 24 hodin. Pasterované mléko se musí znovu zchladit do 2 hodin od pasterace tak, aby teplota nepřesáhla 6 °C (ideální teplota je 2 °C). V opačném případě by mohlo dojít k opětovně kontaminaci mléka a to by se mohlo znehodnotit. Pro kontrolu a zaručení jakosti se jednou týdně provádí pasterační efekt, což je poměr počtu usmrcených bakterií v pasterovaném mléce k počtu usmrcených bakterií v syrovém mléce, určuje se v procentech. Tedy to znamená, že se mikrobiologicky stanoví a porovná syrové a pasterované mléko.
na straně pasterovaného mléka musí být větší než na straně syrového mléka. Z odstředivky vytékají odstředivkové kaly, které putují do kanalizace a čističky odpadních vod.

Po odstředění mléka se provádí homogenizace mléka. Ve francouzské mlékárně je postup opačný. Tedy se nejdříve mléko pasteruje a až poté odstřeďuje a homogenizuje. Při vstupu z mléka do homogenizátoru se používají tlučíky, protože při tlaku 80 bar, při kterém se homogenizuje polotučné mléko, nebo při tlaku 50 bar probíhá homogenizace plnotučného mléka, a rychlosti mléka by mohlo dojít k poškození výrobok linky. V homogenizátoru jsou 2 válce, které vytváří mezí sebou štěrbinu. Čím užší je štěrbinu, tím se docílí většího tlaku, tím lepší je homogenizační schopnost. Možný princip homogenizace je patrný na obrázku 12.

Sanitace homogenizátoru se provádí hydroxidem sodným a kyselinou dusičnou. Celý proces se provádí jednou denně a trvá 2400 s. Při každém čištění se odebírají vzorky sanitačních roztoků a stanovuje se jejich koncentrace.

Odstředěné a homogenizované mléko se přivádí do druhé pasterační neboli regenerační sekce, kde dochází v předehřívačích k oživení mléka na požadovanou teplotu, tedy mléko cirkuluje tak dlouho, dokud nedosáhne žádoucí pasterační teploty. Například mléko na termotvaroh se zahřívá na teplotu v rozmezí 82 – 90 °C s výdrží 6 minut, mléko určené pro výrobu měkkého tvarohu, trvanlivého mléka a ostatních mléčných výrobků se pastera je při teplotě 73-79 °C s výdrží 30 s. Průtok mléčného pastéru je 20000 l za hod. po pasterační se mléko chladí na teplotu v rozmezí 28 – 30 °C, pro mléko určené na výrobu měkkého tvarohu a termotvarohu, a mléko určené na ostatní výrobky se ochlazuje na teplotu 1 – 6° C a vede se do úchovních tanků na pasterované mléko. V pastéru je ventil, kterým se mléko pouští do výdržníku, kde cirkuluje do dosažení požadované teploty.

Během pasterace se každých 30 minut kontroluje teplota, aby byla dodržena správná výbořní praxe, tj. aby nedošlo např. k poklesu teploty, kdy by pasterační nemusela být úplná nebo mléko nebylo pasterovalo při příliš vysoké teplotě, mohly by se rozložit některé látky v mléce. Stejně se musí sledovat rychlost průtoku a tlak.

Po každém průtoku o objemu 150 000 litrů se musí provádět CIP mléčného pastéru. Provádí se pouze louhování a vyplach vodou. Celá sanitace trvá asi 2 hodiny. Pak se ještě musí sterilovat vodní párou, jejíž teplota je 141°C. Denní spotřeba vody na pastерově je 850 m³. Vše se zaznamenává do deníku ošetření mléka, které se musí archivovat. Timto se dá kontrolovat dodržování správné výbořní praxe.

Smetana z odstředivky má výstupní teplotu také 50 – 55 °C se musí standardizovat dle aktuálního požadavku (př. 20% tuku) vede se na smetanový pastér, který se musí připravit.
Do balanční nádoby se musí dopustit potřebné množství vody, A celý pastér musí být vysterilovaný. Sterilace se zde provádí proudem vodní páry při teplotě 95 °C po dobu 15 minut. Výstupní teplota vody v pastéru je 70 °C. Vypustí se voda z balanční nádrže na minimální množství, pastér začíná cirkulovat a voda vytlačuje smetanu, která se čerpá přes vyrovnávací nádrž do pastéru. Směs vody a smetany putuje do bazénky.

Pasterace smetany probíhá při teplotě 95 °C s výdrží 20 s, následně je čerpána do výdržníku v takovém množství, aby nedošlo k zavzušenému. Výstupní teplota vody v pastéru je 70 °C. Vypustí se voda z balanční nádoby, pastéru začíná cirkulovat a vodu vytlačuje smetanu, která se cirkulová smetanou přes vyrovnávací nádrž do pastéru.

Směs vody a smetany putuje do bazénky.

2.9.4. Zpracování mléka a smetany

Mléko z pastéru putuje:
- Do tanku na výrobu tvarohů a tvarohových krémů
- Na výrobu kysaných výrobků
- Na výrobu mléčných jogurtů
- Na výrobu mléčných jogurtů a kysaných výrobků
- Na dezertní linku k výrobě mléčné krupice

Smetana z pastéru putuje:
- Na výrobu smetanových jogurtů a kysaných výrobků
- Do úchovy

V úchovných tancích na pasterované mléko se provádí před dalším zpracováním odběr vzorku mléka. Musí se stanovit tučnost, obsah sušiny a bílkovin. Stejná stanovení se provedou v tancích na smetanu. Pokud je vše v pořádku, dojde ke standardizaci, dle daných požadavků. Při výrobě většiny produktů je základ homogenizačním tlaku 190 bar, smetanou o tučnosti 12 % při tlaku 150 bar, a smetanou o tučnosti 31 % při tlaku 10 bar. Homogenizace UHT mléka a smetany probíhá před ohřevem. Smetana je náchylnější než mléko, proto se velmi dbá na to, aby vše probíhalo sterilně. Aseptický homogenizátor se sanituje v několika krocích. Nejprve se trasa propáchná mlékem, následně se louhuje, pak se používá kyselina dusičná, vodní pára, hydroxid sodný, opět kyselina a výplachovací voda. Zda je prostředí skutečně aseptické, se kontroluje testem ASM (aseptické množství čistoty), jestliže vyjde negativně, provede se další průplachem hydroxidem a kyselinou dusičnou.
Následně se UHT produkty zchladí (mléko na 25 °C, smetana pod 8 °C), a transportují balící linku. Mléko se balí ihned do krabic TetraPack. Balička je také plně aseptická, tohoto prostředí se dosahuje přetlakem aseptického vzduchu, obaly se přestřikují 35% roztokem peroxidu vodíku a prosvěcují se UV lampou. Vyroběné produkty musí splňovat garantovanou jakost. Obsluha balící linky kontroluje pevnost švů, těsnost a kompaktnost celého balení.

Po celou dobu výroby se hlída, zda je vše v pořádku. Obsluha strojů provádí několikafázovou kontrolu mezi operacemi. Vzorky se odebrávají vždy při zahájení práce, zástavě stroje, při výměně tanku, při výměně role obalu, při výměně svářecí pásky, na konci výroby.

2.9.4.2. Dezertní linka
Zde se vyrábějí dezerty, tedy výrobky ze smetany a mléka, jako je mléčná krupice, mléčná rýže, různé druhy káv, mléčné krémy, šlehané tvarohové krémy

První částí této linky je míchací tank na mléko, smetanu nebo dezert, který je propojen s méchací stůlem. Zde se přisypávají sypké komponenty (sušené mléko, škrob, cukr, káva, stabilizátor atd.), které cirkulují přes mléčný tank, kde dochází k rozpouštění. Před přidávkem sypkých aditiv se stanoví tučnost mléka. Tyto tanky jsou vertikálně uspořádané, na viskóznější produkty (např. mléčná krupice, Ostraváček se používají míchací tanky s horizontálním uspořádáním. Objem těchto tanků je 3 a 4 tuny. Aditiva se přisypávají shora tanku.

2.9.4.2.1. Výroba mléčné rýže
Dané množství mléčné rýže se vyrábí podle denních požadavků, což může být např. 20000 kg, ale ve skutečnosti se tato zakázka nemůže vyrobit najednou, protože tanky nejsou tak rozměrné, aby mohly pojít takové množství produktů, proto se výroby rozděluje na dva a více zakázek.

Pasterovaná smetana se standardizuje na minimální tučnost 6 %, která se následně napustí do méchacího tanku, kde se přes méchací stůl přidá cukr, stabilizátor, vanilka. Tato směs tvoří tak zvaný premix, který cirkuluje v méchacím tanku minimálně 10 minut, provádí se vizuální kontrola, tedy násypka méchacího stolu musí být neustále zahlcená sypkými přípravky. Jinak by došlo k nasátí vzduchu, což by vedlo k napěnění a našlehání mléka, a to je v tomto případě nežádoucí jev. Po promíchání se odebrávají vzorky k mezioperačním stanovením. Stanovuje se množství sušiny, tučnosti a pH. Pokud výsledky odpovídají požadavkům a normám, mléko jde do výdržníku. Následně se smetana s aditivy transportuje do předehřívačů, které jsou deskové tepelné výměníky, kde se dosáhne teploty 60 °C. Zároveň se nasypá rýže do zásobníků rýže. Celá směs se čerpá do dvouplášťových válcovitých nádob s plastovými škrabáky. Jedná se o UHT zařízení. Probíhá zde dvoustupňové míchání, hlavní míchání zajišťuje planžetové míchadlo, které má dvě planžety na hřídeli, a navíc jsou na celém obvodu škrabáky, které zamezují sedimentaci rýže. V prvním kontermu se přidá adekvátní množství rýže, která se vaří při teplotě 105 °C, kde se teplota zvýší na 120 °C, a čas v tomto výdržníku je 550 s. Po uplynulém čase je rýže uvařená. Následně je celá směs dopravena chladicí sekcí, kde do třetího kontermu se transportuje do sterilního tanku, kde za neustálého míchání se čerpá na balící linku. V zapojení jsou dva sterilní tanky, které pracují diskontinuálně, to znamená, že v provozu je pouze jeden, přičemž druhý se steriluje a plní. Tímto se zajistí nepřetržitý provoz výrobni linky. Sterilní prostředí se zajišťuje přetlakem sterilního Produkty musí být co nejrychleji dopravený na balící linku, protože pokud zůstane v sterilním tanku déle, dojde vlivem zvýšeného tlaku k deformaci zrněk rozvařené rýže.
Na balici lince dochází k plnění trubek a zásobníku. Ze zásobníku se odebírá vzorek produktu, kontroluje se množství sušiny, tučnost, pH a provádí se mikrobiální rozbor, pokud jsou výsledky v pořádku, může se začít produkt balit. K balici lince jsou připojeny kontejnery s džemem požadované příchutě. Při balení musí být striktně dodržovány předepsané směsovací pořadí malina, jablko, citron, exotic, jablko se skořicí, karamel, jahoda, višeň, ostružina, skořice a čokoláda, aby nedošlo ke kontaminaci džemů alergenem během plnění v lince. Následně se připraví obalový materiál, což jsou dvoukomorové kelímky a hliníková fólie.

2.9.4.2.2. **Výroba mléčné krupice**

Mléko resp. smetana o tučnosti minimálně 6 % je napuštěno do horizontálního mléčného tanku, odeběrá se vzorek, stanoví se požadovaná kritéria, přičemž v pozitivním výsledku se pokračuje následovně. Podle výrobního rozpisu se přidávají sypké komponenty přímo do tanku, který má zapnuté míchadlo. Rychle bobtnající krupice se přidává do tanku 15 minut před zpracováním. Uspořádání technologického schématu výroby mléčné krupice je velmi podobné výrobě mléčné rýže, ale nejsou zde výděrky. Mléčná krupice z chladící sekce se dopraví do sterilního tanku a odتد na balici linku. Opět se připojí kontejner s džemem jahodové nebo čokoládové příchutě. Před samotným balením provádí odběr vzorků, stanovení požadovaných kritérií, mikrobiální rozbor a senzorická analýza. V případě, že je výsledek pozitivní, bálí se produkt do jednokomorových kelímků za celá aseptických podmínek.

Hotové výrobky se musí kontrolovat například hmotnost kelímků každých 15 minut. Dále musí být dobře čitelné datum expirace, kontroluje se těsnost a kvalita obalů. Naplněné kelímky se balí do skladových kartónek, které se skládají na paletu, několik na sobě se zabalí do stretchové fólie a pásovým dopravníkem jsou transportovány do expedičního skladu, kde je teplota 2 – 8 °C. Zde se výrobky nesplňující všechna kritéria, např. obal není těsný, nebo je špatně čitelné datum expirace, pak se tyto výrobky řadí jako druží jakost a jsou určeny ke klasifikaci a samostatnému skladování.

Prázdné míchací tanky se sanitarizují CIP tedy po každé várce výroby se provádí výplach vody, louhování a opětovný výplach, a jednou týdně se provádí navíc ošetření kyselinou dusičnou. Celá výrobní linka je čistěním a desinfekcí, které se provádějí každých 15 minut. Dále se kontrolované vzorky je kontrolované požadované kritéria, mikrobiální rozbor a senzorickou analýzu. V případě, že je výsledek požadovaného kritéria, bálí se produkt do jednokomorových kelímků za celá aseptických podmínek.
trvanlivější. Používá se pro výrobu olomouckých tvarůžek, a na vystužení pro výrobu koláčů. Měkký tvaroh se využívá pro výrobu termixů a ostraváčků.

Pasterantka vizuálně zkontroluje koagulační tank, zda je čistý a sanitovaný, vypustí vodu a napustí přepasterované mléko (mléko na výrobu měkkého tvarohu má pasterační teplotu 75 °C a výdrží 30 s mléko na výrobu termotvarohu má pasterační teplotu 80 °C) o tučnosti maximálně 0,05 %, do koagulačních tanků kde je přítomný sterilní vzduch, aby bylo dosaženo mikrobiální čistoty.

Odeberou se vzorky, stanoví se požadovaná kritéria jako obsah tuku, tukuprosté sušiny, mikrobiální čistota, a kyselost, pokud je vše v pořádku dle požadavků, obsluha linky na výrobu tvarohu zasypá mléko speciální tvarohovou kulturou, což je směs laクトflory mléka a maziva, a na výrobu termixů a ostraváčků.

Celý obsah tanku se zamíchá při vysoké rychlosti po dobu 1800 s, teplota zákysu je 28–30 °C, což je ideální kultivace mléka a mléko na výrobu termotvarohu má pasterační teplotu 80 °C) o tučnosti maximálně 0,05 %.

Rozlišujeme tři základní typy syřidel a to živočišné, vyrábí se izolací enzymu chymosinu, který je přítomný v žaludku kůzlat, jehňat a telat v době laktace, způsobuje srážení mléka, rostlinné, tedy enzym se izoluje z částí různých druhů rostlin například ze svízele syřišťové - Galium verum a mikrobiologické, přičemž se jedná o syřidlo vyrobena za pomocí hub, kde účinnou látkou jsou enzymy různých mikroorganismů, například Rhizomucor miehei, Rhizomucor pusillus. Všechny tři typy syřidel fungují na enzymové proteolýze, čímž způsobí srážení mléka.

Po zasýření se směs míchá rychlostí 300 otáček za minutu, jde o pomalé míchání. Pak se vypne se míchadlo, probíhá koagulace mléčných Proteinů (hlavně β-kaseinů). Tento stav trvá 12–16 hodin.

Odstředěný tvaroh se chladí v trubkovém výměniku tepla (na rozdíl deskového výměniku tepla je vhodnější pro viskóznější hmoty) dojde k ochlazení pod 8 °C, a odtud se čerpá pomocí šnekových čerpadel do úchovních sil, kde dodržována takto nízká teplota. Odstředivka po zkončení provozu se nesanituje CIP stanicí, nýbrž se musí čistit ručně.
zařízení Stephan, kde probíhá termizace při teplotě 70 - 79°C s výdrží 3 minuty, při této teplotě dojde ke smíšení a rozpuštění sypkých přidaných komponent, přidá se potřebné množství smetany (Ta se musí přiletat ručně přímo do kotle termizátoru horní násypkou), opět se vše promíchá, a celý obsah padá jako hořká směs do zásobníku, kde teplota nesmí klesnout pod 60 °C, pokud se teplota neuhlídá a směs je chladnější, musí se vše ručně přečerpává čerpadlem do dávkovačů balící linky, opět se vše promíchá a celý obsah padá jako hotová směs do zásobníku, kde teplota nesmí klesnout pod 60 °C, pokud se teplota neuhlídá a směs je chladnější, musí se vše ručně přečerpává čerpadlem do dávkovačů balící linky. Dojde se k tomuto odčerpání, musí se provést odběr vzorku, kde se stanoví množství sušiny a pH.

Složení termixu je následující: Hotový termix obsahuje měkký tvaroh, cukr, barvivo, aroma, případně kakao, škrob, vodní páru, smetanu a želatinu. Nejdříve se zamíchává smetana, ostatní aditiva a nakonec se přimíchává vodní pára. Díky tomuto postupu se získá požadovaná krémovitá charakteristická konzistence termixů.

Balení termixů

PVC nebo polystyrenová fólie se nahřeje spodní i horním náhřevem na 135 °C, matricí a raznicí se vyrazí pás výlisků s kelímky, písty dotlačí tvar, do těchto výlisků se vstřikuje horký produkt. Následně dochází k navařování víčka, hlídá se pomocí fotobuněk, zda víčko sedí přesně a je dobře přivařené na kelímku po celé délce obvodu, v pásu kelímků s produktem vyřezávají speciální nože "hvězdičky" – zakulacení rohů, následně dojde k tomuto odčerpání, musí se provést odběr vzorku, kde se stanovuje množství sušiny a pH.

Laboratorní metody

Zde je popsán princip metod, které byly použité v laboratoři na stanovení obsahových látek. V mlékárně, kde jsem vykonávala odbornou praxi, ještě byl laboratorní úsek, sloužící k mikrobiologickým stanovením. Tím se docílí kompletní kontroly technologického úseku.

2.10. Stanovení titrační kyselosti syrového mléka

Titrační kyselost je alkalimetrická titrace. Titrace se řídí mezi kvantitativní metody, které stanovují množství jednotlivých složek v analytu, a reagují podle stechiometrického poměru. Jedná se o přímou metodu ve srovnání s instrumentálními analytickými metodami, které využívají ke stanovení fyzikálně-chemické měření. Konec stanovení se indikuje dosažením bodu ekvivalence, kdy dojde ke skokové změně, která je potřeba někdy odhalit indikátorem. Při titraci se jedná o přesný odečet objemu odměrného roztoku o přesně známé koncentraci z byrety, k známému objemu stanovovaného vzorku. Na základě známé reakce se vypočítá koncentrace analyzovaného vzorku. Stanovení titrační kyselosti patří mezi acidobazické reakce, tedy reaguje kyselina se zásadou, a dochází k neutralizaci, to znamená, že vzniká síl kyseliny a voda. Jestliže to specifikujeme, jedná se o alkalimetrickou titraci, tedy odměnný roztok je zásada, v tomto případě hydroxid sodný. Jako indikátor bodu ekvivalence, který se stanovuje vizuálně, se používá fenolftalein. Titrační kyselost mléka se uvádí ve stupních Soxhlet-Henkel (°SH). U syrového mléka i smetany musí být jeho hodnota v rozmezí 7,2 – 9,8 °SH.

2.10.2. Stanovení aktivní kyselosti

Aktivní kyselost mléka a mléčných výrobků se stanovuje pH-metrem. Měření pH má klinický význam při diagnostice mastitid. Stanovení pH se uplatňuje například při výrobě fermentovaných mléčných výrobků. pH-metr je přístroj sloužící k měření aktivity oxoniových kationtů v roztoku na základě potenciometrického měření. pH-metr je v podstatě zjednodušený ionometr. Jehož stupnice je cejchována přímo v hodnotách pH. Vlastní měření obvykle se provádí pomocí kombinované skleněné
elektrody, která je jejich součástí. Jedná se o dvě elektrody, a to skleněnou, jejichž slouží jako měrná, je i referenční a respektive srovnávací, do společného skleněného obalu. pH-metr se musí kalibravat jedno týdně a před každým měřením. Ke kalibraci se používají kalibrační roztoky standardů o přesně známém pH.

2.10.3. Stanovení sušiny mléka výpočtem z hustoty a obsahu tuku
Sušina v mléce se stanoví výpočtem podílu všech složek mléka kromě vodní fáze zjištěný z hustoty mléka a obsahu tuku zjištěného acidobutyrometrickou hodnotou. Vypočítá se v gramech na 100 gramů vzorku.

2.10.4. Stanovení nášlehu neboli šlehatelnosti smetany
Je to metoda, kterou se stanoví, jak moc je smetana šlehatelná. Vzorek smetany se nalije do nádobky, změří se jeho objem, pak se vzorek šlehá po nějakou dobu elektrickým šlehačem při daných otáčkách, tak dlouho, dokud našlehaná smetana nezanechává na metličce šlehače ostré rýhy. Nášleh smetany se udává v %.

2.10.5. Stanovení obsahu sušiny rutinní metodou
Tato metoda je vhodná pro jogurty, kysané smetany, smetanové krémy, dezerty a sýr. Jedná se o stanovení termogravimetricky, tedy vzorek se podílí na známé hmotnosti se suší při teplotě 102 °C do konstantní hmotnosti (±0,05 miligramů) Tato metoda slouží také jako referenční pro stanovení sušiny instrumentální metodou MilkoScan FT 120.

2.10.6. Stanovení tuků Gerberovou neboli provozní metodou
Jedná se o empirický postup, kterým se stanoví obsah tuku v gramech na 100 gramů vzorků výrobků odpovídající hodnotě získané referenční metodou. Metoda je založená na kyselém rozdružení bílkovin působením kyseliny sírové a po přidávání malého množství amylalkoholu, oddělení a měření uvolněného objemu mléčného tuku po odstranění v butyrometru. Obsah tuku se odečítá přímo na stupnice butyrometru. Metoda je použitelná pro všechny mléčné výrobky.

2.10.7. Stanovení chemických parametrů instrumentální metodou MilkoScan FT 120
Tato metodika stanoví instrumentální metodou obsah tuku, bílkovin, tukuproste sušiny, sušiny a laktysové mléčné výrobce. Metoda je určená pro rychlé stanovení požadovaných parametrů pro účely vstupní, mezioperační a výstupní Kontroly mléka, smetan a mléčných výrobků. Metoda je založená na kyselém rozdružení bílkovin působením kyseliny sírové a po přidavku malého množství amylalkoholu, oddělení a měření uvolněného objemu mléčného tuku po odstranění v butyrometru. Obsah tuku se odečítá přímo na stupnice butyrometru. Metoda je použitelná pro všechny mléčné výrobky.

3. EXPERIMENTÁLNÍ ČÁST
V experimentální části jsou popsány postupy prováděných metod, seznam použitých chemikálií a pomůcek, které jsem využívala při odborné praxi v laboratoři při kontrole vstupních surovin a hotových výrobků, ve vybrané mlékmářství v České republice.

3.1. Stanovení titrační kyselosty syrového mléka
Použité pomůcky: byreta, kádinka, chemický stojan, titrační baňka, pipeta
Použité chemikálie: fenolftalein, vzorek mléka, hydroxid sodný (0,25 N)
Postup: Do titrační baňky se napipetovalo 50 mililitrů vzorku mléka nebo smetany a 2 mililitry roztoku fenolftaleinu, následně se obsah baňky titroval odměrným roztokem 0,25 N hydroxidu sodného do slabě růžového stálého zbarvení minimálně 30 sekund. Stanovení se provedlo třikrát.

3.2. Stanovení aktivní kyselosti
Použité pomůcky: pH-metr, elektrody, pufry o hodnotě pH = 4 a 7
Chemikálie: čistící roztoky, stanovovaný vzorek a destilovaná voda
Postup: Před každým měřením byla nutná kalibrace pH-metru na dvě hodnoty 4 a 7, protože v tomto intervalu se pohybuje pH měřených vzkůř. Následně se po šlehání a vypočítála šlehatelnost zkoumané smetany a zaznamenala se její hodnota do deníků nášlehů smetany.

3.3. Stanovení nášlehu smetany
Použité pomůcky: vzorky smetany například a to jeden vzorek zakoupen v obchodní síti, smetana 2–7 dnů po výrobě a smetana na konci trvanlivosti.

Pomůcky: Elektrický šlehač, miska na šlehání
Postup: Po nalití vzorku do misky se zaznamenala hladina smetany. Každý vzorek se šlehal přibližně 1,5 až 2 minuty při rychlosti otáček elektrického mixéru 7000 za minutu. Následně se po šlehání a vypočítála šlehatelnost zkoumané smetany a zaznamenala se její hodnota do deníků nášlehů smetany.

3.4. Stanovení obsahu sušiny rutinní metodou
Pomůcky a zařízení: Analytické váhy, vysoušecí ploché mísa z kovu výšky 3–4 cm a průměru 6–8 cm, skleněná zploštělá tyčinka a sušárna, exsikátor
Chemikálie: vzorek a křemičitý písek, který je žíhaný, promytý a propraný kyselinou chlorovodíkovou
Postup: Vzorek se homogenizoval nebo promíchává na 5 gramů a 30 gramů písku. Tako připravený vzorek se umístil do sušárny na dobu 30 minut, po vychladnutí se zvážil a sušil dalších 30 minut, takto se pokračovalo, dokud rozdíl mezi jednotlivým vážením, není menší než 0,0005 gramů.

3.5. Stanovení obsahu tuku Gerberovou neboli provozní metodou
Pomůcky: Pipety o objemu 1 a 10 mililitrů, butyrometr o stupnici 4–7 % s rozsahem 0–0,5 %, odsředivka (30–50 °C) o známé frekvenci otáček, vodní lázně s teplotou 65±2 °C, plastové vzorkovnice se šroubovým uzávěrem určené k této metodě.
Chemikálie: Kyseliny sírové o koncentraci 90,4±0,08 %, a hustotě 1,816±0,004 g.cm⁻³, amylalkohol bezvodý o koncentraci 98 % a hustotě 0,808 g.cm⁻³
Postup: Vzorek o objemu 250 mililitrů a teplotě v rozmezí 20–30 °C se promíchával tak, aby nedošlo k napěnění, následně se vložil do vodní lázně o teplotě 35–40 °C. Po rozdělení tuků se mléko zchladilo na teplotu 20 °C, vzorek se nechal stát 3 minuty, aby vymizely vzduchové bubliny. Následně se do butyrometu napipetovalo 10 mililitrů kyseliny sírové, tak abych byl zapsán hrdlo butyrometru. Pak se přidalo se 10,70 mililitrů vzorku, a 1 mililitr amylalkoholu. Takto naplněný butyrometr se uzavřel zátkou a protřepával v odsředivec po dobu 4 minut. Následně se pozice zátky upravila tak, aby tukový sloupec byl měřitelný stupnici. Pak se butyrometr opět umístil zátkou dolů do vodní lázně tentokrát o teplotě 65 °C na dobu 10 minut. Odečet tuku probíhal tak, že se tukový sloupec posunul na nejbližší celé procento a odečetl se spodní meniskus na polovinu nejmenšího dlouh. 36
3.6. Stanovení chem. parametrů instrumentální metodou Milkoscan FT 120

Pomůcky: FTIR analyzátor Milkoscan FT 120, měřicí nádobka, vodní lázně, kontrolní teploměr, vzorkovnice určené pro tuto metodu

Chemikálie: Roztok pro odstranění běžných usazenin, čistící roztok, který obsahuje mimo jiné uhličitan sodný a křemičitan sodný, destilovaná voda, konzervační činidlo

Postup: Vzorek se vytemperoval na 40 °C ve vodní lázní, promíchal se a nalil do automatického dávkovače. Veškeré nastavené hodnoty detektor vyhodnotil kompletní výsledky v %.

4. VÝSLEDKY A JEJICH DISKUSE

V rámci této kapitoly jsou prezentovány a diskutovány výsledky

a) Z technologického úseku, kde se sledovaly potřebné technologické parametry výrobní linky, kontrolní údaje při dané části výroby, nebo údaje potřebné k správnému průběhu sanitace.

b) V laboratorním úseku jsou uvedeny výsledky ze stanovení polotovarů a hotových výrobků, které musí splňovat požadovaná kritéria uvedené v normě. Laboratorní sektory měří jakosti výrobky, proto jsou analyzy tak důležité. Některé metody v laboratoři mohou provádět pouze vyškolený personál, já jsem mohla provádět měření pouze pod jejich přísným dohledem

4.1. Technologický úsek

Tak jak bylo uvedeno výše, v rámci mé praxe, jsem měla možnost seznámit se s technologií zpracování mléka ve vybrané mlékárně. Zároveň jsem se zúčastnila i sledování důležitých technologických parametrů a jejich vyhodnocení z různých sekcí výroby.

4.1.1. Technologické záznamy z pastéru mléka

Při pasteraci mléka byly sledovány a zaznamenány technologické a informační údaje, aby bylo vše dohledatelné. Na obrázku 13 je příklad záznamového archu, kde jsou uvedené všechny kontrolní parametry, jako jsou datum výroby, název produktu, který se bude z této suroviny vyrábět. Další údaj bylo možností mléka, která se musela vypočítat smícháním z mléka a smetany, které byly dispozici. Výpočet se prováděl křížovým pravidlem nebo trojčlenkou. Podle jedné zakázky byl požadavek na pasteuraci na 7300 litrů mléka o tučnosti 10,29 %. Bylo k dispozici množství 6640 litrů mléka o tučnosti 8,75 %, a smetana o tučnosti 39,50 %. Bylo zapotřebí vypočítat vhodné množství smetany, aby byly dodrženy předepsané požadavky. Výpočet množství smetany o tučnosti 39,50 %.

\[V_{sm} = \frac{t_p - t_d}{t_s - t_p} \times V_d = \frac{10,25 - 8,75}{39,50 - 10,25} \times 6640 = 340 \text{litrů} \]

Kde \(t_p \) je tučnost požadovaná, \(t_d \) je tučnost smetany, \(t_s \) je tučnost smetany, \(V_d \) je objem mléka, které máme k dispozici.

Další sledované parametry byly číslo procesního tanku, záznam o sterilaci tanku, průběh samotné pasterace, tedy kdy mléko najíždí a vyjíždí, hodnota pasterační vstupní a výstupní teploty a zaznamenávala se hodnota homogenizačního tlaku. Tyto hodnoty se musely kontrolovat každých dvacet minut.
ZÁZNAM O PROVOZU PASTERU NA SPECIALITY

Datum výroby	21.11.14
Název produktu	Acidofílní mléko
Množství produktu	22 500
Míchací tank	301905

Komponenty

+ záznám identifikační šarže

Procesní tank číslo

<table>
<thead>
<tr>
<th>Laboratorní kontrola analýza připravené směsi</th>
<th>Čas</th>
<th>Jméno laborantky</th>
<th>Podpis laborantky</th>
<th>Výsledek rozboru</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6:30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sterilace pasteru</th>
<th>začátek (čas)</th>
<th>6:45</th>
</tr>
</thead>
<tbody>
<tr>
<td>konec (čas)</td>
<td>7:29</td>
<td></td>
</tr>
</tbody>
</table>

PASTERACE
(CCP - kritický kontrolní bod)

| začátek (čas) | 7:29 |
| konec (čas) | |

Cirkulace produktu (od – do)

<table>
<thead>
<tr>
<th>Čas nájíždění (hod.)</th>
<th>4:19</th>
<th>4:39</th>
<th>8:09</th>
<th>9:09</th>
<th>9:14</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Pasterační teplota (°C)</th>
<th>97,1</th>
<th>97,2</th>
<th>97,4</th>
<th>97,4</th>
<th>97,4</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Výstupní teplota (°C)</th>
<th>4,1</th>
<th>6,6</th>
<th>7,4</th>
<th>6,2</th>
<th>5,3</th>
</tr>
</thead>
</table>

Obrázek 13: Sledované technologické parametry mléčného pastéru

Výše zmíněné parametry se sledovaly každých dvacet minut, přičemž podle normy pasterační teplota pro acidofílní mléko nesměla klesnout pod 94,5 °C, výstupní teplota by se měla pohybovat v rozmezí 36 – 38 °C a pasterase by měla probíhat při homogenizačním tlaku 180 bar. Z obrázku 13 je patrné, že výroba probíhala podle požadavků normy, tudíž byla dodržena správná výrobní praxe acidofílního mléka.
4.1.2. Záznamy z dezertní linky

I na dezertní lince při výrobě mléčné rýže se musely zaznamenávat výrobní údaje. Na obrázku 14 je ukázka záznamu výroby mléčné rýže. Sledovalo se každých 30 minut množství parametrů, jako byly, vyrobené množství produktu, teplota v míchacím tanku, hmotnost mléka, teplota na jednotlivých kontermech, průtok produktu a tlaky na různých částech výrobní linky. Záznamový arch dále obsahoval datum výroby, množství sušiny, obsah tuků, hodnota pH, čas začátku a konce výroby.

Záznam o výrobě na lince TETRA DESSERT

<table>
<thead>
<tr>
<th>Produkt:</th>
<th>Datum:</th>
<th>Recept č.:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mléko</td>
<td>4/18</td>
<td>2049</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operátor:</th>
<th>Sušina %:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michal v ST:</td>
<td>83/8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Množství</th>
<th>pH:</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>6.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sterilizace</th>
<th>Teplota v míchacím tanku:</th>
</tr>
</thead>
<tbody>
<tr>
<td>TETRA</td>
<td>37.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Výroba:</th>
<th>Teplota v míchacím tanku:</th>
</tr>
</thead>
<tbody>
<tr>
<td>TETRA</td>
<td>37.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Start:</th>
<th>Koniec:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start:</td>
<td>Koniec:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Starý množství vyrobeného produktu</th>
<th>Datum výroby</th>
<th>Množství sušiny</th>
<th>Obsah tuků</th>
<th>pH</th>
<th>Čas začátku</th>
<th>Čas konce</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT100</td>
<td>37.5</td>
<td>34</td>
<td>30</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>TT1</td>
<td>37.5</td>
<td>34</td>
<td>30</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>TT51</td>
<td>37.5</td>
<td>34</td>
<td>30</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>TT11</td>
<td>37.5</td>
<td>34</td>
<td>30</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>TT40</td>
<td>37.5</td>
<td>34</td>
<td>30</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>TT43</td>
<td>37.5</td>
<td>34</td>
<td>30</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>TT44</td>
<td>37.5</td>
<td>34</td>
<td>30</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>TT45</td>
<td>37.5</td>
<td>34</td>
<td>30</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>TI14</td>
<td>37.5</td>
<td>34</td>
<td>30</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>TT51</td>
<td>37.5</td>
<td>34</td>
<td>30</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>TT52</td>
<td>37.5</td>
<td>34</td>
<td>30</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>TT53</td>
<td>37.5</td>
<td>34</td>
<td>30</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>TT54</td>
<td>37.5</td>
<td>34</td>
<td>30</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>TT55</td>
<td>37.5</td>
<td>34</td>
<td>30</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>TT56</td>
<td>37.5</td>
<td>34</td>
<td>30</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>TT64</td>
<td>37.5</td>
<td>34</td>
<td>30</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>TT71</td>
<td>37.5</td>
<td>34</td>
<td>30</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>TT72</td>
<td>37.5</td>
<td>34</td>
<td>30</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
</tbody>
</table>

Obrázek 14: Kontrola technologických parametrů na dezertní lince při výrobě mléčné rýže
Pak se prováděla kontrola čistoty sterilních tanků před výrobou a po sanitaci.

<table>
<thead>
<tr>
<th>DATUM - DEZERT</th>
<th>VYROBENÉ MNOŽSTVÍ</th>
<th>CONTHERM 1</th>
<th>CONTHERM 2</th>
<th>DATUM - STERITANK</th>
<th>STERITANK 1 - VENTIL 403</th>
<th>STERITANK 1 - UCPÁVA</th>
<th>STERITANK 2 - VENTIL 403</th>
<th>STERITANK 2 - UCPÁVA</th>
<th>POZNÁMKY</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Obrázek 14: Desertní linka: Kontrola čistoty tanku

Podle normy výroby mléčné rýže je hodnota tuku v tanku 7,5 – 8,8 %, a obsah sušiny musí být minimálně 16,5 %. Vyráběná šarže měla tučnost 7,57 % a obsah sušiny byl 22,5. Teploty na v prvním kontermu by měla být 105 °C, v druhém 120 °C a ve výstupním by neměla přesáhnout 22 °C. Všechny parametry byly dodrženy, takže mléčná rýže byla vyrobena správným, normovaným postupem.

4.1.3. Záznamy z tvarohárny

Během výroby tvarohu se opět kontrolovalo, zda výrobní linka je po sanitaci, čas najetí mléka, jeho množství a teplota, množství tukuprosté sušiny, hodnota titrační kyselosti, kyselost koagulátu. Následovala pravidelná kontrola výrobní linky, jako hodnoty teplot, průtoku odstředivky, počet otáček, z kolika procent byly otevřené klapky, tlak na straně syrovátky. Během každé této kontroly se odebíral vzorek na stanovení sušiny. Ukázka záznamového archu je na obrázku 16.
Záznam technologických parametrů výroby tvvarohu:

Dne: 18-10-04
Operátor: I. II.

<table>
<thead>
<tr>
<th>Obsluha koagulačních tanků</th>
<th>T 401</th>
<th>T 402</th>
<th>T 403</th>
<th>T 404</th>
</tr>
</thead>
<tbody>
<tr>
<td>T 407</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kontrola čištění</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Najetí mléka - v hod.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Množství tepla</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tukuprostá sušina/hustota</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zákysel-kys. v SH, množství kultur, čas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sýření-kys. v SH, množství syřidle, čas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rozmíchání/začátek odstředování</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kyzelování koagulátu pH/SH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vizuální posouzení tvvarohoviny:

Záznam o výrobě tvvarohu - termotvarohu ze dne 28-10-04

Jméno operátora: I. II.

<table>
<thead>
<tr>
<th>Trysková pojistka, počet/průměr</th>
<th>Sterilace od - do:</th>
<th>Kontrola tech. medií: VZD, LV, PV, P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teplota</td>
<td>Tepl. na výhradníku</td>
<td>Tepl. na výhradníku</td>
</tr>
<tr>
<td>15 min.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Číštění odstředivky:

Louh od I. II. , koncentrace %: 1.5%

Kyselina od do , koncentrace %: 5%

Obrázek 16: Záznam o výrobě termotvarohu:

4.2. Laboratorní úsek

4.2.1. Stanovení titrační kyselosti mléka a smetany

Titrační kyselost detekuje, zda je mléko v pořádku a není zkyslé, viz princip metody. Naměřené a vypočítané výsledky jsou k dispozici v tabulce 8.

<table>
<thead>
<tr>
<th>číslo titrace</th>
<th>mléko</th>
<th>Smetana</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3,80</td>
<td>7,6</td>
</tr>
<tr>
<td>2</td>
<td>3,90</td>
<td>7,8</td>
</tr>
<tr>
<td>3</td>
<td>3,85</td>
<td>7,7</td>
</tr>
<tr>
<td>Průměr:</td>
<td>3,85</td>
<td>7,70</td>
</tr>
</tbody>
</table>

1 ml 0,25 N NaOH odpovídá 2 °SH.

Tedy výpočet je následující: \(V_{NaOH} \cdot 2 = x \) °SH => \(3,85 \cdot 2 = 7,70 \) °SH ve vzorku mléka.

Měrený vzorek syrového mléka i přivezené pasterované smetany byly v pořádku, protože odpovídaly intervalu normy. Z toho vyplývá, že se mléko i smetana mohly přijmout, tedy načerpat do úchovných tanků v sekci příjmu mléka.

4.2.2. Stanovení aktivní kyselosti

<table>
<thead>
<tr>
<th>Výrobek</th>
<th>Norma:</th>
<th>Naměřená hodnota</th>
<th>Splnění normy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kafé laté</td>
<td>6,3-6,8</td>
<td>6,531</td>
<td>Ano</td>
</tr>
<tr>
<td>Pařížská smetana</td>
<td>minimálně 6,5</td>
<td>6,824</td>
<td>Ano</td>
</tr>
<tr>
<td>Kysaná smetana o tučnosti 15 %</td>
<td>4,30-4,55</td>
<td>4,33</td>
<td>Ano</td>
</tr>
<tr>
<td>Sladká smetana o tučnosti 31 %</td>
<td>6,40-6,82</td>
<td>6,737</td>
<td>Ano</td>
</tr>
<tr>
<td>Kyška</td>
<td>4,20 ± 0,05</td>
<td>4,262</td>
<td>Ne</td>
</tr>
<tr>
<td>Smetanový jogurt</td>
<td>4,40-4,55</td>
<td>4,525</td>
<td>Ano</td>
</tr>
<tr>
<td>Selský jogurt</td>
<td>6,40-6,82</td>
<td>6,469</td>
<td>Ano</td>
</tr>
<tr>
<td>Tvaroh odtučněný</td>
<td>4,30-4,70</td>
<td>4,376</td>
<td>Ano</td>
</tr>
<tr>
<td>Tvaroh měkký</td>
<td>4,35-4,53</td>
<td>4,451</td>
<td>Ano</td>
</tr>
<tr>
<td>Termix</td>
<td>4,35-4,53</td>
<td>4,444</td>
<td>Ano</td>
</tr>
<tr>
<td>Mléčná rýže</td>
<td>5,80-6,30</td>
<td>6,415</td>
<td>Ne</td>
</tr>
<tr>
<td>UHT mléko</td>
<td>6,30-6,8%</td>
<td>6,703</td>
<td>Ano</td>
</tr>
</tbody>
</table>

Tabulka 9: pH vyrobených mléčných produktů před balením

Diskuse výsledků: Výrobky, které splnily normu se mohly zabalit. A výrobky, které normu nesplnily, protože měly vyšší pH se musely ještě upravit, pak se muselo provést nové měření, a když bylo vše v pořádku, pak se mohly začít plnit do obalových materiálů.

4.2.3. Stanovení sušiny mléka výpočtem z hustoty a obsahu tuku

Experimentálně byl stanovený vztah pro určení sušiny na 100 gramů vzorku mléka a smetany, kde \(xf \) je obsah tučnosti v %, a \(t \) je teplota mléka nebo smetany. Měla jsem vzorek smetany o tučnosti 29,5 % a měla teplotu 3,6 °C. Po dosazení do vztahu:

\[S = 1,21t + 0,5 xf + 0,82 \Rightarrow S = 1,21 \cdot 3,6 + 0,5 \cdot 29,5 + 0,82 = 21,651 \text{ g/100 g smetany} \]

42
Sušinu jsem stanovila na 21,651 g v 100 gramech vzorku smetany. Podle normy sladká smetana o této tučnosti by měla obsahovat minimálně 20 % smetany.

4.2.4. Stanovení nášlehu smetany

Nášlech smetany je kvalitativní vlastnost, důležitá zejména pro kulinářské účely. V tabulce 10 jsou uvedeny naměřené nášlehy různých druhů smetan.

Tabulka 10: Záznam z deníku nášlehu smetany

<table>
<thead>
<tr>
<th>Výrobek:</th>
<th>Datum výr.:</th>
<th>V. PŘED</th>
<th>V. PO</th>
<th>čas</th>
<th>Nášleh [%]</th>
<th>Norma</th>
<th>Splnění normy</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 % sm. v kelímku</td>
<td>19.8.</td>
<td>9.6.</td>
<td>22.8.</td>
<td>7.2</td>
<td>1,56</td>
<td>148 Min. 90 %</td>
<td>Ano</td>
</tr>
<tr>
<td>31 % sm. UHT</td>
<td>19.8.</td>
<td>13.9.</td>
<td>13.9.</td>
<td>8,0</td>
<td>2,25</td>
<td>176 Min. 90 %</td>
<td>Ano</td>
</tr>
<tr>
<td>40 % sm. paser.</td>
<td>19.8.</td>
<td>3.8.</td>
<td>8.11.</td>
<td>3,3</td>
<td>7,6</td>
<td>130 Min. 95 %</td>
<td>Ano</td>
</tr>
<tr>
<td>Pařížská šlehačka</td>
<td>19.8.</td>
<td>27.7.</td>
<td>10.10.</td>
<td>3,0</td>
<td>6,7</td>
<td>148 Min. 90 %</td>
<td>Ano</td>
</tr>
</tbody>
</table>

Výpočet nášlehu:

\[N = \frac{Výška \ PO [cm] - Výška \ PŘ [cm]}{Výška \ PŘ [cm]} \cdot 100\% = \frac{7.2 - 2.9}{2.9} \cdot 100 = 148\% \]

Stanovovala jsem touto metodou finální výrobky připravené na expedice. Toto stanovení sloužilo jako výstupní kontrola. Všechny vzorky splnily normované množství obsahu sušiny.

4.2.5. Stanovení obsahu sušiny rutinní metodou

Další používaná metoda stanovení sušiny je rutinní metodou (viz princip). Z tabulky 11 jsou zřejmé naměřené výsledky touto metodou.

Tabulka 11: Stanovení sušiny vzorků termogravimetricky

<table>
<thead>
<tr>
<th>Vzorek:</th>
<th>navážka [g]</th>
<th>hmotnost po sušení [g]</th>
<th>Obsah sušiny [%]</th>
<th>norma</th>
<th>Splnění normy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Čerstvé mléko</td>
<td>5,0132</td>
<td>0,4311</td>
<td>8,6</td>
<td>minimálně 8,5 %</td>
<td>Ano</td>
</tr>
<tr>
<td>Kysaná smetana 12%</td>
<td>4,9973</td>
<td>1,1744</td>
<td>23,5</td>
<td>minimálně 21 %</td>
<td>Ano</td>
</tr>
<tr>
<td>Smetanový jogurt ochucený</td>
<td>5,0039</td>
<td>1,2360</td>
<td>24,7</td>
<td>minimálně 23 %</td>
<td>Ano</td>
</tr>
<tr>
<td>Smetanový jogurt bílý</td>
<td>5,0024</td>
<td>0,8554</td>
<td>17,1</td>
<td>minimálně 17 %</td>
<td>Ano</td>
</tr>
<tr>
<td>Jogurt Light 0,05%</td>
<td>5,0200</td>
<td>0,4920</td>
<td>9,8</td>
<td>minimálně 9,5 %</td>
<td>Ano</td>
</tr>
<tr>
<td>Tvaroh bez tuku</td>
<td>5,0078</td>
<td>0,8513</td>
<td>17,0</td>
<td>16-19 %</td>
<td>Ano</td>
</tr>
<tr>
<td>Měkký tvaroh</td>
<td>4,9998</td>
<td>1,4949</td>
<td>29,9</td>
<td>minimálně 28 %</td>
<td>Ano</td>
</tr>
<tr>
<td>Mléčná rýže</td>
<td>5,0099</td>
<td>1,4328</td>
<td>28,6</td>
<td>minimálně 28 %</td>
<td>Ano</td>
</tr>
<tr>
<td>Termix</td>
<td>5,0107</td>
<td>1,3078</td>
<td>26,1</td>
<td>minimálně 25 %</td>
<td>Ano</td>
</tr>
<tr>
<td>Acidofilní mléko</td>
<td>5,0005</td>
<td>0,8151</td>
<td>16,3</td>
<td>minimálně 15 %</td>
<td>Ano</td>
</tr>
<tr>
<td>Sladká smetana UHT 31%</td>
<td>5,0027</td>
<td>1,8710</td>
<td>37,4</td>
<td>minimálně 36 %</td>
<td>Ano</td>
</tr>
</tbody>
</table>

Výpočet obsahu sušiny:

Navážka představuje 100 % vzorku; hmotnost po sušení tvoří x % vzorku.

\[x = \frac{100 \cdot m_{PO}}{m_{nav}} = \frac{100 \cdot 0,4311}{5,0132} = 8,5993\% \]

Stanovovala jsem touto metodou finální výrobky připravené na expedice. Toto stanovení sloužilo jako výstupní kontrola. Všechny vzorky splnily normované množství obsahu sušiny.

4.2.6. Stanovení obsahu tuků Gerberovou metodou:

Tabulka 12: Stanovení tučnosti různých druhů mléka Gerberovou metodou

<table>
<thead>
<tr>
<th>Druh mléka:</th>
<th>Stanovená tučnost:</th>
<th>Normovaná tučnost</th>
<th>Splnění normy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syrové</td>
<td>4,25</td>
<td>3,5 - 8 %</td>
<td>Ano</td>
</tr>
<tr>
<td>Odtučněné:</td>
<td>0,03</td>
<td>0,03-0,05</td>
<td>Ano</td>
</tr>
<tr>
<td>Polotučné:</td>
<td>1,53</td>
<td>1,52-1,55</td>
<td>Ano</td>
</tr>
<tr>
<td>Plnotučné:</td>
<td>3,52</td>
<td>3,52-3,55</td>
<td>Ano</td>
</tr>
</tbody>
</table>
Z tabulky 12 je zřejmé, že měřené tučnosti syrového mléka z sekce příjmu mléka a hotové výrobky před zabalením vyhovovaly jakostním požadavkům.

4.2.7. Stanovení chemických parametrů instrumentální metodou Milkoscan FT 120

Tato metoda je velmi používaná a universální. Protože jedním stanovením lze stanovit více analyzovaných parametrů. V mých vzorcích byly měřeny pouze tuk a sušina, viz **Tabulka 13**.

Tabulka 13: Stanovení sušiny a tuku v mléce a smetaně pomocí přístroje Milkoscan FT 120

<table>
<thead>
<tr>
<th>Výrobek:</th>
<th>Tuk měřený</th>
<th>Tuk Norma</th>
<th>Splnění normy</th>
<th>Sušina měřená</th>
<th>Sušina norma</th>
<th>Splnění normy</th>
</tr>
</thead>
<tbody>
<tr>
<td>odstředěné UHT mléko</td>
<td>0,0323</td>
<td>0,03-0,05</td>
<td>Ano</td>
<td>5,901</td>
<td>minimálně 5,5 %</td>
<td>Ano</td>
</tr>
<tr>
<td>polotučné UHT mléko</td>
<td>1,5342</td>
<td>1,52-1,55</td>
<td>Ano</td>
<td>8,754</td>
<td>minimálně 8,5 %</td>
<td>Ano</td>
</tr>
<tr>
<td>plnotučné UHT mléko</td>
<td>3,5411</td>
<td>3,52-3,55</td>
<td>Ano</td>
<td>16,122</td>
<td>minimálně 16 %</td>
<td>Ano</td>
</tr>
<tr>
<td>Sladká UHT smetana 12%</td>
<td>12,0234</td>
<td>12,02-12,05</td>
<td>Ano</td>
<td>22,035</td>
<td>minimálně 21 %</td>
<td>Ano</td>
</tr>
<tr>
<td>Sladká UHT smetana 31%</td>
<td>31,0453</td>
<td>31,02-31,05</td>
<td>Ano</td>
<td>36,998</td>
<td>minimálně 36 %</td>
<td>Ano</td>
</tr>
</tbody>
</table>

Proměřovala jsem finální výrobky připravené na expedici a všechny splnily normované požadavky.
5. ZÁVĚR

Cílem bakalářské práce bylo popsat složení mléka, jeho vznik, původ, způsob a místo tvorby. Následně se pak věnovat vlivu mléka na lidské zdraví. Díky svému jedinečnému složení je zdrojem charakteristických a specifických proteinů a dalších látek, které nelze plnohodnotně nahradit ničím jiným. Obsahuje všechny známé vitaminy v různém množství.

Mléko a mléčné výrobky se mohou ovšem „podepsat“ na lidském organismu pozitivním i negativním způsobem, přičemž žádoucí vlivy jsou prevence proti osteoporóze, prevence proti zubnímu kazu, v kombinaci s cvičením podporuje růst svalové hmoty, rozvíjí imunitu u mláďat savců. Zároveň byly zjištěny i negativní vlivy na lidský organismus. Potraviny mlčného původu mohou způsobit dva problémy, a to intoleranci laktosy, která je způsobena nepřítomností enzymu laktasy, a alergii na mléko, která je způsobená syrovátkovými proteiny a má akutní a postupný průběh.

Podle statistiky spotřeby mléka za rok na osobu vyplývá, že konzumace samotného mléka mírně klesá, ale celkové množství všech mléčných výrobků vzrůstá.

V další části bakalářské práce je popsáno, jak se rozdělují mléčné výrobky, a jak je lze průmyslově vyrobit. Každá mlékárna by měla garantovat, že její produkce je v souladu s předpisy a normami, které vydává samotná EU, nebo komoditní výbor. Pokud vše splní, dodrží správnou výrobní praxi.

Cílem praktické části bakalářské práce, která byla vypracovaná na základě absolvování odborné praxe ve vybrané mlékárně na území v Česku, bylo shrnout získané praktické zkušenosti, jak v laboratoři, tak ve výrobě. Na základě naměřených hodnot obsahových látek v mléce a mléčných výrobkách, mezioper transferech, tak i hotových produktů, pak posoudit zda výrobní podnik dodržuje správnou výrobní a laboratorní praxi. Srovnáním získaných hodnot a jejich porovnáním buď s příslušnou normou, nebo s uděláním na obalu daného výrobku vyplývá, že tato mlékárna dodržuje správnou výrobní a hygienickou praxi, a jejích expedované výrobky, které jsou k dostání na českém trhu, mají garantovanou jakost a kvalitu.
6. POUŽITÉ INFORMAČNÍ ZDROJE

1) ČERNÁ, Marie. Nutriční hodnota mléka a mléčných výrobků. 1. vyd. Praha: STI, 1979, 141 s. ISBN -.
7. SEZNAM TABULEK

I. Tabulka 1: Obsahové látky mléka různých druhů savců

II. Tabulka 2: Souhrn obsahu bílkovin v kravském mléce (Zdroj: Ng-Kwai-Hang, 2003)

III. Tabulka 3: Poměrové zastoupení jednotlivých složek v mléčném tuku

IV. Tabulka 4: Obsah solí přítomný v mléčném séru a kaseinu
V. Tabulka 5: Vitamíny mléka

VI. Tabulka 6: Spotřeba mléčných výrobků na osobu za rok v jednotlivých letech 1950-2010

VII. Tabulka 7: Spotřeba mléka a výrobků na osobu za rok od roku 2000

VIII. Tabulka 8: Stanovení titrační kyselosti syrového mléka a pasterované smetany

IX. Tabulka 9: pH vyrobených mléčných produktů před balením

X. Tabulka 10: Záznam z deníku nášeho smetanu

XI. Tabulka 11: Stanovení sušiny vzorků termogravimetricky

XII. Tabulka 12: Stanovení tučnosti různých druhů mléka Gerberovou metodou

XIII. Tabulka 13: Stanovení sušiny a tuku v mléce a smetaně pomocí přístroje Milkoscan FT 120

8. SEZNAM GRAFŮ
 a) Graf 1: Spotřeba daného mléčného výrobku na osobu za rok

9. SEZNAM OBRÁZKŮ
 A. Obrázek 1: Kravské vemení se čtyřmi struky
 B. Obrázek 2: Anatomie kravského vemení
 C. Obrázek 15: Laktační křivka
 D. Obrázek 16: Schéma původu látek v mléce
 E. Obrázek 17: Zastoupení dusíkatých látek
 F. Obrázek 18: Struktura lactoferinu
 G. Obrázek 19: Struktura laktosy
 H. Obrázek 20: Schéma výroby kysaných výrobků
 I. Obrázek 21: Lactobacillus delbrueckii ssp. bulgaricus
 J. Obrázek 22: Penicillium roqueforti
 K. Obrázek 23: Technologické sekce mlékárny
 L. Obrázek 24: Princip homogenizace
 M. Obrázek 25: Sledované technologické parametry v pasterovně
 N. Obrázek 14: Kontrola technologických parametrů na dezerní lince při výrobě mléčné rýže
 O. Obrázek 26: Dezertní linka: Kontrola čistoty tanku
 P. Obrázek 16: Záznam o výrobě termotvarohu:
10. SEZNAM POUŽITÝCH ZKRATEK:

FCH – Fakulta chemická
VUT – Vysoké učení technické
EU – Evropská unie
aj. - a jiné
atd. – a tak dále
kg – kilogram
m – metr
nm – nanometr
cm – centimetr
µm – mikrometr
°C – stupeň Celsia
TAG – triacylglyceroly
VMK – vyšší mastné kyseliny
AK aminokyseliny