
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER SYSTEMS

AUTOMATICKÁ KONSTRUKCE HLÍDACÍCH OBVO-
DŮ ZALOŽENÝCH NA KONEČNÝCH AUTOMATECH
AUTOMATIC CONSTRUCTION OF CHECKING CIRCUITS BASED ON FINITE AUTOMATA

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. LUCIE MATUŠOVÁ
AUTHOR

VEDOUCÍ PRÁCE Ing. JAN KAŠTIL
SUPERVISOR

BRNO 2014

Abstrakt
Cílem této práce bylo studium aktivního učení automatů, navržení a implementace soft-
warové architektury pro automatickou konstrukci hlídacího obvodu dané jednotky imple-
mentované v FPGA a ověření funkčnosti hlídacího obvodu pomocí injekce poruch. Hlídací
obvod, tzv. online checker, má za úkol zabezpečovat danou jednotku proti poruchám.
Checker je konstruován z modelu odvozeného pomocí aktivního učení automatů, které
probíhá na základě komunikace se simulátorem. Pro implementaci učícího prostředí byla
použita knihovna LearnLib, která poskytuje algoritmy aktivního učení automatů a jejich op-
timalizace. Byla navržena a implementována experimentální platforma umožňující řízenou
injekci poruch do designu v FPGA, která slouží k otestování checkeru. Výsledky experi-
mentů ukazují, že při použití checkeru a rekonfigurace je možné snížit chybovost designu o
více než 98%.

Abstract
The aim of this thesis was to study active automata learning, to design and implement
a software architecture for the automatic construction of a checking circuit for a given
unit implemented in FPGA, and to verify the functionality of the checking circuit by fault
injection. The checking circuit, denoted as an online checker, introduces fault tolerance
aspects to the unit. The checker is constructed from a model inferred by active automata
learning, which is based on communication with a simulator. To implement the learning
environment, LearnLib library has been employed. It provides active automata learning
algorithms and their optimizations. An experimental platform enabling controlled fault
injection into a design in FPGA was designed and implemented. The platform was used to
test the capabilities of the obtained checker. The experimental results show that the error
rate is reduced by more than 98% if the checker and reconfiguration is used.

Klíčová slova
hlídací obvod, online checker, aktivní učení automatů, Mealyho automat, SEU injekce

Keywords
checking circuit, online checker, active automata learning, Mealy Machine, SEU injection

Citace
Lucie Matušová: Automatic Construction of Checking Circuits Based on Finite Automata,
diplomová práce, Brno, FIT VUT v Brně, 2014

Automatic Construction of Checking Circuits Based
on Finite Automata

Declaration
I declare that I have worked on this thesis independently under the supervision of Ing. Jan
Kaštil.

. .
Lucie Matušová

May 27, 2014

Acknowledgments
I would like to thank my supervisor Ing. Jan Kaštil for his patient guidance and valuable
advice. I would also like to express my deepest gratitude to my family and my boyfriend,
Tomáš Korec, for their help, encouragement, and support during my studies. I could not
have done it without you.

c© Lucie Matušová, 2014.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 4

2 Preliminaries 6

3 Fault Tolerance 8
3.1 System Dependability . 8
3.2 Redundancy . 9

3.2.1 Duplex Systems . 9
3.2.2 N-modular Redundancy . 9

3.3 Field-Programmable Gate Arrays . 10
3.3.1 FPGA Configuration . 10
3.3.2 Self-checking Functional Units . 11
3.3.3 Checking Circuits . 13

4 Active Automata Learning 15
4.1 Learning DFAs . 15

4.1.1 MAT Model . 16
4.1.2 L∗ Algorithm . 16

4.2 Distinguishing Input and Output . 17
4.2.1 Learning Mealy Machines . 18
4.2.2 Register Automata and Register Mealy Machines 20

4.3 Learning in Practice . 20
4.4 LearnLib . 21

4.4.1 Inferring Models . 21
4.4.2 Query Optimizations . 22

5 Design and Implementation 24
5.1 Learning Platform . 24

5.1.1 Simulator . 24
5.1.2 Learning Environment . 26
5.1.3 FSM-VHDL Converter . 28

5.2 Experimental Platform . 29
5.2.1 Design with Checker . 29
5.2.2 Connection with Board . 31
5.2.3 Experiment Controller . 32
5.2.4 SEU Generator . 32

1

6 Experiments 34
6.1 Inference of Models . 34
6.2 Checker Implementation . 37
6.3 SEU Injections . 38

7 Conclusions and Future Work 41

2

List of Figures

3.1 Possible propagation of the fault in the system 8
3.2 Duplex system . 9
3.3 TMR, three identical functional units and voter 10
3.4 Frame address parts [40] . 11
3.5 Row addresses [40] . 12
3.6 Fault tolerant architectures based on PRMs [25] 13
3.7 Online checker . 13

4.1 MAT model . 16
4.2 An example Mealy machine . 19
4.3 A hypothesized Mealy machine . 20
4.4 Schematic view of active learning setup using a mapper 21
4.5 Extrapolating behavioral models with LearnLib [24] 22
4.6 Position of a filter in learning . 22

5.1 The main components of the learning platform 24
5.2 Master and Slave Interfaces . 25
5.3 The slave interface of PEU . 26
5.4 The main components of the learning environment 26
5.5 Scheme of the experimental platform . 29
5.6 The checker . 29
5.7 Design with the checker . 30
5.8 Constraining the groups of the design in PlanAhead 31
5.9 Structure of the SEU generator . 32

6.1 Model A (4 states and 32 transitions) . 37
6.2 Model B (18 states and 144 transitions) . 38
6.3 Major spots where SEU can strike . 39

3

Chapter 1

Introduction

Complex digital systems in critical applications such as health, space, or aircraft demand
a high reliability. Today’s trends of manufacturing VLSI systems show increasing logic
density and reducing power consumption. Transistors are getting smaller and more of
them can be packed onto a chip. However, smaller dimensions have effects on the systems
reliability. Devices are more sensitive to noise and radiation, and thus vulnerable to faults.

High reliability can be achieved by employing fault tolerance. The system is fault
tolerant, if it can operate correctly despite the presence of faults. This work is aimed at the
method based on online checkers. The checker is connected to a functional unit and serves
as a means of error detection. A method of automatic checker construction by employing
active automata learning techniques is proposed.

Active learning is a subfield of machine learning. To explain what is active learning,
best is to put it in contrast with passive learning. In passive learning, a learner learns
through observing the environment which generates a training data. On the other hand,
the learner is not only an observer in active learning. It interacts with the environment by
executing actions and thus influences the generation of training data.

Active automata learning aims at inferring automaton model of a system. It is nowadays
getting significant importance thanks to its applicability on software engineering problems.
Active automata learning can be considered a key technology for dealing with systems where
no or little knowledge about the internal structure is available, or when addressing real-
world legacy systems. Then the system is approached as a black box given only information
about the interface.

The aim of the thesis is to apply active automata learning techniques to a given VHDL
design and use the inferred model as an online checker. For this purpose, a learning platform
was developed. The platform connects an VHDL simulator, a learning environment, and a
converter of the automaton. To infer the model of the given functional unit, Mealy Machine
learning is employed. The Mealy Machine is an automata model which is able to capture
input/output behaviour. The checker obtained by conversion of the inferred model focuses
on checking the control signals of the functional unit whereas checking data and address
signals is omitted.

To evaluate the function of the checker, it is instantiated in a design which is imple-
mented to a Field-Programmable Gate Array on an experimental platform. The experi-
mental platform enables fault injection to the design and provides numbers of occurred
errors.

The thesis is organized as follows.
Chapter 2 covers definitions of terms from automata theory which are important for

4

comprehension of the active automata learning. Chapter 3 is designated to fault tolerance.
Field-Programmable Gate Arrays and their configuration are described. At the end of the
chapter, the focus is on the checking circuits and the related methodologies. Chapter 4
looks at the topic of active automata learning. It embraces major learning approaches,
algorithms, and the description of LearnLib library. Chapter 5 describes the design and
implementation of the learning platform and the experimental platform. The unit which the
checker is constructed for is introduced and its learning setup is devised. Chapter 6 presents
experiments with the learning and its results. It contains analysis of inferred automata and
constructed checkers. The experiments with checkers under fault injections are described
and evaluated. Finally, Chapter 7 concludes the thesis by summarizing the contributions
and suggests the possible further direction of the work.

5

Chapter 2

Preliminaries

The aim in this chapter is to acquaint the reader with the definitions of the terms from
automata theory and notions used in the thesis. The chapter does not attempt to cover the
entire automata theory nor formal proofs. It rather serves as a concise base for Chapter 4.
If already familiar with basic concepts, the reader may choose to skip to the next chapter
and return when some notion is unclear.

Definition 1. A finite automaton is defined as a quintuple M = (Q,Σ, δ, q0, F), where

• Q is a finite set of states,

• Σ is a finite alphabet of input symbols,

• δ is a mapping Q× Σ→ 2Q (transition function),

• q0 ∈ Q is the start state, and

• F ⊆ Q is a set of final states.

Definition 2. If δ : Q× Σ→ Q, M is a deterministic finite automaton (DFA).

When we are talking about the computational model, we use the term automata. In
hardware designs, it is finite state machine (FSM).

Definition 3. Input word is a string of symbols a1, a2, ..., an, where ai ∈ Σ. The set of all
words over alphabet Σ is denoted as Σ∗.

Definition 4. By q
a−→ q′ we denote a transition δ(q, a) = q′. We write q

w
=⇒ q′ if for

w = a1 · · · an there is a sequence of states q = q0, q1, ..., qn = q′ such that qi−1
ai−→ q1 for

1 ≤ i ≤ n. We say that w reaches q′ from q. If there exists such a w and q = q0, then q′ is
called reachable.

Definition 5. The language L(M) accepted by automaton M is a set of input words
accepted by automaton M : L(M) = {w|q0

w
=⇒ q, w ∈ Σ∗, q ∈ F}.

Definition 6. An equivalence relation ≡ is a binary relation which is reflexive, symmetric,
and transitive.

Theorem 1. For two equivalence relations R1 and R2, R1 refines R2 iff R1 ⊆ R2.

Definition 7. An equivalence relation ≡ on Σ∗ is right invariant iff u ≡ v =⇒ uw ≡ vw
for every u, v, w ∈ Σ∗.

6

That means, equivalence relation has the right invariant property if two equivalent
strings still are equivalent when the third string is appended to the right of both of them.

In [19], Nerode provided a necessary and sufficient conditions for a language to be
regular, thereby established a link between regular languages and the deterministic finite
automata. In the following, we consider L ⊆ Σ∗.

Definition 8. (Nerode equivalence) We say that two words u, v ∈ Σ∗ are L-equivalent,
written u ≡L v, iff for all words w ∈ Σ∗, we have uw ∈ L iff vw ∈ L.

In other words, the strings u and v are equivalent under ≡L if, whenever we append the
same string w to both of them, the resulting strings are both in L or both not in L.

Definition 9. [u] is the equivalence class of u ∈ Σ∗ defined as: [u] = {v ∈ Σ∗|u ≡L v}.
The number of equivalence classes of ≡L is called index of the language L.

Theorem 2. (Myhill-Nerode theorem) The following three statements are equivalent:

1. The language L is accepted by DFA.

2. L is the union of some of the equivalence classes of a right invariant equivalence
relation on Σ∗ of finite index.

3. The equivalence relation ≡L has finite index.

Therefore, a DFA M for regular language L, where ≡L has finite index, can be con-
structed from ≡L [13]. There is exactly one state q[w] for each equivalence class [w] of ≡L.
The initial state is set to q[ε] and then transitions by one-letter extensions are formed, e.g.

q[u]
a−→ q[ua]. A state accepts if [u] ⊆ L. There is no other DFA that accepts L, yet has

fewer states than M . M is unique up to isomorphism and we call it canonical DFA for
language L [23].

Definition 10. A generalized Mealy machine is defined as a tuple M = (Q, q0,Σ,Ω, δ, λ),
where

• Q is a finite set of states,

• q0 ∈ Q is the initial state,

• Σ is a finite input alphabet,

• Ω is a finite output alphabet,

• δ : Q× Σ→ Q is a transition function, and

• λ : Q× Σ→ Ω∗ is the output function.

We write q
a/o−→ q′ to express that on input symbol a the Mealy machine makes move

from the state q to q′ and produces output o. An extension of δ and λ dealing with words
is defined as follows: δ∗ : Q× Σ∗ → Q and λ∗ : Q× Σ∗ → Ω respectively.

An intuitive interpretation of a generalized Mealy machine is following. It evolves
through states q ∈ Q. It is possible to give inputs to the machine. By applying a symbol
a ∈ Σ, the machine moves to a new state determined by δ(q, a) and puts a sequence of
symbols λ(q, a) on the output.

7

Chapter 3

Fault Tolerance

Over the last decade, the complexity of digital systems has increased dramatically. As
the dimensions are getting smaller, the systems are becoming more vulnerable to transient
faults caused by radiation or electromagnetic pulse. In critical applications like aerospace
or automotive, high reliability is required. One of the ways how to achieve the reliability
requirements is to design systems which can cope with faults.

In this chapter, we elucidate the fault tolerance from the point of the thesis. For
better comprehension, we first present a basic set of definitions relating to dependability,
its attributes, threats, and means for its achievement as explicated in [5]. Then, we present
Field Programmable Gate Arrays (FPGAs), fault tolerant methodology of self-checking
units, and the idea of checking circuits.

3.1 System Dependability

A system is an entity that interacts with other entities. The system implements its intended
function, the service, which is described as a sequence of states.

When the system does not deliver the specified service, failure occurs. A system failure
means that at least one external state of the system deviates from the correct one. The
deviation is called an error and its reason is a fault (Figure 3.1). When the fault is active,
it produces error. Otherwise it is dormant. Not every fault has to result in an error and
not every error causes a system failure.

Fault Error Failure

Figure 3.1: Possible propagation of the fault in the system

We classify the hardware faults by duration into three categories: a permanent fault
which persists until the faulty component is repaired; a transient fault occurs for a short
duration of time and goes away; and an intermittent fault oscillating between being active
and dormant.

One of the fundamental properties of a system is a dependability defined as the ability
to avoid service failures that are more frequent and severe than is acceptable. It comprises
five attributes:

• reliability: continuity of correct service.

8

• availability: readiness for correct service.

• integrity: absence of improper system alterations.

• safety: absence of catastrophic consequences on the user and the environment.

• maintainability: ability to undergo modifications and repairs.

By fault tolerance we refer to a means of avoiding service failures in the presence of
faults.

3.2 Redundancy

Fault tolerance in hardware is usually achieved by incorporating hardware redundancy which
means the use of additional resources. There are three types of hardware redundancy: static,
dynamic, and hybrid redundancy.

Static redundancy provides fault mitigation by masking them. The faults are hidden
and there is no warning about them. This can be done by using the concept of N-modular
redundancy. Dynamic redundancy usually comprises fault detection and recovery. A design
consists of several functional units (FUs) from which only single one is operating at a time.
In case of fault detection, the faulty FU is replaced by a spare one. Hybrid redundancy
combines both previous approaches.

3.2.1 Duplex Systems

The simplest example of redundancy is a duplex system depicted in Figure 3.2. It consists
of two exact FUs and a comparator. If both outputs agree, the output is assumed to be
correct. Otherwise, a fault occurred and error handling takes place [14].

=

FU

FU

Figure 3.2: Duplex system

3.2.2 N-modular Redundancy

A system with N-modular redundancy (NMR), also referred to as an M-of-N system, is a
system composed of N FUs from which at least M has to operate correctly. When fewer
than M FUs are operational, the system fails [14].

The first such system was laid out by John von Neumann [29]. Today, the concept is
known as a triple-modular redundancy (TMR). A Neumann’s majority organ is what we
now call voter. The output of the voter is the majority of the three inputs. Hence, TMR
can tolerate single error. Figure 3.3 illustrates the concept.

9

V

FU

FU

FU

Figure 3.3: TMR, three identical functional units and voter

3.3 Field-Programmable Gate Arrays

Hardware redundancy is obviously not very cost effective as it brings area overhead. There-
fore it is usually restricted to highly reliable and inaccessible systems. However, on a
Field-Programmable Gate Array (FPGA) it is possible to implement it cheaply.

FPGAs are semiconductor devices equipped with SRAM configuration memory which
can be reprogrammed and the implemented design can be changed. This feature distin-
guishes FPGAs from Application Specific Integrated Circuits (ASICs) which are custom
manufactured for specific applications. Apart from flexibility, the main advantages of FP-
GAs are high computational power, relatively low cost and early time-to-market.

In this work, Xilinx products have been employed. Therefore, the following lines refer
especially to Xilinx devices and tools.

FPGAs are based around a matrix of Configurable Logic Blocks (CLBs) connected via
programmable interconnects. One can also find embedded Block RAM memory, Digital
Signal Processing (DSP) tiles or even processors in today’s modern FPGAs.

A CLB is the main logic resource for implementing circuits in FPGA. Each CLB is
connected to a switch matrix to have access to the general routing matrix. A CLB contains
a pair of slices. A slice holds four function-generators, four storage elements, three multiple-
xers, and carry logic [41]. For instance, the function generator in Virtex-5 is implemented
as a Look-Up Table (LUT). There are six independent inputs and two outputs in each of the
four LUTs in a slice. This means, a LUT can implement any six-input Boolean function.

Flexible interconnect routing routes the signals between logic resources and to and from
I/Os. Routing comprises interconnects between CLBs, fast horizontal and vertical lines
spanning the device, and routing for clocking and other global signals. The routing is hidden
by the design software of an FPGA, thus the design complexity is reduced significantly.

3.3.1 FPGA Configuration

Each time an FPGA is powered up, a configuration file has to be loaded into its volatile
memory. The configuration is created from the synthesis output, an NGC file. NGC
is converted to a binary configuration data file called bitstream. The Virtex-5 bitstream
contains commands to the FPGA configuration logic as well as configuration data. Its
length for our FPGA is 20,019,328 configuration bits.

The basic configuration steps are setup, bitstream loading and startup. In setup phase,
the memory is cleared sequentially. Then, the device gets synchronized and in order to
prevent loading of a configuration formatted for a different device, the device ID check
must pass. After that, the configuration data frames can be safely loaded. In startup, the
bitstream instructs the device to enter the startup sequence.

10

Apart from power up, the configuration can be initiated during the operation on de-
mand. In full reconfiguration, the user loads all the configuration data into the device.
Some architectures have the ability to reconfigure a portion of an FPGA. This gives the
user a possibility of partial reconfiguration where only certain areas of the design are recon-
figured. When the device is active during the partial reconfiguration, it is denoted as partial
dynamic reconfiguration (PDR). The advantage of PDR is that the remaining unaltered
part of the design is still operational [36].

It is also possible to read loaded configuration from the device by sending a sequence
of commands. The sequence initiates the readback procedure and the device dumps the
contents of its configuration memory to the specified interface.

Placement Constraints

Implementation constraints are instructions given to the implementation tools to direct
the mapping, placement, or timing while processing an FPGA design [34]. Constraints are
generally placed in the UCF file. From the perspective of reconfiguration, it is desirable to
have the power over positioning the particular parts of the design. This can be achieved
by using placement constraints. A named group of logical blocks, which will be packed
together by mapper, can be specified. Then, a range of device resources that are available
to place logic contained in the group can be defined.

Frame addressing

The Virtex-5 FPGA configuration memory is arranged in frames. The frame is the smallest
addressable segment that can be accessed. It can be thought of as a vertical stack of
1312 bits [40]. Each frame has a unique 32-bit address which is divided into five parts
(Figure 3.4).

Unused

31 24 14 7 6 023 21 19 1520

Block
Type

Top/
Bottom
Row

Minor
Address

Row
Address

Major
Address

Figure 3.4: Frame address parts [40]

The Block Type part specifies the frame category by function or the way of access. There
are four categories: interconnect and block configuration, Block RAM contents, interconnect
and block special frames, and Block RAM non-configuration frame. The FPGA is divided
into two halves, Top and Bottom. Each of them is then divided into rows which are
numbered from zero starting from the centre as shown in Figure 3.5. Each row is divided
into columns which correspond to a block in the array (CLB, DSP, Block RAM, etc.).
Column number is called major address and starts from zero. A column then holds frames
which are accessed using the minor address. The number of frames depends on the type of
the block in the column (e.g. CLBs contain 36 frames).

3.3.2 Self-checking Functional Units

SRAM-based FPGAs with high density of memory cells are sensitive to transient faults,
so-called Single Event Upsets (SEUs). An SEU occurs when a charged particle strikes a

11

Row Address N

Row Address 1

Row Address 1

Row Address 0

Row Address 0

Top part
of the FPGA

Bottom Half
of the FPGA

Row Address N

Figure 3.5: Row addresses [40]

memory cell and causes the state of a bit stored in the cell to flip.
The Xilinx experiment [37] demonstrates that in the vast majority of cases, an SEU

only flips a single configuration bit. Multi-bit upsets almost never occur. There is also a
high probability that the inverted bit will not have any effect on the design because only
less than 20% of the configuration cells have a significance to a design implementation. The
bit can be associated with the configuration of the device or the operational data of the
design.

In many cases, a single-bit change in informational data can be tolerated (an incorrect
pixel). However, when the definition of the design itself is impacted, the effect of the error
can be significant and prolonged. A state machine entering an illegal state can serve as an
example.

There are applications for which even the smaller risk is unacceptable. Fortunately, an
SEU is a soft error and unlike hard errors (a broken wire), which need the replacement or a
physical repair, its effect can be reversed without lasting damage. When a fault is detected
in FPGA, a faulty unit can be repaired by reconfiguration.

The methodology for designing fault tolerant systems in FPGAs based on self-checking
functional units has been proposed in [25]. The advantage of the approach is that any error
detection technique can be used to construct the self-checking unit. The authors refer to
the part of the FPGA which can be modified as Partial Reconfigurable Region (PRR) and
the part of the design implemented into the PRR is called Partially Reconfigurable Module
(PRM). The basic idea is to place each FU and its checker to one PRM. Then, it is possible
to perform reconfiguration of the faulty unit while the rest of the design is still active.

Presented fault tolerant architectures are depicted in Figure 3.6. The blue regions
designate the dynamic part of the design with fault tolerant components which can be
reconfigured by means of PDR. The red dashed rectangles symbolize the static part holding
units that are not fault tolerant and are not intended for reconfiguration.

The first architecture (TMRcmp) represents a TMR concept enriched by error local-
ization. The outputs of functional units proceed to comparators and their outputs are
processed in the error decoder. The second one (DUPLchck) is a duplex architecture. The
outputs from checkers control a multiplexer which switches the data from the functional
units. The last architecture (DUPLchckcmp) consists of a functional unit and its checker,
and another functional unit and its corroborative checker. The output from the checker in

12

FU1

FU2

FU3

Voter

=

=

=

PRM1

PRM2

PRM3

PRM4

in

out

err1

err2

err3

FU1

FU2

PRM1

PRM2

CHCK1

Mux

out

in

CHCK2

err1

err2

FU1

FU2

PRM1

PRM2

CHCK1

Chck2

Mux

out

in

err1

err2

err

err

err

PRM

PRM

DUPLchck

TMRcmp DUPLchckcmp

PRM

Figure 3.6: Fault tolerant architectures based on PRMs [25]

PRM1 reports an error in the unit. Corroborative checker reports a fault in PRM2 when
PRM1 states a correct output and, at the same time, the outputs of PRM1 and PRM2
differ.

3.3.3 Checking Circuits

The checking circuit, which we also call online checker (Figure 3.7), is a means of error
detection. Checker represents a supervisor who checks validity of the unit’s output. When
the output is evaluated as incorrect, error is reported.

checker
err

in out
FU

Figure 3.7: Online checker

The main advantage of online checkers comes from the fact that their implementation is
different from the implementation of the FU. If the checking system is implemented exactly
the same as the original FU, it can happen that the error causing faulty output will affect
the checker as well. Such a situation can result in an undetected fault. Fluctuation of

13

the supply voltage outside of the safe range can serve as an example of such error. The
different implementation of the checker minimizes probability of this type of undetected
faults. Thus, even though it is possible to derive the checker directly from the original FU
by comparing results of two copies of the FU, it is not recommended. By simply changing
the FU to operate as a checker, the main advantage of the checker would be sacrificed.

The design of an online checker presents slightly different problem than the design of the
FU. While the FU has to produce the desired output, the checker only needs to validate the
output. It is important to note that often not all the function outputs need to be checked.
For instance, when the checker is used to evaluate if the communication component behaves
according to the bus specification, it is not needed to spend resources and time on vali-
dation of the bus transfer content. Therefore, the checker may require less resources than
duplication of the FU. A qualified programmer with detailed understanding of the solved
problem is required for the design of the checking circuit.

Straka et al. [26] presented the construction of online checkers based on finite automata.
They used a formal language for the description of a system bus behaviour. The online
checker was automatically constructed from the description. However, a human expert was
required to construct the description of the system behaviour.

This work aims at automatic construction of the checkers which can be used in previously
described self-checking architectures. We focus on units with deterministic behaviour, such
as memory controllers or buses. The functional unit is treated like a black box. To create
the checker of a black box, some knowledge about interface signals is needed. The checker is
generated automatically by experimentation with the unit and by reasoning on the observed
output behaviour. This is done by means of active automata learning which is covered in
the next chapter.

14

Chapter 4

Active Automata Learning

This chapter is devoted to the field of active automata learning. The main goal of active
automata learning is to build an automaton which matches the behaviour of a given target
automaton. The construction is based on observations of target automaton using techniques
from finite automata theory and machine learning.

In literature, the automata learning is sometimes designated as regular extrapolation.
Indeed, constructing the best matching regular model consistent with observations is similar
to polynomial extrapolation. Like there too, the quality of extrapolation depends on the
structure of systems behaviour. The result of the learning is often reliant on employed
learning optimizations.

Considerable development has been done in active automata learning in the last decade.
The learning techniques can be used for inferring behaviour models of legacy or black box
systems which then can be analysed, tested and validated using formal approaches. The
first major success of the active automata learning application was in the area of regression
testing in computer telephony integrated systems [9]. Now, application domains range from
web-based services to embedded control software [30].

In practice, realistic systems are subject of learning. Those are reactive systems which
interact with the environment. Their behaviour can be characterized by data inputs and
outputs. Therefore, adequate treatment of data is crucial in active learning. It represents
a major source of undecidability and, therefore, a key problem to achieve practicality [23].

In the following, we look at two approaches in automata learning under the perspective
of treating of data. We introduce the first active automata learning approach based on
construction of DFA where data are disregarded. Next, active learning of Mealy Machines
as an automata model for systems with output is presented. At the end of the chapter,
models which capture data-flow are mentioned.

4.1 Learning DFAs

If we assume that a system under learning (SUL) can be modelled by a DFA, we are looking
for a regular language accepted by the DFA. Suppose that we are given data consisting of
observations of the I/O behaviour of the black box. Gold [8] showed that the problem of
finding the minimal DFA which agrees with given data is NP-complete.

However, in [4] Angluin proved that finite-state automata can be learned when it is
possible to ask whether a string belongs to the language of the SUL. It has been also

15

proven that a regular language is learnable in polynomial time. A learning model for
inference of regular languages was introduced and later adapted by many other active
learning algorithms.

4.1.1 MAT Model

The fundamental assumption of Angluin’s model is the existence of a Minimally Adequate
Teacher (MAT). Omniscient teacher answers membership and equivalence queries asked
by the learning algorithm, the learner. The learning proceeds in rounds alternating of a
hypothesis construction phase (HC) and a hypothesis validation (HV) phase.

In the construction phase, a hypothetical DFA is gradually built by asking membership
queries. The membership query tests whether the string is contained in the SUL’s language
or not. Thus, the teacher’s answer can be either yes or no.

In the validation phase, equivalence query compares the obtained hypothesis model
with the SUL. The teacher replies yes if the obtained hypothetical language is equal to the
SUL’s language and the learning successfully ends. Otherwise, it provides a string, so-called
counterexample, which is in the symmetric difference of the hypothetical language and the
SUL’s language. Positive counterexample shows that the hypothesis is missing something
and it is used to improve the hypothesis in the next round.

Figure 4.1 illustrates the model.

membership query

equivalence query

yes/no + counterexample

HC

HV

query output
Teacher Learner

Figure 4.1: MAT model

In practice, however, we seldom have a complete model of a system to check against.
Hence, the equivalence queries are approximated via membership queries. Also, there is not
an absolutely reliable check for the whole black box system. We can not be sure whether
the testing was extensive enough. This is the reason for the learning neither to be correct
nor complete. It is guaranteed that the model is the most concise representation of the
observed behaviour [24].

4.1.2 L∗ Algorithm

The key idea of the algorithm is to approximate the Nerode equivalence ≡L by an equiva-
lence relation ≡H . In the process of finding the approximation, prefixes and suffixes are
identified. The prefixes represent members of ≡H and suffixes are used to reveal inequalities
of the equivalence classes. When the equivalence query yields a counterexample, it means
the approximation is too coarse and further refinement of ≡H is needed. The learning
algorithm eventually terminates and returns an acceptor isomorphic to the minimal DFA
accepting the SUL’s language [23]. The following explanation draws solely on [4].

16

To gather information about the strings, to classify strings as members and nonmembers,
and to build a DFA, the learner maintains a central structure denoted as observation table
(OT).

OT comprises:

• a non-empty finite set S of prefixes,

• a non-empty finite set E of suffixes, and

• a function T mapping ((S ∪ S · A) · E) to {0, 1}, where A is a fixed known finite
alphabet.

Initial setting is S = E = ε. The result of T (u) is 1 iff u is a member of the SUL’s
language.

We can imagine OT as an array which gets filled and augmented during the learning.
The columns hold suffixes from E and rows are labelled by prefixes from S. T (s·e) represents
the entry of row s and column e, i.e. the table cell containing the result of a corresponding
membership query. A function row(s) is defined as f(e) = T (s · e).

In each round, OT is tested for consistency and closeness. We say the OT is closed
when for each t in S · A there exists an s in S such that row(t) = row(s). OT is called
consistent if for any s1, s2 ∈ S such that row(s1) = row(s2), we have row(s1 · a) = row
(s2 · a).

When OT is not closed, the learner finds s1 in S and a in A so that row(s1 · a) 6= row
(s) for all s in S. Next, the string s1 · a is added to S and T is extended to (S ∪ S ·A) ·E
by asking membership queries for missing elements.

In case OT is not consistent, the learner finds e in E, s1, s2 in S, and a in A so that
T (s1 · a · e) 6= T (s2 · a · e) and row(s1) = row(s2). The string a · e is inserted to E and T is
extended to (S ∪ S ·A) · (a · e) by asking membership queries for missing elements.

If OT is determined to be closed and consistent, the learner converts OT to DFA M as
follows:

• set of states Q = {row(s) : s ∈ S}

• the alphabet A

• transition function δ(row(s), a) = row(s · a)

• q0 = row(ε)

• F = {row(s) : s ∈ S and T (s) = 1}

The learner then asks an equivalence query with M . If the answer of the teacher is
positive, L∗ terminates with M as a result. If the teacher returns a counterexample t, the
learner has to extend S by adding t and all its prefixes. The membership queries for the
missing entries are asked and another iteration begins with the new OT.

4.2 Distinguishing Input and Output

In DFA learning, the learning procedure can distinguish between accept and reject only.
An inferred model does not transcribe the output. Data are completely abstracted away

17

and not handled at all. However, real reactive systems produce output on given input and
often do not terminate. Therefore, we need richer models which faithfully represent I/O
behaviour of a reactive system.

In the following, we present the active automata learning based on the Mealy machine
formalism including adopted learning algorithm. After that, formalisms suitable for appli-
cations where data-flow modelling is required are presented.

4.2.1 Learning Mealy Machines

Niese [15] adapted the DFA learning to a technique exploiting a structure of generalized
Mealy machines (MM). The generalization of the former L∗ algorithm, denoted as L∗M ,
has been conceived. MM provide more direct modelling of the I/O based behaviour. The
learned automata are more concise and the learning is faster.

MM are a variant of automata distinguishing between input and output alphabet. There
is a very close relationship between MM and DFAs. We can look at MM as a deterministic
finite automata over the union of the input alphabet and output alphabet with partially
defined transition relation. MM distinguish runs. A run records an input and its final
output as an abstraction from all intermediate outputs. A run is a semantic functional
[[M]] : Σ∗ → Ω defined by [[M]](w) = λ∗(s0, w). Semantic equivalence of two Mealy machines
M ≡M ′ is defined as [[M]] = [[M ′]] [24].

To find out which functionals of P : Σ∗ → Ω are the semantics of an MM, we need to
understand a notion of equivalence of words wrt. P which is similar to Nerode equivalence.
It states that two inputs u, v ∈ Σ∗ are P-equivalent, written u ≡P v, iff for all continua-
tions w ∈ Σ∗ concatenated words uw and vw are mapped to the same output by P. Then,
the characterization theorem, an adoption of Myhill-Nerode theorem, says that a mapping
P : Σ∗ → Ω is a semantic functional for an MM iff ≡P has a finite index. The proof of the
theorem can be found in [24].

Compared with DFA learning, the difference lies in the way how the states are charac-
terized and distinguished. There are two characterizations of the state:

• by words entering and

• by its future behavior.

The first characterization maintains a spanning tree of words SP reaching the state and
its one letter continuations LP .

The other one holds a an output vector of systems reactions to the input vector D
= 〈d1, ..., dk〉 of strings from Σ∗, denoted as distinguishing suffixes. The future behaviour
of the state u ∈ SP is represented by 〈mq(u ·d1, ...,mq(u ·dk)〉 ∈ Ωk. This leads to an upper
approximation of classes of ≡SUL. Active learning refines the approximation by extending
the distinguishing suffixes.

Like in DFA learning, the learning algorithm proceeds in rounds by the alternation of
membership and equivalence queries. Membership queries correspond to single test runs
executed on the SUL. The inference starts with one state hypothesis automaton and refines
it pursuant to the query results. During the learning, hypothesis construction and validation
phases alternate.

During the construction, the learning algorithm can operate directly on the hypothesis
model or, better, store the results of membership queries in an observation table. The

18

observation table has been introduced in Section 4.1.2. In Mealy machine learning, it is
a mapping O(U,D) : U × D → Ω, where U = SP ∪ LP represents a set of prefixes and
D denotes a set of suffixes. The table cells contain the results of membership queries for
words ud, where u ∈ U, d ∈ D.

If the hypothesis validation phase yields a counterexample, it is used to enlarge SP or
D. All its suffixes can be directly added into D and no analysis of the counterexample is
needed. On the other hand, D grows tremendously which leads to unnecessary membership
queries. In [24], optimized strategy has been proposed. The authors introduce an algorithm
which adds exactly one suffix of each counterexample based on counterexample analysis.

When the hypothesis is considered equivalent with the SUL, the automaton is obtained
from D and LP as follows. Each output vector corresponds with an automaton state and
LP implies the transitions.

Example of Mealy Machine Inferrence

Let’s look at an example of L∗M inferring Mealy machine M given in Figure 4.2. The
example has been taken from [1] and is using observation table to construct the hypothesis.

1 0 2

a/a b/a

b/a a/b

a/ab/a

Figure 4.2: An example Mealy machine

The algorithm starts with S = {ε}, E = {a, b} and asks membership queries for a, b,
aa, ab, ba, and bb. The answers from the teacher are filled in the observation table OT0

(Table 4.1a) which is consistent but not closed, since row(ε) 6= row(a) and row(ε) 6= row(b).
Consequently, row(a) = row(b), thus we can add one of them to S, let it be a, and the
algorithm continues. Membership queries aaa, aab, aba, and abb construct OT1 shown
in Table 4.1b. It is both closed and consistent now, thus the hypothesis model shown in
Figure 4.3 is presented to the teacher.

Table 4.1: Observation tables

(a)

OT0 a b
ε b a
a a a
b a a

(b)

OT1 a b
ε b a
a a a
b a a
aa b a
ab a a

(c)

OT2 a b
ε b a
a a a
b a a
bb b a
bba a a
aa b a
ab a a
ba a a

bbb a a
bbaa b a
bbab a a

(d)

OT3 a b aa ab
ε b a a a
a a a b a
b a a a a
bb b a a a
bba a a b a
aa b a a a
ab a a b a
ba a a a a

bbb a a a a
bbaa b a a a
bbab a a b a

19

0 2

b/a

a/b

a/a

b/a

Figure 4.3: A hypothesized Mealy machine

The teacher selects a counterexample. We assume that the counterexample is bba. The
algorithm adds bba and all its prefixes (b, bb) to S and queries (S ∪ S · A) · E are asked.
The new OT2 (Table 4.1c) is closed but not consistent as we have row(a) = row(b) and
row(aa) 6= row(ba). aa and ab are added to E and the membership queries are asked again
to fill the new columns. Resulting OT3 shown in Table 4.1d is closed and consistent, so the
algorithm asks a second equivalence query to the teacher. The teacher responds with yes.
Before the L∗M terminates, it merges equal rows because Q is defined as a set of distinct
rows. The final Mealy machine contains three states and is equivalent with M .

4.2.2 Register Automata and Register Mealy Machines

The inputs and outputs in a real system often have parameters. In [7], a formalism based
on a form of register automata (RA) was introduced. RAs are designed to deal with
parametrized input and thus to describe the influence of data on control flow. They are
suited to model systems which distribute data, e.g. communication protocols, which do not
compute data and their behaviour does not depend on the data content they distribute.
The active learning has been extended with this formalism in [11].

Recently [10], a generalized form of register automata which allows modelling data also
in outputs has been developed. The inference of RA has been extended to also capture
parametrized output. This extension is similar to a step from DFA learning to Mealy
machine learning and the model is therefore denoted as Register Mealy Machines (RMMs).
The authors claim that inference of RMMs is done fully automatically using systematic
testing only and without any manual abstraction.

4.3 Learning in Practice

In practical active automata learning, the major challenge is to construct an application-
specific learning setup. The learning setup comprises a suitable form of abstraction and
managing the data influencing the system behaviour [18]. The adequacy of the abstraction
is crucial to the success of the learning. It is usually done manually and tailored to the
specific system. Even though approaches to automate abstraction have been devised, a
certain level of manual effort or knowledge about the system is still needed.

When inferring models of a real system, the learning algorithm interacts with the SUL.
As the learner’s alphabet is an abstraction of the system alphabet, the means of bridging
this gap are needed. Mapper, or a test driver, is a component which translates the abstract
queries into the system language and, on the way back, the system outputs to the abstract
language of the learner. Figure 4.4 illustrates mapper’s position in active learning setup.

20

SUL
concrete response

concrete request

abstract response

abstract query

mapper learner

Figure 4.4: Schematic view of active learning setup using a mapper

4.4 LearnLib

LearnLib [33] is a Java framework comprising tools for automata learning and experimen-
tation. It is subject to ongoing development at the University of Dortmund. LearnLib has
been applied successfully to learn parts of the SIP and TCP protocol [1] and the biometric
passport [2].

There are two versions of the library. The former closed-source version which is free of
charge for academic uses [32] and the new version [33]. At the beginning, we have tried
the former LearnLib but the fact it is closed source made us switch to the new version.
Although the library is still in an early stage, it embraces all important implementations
of learning algorithms, their variations, query optimizations, counterexample analysis, and
several equivalence tests. Provided are statistics, logging, and export to DOT, a graph
description language.

4.4.1 Inferring Models

LearnLib provides two interfaces for learning algorithm implementations. DFALearner is
applicable for inference of finite automata and MealyLearner which aims at Mealy ma-
chines. Following two learning algorithms implementing MealyLearner interface have been
used in our experiments.

The DHC (Direct Hypothesis Construction) algorithm [24] constructs the hypothesis
automaton

”
on-the-fly“ using a queue of states to be explored. It uses a breadth-first search

strategy. If a counterexample is found at the end of the round, all its suffixes are taken into
account in the next iteration.

The second one, Extensible L∗M , is the Mealy variant of L∗ [22]. It employs incremental
construction of the hypothesis model. It does not work on the model directly but rather
uses an observation table in similar way as described in Section 4.2.1. Instead of single
symbol outputs, it stores rather words in the cells of the table.

Equivalence tests implement model-based testing methods and approximations based
on membership queries. In our experiments, we have employed Random Walks, Random
Words, Complete Exploration, W Method, and Wp Method. Interested reader may find
more information about model-based testing in [6].

There are also many implementations of handling the counterexamples. Unfortunately,
the LearnLib documentation is not very expansive in this regard. We are using CLASSIC
LSTAR which implements the standard procedure described by Angluin [4]. Several closing
strategies are implemented. A closing strategy is a way of selecting the representative when
multiple rows closing the observation table exist. In our work, Close First which selects the
first for from each equivalence class has been used.

The overall algorithmic pattern underlying most active automata learning algorithms
can be seen in Figure 4.5. On the left and right hand side, square boxes denote inputs and
outputs, respectively.

21

First, the the learning setup is constructed. Then, the iterative procedure of the learning
starts. The hypothesis is generated and refined by test-based exploration on the basis
of membership and equivalence queries. The counterexamples obtained from equivalence
queries are used for refining the hypothesis. When there is no counterexample found, the
hypothetical finite state machine is finished. The output is written to a DOT file.

abstract interface
alphabet

mapper setup learning algorithm

make tests to
refine hypothesis hypothesis

equivalence test

counterexample found?

yes no

return
result

analyze
counterexample final model

counterexample

Figure 4.5: Extrapolating behavioral models with LearnLib [24]

4.4.2 Query Optimizations

On its own, automata learning algorithm generates a huge number of queries until it finds
no more inconsistencies in the inferred system model. However, only some of the queries
bring more knowledge to the system’s behaviour. This makes the learning very expensive
and impossible to fit real life scenarios.

A strategy to filter irrelevant queries and reduce the number of required experiments
drastically has been introduced in [16]. Optimizations exploiting four kinds of expert know-
ledge are employed. In LearnLib, implementations of these optimizations are called filters.
The position of a filter in the learning can be seen in Figure 4.6.

learner mapperfilter

Figure 4.6: Position of a filter in learning

22

Redundancy

In classical implementation of the Angluin’s algorithm, redundant membership queries are
generated and stored in the observation table. The redundancy filter is implemented as a
hash table T : Σ∗ → {unknown, true, false}. The output for given query MQ(q) express
the knowledge about q. The rules are:

• T (q) = true⇒MQ(q) = true,

• T (q) = false⇒MQ(q) = false,

• T (q) = unknown⇒ it is necessary to execute the membership query.

Prefix Closure

The language of a real system is prefix closed. That means, in a run, its every prefix also
belongs to the language. This leads to a powerful optimization. The principle can be used
e.g. when a positive counterexample is obtained from the equivalence query. All of its
prefixes are directly added to the model.

The prefix closure filter is also implemented by means of cache. The filter rules are as
follows (prefix(q) gives us the set of all prefixes of q):

• ∃q′ ∈ Σ∗ : T (q.q′) = true⇒MQ(q) = true

• ∃q′ ∈ prefix(q) : T (q′) = false⇒MQ(q) = false

Independence of Actions

Some actions can be executed in any order and end up in the same system state. The filter
needs to be specified by a domain expert in form of an independence relation. It specifies
which events can be shuffled in any order.

Symmetry

In hardware systems, there are often components which are identical. The symmetry filter
brings optimization by finding such components. Again, an expert needs to be involved to
determine which devices or units fulfil this condition.

23

Chapter 5

Design and Implementation

Let’s assume we have an SUL described in VHDL and we want to generate its checker. We
need a means of triggering the queries on the SUL and reading the answers. This can be
achieved by running a simulation of the SUL in a simulator. Then, we shall possess the
environment which will be responsible for generating the queries and construction of the
model. The result of the learning will be automaton, presumably described in a simple text
format. Thus, we will make use of a converter to a hardware language. After the checker
is created, we shall perform a set of SEU injections to test the checker capabilities.

For effective construction of checkers in the manner described above, a comprehensive
learning platform and the learning setup has been designed. This section covers the design
and implementation of the learning platform, description of the major parts and their
interconnection. The SUL and its learning setup is introduced.

An experimental platform for SEU injections has been designed and implemented. The
description of its main components together with a means of connection is given in the
second half of the chapter.

5.1 Learning Platform

The learning platform compounds a simulator holding the SUL, a learning environment,
and a converter of the obtained model (Figure 5.1). The design and implementation of the
components is described in more detail in the following sections.

Simulator Converter
Learning

environment

Figure 5.1: The main components of the learning platform

5.1.1 Simulator

For the purpose of the thesis, the ModelSim simulator has been chosen. ModelSim is a
vendor independent tool from Mentor Graphics for simulation, verification and debugging
of FPGA designs. Simulation of a design runs the VHDL testbench which instantiates the
unit under test, provides a set of stimuli and captures the output.

The learning environment needs an access to the simulation. In this regard, the advan-
tage of running a simulation in ModelSim is that it can be set up and controlled remotely

24

via sockets. Thus, the interaction between the learning environment and the simulator is
realized over TCP/IP. The Tcl script [12] is used to run a server in the simulator. The server
is listening on a certain port. After our modification, it now invokes received commands
and sends back the simulation output.

During the learning, we apply stimulus to a given VHDL signals, run the simulation by
the specified time range and examine the obtained results. For these purposes, commands
force, run, and examine are employed.

SUL and Learning Setup

In this work, a part of Wishbone bus [20] has been chosen as the SUL and is simulated.
Wishbone is an open source hardware bus developed by OpenCores hardware community.
It represents an System-On-Chip (SoC) interconnect architecture for connection of IP cores.
Wishbone is a logic bus, i.e. it is specified in terms of signals and clock cycles. The reason
why we have chosen Wishbone comes from the fact that it is a part of an exemplary system
for testing fault tolerant methodologies developed at our faculty department [21]. As it
implements the communication of the components, it represents a central element and a
critical part of the system.

Wishbone defines two types of interfaces: master and slave (Figure 5.2). The wishbone
signals are located at one side of the master and slave interface unit. On the other side,
there are application-specific signals. The master device specifies requests by setting the
address, data and control (bus cycle) signals. Slave accomplishes read or write actions on
masters requests. It responds to input control signals by setting its output control signals.

SysCon

RST_I
CLK_I

WE_O

STB_O
ACK_I
CYC_O

RST_I

DAT_I

DAT_O

CLK_I

WE_I

STB_I
ACK_O
CYC_I

...

n
o
n
-w
is
h
b
o
n
e
si
g
n
a
ls

n
o
n
-w
is
h
b
o
n
e
si
g
n
a
ls

...

DAT_O

DAT_I
ADDR_O ADDR_I

Master Slave

Figure 5.2: Master and Slave Interfaces

We suppose that if we focus on control signals omitting the address and data, the slave
interface unit can be described by a Mealy machine model and it can be effectively inferred
by means of active automata learning. Thus, it has been chosen as our SUL of which the
checker is constructed.

To create the learning setup, we have to look closely on our implementation of the slave
interface unit. It is used with the position evaluation unit (PEU) which computes X, Y
coordinates on given distances from control points A, B, and C. Thus, it performs a read
operation of three values or a write of two.

Wishbone signals can be observed on the left side of the block in Figure 5.3. On the
right side, we can see signals specific to operation of the PEU. We omit address (ADDR I)

25

and data signals (DAT I, DAT O, A, B, C, X, Y) and analyse the control signals only. Three
input and three output one-bit signals remain: WE I, CYC I, STB I, ACK O, NOT CYC WRITE,
and NOT CYC READ.

The write enable input WE I gives information about the type of the bus cycle. It
is asserted during write cycles and negated during read cycles. The cycle input CYC I,
indicates a valid bus cycle is in progress. It is asserted during the whole bus cycle. The
strobe input STB I, when asserted, indicates that the slave is selected. A slave responds to
other Wishbone signals only when this signal is asserted. The acknowledge output ACK O
announces the termination of a bus cycle. NOT CYC WRITE and NOT CYC READ signals are
used to control the read and write operations inside the PEU.

There are three control inputs (marked red in Figure 5.3) which are of our interest at
the slave interface. Therefore, the input alphabet consists of all possible combinations of
three binary signals, that is 23 symbols. The outputs which we will consider are highlighted
in blue.

CLK
RST
ADDR_I
DAT_I

DAT_O
ACK_O

WE_I
CYC_I
STB_I

A
B
C

X
Y

PEU slave

NOT_CYC_WRITE
NOT_CYC_READ

Figure 5.3: The slave interface of PEU

In our case, the input domain is very small. However, if the unit had more inputs,
the learning would take longer. It would be necessary to reduce the learning complexity
by minimizing the input alphabet. A human specialist who has a knowledge of the inter-
face signals would need to select only some combinations of signals or create a suitable
abstraction mapping.

5.1.2 Learning Environment

The learning environment consists of five main components: a telnet, a mapper, an oracle,
a learner, and an equivalence oracle (Figure 5.4).

equivalence
oracle

learnertelnet mapper
model

oracle

Learning environment

Figure 5.4: The main components of the learning environment

The learner uses an abstract alphabet to generate membership queries. A membership
query is a word of symbols from the abstract alphabet. There are eight possible symbols

26

as each of them represents a setting of three inputs (WE I, CYC I, STB I), i.e. the abstract
alphabet contains eight symbols. The learner uses SUL responses to build a model. The
output alphabet is represented by all the responses. It is filled during the learning and thus
not created explicitly.

The queries go through the oracle which serves as an abstraction layer and facilitates
unified access to the mapper. It also implements basic filter functionality to avoid duplicate
queries.

To connect the oracle with the SUL, a mapper is needed. The mapper implements the
learning setup tailored to the SUL as described in Section 5.1.1. It provides the translation
from the abstract alphabet into the real SUL alphabet. Each symbol in a membership query
represents simulation stimuli. The stimuli are applied by specifying signal values, enabling
clock and running the simulation for a designated amount of time. The mapper decomposes
the stimuli and creates Tcl commands for corresponding signals. Then, commands which
enable clock and advance the simulation by a period are generated. After the commands
are invoked in the simulator, the mapper examines the SUL output and hands it over to
the oracle.

To get access to a command-line interface of the simulator, the telnet component is
employed. The component is connected to the server running in the simulator. It allows us
to transmit commands created by mapper, invoke them in the simulator and capture the
results.

At the end of a learning round, the learner consults his hypothesis with the equivalence
oracle and, eventually, outputs a model.

To evaluate the learning and its result, a means of time profiling and logging of models
are used. After the learning process finishes, learning time, the number of membership
queries and executed symbols are available apart from the inferred model.

The main method resides in WBSlaveLearner class. The class holds a static instance of
the AutoTelnetClient class. To implement telnet component, Apache Commons Net lib-
rary [27] which implements many basic Internet protocols is used. The AutoTelnetClient
class has been inspired by [31]. The AutoTelnetClient constructor tries to connect to the
server and the port given by its parameters. After the connection is established, buffers of
types InputStream and PrintStream are involved in transmitting the data. To send the
data to the server, a write method is used. A readResult method is responsible for getting
the simulation output. It reads the data from the input buffer until the end character is
found and returns the output consisting of three signal values.

The remaining components implement the learning functionality using LearnLib frame-
work presented in Section 4.4.

At the beginning, the input alphabet is filled with symbols. The alphabet is imple-
mented by WBSlaveAlphabet class. Each symbol is an instance of WBSlaveInput class
which contains two instance variables: action and data. In our implementation, we have
one action called execute symbol. It is a mapper method residing in WBSlave class. Data
variable holds a string which represents simulation stimuli. The mapper ensures their trans-
lation to corresponding input signals of the PEU slave interface and enables clock for one
period. For example, the symbol [execute symbol, 011] shall be mapped to
force WE_I 0

force CYC_I 1

force STB_I 1

force CLK 1

run 20 ns

27

force CLK 0

run 20 ns.

The output of the unit is read by mapper by invoking following commands:
examine -value ACK_O

examine -value NOT_CYC_WRITE

examine -value NOT_CYC_READ.

After that, we create an instance of WBSlaveAdapter class. It implements the SUL
interface that provides three methods for executing actions on the SUL. As we do not
perform any adjustments before (pre()) the learning starts, we implement only execution
of an input on the SUL (step()) and reset of the SUL (post()).

The membership query oracle is an instance of SULOracle class created by passing a
previously created oracle containing cache. The cache is an implementation of filtering and
is provided by static method createSULcache of Cache class.

As Mealy machines are learned, the learner component is either instance of MealyDHC or
ExtensibleLStarMealy which are both implementations of MealyLearner interface. When
creating MealyDHC instance, input alphabet and oracle is specified. ExtensibleLStarMealy
requires initial set of suffixes (can be also empty), the specification of counterexample
handling and the closing strategy.

Next, an equivalence test is build using the MealyEquivalenceOracle class. Several
extending classes such as RandomWalkEQOracle or MealyWMethodEQOracle are available.
Implementation details concerning the chosen equivalence oracles are given in Section 6.1.

Now, everything is set up for the learning to begin. A learning experiment instantiating
MealyExperiment class is constructed by specifying the learning algorithm, the equivalence
oracle and the input alphabet. The experiment is started by invoking the run method. The
result is of type MealyMachine and can be passed to a static write method of GraphDOT
class which renders a DOT file.

5.1.3 FSM-VHDL Converter

When the learning is finished, the model is saved in a DOT file. It contains a textual
representation of the FSM which can be processed or visualized by many editors. However,
our checker is not represented by the FSM only. To get the error-reporting feature, it would
not be enough just to convert the inferred model to VHDL description. A mechanism which
compares the output of the FSM and output of the SUL has to be included. Only then, the
unit may be called the checker and it is ready for synthesis and implementation to FPGA.

A part of the converter developed at the Concordia University [3] has been used. The
converter is composed of two modules. DOT-to-KISS1 module accepts a DOT file, analyses
it for possible syntax errors and performs conversion to KISS formatted FSM. The other
part, KISS-to-VHDL module, generates the VHDL description from the KISS file.

The authors have been able to provide only the KISS-to-VHDL module. Thus, we
have implemented the other one by ourselves using Python. Designs generated by the
original KISS-to-VHDL module do not implement the reset function. However, the reset
is an integral capability in a checker. Therefore, the generation process of KISS-to-VHDL
module has been expanded by adding the reset and the generic comparing mechanism which
announces the error has been added.

1Keep It Simple Stupid (KISS) FSM format

28

5.2 Experimental Platform

When the checker is constructed, we would like to perform experiments comprising SEU
injections and evaluate how good the checker is.

A unit instantiating the checker and the original functional unit was designed and
implemented to FPGA. The function of the unit is directed by a controller in a computer.
The controller is responsible for starting the experiments and reading the results. The
SEU injection employs the generator which is connected with the board by Xilinx JTAG
programmer. The last part which has to be devised is a means of connection of the controller
and the board. The experimental platform is depicted in Figure 5.5.

controller

design with
the checker

JTAG programmer

SEU
generator

Computer Development
board

Figure 5.5: Scheme of the experimental platform

To capture the number of errors caused by SEU injection, a counting mechanism is
included. The numbers of three types of errors are stored. The first value represents the
number of real errors. The second one gives us the number of true positives, i.e. errors
which the checker caught successfully. And, in the last one, there is the number of false
positives, i.e. errors which were reported by the checker but have not really occurred.

An execution of the design represents processing of finite number of values stored in the
memory and counting the errors. When the execution itself is performed, we get no errors
and thus zeros on the output. An experiment designates the SEU injection followed by the
execution. When the SEU hits an important part of the design, we should observe non-zero
values on the output.

5.2.1 Design with Checker

The design is divided into two groups. The first one contains the functional unit together
with the checker (the blue rectangle in Figure 5.7). This part will undergo the fault in-
jections. The rest of the design represents the other part. That is a generator of inputs
driven by start-stop unit, three counters of errors and another instance of the functional
unit which serves as a reference for counting real errors.

To implement the checker, the automaton inferred by learning and converted to VHDL
is used (Figure 5.6). The output from the resulting FSM and the original FU is compared.
When a mismatch occurs, the error is reported.

≠
inferred

FSM
error

FU output

FU input

Checker

Figure 5.6: The checker

The execution of the whole design is controlled by the start signal. The input generator
produces inputs for two functional units and the checker. The generator is implemented

29

as a Block RAM and a counter for generating the read address. The Block RAM module
was created using Xilinx CORE Generator System [35]. It stores 11608 values which were
gathered during the learning process from the membership queries.

The outputs of the two functional units are tested for conformity. If they are not equal,
the SEU has caused an error and the respective counter increments its value. On the left,
the blocks cnt FP, cnt TP and cnt represent counters which count the number of false
positives (FP), true positives (TP) and real errors, respectively. The counters keep the
maximum achieved value and do not overflow back to zero. In this way, it is possible to
determine from the results that the maximum value has been reached or exceeded. When
the last value from the input generator is processed, the execution is over and the result
together with read enable signal is outputted.

FU

≠FU

input
generator

start /
stop

stop

start

cnt

cnt FP

cnt TP=

cmpchecker

counter
values

read

error

Figure 5.7: Design with the checker

Thus, within an execution, 11608 test vectors are processed. This means that up to
11608 errors could occur when an SEU is injected. To capture such a number of errors,
a 14-bit counter is needed. In our design, there are three such counters, the start signal
and the read signal, i.e. 44 pins to transfer them. Such number of pins is not available on
our experimental platform and we do not like to decrease the reliability of the test set by
reducing the number of test vectors. Therefore, 6-bit counters are used to count the errors.

Having two groups of the design allows placing both of them to the pre-determined
regions in the FPGA. Then, injection of the faults into the selected one can be performed.
To create placement constraints, we used the PlanAhead tool [39] which provides a com-
prehensive design and implementation environment with GUI. To constrain the blocks, one
needs to enable the keep hierarchy option before the synthesis. This approach is called Hie-
rarchical Design. It ensures the architecture not to be flattened during the synthesis and
keeps the design components in the netlist. Then, the components can be easily grouped
and placed into specified areas in the FPGA.

Figure 5.8 illustrates positioning the first group with the checker vertically (block A)
and placing the other group (block B) to a different area. Block A occupies one CLB
(horizontally), i.e. 36 frames.

The output of the PlanAhead placing process is a UCF file with generated placement
constraints. For example, the constraints for the block A follow:
INST "fu_checker" AREA_GROUP = "A";

AREA_GROUP "A" RANGE=SLICE_X12Y60:SLICE_X13Y79;

Whereas the placer does not locate any logic elements of another group in a region,
the router can route static connections through all the regions. We are not aware of any

30

Figure 5.8: Constraining the groups of the design in PlanAhead

simple method how to automatically keep the routes out of the specified region. One should
be able to change the routing manually using FPGA Editor or RapidSmith. To do this,
detailed FPGA knowledge and more experiments would be required. The solution could
be to put the evaluation mechanism aside of the injected design which is, however, beyond
the scope of this work.

The final design was implemented and tested on Xilinx ML506 board with Virtex-5
XC5VSX50T-1FF1136 chip. To test and debug the design, ChipScope Pro [38] providing
integrated controller (ICON) and logic analyzer (ILA) was used.

5.2.2 Connection with Board

The design in the development board produces results which are to be processed in a
computer. One of the possibilities how to connect the board and the computer is a universal
asynchronous receiver/transmitter (UART). Using UART port requires working with Xilinx
USB to UART drivers which could take some time before having the peripheral up and
running. Thus, we have chosen a different approach using the FITkit platform.

FITkit [28] is a standalone hardware board which contains the Spartan3 FPGA, a micro-
controller and various peripherals. The advantage of employing FITkit in our experimental
design is that we can implement a handshake mechanisms for synchronization using the
microcontroller.

The FITkit represents a communication layer and can also serve as a debugging point
for communication between the computer and the ML506 board. The connection between
the FITkit and the computer is realised by a serial bus (USB). The development board and
the FITkit are interconnected via pinheaders. The assignment and connection of pins on
the board and on the FITkit is given in 5.1.

Table 5.1: Connection of pinheaders

FITkit 11 13 15 17 19 21 23 25 27 29 31 33 12 14 16 18 20 22 24 26
ML506 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
signal cnt cnt FP cnt TP read start

31

5.2.3 Experiment Controller

An experiment controller is a C/C++ application designed with the intention of use in
the batch mode. The controller generates the start signal which activates the execution of
the design on the development board. Then it waits for the results and outputs them on
stdout. In such a way, the controller can be invoked repeatedly and the obtained results
can be appended to a file.

At the beginning, USB discovery is performed. The controller looks for the FITkit
which is dedicated to the connection with the development board. A simple handshake
mechanism has been implemented. The controller opens a serial connection and sends
FITKIT command. If the response YES comes, the connection with the board is established
and the START signal is sent. After that, the controller waits for the results. Another
handshake process was implemented to catch the values sent by FITkit. The results are
being sent until the THANKS command from the controller is received. Results coming from
the FITkit are in hexadecimal base and are converted to decimal before printing out on
stdout.

5.2.4 SEU Generator

An SEU injection is the process of changing one bit in the configuration memory or in the
memory of the FPGA design. To perform SEU injections on the design with the checker,
we need a tool for SEU simulation.

The SEU generator chosen in this work was developed at the Department of Computer
Systems of The Faculty of Information Technology, BUT [25]. It meets four main criteria.
Universality is achieved by generator’s ability to place the SEU at any place on the FPGA.
Locality is ensured by placing the SEU into a pre-determined area of the FPGA. There is a
guarantee that other areas remain unmodified. The generator is separate and independent
on the function in the FPGA. Thus, it cannot damage itself and there is no need to rebuild
the attacked design. The SEU injection is an atomic process. The applied SEU is not
overwritten or replaced in any way.

The generator is a standalone application implemented in Tcl language with the use of
ChipScope libraries. It combines readback and dynamic reconfiguration to achieve the SEU
injection. The structure of the generator is depicted in Figure 5.9.

bitstream

Bitstream Generation Layer

read frame write frame

SEU Placing Layer

SEU Generator

JTAG interface

Computer

FPGA

Figure 5.9: Structure of the SEU generator

32

The Bitstream Generation Layer communicates with the FPGA through the JTAG
interface. It accepts the frame address and frame data from the SEU Placing Layer and
generates a bitstream which performs a readback or a write of data for the given frame. The
SEU Placing Layer creates read and write frame requests according to the given placing
policy. One of the placing policies that can be taken advantage of in our work is changing
a given bit in a frame of bitstream.

It should be noted that the configuration memory is usually not documented. Due to
this, it is not possible to predict whether the bit is required for the design function or not.

The SEU injection involves the following steps:

1. Frame selecting – the frame is addressed by combination of four values (top/bottom
part of the FPGA, row address, major and minor address);

2. Readback – the frame is readbacked without interrupting the computation in the
FPGA;

3. SEU generation – the given bit in the configuration data is flipped;

4. Write frame – the changed frame is written back into the configuration memory, again
without interrupting the computation.

33

Chapter 6

Experiments

At first, we tried to use former LearnLib for the model inference. However, we experienced
problems during the runtime and thus we switched to the new LearnLib version which is
open source. In this section, we describe the settings of the learning experiments. The
statistics of the learning processes are discussed and the analysis of the inferred models is
given. Implementation of the obtained models into FPGA is shown. The experiments using
SEU injection are demonstrated and their results are given.

6.1 Inference of Models

A wide set of experiments executing the inference of the model of the wishbone slave
was performed. 22 representatives were selected and are reported in this section. We
employed DHC and Extensible L∗ learning algorithms. There are 11 learning setups for each
algorithm which represent different equivalence tests for generating counterexamples. The
experiments were carried out on Intel Core i7 with 1.5 GB RAM. To make the experiments
reproducible, the implementation details on the learning setups are included in Table 6.1.

We recorded how long it takes for learning to finish, the final dimensions of the inferred
automaton, and also other properties denoted as learning characteristics. The learning
characteristics represent the number of learning rounds, membership queries, and the total
number of executed symbols. Some of the experiments finished within minutes and others
were running for several hours or even days. One of the factors in this regard is a handshake
between the simulator and the learning environment conducted via telnet.

Results

The results of the experiments with DHC and Extensible L∗ are presented in tables 6.2
and 6.3, respectively.

In 14 experiments, the model of 4 states and 32 transitions was inferred. When com-
pared, the models are identical. Note that all the experiments returning the 4-state model
ended after one round, even though many of them have been running for a few hours (e.g.
Wp Method II). The attentive reader may notice that the learning characteristics of these
experiments are the same for both learning algorithms and only the learning times differ.
No counterexample was found and the learning stops at the very beginning in all cases.

The Complete Exploration setup consumes similar amount of time as Random Walks
I in respective algorithms while generating twice as much membership queries. Further
increasing of the depth to 4 for Complete Exploration, W Method, and Wp Method setups

34

Table 6.1: Equivalence test settings

Random Walks I RandomWalkEQOracle: probability of reset = 0.05, maximum
of steps = 20, reset the step counter after counterexample =
false, random = new Random(46346293)

Random Walks II RandomWalkEQOracle: probability of reset = 0.05, maximum
of steps = 100, reset the step counter after counterexample =
false, random = new Random(46346293)

Random Walks III RandomWalkEQOracle: probability of reset = 0.05, maximum
of steps = 100, reset the step counter after counterexample =
true, random = new Random(46346293)

Random Words I MealyRandomWordsEQOracle: minimum length = 1, maxi-
mum length = 20, maximum of tests = 20, random = new
Random(46346293)

Random Words II MealyRandomWordsEQOracle: minimum length = 1, maxi-
mum length = 100, maximum of tests = 100, random = new
Random(46346293)

Random Words III MealyRandomWordsEQOracle: minimum length = 100, max-
imum length = 300, maximum of tests = 300, random = new
Random(46346293)

Complete Exploration CompleteExplorationEQOracle: maximum depth = 3
W Method I MealyWMethodEQOracle: maximum depth = 1
W Method II MealyWMethodEQOracle: maximum depth = 3
Wp Method I MealyWpMethodEQOracle: maximum depth = 1
Wp Method II MealyWpMethodEQOracle: maximum depth = 3

Table 6.2: Learning setups of DHC algorithm

DHC Random
Walks I

Random
Walks II

Random
Walks III

Random
Words I

Random
Words II

Random
Words III

learning time [s] 345 1382 1618 269 2326 8071
rounds 1 3 10 1 2 2
membership queries 264 1294 1294 281 1395 1590
executed symbols 914 11660 12017 1099 19832 72739
symbols per query 3.46 9.01 9.29 3.91 14.22 45.75
states 4 18 18 4 18 18
transitions 32 144 144 32 144 144

Complete
Exploration

W
Method I

W
Method II

Wp
Method I

Wp
Method II

learning time [s] 312 924 24415 651 139169
rounds 1 1 1 1 1
membership queries 712 728 34136 512 20312
executed symbols 2248 3016 218184 2024 127048
symbols per query 3.16 4.14 6.39 3.95 6.25
states 4 4 4 4 4
transitions 32 32 32 32 32

35

Table 6.3: Learning setups of Extensible L∗ algorithm

Extensible L∗ Random
Walks I

Random
Walks II

Random
Walks III

Random
Words I

Random
Words II

Random
Words III

learning time [s] 447 6392 6421 340 11689 101820
rounds 1 3 10 1 2 2
membership queries 264 3562 3850 281 4335 14041
executed symbols 924 53885 55436 1099 97569 1006347
symbols per query 3.50 15.13 14.40 3.91 22.51 71.67
states 4 18 18 4 18 18
transitions 32 144 144 32 144 144

Complete
Exploration

W
Method I

W
Method II

Wp
Method I

Wp
Method II

learning time [s] 394 807 28116 496 14215
rounds 1 1 1 1 1
membership queries 712 728 34136 512 20312
executed symbols 2248 3016 218184 202 127048
symbols per query 3.16 4.14 6.39 3.9 6.25
states 4 4 4 4 4
transitions 32 32 32 32 32

prolongs the learning time to a matter of days and does not bring any new model attributes.
For our SUL, these setups turned out to be inconvenient from the time perspective.

The most comprehensive results were achieved using Random Walks and Random Words
equivalence oracle. Three models with 18 states and 144 transitions were obtained in
8 experiments. From the analysis of the models, it is clear that there exists an isomorphism
between them, i.e. the models are the same when the states are renamed accordingly.

On average, DHC algorithm was more than 6 times faster than the Extensible L∗ in
delivering the 18-state model. The Extensible L∗ could not find inconsistency in its 18-state
model behaviour even when each of 14041 membership queries executed more than seventy
inputs on the SUL. We believe such model should serve well as a basis for the checker.

Now, we get to the examination of the functionality covered by the generated models.
The smaller model is depicted in Figure 6.1 and denoted as model A. The other model
referred to as checker B is shown in Figure 6.2. Transitions were simplified by remov-
ing the labels describing input and output and by merging parallel edges pointing in the
same direction. As we have learned in Section 5.1.1, the original SUL either writes three
consecutive values to registers A, B, and C or reads from registers X and Y.

Model A captures behaviour of the SUL only partially, whereas the read operation is
covered. In the state 0, the automaton awaits initialization of the transfer cycle. If the
inputs are set correctly, we can go to state 1 by 2 transitions which correspond to read
and write. Otherwise (6 transitions), we would remain in the same state. If the write was
requested, we get from the state 1 back to the initial state (4 transitions). Provided the
read, transfer of value in the register X takes place and we go to the state 2. The state 2
is similar to the initial state where initialization of the transfer cycle is expected. The
situation differs in that we have to read the value of the second register. If the transfer
cycle was not set correctly, we remain in the state. Otherwise, we go to the state 3. If write

36

was set, we go back to the state 2. In the case of read, the value of Y is read and we appear
in the initial state again.

1 0

4x

2 36x

4x

2x

4x

4x

2x

6x

Figure 6.1: Model A (4 states and 32 transitions)

By better generation of counterexamples, the learning algorithm found a case which
extends the model A and inferred model B. The case introduces the write operation to the
model. As there are three write operations in a row, the model has grown. Therefore, we
do not describe the whole model in detail.

In the simplified model B, we can observe that some of the transitions from the state 1
now lead to a new state 4 where the write to registers A, B, C starts. Another difference
can be found in the transitions from the state 3. Some of them lead to the state 16 which
represents the situation when read has been performed and is followed by the write. This
never happens in the real execution of the SUL because the master device is implemented
to generate precisely two consecutive read requests.

6.2 Checker Implementation

Model A and model B were converted to VHDL. Then, checker A and checker B which
represent respective models enriched by error-reporting mechanism were generated. The
four designs were synthesised and implemented to FPGA. Optimizations were turned off
during the implementation phase. From the place and route report, we got the device
utilization information summarized in Table 6.4.

Table 6.4: FPGA utilization

Model A Model B Checker A Checker B Original
slice registers 4 21 4 21 90
LUTs 3 24 4 25 111
min clock period [ns] 0.987 1.559 0.917 1.562 2.285

In the last column, we observe the implementation of the original PEU slave unit. At
first glance, it is apparent that the inferred models consume less space than the original
unit. Model A which captures the read operation only is very small using only 4 slice
registers and 3 LUTs. Model B occupies 4.3 times less slice registers and 4.6 times less
LUTs in comparison with the original unit.

The error-reporting mechanism uses one LUT in both checker implementations. The
small size of the checkers is caused also by the fact that checkers validate control signals
only and data and address is omitted. The table shows that the speed of both checkers is
high enough to work on the maximal speed of the checked unit.

37

1 0

4x

2 36x
2x

4x

2x

6x

17 16

14 15

6x

13 12

11

10

6x

6x

4

5

6

7

8

9

6x

2x

4x

6x

4x

2x

4x

2x

4x

4x

6x

6x

2x

2x

6x

4x

2x

4x

4x

4x

4x

4x

4x

2x

2x

4x

4x

Figure 6.2: Model B (18 states and 144 transitions)

6.3 SEU Injections

We performed SEU injections to the specified region where the design with the checker
is placed. A bash script goes through all the bits in all the frames within the region.
The region occupies 36 minor columns each containing 1312 bits which gives us 47232 bits
altogether. At first, the SEU is injected which causes negation of the specified bit. Then,
the experiment controller starts the execution of the design function. When the execution
is finished, values of three counters which count real errors, true positives (TP), and false
positives (FP) are collected. These values are later used to evaluate the experiment. After
that, the design is returned to its original state by another SEU injection. The bit is flipped
back and the experiment continues. Experiments involving injections into the entire region
are quite a time-consuming task. It takes around 3 days and 18 hours to finish.

38

Types of Errors

There are several types of errors which can be caused by an SEU depending on where it
strikes. The scheme in Figure 6.3 shows a simplified view on possible points of an SEU hit.

FU

≠FU

checker error
x B

x A

C
x

D
x

x E

x F
real
error

input

Figure 6.3: Major spots where SEU can strike

Point A represents the situation when the SEU hits the FU. In such case, the checker
reports an error. The counter of real errors and the counter of TPs are increased. When
the checker is hit (point B), the FSM or the error-reporting mechanism can get broken. As
a result, there can be more real errors than the ones reported by checker or some FPs.

Moreover, the input of the checker can be damaged (point C) and thus different from
the input of FU, and vice versa (point D). As a result, the outputs of the checker and the
FU differ which can result in FPs. Also, the output of FU going to checker can be struck
(point E). The checker uses an incorrect value for the comparison, most probably reports
an error and the false positive is counted. Similar problem appears when the output of FU
on its way outside the region is hit.

We have restricted the blue part of the design to a region and the rest of the design to
a different region. However, the router is not bound by the placement constraints and the
routings can go through the whole FPGA. This means that SEU placed in a region can hit
routings from the rest of the design and thus can have an impact on any part of the design.
Furthermore, the clock can be damaged which has fatal consequences on the whole design.

Results

Two major experiments were performed. In the first one, SEUs were injected into the
design with the checker. After that, we made another experiment without the checker
being implemented. This gave us a better idea about the difference between the number of
real errors in different implementations. The total number of real errors was not the same in
these cases. In the experiment with the checker, 6881 out of 47232 executions reported real
errors. 7228 out of 47232 executions with real errors occurred in the experiment without
the checker. This is caused by the router which routes the interconnections differently
each time the design is implemented. The implementation without the checker probably
contained large amount of routing going through the region which is being injected.

The rest of the result analysis is focused on the experiment with the checker. A part of
the output of the experiment can be seen in Table 6.5. We can observe that at the end of
the column 30, an important part of the design was placed. After the SEU injection, the
counters of real errors, TP, and FP are at their maximum. Placing the SEU to the first
bit of column 31 did not cause any error. Recall that due to routing, the values can be
influenced by fault injections.

39

Table 6.5: Results of a few executions after SEU injection

Minor
column

Bit Real
errors

True
positives

False
positives

30 1309 63 63 35
30 1310 63 63 63
30 1311 63 63 63
31 0 0 0 0
31 1 63 63 63

If we had used larger error counters, we would have been able to analyse every test vector
in the execution individually. Since we use 6-bit counters, the evaluation of the results was
simplified. The analysis was done on the level of executions, i.e. rows in Table 6.5. We
investigated, how many executions with real errors and TPs occurred and how often was
our checker wrong. The results are given in Table 6.6.

Table 6.6: Analysis of the experiment with the checker

Total number
of executions

Cases with
real errors

Cases
with TP

Real errors
not reported

Cases
with FP

Cases with
FP only

47232 6881 6799 82 7244 887

The experiment performed the total number of 47232 SEU injections and consecutive
executions. In 6881 cases, some real errors occurred. In 6799 cases, the checker reported
errors correctly. Thus, there were 82 cases when the checker failed to report errors. These
errors are fatal to the system as they are not caught and handled.

If we perform reconfiguration when the error is detected by the checker, e.g. the design
is a part of an NMR, 0.174% of SEU injections will end up with an undetected error.

The cases when the checker misbehaved were counted. Misbehaviour is represented
by occurrence of FP (and no TP) or undetected errors. There were 7244 situations with
FP. However, only 887 of them occurred separately, without TP. Then, there were already
mentioned 82 cases with undetected errors. This gives us 969 cases with wrong results.

Therefore, if we do not reconfigure and rely only on error-reporting capabilities of the
checker, 2.052% of SEUs cause erroneous results.

If there was no checker in the design, the number of undetected faults would be 6881.
That means, 14.569% injected SEUs would cause erroneous result. When the checker and
reconfiguration is used, the error rate of the unit can be reduced from 14.569% to 0.174%,
i.e. by 98.808%.

40

Chapter 7

Conclusions and Future Work

The reader was acquainted with the discipline of fault tolerance. We focused on FPGAs
and described the FPGA configuration process. The methodology of self-checking units and
online checkers as a means of error detection were highlighted. The field of active automata
learning and the approaches of active automata learning from the perspective of the treating
of data were presented. The prime learning algorithm and its latter generalization were
explained. The principle of Mealy machine learning was demonstrated on the example
of inferring a simple automaton. Learning in practice and the importance of application-
specific learning setup were discussed. LearnLib library, its algorithms, and options for
automata inference were presented.

The work proposes to use active automata learning for automatic construction of online
checkers. The only human expertise required for the construction is the selection of the
interface signals protected by the checker.

One of the outcomes of the thesis is the design and implementation of the learning plat-
form which connects the simulator, the learning environment and the finite state machine
converter. The learning platform was used to infer the model of the part of the Wishbone
bus, the slave unit. The learning setup of the slave unit was devised. It focuses on the
control signals while the data and address signals are disregarded.

A number of learning strategies through experimenting LearnLib algorithm settings
was developed. Two major models came up from the experiments which lasted from a few
minutes up to several hours. The examination of the models shows that the basic behaviour
patterns of the original unit is described. The checkers constructed from the inferred models
utilise less FPGA resources and achieve higher speed than the original functional unit.

The part of the work which deals with the construction of the checkers was submitted
for publication in an international conference [17].

The platform for probing the quality of checkers was designed and implemented. The
platform consists of the experiment controller, the SEU generator, and a design implemented
in an FPGA. The design was divided into two parts which were implemented in two separate
regions in the FPGA. Two experiments involving SEU injections into the specified region
of the FPGA were performed. Each of them took almost four days to complete.

The experimental results show that without the checker incorporated in the design,
14.569% of the injected faults cause errors. Provided that we rely on error-reporting capa-
bilities of the checker and do not reconfigure, the checker fails to report the error in 2.052% of
the cases. When using the checker together with reconfiguration, 0.174% of SEUs end up
with an undetected error. As a result, the checker reduces the error rate of the unit by
98.808%.

41

The future work should focus on inferring models for different and more complex sys-
tems. The evaluation mechanism in the experimental platform could be separated from the
injected design, e.g. implemented in FPGA on FITkit. This would prevent the unrelated
routing to interfere with the main design. In addition, larger error counters could be used
which would enable an examination of each test vector in the execution. Another direction
would be the use of Register Mealy machines which support the inferring of models with
data parameters. Such an approach would require contribution to LearnLib framework and
its further extension.

42

Bibliography

[1] Aarts, F. Inference and Abstraction of Communication Protocols. Master’s thesis,
Radboud University Nijmegen, Uppsala University, November 2009.

[2] Aarts, F., Schmaltz, J., and Vaandrager, F. Inference and abstraction of the
biometric passport. In Leveraging Applications of Formal Methods, Verification, and
Validation, vol. 6415 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2010, pp. 673–686.

[3] Abdel-Hamid, A., Zaki, M., and Tahar, S. A tool converting finite state
machine to VHDL. In Electrical and Computer Engineering, 2004. Canadian
Conference on (2004), vol. 4, pp. 1907–1910.

[4] Angluin, D. Learning Regular Sets from Queries and Counterexamples. vol. 75.
1987, pp. 87–106.

[5] Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr, C. Basic concepts
and taxonomy of dependable and secure computing. Dependable and Secure
Computing 1, 1 (2004), 11–33.

[6] Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., and Pretschner, A.
Model-Based Testing of Reactive Systems: Advanced Lectures (Lecture Notes in
Computer Science), vol. 3472. Springer Berlin Heidelberg, 2005.

[7] Cassel, S., Howar, F., Jonsson, B., Merten, M., and Steffen, B. A succinct
canonical register automaton model. In Automated Technology for Verification and
Analysis, vol. 6996 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2011, pp. 366–380.

[8] Gold, E. M. Complexity of Automaton Identification from Given Data.
Information and Control 37, 3 (1978), 302–320.

[9] Hagerer, A., Margaria, T., Niese, O., Steffen, B., Brune, G., and Ide,
H.-D. Efficient regression testing of cti-systems: Testing a complex call-center
solution. Annual Review of Communication, Int. Engineering Consortium (IEC) 55
(2001), 1033–1040.

[10] Howar, F., Isberner, M., Steffen, B., Bauer, O., and Jonsson, B. Inferring
Semantic Interfaces of Data Structures. In Leveraging Applications of Formal
Methods, Verification, and Validation, vol. 7609 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2012, pp. 554–571.

43

[11] Howar, F., Steffen, B., Jonsson, B., and Cassel, S. Inferring canonical
register automata. In Verification, Model Checking, and Abstract Interpretation,
vol. 7148 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012,
pp. 251–266.

[12] HT-LAB. Modelsim Remote Control Demo using Tcl.
http://www.ht-labcom/howto/remotemti/remote_modelsim.html, Jan. 2009.

[13] Khoussainov, B., and Nerode, A. Automata Theory and its Applications.
Progress in Computer Science and Applied Logic. Birkhäuser Boston, 2001.

[14] Koren, I., and Krishna, C. M. Fault-Tolerant Systems. Morgan Kaufmann, 2007.

[15] Margaria, T., Niese, O., Raffelt, H., and Steffen, B. Efficient test-based
model generation for legacy reactive systems. In High-Level Design Validation and
Test Workshop. Ninth IEEE International (2004), pp. 95–100.

[16] Margaria, T., Raffelt, H., and Steffen, B. Analyzing second-order effects
between optimizations for system-level test-based model generation. In Test
Conference, 2005. Proceedings. ITC 2005. IEEE International (2005), pp. 461–467.

[17] Matušová, L., Kaštil, J., and Kotásek, Z. Automatic Construction of On-line
Checking Circuits Based on Finite Automata. In Euromicro Conference on Digital
System Design (2014). Submitted.

[18] Merten, M., Isberner, M., Howar, F., Steffen, B., and Margaria, T.
Automated Learning Setups in Automata Learning. In Leveraging Applications of
Formal Methods, Verification and Validation, vol. 7609 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2012, pp. 591–607.

[19] Nerode, A. Linear automaton transformations. Proceedings of the American
Mathematical Society 9, 4 (1958), 541–544.

[20] OpenCores. WISHBONE System-on-Chip (SoC) Interconnection Architecture for
Portable IP Cores. http://opencores.org/opencores,wishbone.

[21] Podivinsky, J., Simkova, M., and Kotasek, Z. Complex Control System for
Testing Fault-Tolerance Methodologies. In Proceedings of The Third Workshop on
Manufacturable and Dependable Multicore Architectures at Nanoscale (MEDIAN
2014) (2014), COST, European Cooperation in Science and Technology, pp. 24–27.

[22] Shahbaz, M., and Groz, R. Inferring Mealy Machines. In Proceedings of the 2Nd
World Congress on Formal Methods (2009), FM ’09, Springer-Verlag, pp. 207–222.

[23] Steffen, B., Howar, F., Isberner, M., et al. Active Automata Learning: From
DFAs to Interface Programs and Beyond. Journal of Machine Learning Research 21
(2012), 195–209.

[24] Steffen, B., Howar, F., and Merten, M. Introduction to Active Automata
Learning from a Practical Perspective. In Formal Methods for Eternal Networked
Software Systems, vol. 6659 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2011, pp. 256–296.

44

http://www.ht-labcom/howto/remotemti/remote_modelsim.html
http://opencores.org/opencores,wishbone

[25] Straka, M., Kastil, J., Kotasek, Z., and Miculka, L. Fault tolerant system
design and SEU injection based testing. Microprocessors and Microsystems 37, 2
(2013), 155 – 173.

[26] Straka, M., Tobola, J., and Kotasek, Z. Checker Design for On-line Testing of
Xilinx FPGA Communication Protocols. In 22nd IEEE International Symposium on
Defect and Fault-Tolerance in VLSI Systems (2007), pp. 152–160.

[27] The Apache Software Foundation. Apache Commons Net Library.
http://commons.apache.org/proper/commons-net/apidocs/org/apache/

commons/net/telnet/TelnetClient.html.

[28] Vasicek, Z. FITkit. www.fit.vutbr.cz/FITkit, Apr. 2011.

[29] Von Neumann, J. Probabilistic logics and the synthesis of reliable organisms from
unreliable components. Automata studies 34 (1956), 43–98.

[30] W. Smeenk, D. J., and Vaandrager, F. Applying Automata Learning to
Embedded Control Software.
http://www.mbsd.cs.ru.nl/publications/papers/fvaan/ESM/, Jan. 2013.

[31] WWW. Automated Telnet Client. http:
//twit88.com/blog/2007/12/22/java-writing-an-automated-telnet-client/.

[32] WWW. LearnLib - closed-source library.
http://ls5-www.cs.tu-dortmund.de/projects/learnlib.

[33] WWW. LearnLib - new version of the library. http://www.learnlib.de.

[34] XILINX. Virtex-5 FPGA Constraints Guide. v10.1.

[35] XILINX. ChipScope Pro Software and Cores, 2000. UG029.

[36] XILINX. Partial Reconfiguration User Guide, 2010. UG702.

[37] XILINX. SEU Strategies for Virtex-5 Devices, 2010. XAPP864 v2.0.

[38] XILINX. CORE generator Guide, 2012.

[39] XILINX. PlanAhead User Guide, 2012. UG632.

[40] XILINX. Virtex-5 FPGA Configuration User Guide, 2012. UG191.

[41] XILINX. Virtex-5 FPGA User Guide, 2012. UG190.

45

http://commons.apache.org/proper/commons-net/apidocs/org/apache/commons/ net/telnet/TelnetClient.html
http://commons.apache.org/proper/commons-net/apidocs/org/apache/commons/ net/telnet/TelnetClient.html
www.fit.vutbr.cz/FITkit
http://www.mbsd.cs.ru.nl/publications/papers/fvaan/ESM/
http://twit88.com/blog/2007/12/22/java-writing-an-automated-telnet-client/
http://twit88.com/blog/2007/12/22/java-writing-an-automated-telnet-client/
http://ls5-www.cs.tu-dortmund.de/projects/learnlib
http://www.learnlib.de

	Introduction
	Preliminaries
	Fault Tolerance
	System Dependability
	Redundancy
	Duplex Systems
	N-modular Redundancy

	Field-Programmable Gate Arrays
	FPGA Configuration
	Self-checking Functional Units
	Checking Circuits

	Active Automata Learning
	Learning DFAs
	MAT Model
	L* Algorithm

	Distinguishing Input and Output
	Learning Mealy Machines
	Register Automata and Register Mealy Machines

	Learning in Practice
	LearnLib
	Inferring Models
	Query Optimizations

	Design and Implementation
	Learning Platform
	Simulator
	Learning Environment
	FSM-VHDL Converter

	Experimental Platform
	Design with Checker
	Connection with Board
	Experiment Controller
	SEU Generator

	Experiments
	Inference of Models
	Checker Implementation
	SEU Injections

	Conclusions and Future Work

