Hodnocení tématu a obsahu předložené práce


Předložená disertační práce si klade za cíl vytvoření nových metod zkoumání povrchu křemenných zrn pro účely exoskopické analýzy založených na jejich automatickém zhodnocení. Aspirant se poměrně dobře vypořádal se vstupem do problematiky hodnocení mikromorfologických charakteristik, který prezentuje v rešeršní části práce. Pochopil a přehledným způsobem popsal mechanismus hodnocení mikromorfologických charakteristik (tj. jak tvarových tak mikrotexturních) a vybudoval si slabý teoretický základ pro jiní prezentované a následně realizované metodické přístupy. Po zdáře prokázal rozboru různých metodických přístupů následuje nejpodobnější část práce, která představuje autorem provedené aplikace postupů na značným průběhu genetické podobnosti sedimentů. Z hlediska popisu experimentální databáze bych měl jen drobnou přípomínku a tou je chyba v charakteristice 1. vzhledu elokticke genese. V tabulce je v popisu zapsáno lehké souvstředí, nicméně samotný vzhled z tohoto paleozoického souvstředí nepochází, jde o kvarténní elokticke sediment spočívající na výše jmenovaném souvstředí. Nicméně tato chyba nemá dopad na způsob hodnocení, ani pozdější genetickou klasifikaci sedimentů, kde autor oprávněně tento vzhled řadí do eloktickech. Jde spíše o ne příliš zdáře vyjádření, které může být pro někoho matoucí. Nejdůležitějším výstupem této části jsou autorem vytvořené metody založené na rozdělení a slučování regionů v obraze, na určení minimálního množství vzorku pro hodnocení míry zaoblení zrn a na rozlišení genese sedimentu pomocí nízkourovených texturálních příznaků. Osobně za nejvíce inspirativní a inovativní přístup považuji ten, který opouští hodnocení na základě existujících standardně definovaných mikrotexturních, ale je založeno na základě trénovingí databáze. Výhodu tohoto přístupu vidím v tom, že se elegantně vyhýbá problému, kterému exoskopické hodnocení čelí, a tou jsou rozpory z hlediska zařazení určitých mikrotextur v rozlišovacích databázích - atlasech. Na druhou stranu (a to je jeho nevýhoda) je tento přístup velmi závislý na kvalitě trénovacích vzorků (tedy může být daleko více ovlivněn případnou kontaminací vzorků zrn jiné genese). Všechny přístupy realizované autorem jsou řádně testovány a použitá argumentace je korektní.

Formální charakteristiky práce
Předložená disertační práce má 87 stran včetně seznamu použité literatury, seznamu vlastních publikací, seznamu zkratek a příloh a vlastního strukturovaného životopisu. Členění textu
odpovídá standardům platným pro odborný text, kdy jsou jasně odlišena vlastní řešení - výsledky a diskuse od úvodu a rešeršního vstupu řešícího stav poznání a metodická východiska. Práce je napsána rozumitelně, s jasným a jednoznačným vyjadřováním takřka bez pravopisných či stylistických chyb. Na práci lze ocenit to, že autor vhodným způsobem doplňuje text tabulkami a obrázky, které doprovázejí text. Autor disertační práce respektuje pravidla citační etiky.
Ing. Aleš Křupka během svého postgraduálního studia publikoval v 8 publikacích podstatnou část svých výsledků. Má 4 prvovařské články (z toho dva v časopisech s IF), 2 prvovařské příspěvky v publikacích ze zahraničních konferencí s ISBN, 1 spoluautorský článek a 1 spoluautorskou publikaci z konference s přiděleným ISBN. V neposlední řadě je prvovařskem softwaru. Publikované výsledky jsou součástí předložené disertační práce.

Shrnutí a závěrečné hodnocení
Z výše uvedeného je patrné, že téma předložené disertační práce patří k aktuálním a z hlediska způsobu řešení i v jistém smyslu k prákopnickým. Práce je postavena na vlastních původních přístupech, které jsou přinosem pro automatické hodnocení mikromorfologických charakteristik křemenných zrn, s velkým potenciálem pro uplatnění v exoskopii. Práce představuje velmi dobry příklad propojení technických a přírodních věd, se zajímavými a uplatnitelnými výsledky. Autor prokázal schopnost samostatné vědecké práce a schopnost publikovat její výsledky v odborných časopisech včetně těch zahraničních a těch s impaktem. Proto si dovoluji po prostudování všech dostupných materiálů doporučit a přijmout disertační práci ing. Aleš Křupky k obhajobě s tím, že výše jmenovaný splnil všechny své studijní a vědecké povinnosti.

Otázky do diskuse
Proším o stručná vyjádření k níže uvedeným dotazům:
1) Mohl by se autor pokusit okomentovat případně vysvětlit rozdíly ve výsledcích klasifikace celých vzorků v kontextu senzitivity (představených tabulkou 19) a v kontextu pozitivní prediktivní hodnoty (viz tab. 21). Proč u vzorků eolických nenastává podstatnější změna, avšak u glaciálních a zejména pak vzorků vulkanických je vidět poměrně velký rozdíl. V práci je sice uvedeno, že velkou roli hraje zaoblení eolických vzorků, které je součástí hodnocení a z pohledu zaoblenosti jsou tato zrna homogenní, avšak u vulkanických vzorků, které by teoreticky měly být homogenně ostrohanné.

2) Jak by navržená metoda založená na trénovací databázi reagovala na její rozšíření. Tj. je možné říci, jak se měnilo či měnila úspěšnost zařazení do genetických skupin sedimentů v závislosti na množství vzorků/počtu zrn sloužících jako trénovací.

3) Velký problém při exoskopickém hodnocení některých vzorků (zejména těch, které se vyskytovaly či vyskytují v subvakátních prostředí) bývá překrytí původních mikrotexutur na zhruba křemennými povlaky, které vznikají ex post po sedimentaci a zahalují tak zejména mechanické mikrotexutury vzniklé během transportu sedimentů. Pak je nutné taková znělna eliminovat anebo, je-li to možné, musí být přečteny mikrotexutury schované pod těmito povlaky. Mohl by autor odhadnout, jak jsou použité metody citlivé či zda vůbec jsou schopné s takovými vzorky pracovat.

4) Domnívá se autor, že jeho metody poskytují podobný potenciál jaký uvádí Newell a kol., 2012, kdy by bylo možné identifikovat různé stupně (vzhledem k energiové náročnosti, případně proměnlivosti) při vzniku určitých mikrotexutur na povrchu zrn. Případně by mohl stručně konfrontovat vlastní metodu s touto jmenovanou.

V Praze 12.10. 2016

RNDr. Marek Křížek, Ph.D.
katedra fyzické geografie a geokologie
Přírodovědecká fakulta UK
Albertov 6, Praha 2, 128 43