Oponentovský posudek disertační práce

Oponent: doc. Ing. Tomáš Novák, Ph.D., VŠB-TU Ostrava
Doktorand: Ing. Tomáš Pavelka
Téma: Provozní vlastnosti LED a jejich modelování

ZHODNOCENÍ ZDA NÁMĚT PRÁCE ODPOVÍDÁ OBORU DISERTACE A JE AKTUÁLNÍ Z HLEDISKA SOUČASNÉHO STAVU VĚDY:

Světelné diody LED, které jsou nosným tématem hodnocené práce, jsou velmi významným a stále se prudce rozmýšejícím prvkem, jak z hlediska silnoproudé elektrotechniky, tak z hlediska elektroenergetiky. Budeme-li akceptovat potenciál měrného světelného výkonu LED, který by měl u bílých světelných zdrojů atakovat hladinu 250 lm/W a srovnáme ho s měrným výkonem současně nejzajímavějších lineárních zářivek, které atakují hladinu 100 lm/W, tak získáme základní přehled o celkovém energetickém potenciálu v osvětlení. Je nutné upozornit i na fakt, že učiní-li LED se jednotlivě jeví jako téměř zanedbatelné spotřebiče elektrické energie, tak celková spotřeba elektrické energie na elektrické osvětlení se dle odborných odhadů pohybuje nad 15 %.

Autorův přínos vidíme zejména v modelování chování LED při vývoji svítidel osazených těmito zdroji. Současný stav znalostí v této oblasti neumožňuje kompletní modelování kvalitativních i kvantitativních světelně-technických parametrů v závislosti na napájení a na chlazení. Jako zásadní přínos práce lze chápat dynamický model chování LED, který je schopen postihnout chování svítidel při náběhu světelných zdrojů. Tato oblast je velmi duševně nejen z pohledu krátkodobého režimu přetížení (např. veřejné osvětlení v kritických režimech nehmotné atd.), ale také z pohledu možnosti řízení svítidel na okamžitý náběh na jmenovité parametry světelného toku. Z výše uvedeného vyplyvá, že práce odpovídá oboru disertace a zároveň je aktuální z hlediska současného stavu vědy.

VYJÁDŘENÍ K PŮVODNÍM ČÁSTEM PRÁCE S KONKRETIZACÍ JEJICH ORIGINÁLITY

Teoretická část práce se velmi obsahuje (kapitoly 2 a 3) venuje historii vývoje LED a základním světelně-technickým jednotkám. Tuto část lze chápat jako učebnicovou rešení pronikání LED do světelné techniky. Autoroví bych si nicméně dovolil vytknout některé formální chyby a terminologické nepřesnosti (světelná dioda, svítivá dioda, LED, zavádějící čáry za některými vztahy, nebo nekorektní popisy v kapitole 3.1.7.). Domnívám se, že na základě této rozsáhlé teoretické části byl autor nucen mírně zkračovat kapitoly s původními částmi. Tato výtka se jedná zejména popisu, jednoznačnosti a opakovanostmi provedených měření (kapitola 5). I přes tuto výtku provedl autor obsahový soubor měření LED, ve kterých popsal vzájemné vlivy světelných, elektrických a tepelných parametrů. Jako velmi přínosné lze spatřovat proměňení LED i v oblasti proudů vysoce nad hodnotou jmenovitého proudu. Popis chování LED v této oblasti umožňuje uvažovat o krátkodobém provozu LED i v oblasti těchto pracovních bodů. Další originální část práce (kapitoly 7 a 8) se zabývají vytvořením matematického modelu (statického i dynamického), pomocí kterého lze numericky predikovat chování LED z hlediska krátkodobých změn parametrů elektrických a tepelných parametrů. Tento model byl vytvořen autorem a lze na něm testovat chování LED již ve fázi vývoje svítidel osazených LED.
Vyjádření k publikační činnosti spojené s jádrem disertační práce:
Jádro disertační práce bylo publikováno jak na národním, tak na mezinárodním světelně-technickém fóru. Zároveň autor publikoval řešenou problematiku i na konferencích indexovaných v databázích SCOPUS a WOS a zaštitěných organizaci IEEE.

Vyjádření k vědecké činnosti uchazeče:
Na základě seznamu tvůrčích aktivit lze konstatovat, že se jedná o pracovníka s vědeckou erudičí. Za pozornost stojí fakt, že autorova publikační činnost není monotématická a zabývá se širokou škálou problémů spojených se světelnou technikou, které postupně vyústí do oblasti řešení modelování LED. Velmi pozitivně lze hodnotit i fakt, že publikační činnost se nekoncentruje pouze na jednoho vydavatele, ale prolíná se od kurzů Světelné techniky, přes mezinárodní konference IEEE a kapitolu v knize až po časopis indexovaný v databázi SCOPUS.

Závěrečné vyjádření:
Disertační práci Ing. Tomáše Pavelky doporučuji k obhajobě.

Dotazy k obhajobě:
Konkretizujte prosím výsledky měření uvedené na obrázcích 5.2., 5.3. a 5.4. zejména z pohledu teplotních parametrů v okolí LED a na vlastním přechodu.

Uveďte prosím možnosti měření teploty LED na PN přechodu.

Dalo by se zobecnit doporučení na omezení krátkodobé přetížitelnosti LED násobky jmenovitého proudu?

V Ostravě 22.5.2017

[Signature]

doc. Ing. Tomáš Novák, Ph.D.