traveltimes_prediction.support_files package¶
Submodules¶
traveltimes_prediction.support_files.extrapolating_cache module¶
-
class
traveltimes_prediction.support_files.extrapolating_cache.
ExtrapolatingCache
(maxsize=10)[source]¶ Bases:
object
Class - cache for caching of values, has ability to extrapolate using cached values.
traveltimes_prediction.support_files.fields_definitions module¶
-
class
traveltimes_prediction.support_files.fields_definitions.
ColumnNames
[source]¶ Bases:
object
-
AVG_VELOCITY
= 'avg_velocity'¶
-
CALC_TIME
= 'calculation_time'¶
-
FEAT_DAY
= 'day_of_week'¶
-
FEAT_FRIDAY
= 'friday'¶
-
FEAT_MONDAY
= 'monday'¶
-
FEAT_THURSDAY
= 'thursday'¶
-
FEAT_TIME
= 'time_of_day'¶
-
FEAT_TIME_BIN
= 'time_bin'¶
-
FEAT_TT_BCK
= 'bck_prediction_tt'¶
-
FEAT_TT_MATCH
= 'tt_matches'¶
-
FEAT_TT_UNMATCHED
= 'tt_count_unmatched'¶
-
FEAT_TUESDAY
= 'tuesday'¶
-
FEAT_WEDNESDAY
= 'wednesday'¶
-
FEAT_WEEKEND
= 'weekend'¶
-
FEAT_det1_COUNT
= 'det1_count'¶
-
FEAT_det1_OCCUPANCY
= 'det1_occupancy'¶
-
FEAT_det1_VELOCITY
= 'det1_velocity'¶
-
FEAT_det2_COUNT
= 'det2_count'¶
-
NORM_COUNT
= 'norm_count'¶
-
TOTAL_OCCUPANCY
= 'total_occupancy'¶
-
-
class
traveltimes_prediction.support_files.fields_definitions.
ColumnNamesRaw
[source]¶ Bases:
object
-
CALC_TIME
= 'calculation_time'¶
-
LP_FULL_ENC
= 'lp_full_enc'¶
-
SENSOR_NAME
= 'sensor_name'¶
-
TT_CALCULATED
= 'tt_calculated'¶
-
TT_LP_MATCH
= 'match_tt'¶
-
TT_LP_UNMATCHED
= 'unmatched_counter'¶
-
-
class
traveltimes_prediction.support_files.fields_definitions.
ColumnNamesRawFiveMin
[source]¶ Bases:
object
-
CALC_TIME
= 'calculation_time'¶
-
COUNT
= 'detection_count'¶
-
LP_COUNT
= 'lp_count'¶
-
OCCUPANCY
= 'occupancy'¶
-
OUTPUT_SECTION
= 'output_section'¶
-
SENSOR_NAME
= 'sensor_name'¶
-
TT_CALCULATED
= 'tt_calculated'¶
-
TT_REAL
= 'tt_real'¶
-
VELOCITY
= 'velocity_avg'¶
-
-
class
traveltimes_prediction.support_files.fields_definitions.
MessageCodes
[source]¶ Bases:
object
-
DATA_AGGREGATION_FAILED
= -4¶
-
DATA_NOT_IN_DB
= -2¶
-
FEATURE_ENGINEERING_FAILED
= -5¶
-
MODEL_NOT_IN_DB
= -1¶
-
PREDICTION_SUCCESSFUL
= 1¶
-
PREDICTION_UNSUCCESSFUL
= -3¶
-
RESULT_EXTRAPOLATED
= -6¶
-
TOO_HIGH_TRAVELTIME
= -7¶
-
traveltimes_prediction.support_files.helpers module¶
-
traveltimes_prediction.support_files.helpers.
array_append
(arr_base, arr_new, stack='v')[source]¶ Function for appending of the numpy array.
Parameters: - arr_base (np.array) –
- arr_new (np.array) –
- stack (char) – The stacking dimension - horizontal (‘h’) or vertical (‘v’)
Returns: np.array
-
traveltimes_prediction.support_files.helpers.
check_params
(func)[source]¶ Decorator for checking the method`s/function`s input parameters - if they are not empty or None.
Parameters: func – Returns:
-
traveltimes_prediction.support_files.helpers.
chunkify
(l, n)[source]¶ Method for cutting huge list into more smaller lists.
Parameters: - l (list) –
- n (int) – Number of lists to be created.
Returns:
-
traveltimes_prediction.support_files.helpers.
compress
(s)[source]¶ Function for compression of string.
Parameters: s (string) – Returns: Encoded string – binary.
-
traveltimes_prediction.support_files.helpers.
convert_params
(func)[source]¶ Decorator for conversion of the method`s/function`s input parameters - pd.DataFrame -> np.ndarray
Parameters: func – Returns:
-
traveltimes_prediction.support_files.helpers.
dataframe_append
(df_base, df_new)[source]¶ Function for appending of the dataframes.
Parameters: - df_base (pd.DataFrame) –
- df_new (pd.DataFrame) –
Returns: pd.DataFrame
-
traveltimes_prediction.support_files.helpers.
decompress
(c)[source]¶ Function for decompression of binary coded string.
Parameters: c (string) – Returns: Decoded binary string – ascii.
-
traveltimes_prediction.support_files.helpers.
impute
(array, columns, invalid_val)[source]¶ Function for imputation of the numpy array - replacing invalid values.
Parameters: - array (np.array) –
- columns (list) – Indices of columns.
- invalid_val (number) – Identifier of the invalid number.
Returns: tuple (imputed array, confidence - ratio of count of imputed elements to the size of the original array)
-
traveltimes_prediction.support_files.helpers.
index
(a, x)[source]¶ Binary search, lookup of the leftmost value exactly equal to x
Parameters: - a (np.array) –
- x (number) –
Returns: number
-
traveltimes_prediction.support_files.helpers.
merge_inner_lists
(list_of_lists)[source]¶ Function for merging of the inner lists creating one list of all elements.
Parameters: list_of_lists (list) – list of lists or tuples Returns: list
-
traveltimes_prediction.support_files.helpers.
merge_to_nearest
(df1, df2)[source]¶ Function for merging of the pd.DataFrames according to their Datetime indices.
Parameters: - df1 (pd.DataFrame) –
- df2 (pd.DataFrame) –
Returns: pd.DataFrame
-
traveltimes_prediction.support_files.helpers.
partition_interval
(time_interval, delta_hours=12)[source]¶ Function for partitioning the time_interval to list of dicts - shorter intervals
Parameters: - time_interval (dict) – dict of datetimes -> {‘from’: datetime, ‘to’: datetime}
- delta_hours (int) –
Returns: list of dicts - [{‘from’: datetime, ‘to’: datetime}, ...]
-
traveltimes_prediction.support_files.helpers.
subtract_time_intervals
(new, saved)[source]¶ Function for the subtracting of the intervals, A-B.
Parameters: - new (dict) – A, format {‘from’: datetime, ‘to’: datetime}
- saved (dict) – B, format {‘from’: datetime, ‘to’: datetime}
Returns: dict {‘from’: datetime, ‘to’: datetime}