A Voltage Gain-Controlled Modified CFOA And Its Application in Electronically Tunable Four-Mode All-Pass Filter Design

Norbert Herencsar, Jaroslav Koton, Abhirup Lahiri, Bilgin Metin, and Kamil Vrba

Abstract—This paper presents a new active building block (ABB) called voltage gain-controlled modified current feedback amplifier (VGC-MCFOA) based on bipolar transistor technology. The versatility of the new ABB is demonstrated in new first-order all-pass filter structure design employing single VGC-MCFOA, single grounded capacitor, and three resistors. Introduced circuit provides all four possible transfer functions at the same configuration, namely current-mode, transimpedance-mode, transadmittance-mode, and voltage-mode. The pole frequency of the circuit can be easily tuned by means of DC bias currents. The theoretical results are verified by SPICE simulations based on bipolar transistor arrays AT&T ALA400-CBIC-R process parameters.

Keywords—Voltage gain-controlled modified CFOA, MCFOA, electronically tunable filter, four-mode circuit, all-pass filter.

I. INTRODUCTION

After the second-generation current conveyor (CCII) was introduced by Sedra and Smith in 1970 [1], it became the most versatile active building block (ABB) used for analog signal processing and is basic ABB of many other active elements such as the composite current conveyor [2] done by an interconnection of two CCII, which was recently introduced as modified current feedback operational amplifier (MCFOA) [3–7] or the conventional CFOA [8] (CCII followed by unity gain voltage buffer - UGVB). It should be noted that, the MCFOA is different from the conventional CFOA defined in [8], since the W terminal current of the MCFOA is copied to the Y terminal in the opposite direction. However, it is well known that the Y-terminal current of the conventional CFOA is equal to zero. Short list of additional CCII-based ABBs is the following: the second-generation current-controlled conveyor (CCCII) [9], where the intrinsic resistance of X-terminal can be tuned, the differential difference CC (DDCC) [10] and its more versatile derivative the so-called universal current conveyor (UCC) [11–14], the dual-X CCII (DXCCII) [15], which is an interconnection of CCII and inverting CCII in which the Y-terminal is joined, the current differencing buffered amplifier (CDBA) [15] employing current differencing unit (CDU) based on two CCII and UGVB, or the universal voltage conveyor (UVC) [17] based on two CCII and differential UGVB.

Recently the further research has been focused on CCII-based ABBs employing operational transconductance amplifier (OTA) [18] at their output stage. Probably the most known active element from this group is the current differencing transconductance amplifier (CDTA) [19], but other versatile elements such as the current-conveyor transconductance amplifier (CCTA) [20], where CCII is followed by an OTA, the differential-input buffered and transconductance amplifier (DBTA) [21] in which an interconnection of two CCII are followed by UGVB and OTA, the current follower transconductance amplifier (CFTA) [22], which employs a CCII with grounded Y-terminal and an OTA, the current backward transconductance amplifier (CBTA) [23], which is a specific interconnection of CCII and OTA, or the z-copy current-controlled current inverting transconductance amplifier (ZC-CCITA) [24] have also received considerable attention.

For easy tunability of the circuit parameters using electrical signals by either voltage and/or current and to increase the universality of the conventional CCII, the electronically-tunable CCII (ECCII) [25, 26], programmable current amplifier (PCA) [27], K-gain CCII [28], the voltage and current gain CCII (VCG-CCII) [29], and the variable gain current conveyor (VGCCII) [30] were introduced.

In this paper we present a novel ABB called voltage gain-controlled modified current-feedback operational amplifier (VGC-MCFOA). The VGC-MCFOA joins the voltage gain control feature of the VCG-CCII in the conventional MCFOA [3–7]. To demonstrate the usefulness of the VGC-MCFOA, a new first-order all-pass filter (AFP) structure is proposed, which operates in current-mode (CM), transimpedance-mode (TIM), transadmittance-mode (TAM), and voltage-mode (VM), respectively. To prove the theoretical analysis, SPICE simulations based on bipolar transistor arrays AT&T ALA400-CBIC-R process parameters are given.

II. CIRCUIT DESCRIPTION

The voltage gain-controlled modified current feedback operational amplifier (VGC-MCFOA) is a five-terminal ABB and its circuit symbol is shown in Fig. 1(a). Compared to the conventional MCFOA presented in [3–7], its voltage transfer
from the Y to X terminal can be easily electronically tuned by means of the voltage gain \(h \). Hence, the relations between the individual terminals of the VGC-MCFOA can be described by the following hybrid matrix:

\[
\begin{bmatrix}
 i_Y \\
 v_X \\
 i_{Z1} \\
 i_{Z2} \\
 v_W
\end{bmatrix}
= \begin{bmatrix}
 0 & 0 & 0 & 0 & -\alpha_1 \\
 h_\beta_1 & 0 & 0 & 0 & 0 \\
 0 & \alpha_2 & 0 & 0 & 0 \\
 0 & -\alpha_3 & 0 & 0 & 0 \\
 0 & 0 & \beta_2 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
 v_Y \\
 i_X \\
 v_{Z1} \\
 v_{Z2} \\
 v_W
\end{bmatrix}.
\]

The frequency-dependent non-ideal current gains \(\alpha_j \) for \(j = 1, 2, 3 \) and voltage gains \(\beta_k \) for \(k = 1, 2 \) are ideally equal to unity. Using a single-pole model, they can be defined as:

\[
\alpha_j(s) = \frac{\alpha_{oj}}{1 + s\tau_{\alpha_j}},
\]

\[
\beta_k(s) = \frac{\beta_{ok}}{1 + s\tau_{\beta_k}},
\]

where \(\alpha_{oj} \) and \(\beta_{ok} \) are DC current and voltage gains of the element, respectively. The bandwidths \(1/\tau_{\alpha_j} \) and \(1/\tau_{\beta_k} \) on the order of a few gigarad/s in current technologies are ideally equal to infinity. At low and medium frequencies i.e., \(f \ll (1/(2\pi)) \times \min \{1/\tau_{\alpha_j}, 1/\tau_{\beta_k}\} \), Eqs. (2) and (3) turn to:

\[
\alpha_j(s) \approx \alpha_{oj} = 1 - \varepsilon_{\alpha_{ij}},
\]

(4)

\[
\beta_k(s) \approx \beta_{ok} = 1 - \varepsilon_{\beta_{ik}},
\]

(5)

where \(\varepsilon_{\alpha_{ij}} \) and \(\varepsilon_{\beta_{ik}} \) are the current and voltage tracking errors, whereas \(|\varepsilon_{\alpha_{ij}}| \ll 1 \) and \(|\varepsilon_{\beta_{ik}}| \ll 1 \), respectively.

The basic idea for implementation of the proposed VGC-MCFOA is shown in Fig. 1(b), where the OTA1 and OTA2 are used to control the voltage gain \(h \) and two CCII+− represent the conventional MCFOA. Subsequently, the bipolar implementation of the VGC-MCFOA is shown in Fig. 1(c).

The voltage gain control stage is formed by two simple differential pair amplifiers (transistors Q1–Q8) and transistors Q7–Q22 form the two CCII+− based MCFOA, respectively. Here it is worth mentioning that the voltage gain control of VGC-CCII [29] was implemented using the same technique. For the implementation in Fig. 1(b) the voltage gain \(h \) can be expressed as:

\[
h = \frac{g_{m_{1,2}}}{g_{m_{5,6}}},
\]

(6)

where \(g_{m_{1,2}} = \frac{I_{B1}}{2V_T} \) and \(g_{m_{5,6}} = \frac{I_{B2}}{2V_T} \). Here, the \(V_T \) is the thermal voltage (approximately 26 mV at 27°C) and the current \(I_{B1} \) and \(I_{B2} \) are control currents adjusting the transconductances \(g_{m_{1,2}} \) and \(g_{m_{5,6}} \), respectively. Therefore, the voltage gain \(h \) in (6) can be given as:

\[
h = \frac{I_{B1}}{I_{B2}}.
\]

(7)

From (7) it is obvious that the proposed VGC-MCFOA can be easily adjusted electronically by either \(I_{B1} \) and/or \(I_{B2} \) currents.

Fig. 1. Bipolar implementation of VGC-MCFOA
III. PROPOSED ALL-PASS FILTER

A. Ideal Case Study

The proposed four-mode APF is shown in Fig. 2. Considering the ideal VGC-MCFOA (i.e., \(\alpha \) and \(\beta \) are unity), based on the input selected two following cases can be considered:

Case I: If \(I_{in1} = I_{in2} = I_{in} \), \(V_{in} = 0 \) (grounded), and assuming \(R_3 = R_1 = R_2 = R \), then we can obtain the following transfer functions (TFs):

\[
T_{CM}(s) = \frac{I_{out}}{I_{in}} = \frac{scR_1 - h + sCR_1 - h}{sCR_1 + h} = \frac{I_{B2}sCR_1 - I_{B1}}{I_{B2}sCR_1 + I_{B1}},
\]

\[
T_{TIM}(s) = \frac{V_{out}}{V_{in}} = R \cdot \frac{sCR_1 - h}{sCR_1 + h} = R \cdot \frac{I_{B2}sCR_1 - I_{B1}}{I_{B2}sCR_1 + I_{B1}}.
\]

Case II: If the input of the APF is \(V_{in} \), \(I_{in1} = I_{in2} = 0 \), and assuming \(R_1 = R_2 = R \), then for the circuit the following TFs can be obtained:

\[
T_{TAM}(s) = \frac{I_{out}}{V_{in}} = -\frac{1}{R} \frac{sCR_3 - h}{sCR_3 + h} = -\frac{1}{R} \frac{I_{B2}sCR_3 - I_{B1}}{I_{B2}sCR_3 + I_{B1}},
\]

\[
T_{VM}(s) = \frac{V_{out}}{V_{in}} = -\frac{1}{R} \frac{sCR_3 - h}{sCR_3 + h} = -\frac{I_{B2}sCR_3 - I_{B1}}{I_{B2}sCR_3 + I_{B1}}.
\]

Thus, from Eqs. (8)-(11) it is seen that by suitable selection of input and output all four possible modes, i.e. current-, trans impedance-, trans admittance- and voltage-mode first-order APF can be realized with the same circuit topology.

The phase responses of TFs in (8) and (9) are calculated as follows:

\[
\varphi_{CM}(\omega) = \varphi_{TIM}(\omega) = 180^\circ - 2\arctg \left(\frac{1}{h} \cdot \omega CR_1 \right) = 180^\circ - 2\arctg \left(\frac{I_{B1}}{I_{B2}} \cdot \omega CR_1 \right),
\]

(12)

and phase responses of TFs in (10) and (11) are given as:

\[
\varphi_{TAM}(\omega) = \varphi_{VM}(\omega) = -2\arctg \left(\frac{1}{h} \cdot \omega CR_3 \right) = -2\arctg \left(\frac{I_{B2}}{I_{B1}} \cdot \omega CR_3 \right).
\]

(13)

Hence, the phases of TFs in (8) and (9) alter from 180° to 0° while according to (10) and (11) the phase shift change between 0° to -180°, respectively.

Consequently, the zero (\(\omega_z \)) and pole (\(\omega_p \)) frequencies of all four TFs can be found as:

\[
\omega_{CM,TIM,z} = \omega_{CM,TIM,p} = h \cdot \frac{1}{CR_1} = \frac{I_{B1}}{I_{B2}} \cdot \frac{1}{CR_1},
\]

(14)

\[
\omega_{TAM,VM,z} = \omega_{TAM,VM,p} = h \cdot \frac{1}{CR_3} = \frac{I_{B1}}{I_{B2}} \cdot \frac{1}{CR_3}.
\]

(15)

From Eqs. (14) and (15) it is clearly seen that the pole/zero frequency values can be easily tuned by means of the bias currents \(I_{B1} \) and/or \(I_{B2} \).

B. Non-Ideal Analysis

Taking into account non-idealities of the VGC-MCFOA, TFs (8) and (9) in Case I of the filter convert to:

\[
T_{CM}(s) = \frac{I_{out}}{I_{in}} = \alpha_3 \beta_1 \frac{scR_1 - h}{sCR_1 + h} = \frac{I_{B2}sCR_1 - I_{B1}}{I_{B2}sCR_1 + I_{B1}},
\]

\[
T_{TIM}(s) = \frac{V_{out}}{V_{in}} = \alpha_3 \beta_2 R_3 \frac{scR_1 - h \beta_1}{sCR_1 + h \beta_1} = \frac{I_{B2}sCR_1 - I_{B1}}{I_{B2}sCR_1 + I_{B1}},
\]

(16)

and non-ideal phase responses from TFs (16) and (17) can be expressed as:

\[
\varphi_{CM}(\omega) = \varphi_{TIM}(\omega) = 180^\circ - \arctg \left(\frac{I_{B2}}{I_{B1}} \cdot \omega CR_1 \right) - \arctg \left(\frac{I_{B2}}{I_{B1}} \cdot \omega CR_1 \right).
\]

(18)

The zero and pole frequencies in Eq. (14) change to:

\[
\omega_{CM,TIM,z} = \frac{I_{B1}}{I_{B2}} \cdot \frac{1}{CR_1}, \quad \omega_{CM,TIM,p} = \frac{I_{B1}}{I_{B2}} \cdot \frac{1}{CR_1}. \]

(19)

From Eq. (19), the active and passive sensitivities of zero and pole frequencies are given as:

\[
S_{I_{B1},\beta_1}^{CM,TIM} = -S_{I_{B2},CR_1}^{CM,TIM} = 1, \quad S_{\alpha_3}^{CM,TIM} = 1, \quad S_{\beta_2,CR_2,R_3}^{CM,TIM} = 0,
\]

(20)

and it is evident that the sensitivities of active parameters and passive components for \(\omega_{CM,TIM,z} \) and \(\omega_{CM,TIM,p} \) are at maximum unity in relative amplitude. The same study can also be done for the Case II with similar results.

IV. SIMULATION RESULTS

First, the proposed VGC-MCFOA in Fig. 3(c) has been further investigated in SPICE software. In the design the transistor model parameters NR100N (NPN) and PR100N (PNP) of bipolar arrays ALA400-CBIC-R from AT&T were used.
The DC supply voltages are $+V_{CC} = -V_{EE} = 2.5$ V. Bias current $I_D = 400$ μA has been chosen and I_{B1}, I_{B2} were set to 101 μA and 100 μA, respectively, to obtain voltage gain $h = 1$ precisely. The maximum values of terminal voltages and terminal currents without producing significant distortion were determined to be ± 106.7 mV and ± 16.23 mA, respectively. Evaluated DC current and voltage gains, f_{3dB} frequencies of transfers, and values of the X and W terminal parasitic resistances (in series) and Z and Y terminal parasitic resistances and capacitances (in parallel) shown in Fig. 3 are given in Table I. The total power dissipation of the proposed VGC-MCFOA was found to be 23.1 mW.

Simulated voltage gain h responses between Y and X terminals is demonstrated in Fig. 4. In case of (A), the external bias current I_{B1} has been varied in large interval from 10 μA to 1 mA (equal to gain $h = 0.1$ to 10) at constant $I_{B2} = 100$ μA. From Fig. 4 it can be clearly seen that due to the above mentioned non-idealities of the VGC-MCFOA, the obtained voltage gain is in reduced range $0.101 \div 8.71$. Hence, to overcome the the large variation of control current I_{B1} and simultaneously obtain the same gain range i.e. $h = 0.1$ to 10, the control current I_{B1} has been varied in reduced interval from 20 μA to 200 μA together with I_{B2} according to Eq. (220 μA$-I_{B1}$). In this case (B), the obtained voltage gain is in range $0.102 \div 9.869$, which is much closer to the theoretical one.

Using the bipolar implementation of the VGC-MCFOA the proposed APF from Fig. 2 has also been simulated in the SPICE software. The ideal and simulated gain and phase responses and electronical tunability of both current- and transimpedance-mode transfers based on case (A) discussed above i.e. by the bias current I_{B1} at constant $I_{B2} = 100$ μA, are demonstrated in Fig. 5. In the simulations the passive element values were selected as $C = 5$ nF, $R_1 = R_2 = R_3 = 1$ kΩ and the voltage gain h has been varied as $h = \{0.53; 1$...
V. CONCLUSION

In this paper, a novel ABB called voltage gain-controlled MCFOA, which joins the voltage gain control feature of the voltage and current gain CCII in the conventional MCFOA. The usefulness of the tunable feature in the introduced VGC-MCFOA is demonstrated in four-mode first-order all-pass filter design. Since the capacitor in the circuit is grounded, the proposed filter is attractive for integration. The pole frequency can successfully be tuned in wide frequency range by means of external bias currents. The SPICE simulations confirm the theoretical assumptions.

ACKNOWLEDGMENT

Ing. Norbert Herencsár, Ph.D. was supported by the project CZ.1.07/2.3.00/30.0039 of Brno University of Technology. Research described in this paper was also in part supported by the project SIX CZ.1.05/2.1.00/03.0072 from the operational program Research and Development for Innovation, BUT Fund No. FFEK-T-11-15, and Czech Science Foundation projects under No. P102/11/P489, P102/10/P561, P102/09/1681.

A preliminary version of this paper has been presented at the 13th Int. Conf. on Optimization of Electrical and Electronic Equipment (OPTIM 2012) [32].

REFERENCES

Norbert Herencsar received the M.Sc. and Ph.D. degrees in Electronics & Communication and Teleinformatics from Brno University of Technology (BUT), Czech Republic, in 2006 and 2010, respectively. Currently, he is an Assistant Professor at the Department of Telecommunications, Faculty of Electrical Engineering and Communication, BUT. From September 2009 through February 2010 he was an Erasmus Exchange Student with the Department of Computer Science, Faculty of Electrical Engineering and Communication of The Technical University of Brno. Since 2003 he has been Head of the Department of Telecommunications, Faculty of Electrical Engineering and Communication, BUT. His research interests include analog filters, current-mode circuits, tunable frequency filter design methods, and oscillators. He is an author or co-author of 25 research articles published in SCI and SCI-E indexed journals, and 25 conference papers. He was given the best student paper award of ELECO’2002 conference in Turkey. He has over 25 articles in SCI and SCI-E indexed journals and 25 conference proceedings.

Jaroslav Koton received the M.Sc. and Ph.D. degree in electrical engineering from the Brno University of Technology, Czech Republic, in 2006 and 2009, respectively. He is currently an Assistant Professor at the Department of Telecommunications of the Faculty of Electrical Engineering and Communication of Brno University of Technology, Czech Republic. His current research is focused on linear- and non-linear circuit designing methods with current or voltage conveyors, and current active elements. He is an author or co-author of about 125 research articles published in international journals or conference proceedings. Dr. Koton is a Member of IEEE and IACSET.