VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA CHEMICKÁ
FACULTY OF CHEMISTRY

ÚSTAV FYZIKÁLNÍ A SPOTŘEBNÍ CHEMIE
INSTITUTE OF PHYSICAL AND APPLIED CHEMISTRY

PŘÍPRAVA A CHARAKTERIZACE PEROVSKITOVÝCH
SOLÁRNÍCH ČLÁNKŮ
PREPARATION AND CHARACTERIZATION OF PEROVSKITE SOLAR CELLS

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE
AUTHOR
Karel Juřík

VEDOUCÍ PRÁCE
SUPERVISOR
Ing. Jan Pospíšil, Ph.D.

BRNO 2018
Zadání bakalářské práce

Číslo práce: FCH-BAK1177/2017
Ústav: Ústav fyzikální a spotřební chemie
Student: Karel Juřík
Studijní program: Chemie a chemické technologie
Studijní obor: Spotřební chemie
Vedoucí práce: Ing. Jan Pospíšil, Ph.D.
Akademický rok: 2017/18

Název bakalářské práce:
Příprava a charakterizace perovskitových solárních článků

Zadání bakalářské práce:
1. Proveďte rešerši na téma perovskitové solární články
2. Připravte perovskitové solární články a proměřte jejich elektrické vlastnosti
3. Interpretujte naměřené výsledky a diskutujte je s ohledem na technologii přípravy
4. Výsledky zpracujte do bakalářské práce

Termín odevzdání bakalářské práce: 21.5.2018

Bakalářská práce se odevzdává v děkanem stanoveném počtu exemplářů na sekretariát ústavu. Toto zadání je součástí bakalářské práce.

Karel Juřík
student(ka)
Ing. Jan Pospíšil, Ph.D.
vedoucí práce
prof. Ing. Miloslav Pekař, CSc.
vedoucí ústavu
prof. Ing. Martin Weiter, Ph.D.
děkan

V Brně dne 31.1.2018
Abstrakt

Tato práce se zabývá perovskitovými fotovoltaickými články. První část práce uvádí shrnutí základních informací o této technologii, společně s nejdůležitějšími milníky v jejím vývoji. Následuje popis parametrů potřebných k charakterizaci elektrických vlastností fotovoltaického článku a posouzení jeho kvality. Experimentální část této bakalářské práce se věnuje vlivu doby žíhání perovskitové aktivní vrstvy na výslednou účinnost připravených solárních článků, přičemž nejlepších výsledků bylo dosaženo při tepelném žíhání po dobu 90 minut.

Abstract

This work deals with the perovskite photovoltaic cells. The first part summarises the basic information about this technology and shows the most important milestones in its development. Following part includes the parameters required to characterise the electric properties of a photovoltaic cell and the assessment of its quality. The experimental part of this thesis aims to describe the influence of the annealing time of the perovskite active layer on the final efficiency of created solar cells. The best results were determined to be achieved with the annealing time of 90 minutes.

Klíčová slova

Solární článek, perovskit, rotační nanášení, tepelné žíhání, volt-ampérová charakteristika.

Keywords

Solar cell, perovskite, spin coating, thermal annealing, current-voltage characteristic.
JUŘÍK, K. *Příprava a charakterizace perovskitových solárních článků.* Brno: Vysoké učení technické v Brně, Fakulta chemická, 2018. 34 s. Vedoucí bakalářské práce Ing. Jan Pospíšil, Ph.D.

Prohlášení

Prohlašuji, že jsem bakalářskou prací vypracoval samostatně a že všechny použité literární zdroje jsem správně a úplně citoval. Bakalářská práce je z hlediska obsahu majetkem Fakulty chemické VUT v Brně a může být využita ke komerčním účelům jen se souhlasem vedoucího bakalářské práce a děkana FCH VUT.

...............
(podpis autora)

Poděkování

Chtěl bych poděkovat vedoucímu své práce Ing. Janu Pospíšilovi, Ph.D. za odborné vedení, cenné rady a čas, které mi věnoval při tvorbě této bakalářské práce.
Obsah

1 Úvod ... 7
2 Teoretická část .. 8
 2.1 Perovskit .. 8
 2.2 Postup ve výzkumu perovskitů jako materiálů pro fotovoltaická zařízení 11
 2.3 Struktura zařízení .. 11
 2.3.1 Klasická struktura ... 12
 2.3.2 Invertovaná struktura ... 12
 2.4 Způsob přípravy aktivní vrstvy ... 12
 2.4.1 Nanášení z roztoku .. 12
 2.4.2 Nanášení napařováním .. 13
 2.5 Typy a charakterizace elektronických součástek ... 14
 2.5.1 Rezistor .. 14
 2.5.2 Dioda .. 14
 2.5.3 Fotorezistor .. 15
 2.5.4 Fotodioda .. 16
 2.5.5 Fototranzistor ... 16
 2.5.6 Fotovoltaický článek .. 17
 2.6 Elektrická charakterizace fotovoltaického článku ... 17
 2.6.1 Stejnosměrná měření – VA charakteristika .. 17
 2.6.2 Napětí naprázdno ... 18
 2.6.3 Proud nakrátko .. 19
 2.6.4 Maximální výkon, proud a napětí při maximálním výkonu .. 19
 2.6.5 Teoretický výkon solárního článku ... 19
 2.6.6 Koeficient plnění .. 19
 2.6.7 Účinnost přeměny ... 20
3 Experimentální část ... 21
 3.1 Struktura připravovaného článku ... 21
 3.2 Použité materiály ... 22
 3.2.1 PEDOT:PSS .. 22
 3.2.2 I101 .. 22
3.2.3 PC_{70}BM ... 22
3.3 Postup přípravy .. 22
 3.3.1 Čištění substrátu .. 23
 3.3.2 Nanášení vrstvy pro transport děr ... 23
 3.3.3 Nanášení aktivní vrstvy .. 23
 3.3.4 Nanášení vrstvy pro transport elektronů .. 24
 3.3.5 Napařování katody .. 24
 3.3.6 Měření vzorků .. 24

4 Výsledky a diskuze... 26
5 Závěr.. 31
6 Použitá literatura a zdroje.. 32
1 ÚVOD

![Best Research-Cell Efficiencies](image)

Obrázek 1: Historický vývoj účinnosti různých typů solárních článků dle NREL [1]
2 TEORETICKÁ ČÁST

2.1 Perovskit

Původně byl takto označován oxid titaničito-vápenatý (CaTiO₃), který byl objeven roku 1839 Gustavem Rosem na Urale, který jej pojmenoval po ruském diplomatovi a mineralogovi Lvovi Alexejeviči Perovském [2].

Označení perovskit se však používá pro celou řadu dalších látek, které nesou stejnou krystalovou strukturu (ABX₃). Kde A označuje velký kationt, který může být dvojvazný, pokud jako aniont vystupuje kyslík, nebo jednovazný, pokud jako aniont vystupuje halogenid. B označuje menší kationt, který je čtyřvazný, v případě kyslíku jako aniontu a dvojvazný v případě halogenidového aniontu. X je aniont, zpravidla kyslík nebo halogenid.

Ve optoelektronických aplikacích se zpravidla setkáváme se sloučeninami, které obsahují jako kationt A organický kationt: methyammonium (MA) – (CH₃NH₃⁺) nebo formamidinium (FA) – (CH(NH₂)₂⁺), obstojných výsledků je však možné dosáhnout i s použitím kationtu anorganického, jako je například Cs⁺ [3]. Jako kationt B je v drtivé většině případů použit kationt olovnatý (Pb²⁺), vzadkem k toxicitě olova je snaha o záměnu tohoto kationtu za jiné kovy. Jako nejslibnější náhrada se jeví cín, jeho použití ale komplikuje fakt, že cín je stabilnější v oxidačním stavu 4+ než 2+ a kationt cínatý (Sn²⁺) je tedy velmi náchyný k oxidaci. K formaci oktaedrických útvarů je možné využít i další dvojmocné kationty (jako Cu²⁺, Ni²⁺, Co²⁺, Mn²⁺ aj.), zatím však nebyly připraveny sloučeniny obsahující tyto kationty, u kterých by byly obdrženy slibné výsledky [4]. Jako aniont X je používán aniont halogenidový (Cl⁻, Br⁻ nebo I⁻).

![Obrázek 2: Znázornění krystalové struktury perovskitu. Převzato a upraveno z [5]](image-url)
Teoreticky je možné připravit mnohem více různorodějších sloučenin se strukturou perovskitu (přes 740), přičemž většina stále nebyla objevena (resp. nebyla nalezena cesta k jejich syntéze), u mnohých z nich však nejsou ani předpokládaně vhodné elektrické vlastnosti [6].

Pokud je ve struktuře použita jediná kombinace iontů, pak se jedná o perovskit jednoduchý, pokud je použita jejich kombinace, pak o perovskit mixovaný. Za standardní perovskit je považován CH$_3$NH$_3$PbI$_3$, ovšem jednotlivé komponenty jsou často kombinovány ve snaze zlepšit charakteristiku materiálu a následně celého zařízení.

Jeden z nejjednodušších příkladů je uveden na Obrázku 3. Zde můžeme vidět závislost účinnosti přeměny dopadajícího fotovoltaického záření na jeho frekvenci. Jak je možné pozorovat, CH$_3$NH$_3$PbBr$_3$ vykazuje mnohem lepších vlastností v oblastech vlnových délek menších jak cca 550 nm, nad hranici 550 nm však jeho účinnost strmě klesá. Na druhou stranu CH$_3$NH$_3$PbI$_3$ neposkytuje tak vysoké V$_{OC}$ (napětí článku), vzhledem k lepšímu překryvu se spektrální distribucí denního světla ve výsledku vykazuje větší účinnost.

Obdobná situaci taktéž nastává u absorbčních spektor těchto materiálů (viz Obrázek 2), z čehož vyplývá, že zatímco se bude CH$_3$NH$_3$PbBr$_3$ jevit jako žluto-oranžový, CH$_3$NH$_3$PbI$_3$ se bude jevit jako hnědo-černý (viz Obrázek 3) [7].
Obrázek 4: UV-vis absorbance (a) a barvy perovskitových vrstev (b) připravených z různých perovskitů o složení CH$_3$NH$_3$Pb(I$_{1-x}$Br$_x$)$_3$. Převzato a upraveno z [7]

Vzhledem k tomu, že lze připravit solární články o různém složení (i s více různými anionty), lze tímto způsobem libovolně měnit šířku zakázaného pásu připravovaných perovskitů. Tato vlastnost je velice důležitá z hlediska možných budoucích aplikací, ať již z hlediska použití jako vrchní vrstvy do tandemových článků (k lepšímu využití záření o nižších vlnových délkách, zatímco záření s vyšší vlnovou délkou prostoupí dále ke spodní vrstvě), tak z architektonického či designového hlediska – perovskitové vrstvy mohou nabývat velkého množství různých barevných odstínů) [5] [8].

Obrázek 5: Různě barevné perovskitové vrstvy, převzato a upraveno z [8]
Nalezení nejlepšího složení perovskitu je stále otázkou výzkumu, jedny z nejlepších výsledků vykazují zařízení založené na perovskitu o přibližném složení \((\text{CH}_3\text{NH}_3)_1/3(\text{CH}(_2\text{NH}_2)_2)_2/3\text{Pb(Br}_{1/6}\text{I}_{5/6})_3\) [9].

2.2 Postup ve výzkumu perovskitů jako materiálů pro fotovoltaická zařízení

První využití perovskitů pro fotovoltaické aplikace bylo publikováno v roce 2009 (Kojima a kol.). Struktura připraveného zařízení vycházela z barvivem senzibilizovaných solárních článků. Perovskit (\(\text{CH}_3\text{NH}_3\text{PbBr}_3\) a \(\text{CH}_3\text{NH}_3\text{PbI}_3\)) zde sloužil jako barvivo pro senzibilizaci oxidu titaničitého. Připravené články však nevykazovaly příliš vysoké účinnosti (3,13 % pro \(\text{CH}_3\text{NH}_3\text{PbBr}_3\) a 3,81 % pro \(\text{CH}_3\text{NH}_3\text{PbI}_3\)), jejich maximální dosažené napětí (0,96 V) však bylo příslibem k možnému budoucímu zvyšování účinnosti [5].

Po několika důležitých úpravách struktury článků v následujících letech (z nichž nejdůležitější pravděpodobně bylo upuštění od tekutého elektrolytu, který se jinak běžně používal v barvivem senzibilizovaných solárních článících) se účinnost přeměny zvýšila na 10,9 %, což odstartovalo sérii dalších výzkumů v cestě za ještě vyšší účinností [10]. Důležitým krokem byla v roce 2013 příprava článků invertované struktury (viz níže), která vytvořila celou novou oblasti výzkumu perovskitové fotovoltaiky [11].

Mnohé další výzkumy (zaměřené především na kvalitu perovskitových vrstev) vedly k dalším zvyšování účinnosti zařízení, až na hodnotu 22,7 % v roce 2018 (dle údajů NREL). S touto účinností perovskitové články vyrovnaly, či dokonce překonaly mnohé jiné vyvíjející se technologie (např. tenkovrstvý polykrystalický křemík s účinností 21,2%) a staly se tak slabným materiálem pro budoucí fotovoltaické aplikace. [1] Pro širší nasazení je nutné zajistit nejen vysokou účinnost experimentálního článku, ale i možnosti přípravy větších ploch. I v této oblasti byly zaznamenány úspěchy, kdy v roce 2016 byly připraveny články s vysokou účinností a současně větší účinnou plochou (plocha 1 cm² a maximální účinnost 20,5%) [12].

O rozmachu této oblasti a současně velkém zájmu vědecké obce svědčí i množství publikací na toto téma. Zatímco v roce 2013 při vyhledávání klíčových slov „perovskite, halide, photovoltaic“ na serveru Web of Science bylo možné obdržet 32 odpovídajících výsledků, počátkem roku 2018 je jich možné obdržet více než 5100 [13].

2.3 Struktura zařízení

V oblasti perovskitové fotovoltaiky se můžeme setkat s dvěma základními strukturami – klasickou a invertovanou. Na následujících řádcích budou pro ilustraci popsány typičtí zástupci obou dvou struktur, je však nutné si uvědomit, že množství pomocných vrstev napříč různými výzkumy je mnohem větší.
2.3.1 Klasická struktura
Základem klasické struktury je sklo, na kterém je nanesena vrstva FTO (fluoridem dopovaného oxidu cínu), která slouží jako anoda. Nad touto vrstvou následuje vrstva TiO₂, jako elektron-transportní vrstva, poté samotná vrstva perovskitu, následně vrstva pro transport děr (nejčastěji Sprio-MeOTAD) a nakonec kovová (Al) katoda.

2.3.2 Invertovaná struktura
V případě invertované struktury slouží jako katoda ITO (oxid india a cínu), nad kterou následuje vrstva pro transport děr – zpravidla dvojice polymerů PEDOT:PSS, dále perovskitové vrstva, vrstva pro transport elektronů (zde se setkáváme nejčastěji s fullereny, či jejich deriváty), zakončená kovovou (Al) anodou [11].

Výše uvedené struktury se liší nejen vzájemnou polohou jednotlivých vrstev, ale i postupem přípravy. Příprava článků různých struktur tak bude značně odlišná. Zatímco klasická struktura vychází spíše z barvivem senzibilizovaných článků, invertovaná struktura je velice podobná struktuře organických solárních článků (jak z hlediska materiálů použitých pro pomocné vrstvy, tak z hlediska architektury zařízení). Tohoto faktu lze s úspěchem využít, a pro výrobu a charakterizaci perovskitových článků invertované architektury použít vybavení a postupy běžně používané při přípravě organických solárních článků.

Tato práce se zabývá přípravou článku invertované struktury, její schématické znázornění je možné vidět na obrázku (viz Obrázek 15).

2.4 Způsob přípravy aktivní vrstvy
Metody nanášení perovskitové vrstvy je možné rozdělit na dvě základní skupiny. První z nich je nanášení z roztoku. Druhou skupinou je nanášení napařováním. Výhodou použití napařování je lepší kontrola množství a stavu naneseného materiálu, nevýhodou jsou vyšší náklady než u nanášení roztoku, které navíc ještě rostou při přípravě větších substrátů.

2.4.1 Nanášení z roztoku
Nejjednodušší metodou je jednokrokové nanášení, kdy je substrát vystaven roztoku obsahující oba prekurzory rozpustěné v jednom roztoku (Obrázek 6a). Další z možností je sekvenční nanášení, kdy je nejprve na substrátu pomocí rotačního nanášení připravena vrstva halogenidového prekurzoru a substrát je následně ponořen do lázně obsahující organický prekurzor (Obrázek 6b). Poslední z hojně užívaných možností je dvou-krokové rotační nanášení.
2.4.2 Nanášení napařováním

Obdobně jako v předchozím případě, je možné připravit perovskitovou aktivní vrstvu současným napařováním obou prekurzorů (7a), sekvenčním napařováním (7b). Kombinaci obou postupů je případ uvedený na Obrázku 7c, kdy je nejprve z roztoku připravena vrstva anorganického prekurzoru (např. PbI₂), na který je následně působeno parami organického prekurzoru [14].

Obrázek 6: Typické způsoby nanášení aktivní vrstvy z roztoku [14]

Obrázek 7: Typické způsoby nanášení aktivní vrstvy pomocí napařování [14]
2.5 Typy a charakterizace elektronických součástek

Pro popis chování vytvořených solárních článků se používá VA charakteristika – graf závislosti proudu na přiloženém napětí. Pokud je solární článek osvětlen, vykazuje dva druhy typického chování. Jedním z nich je fotovodivost (snížený odpor oproti stavu bez osvětlení) a druhým je fotovoltaický jev (generace elektrického proudu).

2.5.1 Rezistor

Rezistor je pasivní elektronická součástka, která snižuje proud procházejícím obvodem (vlastností rezistoru je elektrický odpor). VA charakteristika rezistoru má (při zanedbání všech neidealit) lineární tvar a prochází počátkem souřadnicového systému. Odpor rezistoru se v závislosti na přiloženém napětí nemění a proud se zvyšujícím se napětím roste konstantně, jak je možné vidět na Obrázku 8.

![VA charakteristika rezistoru](image)

Obrázek 8: VA charakteristika rezistoru

2.5.2 Dioda

Dioda je polovodičová elektronická součástka, která je zpravidla tvořena kombinací dvou polovodivých materiálů (jedním s převažující elektronovou vodivostí – tj. polovodič typu N, druhým s převažující děrovou vodivostí – tj. polovodič typu P) a obsahuje PN přechod. Dioda je v elektrotechnice většinou využívána k usměrňování elektrického proudu. Speciálním případem diody je Schottkyho dioda, která obsahuje pouze jeden typ polovodiče a kde je elektrický proud usměrňován přechodem polovodič typu N – kov.

VA charakteristika diody není lineární. V závěrném směru diody protéká diodou velmi malý proud, ovšem pokud je napětí přišlo vysoke, dojde k průrazu, množství elektrického proudu, který protéká obvodem se zvýši a dojde ke zničení diody). V propustném směru při nízkém napětí obvodem protéká velmi malý proud, při překročení tzv. prahového napětí (toto napětí se liší v závislosti na materiálu a konstrukci diody, u běžně používaných křemíkových diod dosahuje přibližně 0,6 V) VA charakteristika začne strmě stoupát.
Rovnice popisující proud protékající přes diodu, jako funkci napětí (Volt-Ampérovou charakteristiku) je následující:

\[I_D = I_0 \left(e^{\frac{q(U+IR)}{kT}} - 1 \right), \]

(1)

kde \(I \) je výsledný proud protékající diodou, \(I_0 \) je saturační proud, \(q \) je elementární náboj \((1,602 \cdot 10^{-19} \text{ C})\), \(k \) je Boltzmannova konstanta \((1,381 \cdot 10^{-23} \text{ J} \cdot \text{K}^{-1})\), \(T \) je teplota článku v Kelvinech a \(U \) je napětí mezi svorkami diody.

Tento tvar je zjednodušený model, platný pouze pro ideální diodu, pro reálné chování je jmenovatel rozšířen o faktor ideality \(n \), který nabývá hodnot mezi 1 a 2 a který se obvykle zvyšuje s klesajícím proudem. Po rozšíření o faktor ideality dostáváme rovnici:

\[I_D = I_0 \left(e^{\frac{q(U+IR)}{nkT}} - 1 \right), \]

(2)

Z rovnice (2) je taktéž patrné, že zvyšující se teplota snižuje prahové napětí diody.

Obrázek 9: VA charakteristika diody

2.5.3 **Fotorezistor**

Fotorezistor je polovodivé součástka bez PN přechodu, jejíž vodivost je přímo úměrná množství dopadajícího záření. Toto zvyšování vodivosti je způsobeno vnitřním fotoelektrickým jevem. Dopadající fotony uvolní elektrony, které přejdou do vodivostního pásu a zvýší tak vodivost materiálu. Se zvyšující se intenzitou dopadajícího záření se zvyšuje i vodivost fotorezistoru – VA charakteristika poté stoupá strměji (jak můžeme vidět na Obrázku 10).
2.5.4 Fotodioda
Fotodioda je polovodičová součástka s PN přechodem, upravená tak, aby do oblasti PN přechodu mohlo dopadat elektromagnetické záření. Neosvětlená fotodioda se v obvodu chová stejně jako klasická dioda, po osvětlení její VA charakteristika začne stoupat více strmě a pousne se směrem k záporným hodnotám po vertikální ose (ose proudu). Vlivem fotovoltaického efektu se fotodioda po osvětlení stává zdrojem elektrického proudu.

2.5.5 Fototranzistor
Fototranzistor je polovodičová elektrická součástka, podobná klasickému tranzistory (může obsahovat 2 přechody PN/NP), na rozdíl od klasického tranzistory však nemá vyvedený kontakt báze, která je místo toho pouze kryta průhledným krytem a jako řídící prvek zde slouží dopadající záření.
2.5.6 Fotovoltaický článek

Fotovoltaický článek je plošná polovodičová součástka, která je tvořena vrstvami P a N polovodiče. Na rozhraní mezi vrstvami vzniká PN přechod, na kterém jsou po osvětlení generovány páry elektron–díra.

K popisu vlastností článku se taktéž užívá VA charakteristika, která je podobná, jako VA charakteristika diody a bude diskutována v další kapitole.

2.6 Elektrická charakterizace fotovoltaického článku

2.6.1 Stejnosměrná měření – VA charakteristika

Volt-ampérová křivka jegrafické znázornění funkce závislosti proudu procházejícím článkem na napětí na článku. Zjednodušený model ideálního fotovoltaického článku si lze představit jako zdroj proudu s diodou v paralelním zapojení. Bez osvětlení článek negeneruje žádný proud a chová se jako dioda. Po osvětlení článek začne generovat proud, který se dále zvyšuje se zvyšující se intenzitou osvětlení.

V ideálním případě se výsledný proud protékající článkem I rovná rozdílu proudů I_l (což je proud generovaný fotoelektrickým efektem) a I_D (což je diodový proud). Pokud k vyjádření diodového proudu použijeme rovnici (1), dostáváme následující tvar:

$$I = I_l - I_D = I_l - I_0 \left(e^{\frac{q(U + IR_S)}{nkT}} - 1 \right). \quad (3)$$

Rozšířením této rovnice o možnosti neideálního chování fotovoltaického článku dostáváme rovnici (4), kde n je faktor ideality diody, R_S reprezentuje sériový odpor článku, a R_{SH} reprezentuje paralelní odpor článku

$$I = I_l - I_0 \left(e^{\frac{q(U + IR_S)}{nkT}} - 1 \right) \frac{U + IR_S}{R_{SH}}. \quad (4)$$

R_{SH} a R_S tvoří skupinu tzv. parazitních odporů, které vyjadřují míru neideality chování fotovoltaického článku a snižují jeho maximální výkon, resp. účinnost [15].

Sériový odpor (R_S) se projevuje snižením proudu nakrátko, a dřívějším (a pozvolnějším) růstem VA charakteristiky ze 4 kvadrantu. Tento odpor může být způsoben např. odporem aktivní vrstvy nebo odporu na rozhraní aktivní vrstvy a kontaktů.

Paralelní odpor (R_{SH}) se projevuje sklonem VA křivky fotodiody pro napětí $U = 0$ V. Paralelní odpor se u ideálního fotovoltaického článku bliží nekonečnu (zvyšuje se s rostoucí kvalitou článku). U současných, běžně používaných křemíkových fotodiod se můžeme setkat s paralelním odorem v řádu $(10^7 - 10^9)$ Ω. Jeho hodnota se experimentálně obvykle získává přiložením napětí ± 10 mV na fotodiodu a měřením procházejícího proudu. Snižující se paralelní odpor a zvyšující se sériový odpor budou taktéž snižovat faktor plnění (FF).
Obrázek 12 popisuje změnu křivky VA charakteristiky způsobenou sériovým a paralelním odporem [16].

Obrázek 12: Vliv parazitních odporů na VA charakteristiku fotovoltaického článku

Bez osvětlení článku dosáhneme stejného tvaru VA charakteristiky, jako je zobrazena na Obrázku 11 (pro část Za tmy). Sklon lineární závislosti ve 3. kvadrantu je stejný, jako sklon lineární závislosti v prvním kvadrantu, což je hodnota, které lze použít pro výpočet paralelního odporu. Hodnota odporu paralelních odporů není obvykle konstantní, bývá funkcí množství dopadajícího záření.

Pokud vezmeme v úvahu tyto parazitní odpor, můžeme fotovoltaický článek nahradit modelovým obvodem, který se skládá z proudového zdroje, diody a rezistoru v paralelním zapojení, doplněné o rezistor v zapojení sériovém, jak ukazuje Obrázek 13 [17].

Obrázek 13: Modelový obvod pro fotovoltaický článek

2.6.2 Napětí naprázdno

Napětí naprázdno je maximální napětí, které můžeme naměřit ve 4. kvadrantu VA charakteristiky. Toto napětí na článku naměříme v okamžiku, kdy článkem neprochází žádný proud.
2.6.3 Proud nakrátko
Proud nakrátko se vyskytuje na počátku propustného směru fotodiody a jedná se o maximální hodnotu proudu, kterou lze naměřit v 4. (fotovoltaickém) kvadrantu. Tento proud odpovídá situaci, kdy je napětí na článku 0 V, článek je tedy ve zkratu.

2.6.4 Maximální výkon, proud a napětí při maximálním výkonu
Výkon produkovaný solárním článkem lze spočítat pomocí rovnice \(P = U \cdot I \), kdy při proudu nakrátko a při napětí naprázdno je výkon článku nulový a maximální výkon leží při napětí, které se nachází v rozmezí těchto dvou hodnot. Maximální výkon si lze graficky představit jako obdélník s největší možnou plochou, jaký lze pod křivku VA charakteristiky vepsat. Tento obdélník je zobrazen níže na Obrázku 14 prerusovanou fialovou čárou.

\[
\begin{align*}
I(A) & \quad I_{SC} \quad I_{MAX} \\
P(W) & \quad P_{MAX} \\
U(V) & \quad U_{MAX} \quad U_{OC}
\end{align*}
\]

Obrázek 14: Detail 4. kvadrantu VA charakteristiky s vyznačenými obdélníky maximálního a teoretického výkonu a výkonová charakteristika článku.

2.6.5 Teoretický výkon solárního článku
Teoretický výkon solárního článku se vypočítá jako součin proudu nakrátko a napětí naprázdno. Je to maximální možný výkon, kterýho článek může teoreticky dosáhnout. (Na Obrázku 1419 je tento obdélník znázorněn přerusovanou zelenou čárou).

2.6.6 Koeficient plnění
Koeficient plnění (anglicky Fill Factor – zkratka FF) vypovídá o kvalitě solárního článku. Lze jej vypočítat jako poměr maximálního a teoretického výkonu:

\[
FF = \frac{P_{\text{MAX}}}{P_{T}} = \frac{U_{\text{MAX}} \cdot I_{\text{MAX}}}{U_{\text{OC}} \cdot I_{\text{SC}}}
\]
(5)

Vysoký koeficient plnění vypovídá o vysoké kvalitě článku, taktéž umožňuje článku dosáhnout vyšších výkonů (z rovnice (5) lze vyjádřit maximální výkon článku jako součin koeficientu plnění, proudu nakrátko a napětí naprázdno):

\[
P_{\text{MAX}} = FF \cdot U_{\text{OC}} \cdot I_{\text{SC}}
\]
(6)
Běžné články dosahují FF v rozmezí mezi 0,5 a 0,8. Faktor plnění lze také zobrazit graficky, jako poměr ploch obdélníků maximálního a teoretického výkonu (viz Obrázek 19).

2.6.7 Účinnost přeměny

Účinnost je poměr mezi elektrickým výkonem, který produkuje článek a výkonem dopadajícího záření na plochu článku

\[
\eta = \frac{P_{\text{MAX}}}{P} = \frac{U_{\text{MAX}} \cdot I_{\text{MAX}}}{P} = \frac{I_{\text{SC}} \cdot U_{\text{OC}} \cdot FF}{S \cdot \int_{\lambda}^{\infty} M(\lambda) \frac{hc}{\lambda} d\lambda}.
\]

(7)

Kde \(P\) je výkon dopadající na plochu článku, \(S\) je plocha článku \(M(\lambda)\) je spektrální hustota dopadajícího elektromagnetického záření a \(\frac{hc}{\lambda}\) zastupuje energii jednoho fotonu [18].
3 EXPERIMENTÁLNÍ ČÁST

3.1 Struktura připravovaného článku

Obrázek 15 zobrazuje schéma připravovaných fotovoltaických článků. Základem je krycí sklo, na kterém je nanesena vrstva horní elektroda (ITO), následuje vrstva pro přenos děr (PEDOT:PSS), poté aktivní vrstva (CH$_3$NH$_3$PbI$_3$$_xCl_x$), dále vrstva pro přenos elektronů (PC$_{70}$BM) a nakonec hliníková elektroda. Vše je navíc překryto krycím sklem a zalaminováno epoxidem.

Obrázek 15: Schématické znázornění připravovaného fotovoltaického článku

Na Obrázku 16 jsou poté zobrazeny energetické hladiny orbitalů (atomární a molekulové) jednotlivých materiálů použitých v připravených článcích.

Obrázek 16: Grafické znázornění energetických hladin v připravovaném fotovoltaickém článku. [19][20][21]
3.2 Použité materiály

3.2.1 PEDOT:PSS
Jedná se o transparentní a vodivý polymer, který se skládá z kombinace dvou monomerů. Díky kombinaci jeho vlastností (vodivost, jednoduchost přípravy tenkých vrstev) se stal základním a srovnávacím materiálem při přípravě tenkých vrstev [22].

![Struktura PEDOT:PSS](image)

Obrázek 17: Struktura PEDOT:PSS [5]

3.2.2 I101
I101 je prekurzor pro přípravu tenkých vrstev perovskitových solárních článků, připravovaných pomocí rotačního nanášení. Základ tvoří směs methyl-jodidu amonného a chloridu olova, rozpuštěného v dimethylformamidu. Po nanesení a zahřátí se změní struktura ve výsledný produkt, směsný perovskit CH$_3$NH$_3$PbI$_3$-$_x$Cl$_x$ [23].

3.2.3 PC$_{70}$BM
(Také [6,6]-Fenyl-C71-methylbutanoát). Jedná se o elektron-akceptorový materiál na bázi fullerenů, běžně používán v široké řadě organických fotovoltaických zařízení [24].

![Struktura PCBM](image)

Obrázek 18: Struktura PCBM [7]

3.3 Postup přípravy
Příprava probíhala podle návodu Osilla [8], v postupu však byly provedeny mírné změny, které vycházely z výsledků minulých experimentů. Postup, i s provedenými změnami je uveden na následujících řádcích.
3.3.1 Čištění substrátu

3.3.2 Nanášení vrstvy pro transport děr (HTL)
Před započetím samotného procesu nanášení HTL bylo nutné roztok PEDOT:PSS přefiltrovat (přes filtr s velikostí pórů 0,45 µm). Následně byl roztok nanesen na vyčištěný substrát, který byl následně v zařízení pro rotační nanášení (ve spincoateru) rotovan rychlostí 6000 otáček za minutu, po dobu 40 sekund. Následně byl substrát přenesen na varnou desku a zahřívan na 130 °C. Poté, co bylo dokončeno nanášení všech substrátů, všechny připravené vzorky byly přeneseny na varnou desku do suchého boxu (kde byla vlhkost vzduchu upravena na 13 %, tak aby se minimalizovala degradace perovskitu vlivem vzdušné vlhkosti), který byl nastaven na teplotu 70°C. Na tuto desku byl také umístěn roztok (prekurzor) MAI:PbCl₂, který byl takto zahříván po dobu 30 minut před samotným nanášením aktivní vrstvy.

3.3.3 Nanášení aktivní vrstvy
Při nanášení aktivní vrstvy byl vyhřívaný substrát přenesen na spincoater a bylo na něj naneseno 30 µl roztoku při rychlosti rotace 3000 otáček za minutu. Po nanesení byl substrát opět zahřívan. Po nanesení všech vzorků byla teplota zvýšena na 85 °C, a byl odebrán první vzorek. Následně byly v patnáctiminutových intervalech odebírány další vzorky, až do maximálního času 150 minut (celkem tedy 11 vzorků).

Obrázek 19: Vlevo – zařízení pro rotační nanášení – spincoater pro přípravu perovskitové vrstvy, vpravo – jeden z rukavicových boxů obsahující dusíkovou atmosféru
3.3.4 Nanášení vrstvy pro transport elektronů
Po annealingu byly všechny vzorky přeneseny do rukavicového boxu s dusíkovou atmosférou. Zde proběhlo nanášení vrstvy PC\textsubscript{70}BM. Roztok PC\textsubscript{70}BM byl předem umístěn na varnou desku a zahříván na 70 °C asi 5 hodin před použitím. PC\textsubscript{70}BM byl na vzorek nanášen opět pomocí statického rotačního nanášení při 1000 otáčkách za minutu, po dobu 30 sekund.

3.3.5 Napařování katody
Nakonec byla napřena hliníková katoda. Tato katoda byla nanesena ve vakuové peci tak, aby její tloušťka dosáhla 100 nm. Vzorek byl následně zalit epoxidem, překryt krycím sklem a umístěn pod UV lampu na dobu 25 minut, kde došlo k vytvrzení epoxidu a zalaminování vzorku.

![Obrázek 20: Vlevo – pohled do vakuové napařovačky, vpravo – připravované vzorky pod UV lampou při vytvrzování epoxidu](image)

3.3.6 Měření vzorků
Takto připravené vzorky (nyní již chráněné před vlivem okolního prostředí) byly přeneseny ven z rukavicového boxu do laboratoří fyziky, kde na ně byly připevněny kontakty tak, aby je bylo možné změřit.
Každý ze vzorků byl umístěn pod sluneční simulátor (LOT-Oriel LS0916) a pomocí elektrometru Keithley 6517B byla změřena jeho VA charakteristika. Software na obslužném PC také vzhodněly základní ukazatele kvality článek (proud nakrátko, napětí naprázdno, účinnost, faktor plnění a další).
4 VÝSLEDKY A DISKUZE

Každý ze vzorků obsahuje celkem 6 kontaktů, tedy 6 samostatných fotovoltaických článků s aktivní plochou 0,045 cm². Celkem tedy bylo připraveno 66 článků. Všechna naměřená data byla zprůměrována tak, aby bylo dosaženo vždy jedné výsledné VA charakteristiky (zprůměrovány tak byly i všechny výsledné parametry fotovoltaických článků) pro každý připravený vzorek, resp. pro každý čas tepelného ošetření aktivní perovskitové vrstvy. Obrázek 22 poté ukazuje porovnání VA charakteristik všech připravených vzorků (4. kvadrant dané VA charakteristiky při osvětlení 1000 W/m²).

Obrázek 22: Porovnání VA charakteristik pro jednotlivé doby tepelného žihání

U vzorku s nejlepší účinností byla proměřena VA charakteristika v rozšířeném intervalu, navíc pro porovnání za světla i za tmy. Toto je zobrazeno na Obrázku 23. Na tomto grafu je možné pozorovat posun VA charakteristiky po ozáření do 4. kvadrantu, a tedy vzniklý fotoelektrický jev.

Dalším z parametrů je napětí naprázdno, který může být odečteno obdobně (průsečík VA charakteristiky s osou napětí). Obrázek 25 opět ukazuje porovnání vyhodnocených hodnot napětí. Zde maximum nastává již v době 45 minut, z tohoto pohledu by tedy nebyla potřeba tak dlouhá doba tepelného žíhání.
Dalším z diskutovaných parametrů je faktor plnění. Hodnoty faktoru plnění pro jednotlivé časy uvádí Obrázek 26. Nejlepších výsledků opět dosahuje článek připravený s časem annealingu 90 minut. Pokles faktoru plnění na obě strany (jak se snižujícím se, tak se zvyšujícím se časem) není příliš výrazný, toto vyplývá již ze samotné metodiky výpočtu FF. Jak je uvedeno v rovnici (5), pokud budou hodnoty proudu a napětí článku při maximálním výkonu sniženy, stejně tak jako hodnoty proudu nakrátko a napětí naprázdno, hodnoty FF se příliš měnit nebudou.
Obrázek 26: Porovnání faktorů plnění pro jednotlivé časy žíhání

Obrázek 27 ukazuje porovnání účinnosti článků. Podobně jako u maximální proudové hustoty účinnosti rostou s rostoucí dobou přípravy, až do maximální hodnoty 9,23 % pro 90 minut. Poté již účinnosti připravených článků opět klesají.

Obrázek 27: Porovnání účinnosti článků pro jednotlivé časy žíhání
V následující tabulce jsou shrnuty všechny důležité parametry připravených solárních článků. Jednotlivé články jsou seřazeny podle rostoucí doby tepelného žíhání, přičemž tučně je zvýrazněný článek s nejvyšší účinností.

Tabulka 1: Shrnutí výsledků

<table>
<thead>
<tr>
<th>t (min)</th>
<th>J_{sc} (mA/cm2)</th>
<th>I_{sc} (mA)</th>
<th>V_{oc} (V)</th>
<th>P_{mpp} (mW)</th>
<th>FF (%)</th>
<th>η (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,88</td>
<td>0,04</td>
<td>0,63</td>
<td>0,01</td>
<td>28,00</td>
<td>0,15</td>
</tr>
<tr>
<td>15</td>
<td>3,08</td>
<td>0,14</td>
<td>0,71</td>
<td>0,03</td>
<td>26,01</td>
<td>0,58</td>
</tr>
<tr>
<td>30</td>
<td>7,38</td>
<td>0,33</td>
<td>0,89</td>
<td>0,08</td>
<td>27,84</td>
<td>1,83</td>
</tr>
<tr>
<td>45</td>
<td>13,75</td>
<td>0,62</td>
<td>1,13</td>
<td>0,19</td>
<td>26,53</td>
<td>4,15</td>
</tr>
<tr>
<td>60</td>
<td>25,08</td>
<td>1,13</td>
<td>1,07</td>
<td>0,32</td>
<td>26,66</td>
<td>7,12</td>
</tr>
<tr>
<td>75</td>
<td>25,48</td>
<td>1,15</td>
<td>1,06</td>
<td>0,38</td>
<td>31,28</td>
<td>8,39</td>
</tr>
<tr>
<td>90</td>
<td>25,67</td>
<td>1,16</td>
<td>0,96</td>
<td>0,42</td>
<td>37,38</td>
<td>9,23</td>
</tr>
<tr>
<td>105</td>
<td>21,64</td>
<td>0,97</td>
<td>0,98</td>
<td>0,26</td>
<td>26,78</td>
<td>5,67</td>
</tr>
<tr>
<td>120</td>
<td>16,94</td>
<td>0,76</td>
<td>0,99</td>
<td>0,19</td>
<td>25,75</td>
<td>4,31</td>
</tr>
<tr>
<td>135</td>
<td>16,14</td>
<td>0,73</td>
<td>1,05</td>
<td>0,18</td>
<td>23,93</td>
<td>4,05</td>
</tr>
<tr>
<td>150</td>
<td>17,08</td>
<td>0,77</td>
<td>0,99</td>
<td>0,18</td>
<td>23,19</td>
<td>3,93</td>
</tr>
</tbody>
</table>
5 ZÁVĚR

6 POUŽITÁ LITERATURA A ZDROJE

[9] JESPER JACOBSSON, T., Juan-Pablo CORREA-BAENA, Meysam PAZOKI, Michael SALIBA, Kurt SCHENK, Michael GRÄTZEL a Anders HAGFELDT. Exploration of the
Dostupné také z: http://xlink.rsc.org/?DOI=C6EE00030D

Dostupné také z: http://www.sciencemag.org/cgi/doi/10.1126/science.1228604

Dostupné také z: http://doi.wiley.com/10.1002/adma.201301327

Dostupné také z: http://www.sciencemag.org/cgi/doi/10.1126/science.aaf8060

Dostupné také z: http://xlink.rsc.org/?DOI=C4MH00236A

Dostupné také z: http://linkinghub.elsevier.com/retrieve/pii/S1876610214012971

