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Fractional-order low-pass filter with electronic
tunability of its order and pole frequency
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This paper presents novel solution of a fractional-order low-pass filter (FLPF). The proposed filter operates in the current
mode and it is designed using third-order inverse follow-the-leader feedback topology and operational transconductance
amplifiers (OTAs), adjustable current amplifiers (ACAs), auxiliary multiple-output current follower (MO-CF) as simple
active elements. The filter offers the beneficial ability of the electronic control of its order and also the pole frequency thanks
to electronically controlled internal parameters of OTAs and ACAs. As an example, five particular values of fractional order
of the FLPF were chosen and parameters of the filter were calculated. Similarly, also electronic control of the pole frequency
of the filter was studied. The design correctness and proper function of the filter are supported by simulations with CMOS
models and also by experimental laboratory measurements. Comparison of the simulation results of the proposed filter for
two different approximations of the parameter sα is also included.

K e y w o r d s: adjustable current amplifier; current mode; electronically tunable; fractional-order; FLPF; low-pass filter;
operational transconductance amplifier

1 Introduction

The issue of the fractional-order circuits is getting to
the forefront of interest of many scientific teams [1–33].
Fractional order structures can be used for filtering the
spectrum [2, 4–11, 15, 21], or the design of special oscil-
lators [12, 25] or controllers [17, 22], for example. The
fractional order circuits can find practical use in preci-
sion measurement, or modelling of various biological sig-
nals [3, 13, 26]. Another use may be in electrical engineer-
ing [2–15, 32], telecommunications [2] and also agricul-
ture [16].

Order of a fractional-order filter is characterized by the
slope of attenuation similarly as for conventional (integer-
order) filters. The difference between a conventional filter
and fractional-order filter is that the term determining
the slope of attenuation of given transfer function con-
tains additional parameter α . Thus, the equation deter-
mining the slope of the attenuation of transfer function of
a fractional-order filter is: 20(n+ α) (dB/decade), where
n is an unsigned integer number [2–4], usually between
1 and 10 and α is defined as a real number in the range
0 < α < 1. There are two basic methods how to design
fractional-order filter.

The first method is based on creation of a spe-
cial fractional-order capacitor with impedance ZC =
1/sαC [3, 13, 23, 33] or inductor with impedance ZL =
sαL [29, 31], which are then replacing respective pas-
sive components in the structure of a conventional fil-

ter. These fractional-order passive elements are generally
referred to as FOEs (fractional order elements) [14, 24].
Significant attention is currently paid to creation of such
elements. The most frequently used method of designing
a fractional-order capacitor is using a RC ladder net-
work [13, 18, 19]. This method is advantageous in terms
of easy implementation. The disadvantage of this method
is that the order of created filter has a fixed value and
cannot be easily electronically controlled.

The other method is to create a special filter structure
with specific values of passive components and transfers
of active elements in order to approximate a fractional-
order function. To create a fractional-order function, an
approximation by conventional filter of higher order is
used [2, 4–7]. Due to reasons of stability, it is necessary to
design a filtering structure with the order of (n+ α) > 1
[4, 20]. The fundamental building element of this trans-
fer function is Laplacian operator of fractional order sα

[1, 3, 4]. This operator is approximated by an integer-
order function, usually a 2nd-order function is used as
the simplest case [3,4,7]. Note that approximation of
the operator sα can also be performed using a higher-
order function, which results in wider band of valid-
ity of approximation accuracy but also significant com-
plexity of the circuit solution [4]. The transfer function
that approximates the fractional-order filter can be im-
plemented using several different topologies. The most
widely used topologies are FLF (Follow the Leader Feed-
back) [5, 7, 10, 27, 28], IFLF (inverse follow the leader
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Table 1. Comparison of the previously reported fractional-order filters

Active Passive Type Available Electronic Electronic
Simulated/ Operating

Reference elements parts of transfer control of the control of
Measured mode

(number) (number) design functions pole frequency the order

[2] OA(3) C(3), R(6) FOE LP no no yes/no VM

[4] OA(2) C(3), R(10) higher-order LP, BP no no yes/yes VM

[8] OA(3) C(2), R(6) FOE LP, BP no no yes/yes VM

[9] OA(3) C(2), R(6) FOE LP no no yes/no VM

[11] DDCC(5) C(3), R(7) higher-order LP no no yes/yes VM

[21] VCVS(1) C(2), R(4) FOE LP no no yes/yes VM

DO-CF(1),
[27] MO-CF(2), C(3), R(3) higher-order LP yes yes yes/yes CM

ACA(5)

OTA(3),
[28] DO-CF(1), C(3) higher-order LP, HP yes yes yes/yes CM

ACA(2)

[30] CFOA(4) C(3), R(10) higher-order LP no no no/yes VM

DO-CF(2),
[32] MO-CF(2), C(3), R(3) higher-order LP yes yes yes/no CM

ACA(2)

[33] OTA (3) C(2) FOE LP, BP yes no yes/no CM

MOTA(1),

Fig. 7
OTA(2),

C(3) Higher-order LP yes yes yes/yes CM
ACA(2),

MO-CF(1)

List of previously unexplained abbreviations:

OA – Operational Amplifier, DDCC – Differential Difference Current Conveyor,

CFOA – Current Feedback Operational Amplifier, VCVS – Voltage Controlled Voltage Source,

OTA – Operational Transconductance Amplifier, MOTA – Multi-Output Transconductance Amplifier,

ACA – Adjustable Current Amplifier, DO-CF – Dual-Output Current Follower, MO-CF – Multi-Output Current Follower,

LP – Low Pass, BP – Band Pass, HP – High Pass, VM – Voltage Mode, CM – Current Mode.

feedback) [11], or SAB (single amplifier biquad) in com-
bination with a 1st-order filter [4, 8]. For the design of
a fractional-order filter, a wide variety of commercially
available types of active elements such as operational am-
plifiers (Op Amps) [2, 4, 8, 9, 12, 15, 21], differential differ-
ence current conveyors (DDCCs) [11], current feedback
operational amplifiers (CFOAs) [30], second generation
current conveyors (CCIIs) [34], transconductance ampli-
fiers (OTAs) [35, 36], or current amplifiers (CAs) [37, 38]
can be used. Based on the type of elements used in the
topology, some researchers try to control not only pole
frequency or quality factor of the filter, but also the or-
der of the filter itself [10, 27, 28]. However, this topic is
still not fully researched and therefore, it requires our at-
tention. Possibility to electronically control parameters
of a fractional-order filter is a major advantage when
comparing to filters using the FOEs that cannot be sim-
ply controlled electronically. However, the disadvantage
of this approach can be the complexity and higher num-
ber of active elements in the filtering structure.

Most of the papers describe the design of a fractional-
order low-pass filter [2, 4–11, 15, 21, 27, 28], other also pro-
posed transfer function of fractional-order high-pass fil-
ter [6, 7]. Some papers present a proposal of a fractional-

order band-pass filter [4, 8, 15]. The disadvantage is that a
filter structure providing more transfer functions at once
cannot be simply created since each filter function re-
quires different values of parameters, or topology modifi-
cations [4, 6, 7, 8]. As mentioned above, it is only possible
to create filtering structures with the order of 1 < n < 2
in frame of above mentioned topologies. In order to create
a fractional-order function of a higher order (n ≥ 2), a
cascade connection of an integer-order filter and (1+α)-
order filter has to be made [2, 4, 7].

From the perspective of the operating mode and signal
representation in case of fractional-order circuits, voltage-
mode is widely discussed [2, 4, 8, 9, 11, 15–17, 21, 24, 26].
However, due to growing need of circuits, which operate
with low supply voltage and feature low power consump-
tion it becomes more difficult to sustain sufficient signal-
to-noise ratio (SNR). Therefore, the current-mode solu-
tions of fractional-order filters are also presented in the
open literature [27, 28], as in particular cases, the current
mode provides better SNR alongside with wider band-
width, greater dynamic range and lower power consump-
tion [39]. Table 1 contains a comparison of the fractional-
order low-pass filtering structures, which were mentioned
in the text above.
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Fig. 1. (a) – Schematic symbol of operational transconductance amplifier (OTA), (b) – schematic symbol of multi-output transconductance
amplifier (MOTA), (c) – possible implementation of MOTA by the universal current conveyor (UCC), (d) – CMOS implementation [35]
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Fig. 2. Dependence of gm on ISETgm
of the OTA (MOTA) element

from Fig. 1(d)

Table 2. Dimensions of transistors of OTA CMOS model from
Fig. 1(d)

Transistor W/L (µm)

M1, M4–M9 10/0.36

M2, M3, M10–M18 20/0.36

The filter presented in this paper operates in current
mode and provides a controllable fractional-order low-
pass transfer function. IFLF topology was used to design
the proposed filter. The filter consists of OTAs and ACAs.
Thanks to the electronically controllable active elements
which were used in the proposal, it is possible to electron-
ically control the order and pole frequency of the filter
which brings a big advantage in comparison to the most
of the previously reported circuits [2, 4, 8, 9, 11, 21, 30, 33]
which do not offer the electronic control of the filter pa-
rameters. Regarding the features of the proposed filter,
its structure can be understood as simple, it can be eas-

ily implemented and its properties can be verified not
only by simulation but also by laboratory measurements
with equivalent circuits of active elements as described in
Section 2.

2 Description of Employed Active Elements

Active elements that were used in the proposed filter
are described in this section. The proposed filter employs
three simple types of active elements.

The first used element is an operational transconduc-
tance amplifier (OTA) [28, 35, 36], multi-output transcon-
ductance amplifier (MOTA) respectively. The schematic
symbol of the OTA is shown in Fig. 1(a). The schematic
symbol of the MOTA and possible behavioral implemen-
tation of the MOTA using a universal current conveyor
(UCC) [34] can be seen in Figs. 1(b), (c), respectively.
The universal current conveyor has been developed in
CMOS 0.35µm technology at Brno University of Tech-
nology in cooperation with ON Semiconductor and is la-
beled as UCC-N1B0520. Each manufactured chip con-
tains one UCC and one Second-Generation Current Con-
veyor with two outputs (CCII±). A CMOS simulation
model of the MOTA (OTA) used for PSpice simulations
is illustrated in Fig. 1(d). This transistor-level simula-
tion model was adopted from [35]. Note that the TSMC
0.18µm CMOS technology was used for implementation
of the MOTA CMOS simulation model. The transcon-
ductance of this type of implementation of MOTA is con-
trolled electronically by current ISETgm

. Supply voltage
is ±1 V.

OTA and MOTA consist of two input and one or
more output terminals, respectively. Relations between
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Fig. 3. Adjustable Current Amplifier (ACA): (a) – schematic symbol, (b) – possible implementation by EL2082 chip, (c) – used CMOS
model [37]
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Fig. 4. Dependence of current gain on IsetB for ACA transistor
level simulation model from Fig. 3(c)

Table 3. Dimensions of transistors in model from Fig. 3(c)

Transistor W/L (µm)

M1–M4, M13–M16 10/0.54

M17, M18, M32–M35, M41, M42 30/0.54

M5-M12 37/0.54

M19–M26 111/0.54

M27–M31 37/0.9

M36–M40 10/0.9

input and output terminals are described as: IOUT+ =
−IOUT−

= gm(VIN+ − VIN−
) [28].

Figure 2 shows the dependence of gm parameter of the
used simulation model of the OTA (MOTA) element on
control current ISETgm

.

Dimensions of the transistors of the MOTA element
from Fig. 1(d) are summarized in Table 2.

The second used active element is an adjustable cur-
rent amplifier (ACA) [27, 28, 37, 38]. The schematic sym-
bol of this element is illustrated in Fig. 3(a). The ACA el-
ement have been implemented by behavioral model with
EL2082 chips (Fig. 3(b)). Current gain of the EL2082
chip is controlled by external DC voltage [40]. Figure 3(c)

shows used CMOS simulation model (implemented with

0.18µm CMOS technology) which was adopted from [37].

Supply voltage is ±1 V. Note that the current gain (B )

is controlled by current IsetB . The behavioral model of

the ACA consists of one input and output terminal. This

active element can be described by the following rela-

tion: IOUT = BIIN [28]. Note that CMOS model of the

ACA contains also inverting input terminal which is not

connected in the case of the proposed filter. The depen-

dence of current gain of the used transistor level simula-

tion model of the ACA element on control current IsetB
is shown in Fig. 4.

Table 3 summarizes determined dimensions of the

transistors of the ACA CMOS simulation model [37].

Table 4. Dimensions of transistors in model from Fig. 5(c)

Transistor W/L (µm)

M1, M2 8/1

M14–M16 2/1

M10, M11, M17–M23 5/1

M3–M9, M12, M13 20/1

The auxiliary active element is a Multiple-Output Cur-

rent Follower (MO-CF) [27, 36, 37]. Figure 5(a) shows its

schematic symbol. Possible behavioral implementation of

the MO-CF element using the UCC that is well-suited

for measurement purposes is shown in Fig. 5(b). Used

CMOS simulation model of the MO-CF (implemented

with 0.18 µm CMOS technology) can be seen in Fig. 5(c).

Supply voltage is ±1 V. Transistor dimensions are sum-

marized in Table 4 [36].

The MO-CF consists of one input and four output

terminals. Relations between input and output terminals

can be described by the following equations: IOUT1+ =

IOUT2+ = IIN , IOUT1− = IOUT2− = −IIN [36].
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Fig. 5. Multiple-Output Current Follower (MO-CF): (a) – schematic symbol, (b) – implementation by the UCC, (c) – used CMOS
model [36]
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3 Fractional-order Filter Proposal

The transfer function of a (1+α)-order fractional low-
pass filter is given by [2]

KLP
1+α(s) =

k1
sα(s+ k2) + k3

, (1)

where k1 , k2 and k3 are coefficients used to shape the
pass-band region while keeping the desired fractional-
order slope of attenuation of the stop-band region. Ac-
cording to [6], in order to obtain fractional-order transfer

functions with Butterworth characteristics, coefficients

k1 , k2 and k3 from equation (1) have the following val-
ues [2]:

k1 = 1 , k2 = 1.0683α2 + 0.161α+ 0.3324 ,

k3 = 0.2937α+ 0.71216 .
(2)

A second-order approximation of the term sα dis-
cussed in introductory part is given by [4]

sα ∼=
a0s

2 + a1s+ a2
a2s2 + a1s+ a0

. (3)

Using a second-order approximation of sα introduced
in [4], coefficients a0, a1, a2 become

a0 = 2(1 + α) , a1 = 5− α2, a2 = 2(1− α) . (4)
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Table 5. Summarization of parameters C, gm and B for selected values of the order when determining the coefficients a according to (4)

Order of the filter (1+α) 1.1 1.3 1.5 1.7 1.9

gm1 (µS) (ISETgm1 (µA)) 160 (4.90) 170 (5.38) 182 (5.67) 198 (6.20) 212 (6.80)

gm2 (µS) (ISETgm2 (µA)) 358 (13.00) 342 (11.68) 345 (11.96) 363 (13.29) 378 (13.65)

gm3 (µS) (ISETgm3 (µA)) 1130 (62.00) 906 (45.32) 817 (40.39) 810 (40.30) 903 (45.45)

B1 (–) (IsetB1 (µA)) 0.684 (27.50) 0.640 (25.20) 0.572 (21.88) 0.495 (18.28) 0.423 (15.10)

B2 (–) (IsetB1 (µA)) 0.253 (8.15) 0.193 (5.98) 0.131 (3.82) 0.072(1.94) 0.021 (0.51)

When using a second-order approximation presented
in [6], the values of a0, a1, a2 are

a0 = α2 + 3α+ 2 ,

a1 = 8− 2α2,

a2 = α2
− 3α+ 2 .

(5)

By substitution of (3) into (1), the (1+α)-order fractional
low-pass transfer function turns into

KLP
1+α(s)

∼=
k1
a0

a2s
2 + a1s+ a0

s3 + b2s2 + b1s+ b0
, (6)

where b0 = (a0k3 + a2k2)/a0 , b1 = [a1(k2 + k3) + a2] /a0
and b2 = (a1 + a0k2 + a2k3)/a0 .

Transfer function (6) represents third-order transfer
function that can be used for approximation of fractional-
order low-pass filter (FLPF). Structure in Fig. 6 illus-
trates a possible block diagram solution of given filter
when inverse follow-the-leader feedback (IFLF) topology
has been used.

The transfer function of the general structure repre-
sented by block diagram in Fig. 6 is

K(s) =
i(s)OUT

i(s)IN
=

B2

τ1
s2 +

B1

τ1τ2
s+

1

τ1τ2τ3

s3 +
1

τ1
s2 +

1

τ1τ2
s+

1

τ1τ2τ3

. (7)

The values of B and τ parameters can be determined
when comparing particular terms of (6) and (7).

The proposed filter based on topology shown in Fig. 7
has been designed based on the block diagram shown in
Fig. 6. It consists of three transconductance amplifiers
(two OTA and one MOTA elements), two ACAs, one aux-
iliary MO-CF and three grounded capacitors. It would
be possible to reduce the number of active elements by
two in case the parameters B1 and B2 were set solely
passively (by current dividers), however that would nar-
row the range of adjustability of these parameters and
also it would not be possible to control the order of the
filter electronically as shown later.

The transfer function of the proposed filter can be
described as

K(s) =
i(s)OUT

i(s)IN
=

=

gm3B2

C3

s2 +
gm2gm3B1

C2C3

s+
gm1gm2gm3

C1C2C3

s3 +
gm3

C3

s2 +
gm2gm3

C2C3

s+
gm1gm2gm3

C1C2C3

.

(8)

As mentioned earlier, most of the previously proposed
fractional-order filters do not provide the feature of the
electronic control (see Table 1). From the equation (8)
should be evident that the proposed filter offers ability
of the electronic control of its order by changing val-
ues of current transfers B1 , B2 together with values of
transconductances gm1 , gm2 and gm3 . The filter also pos-
sesses ability to electronically control the pole frequency
by adjusting values of transconductances gm1 , gm2 and
gm3 when maintaining values of current gains B1 , B2

unchanged.

4 Experimental Verification

To verify the functionality of the proposed filter, sim-
ulations and also experimental measurements were car-
ried out. Simulation models (used for simulations) and
practical implementation (used for lab measurements) of
OTA (MOTA), MO-CF and ACA elements were pre-
sented in Section 2. Simulation results were obtained us-
ing PSpice. Experimental verification was performed by
measurements of the implemented filter in the form of
Printed Circuit Board (PCB), using simple V/I, I/V con-
verters and a network analyser Agilent 4395A. The con-
verters were implemented using circuits OPA860 [41] and
OPA861 [42]. Obtained responses, which are included in
this paper, are non-inverting transfer functions.

The initial values of specific filter parameters and
passive parts for simulations and experimental measure-
ments have been selected as follows: the starting pole fre-
quency f0 = 100 kHz, initial value of order equal to 1.5
(α = 0.5), capacitors C1 = 820 pF, C2 = C3 = 560 pF.
The values of the capacitors are fixed for each of sim-
ulation and measurement setup. In case of experimen-
tal measurements, resistors representing value of 1/gm
(Fig. 1(c)) have been used and they were selected from
E24 series (parallel combination of two E24 series resis-
tors in some cases).

4.1 Comparison of the approximations

Analysis of the transfer function of the proposed filter
when using two different approximations represented by
coefficients a0 , a1 , a2 from (4) and also from (5) has
been made in order to determinate which coefficients will
result in more accurate results (for this particular circuit
structure).
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Table 6. Values of parameters C , gm and B for selected values of the order when using coefficients a from (5)

Order of the filter (1+α) 1.1 1.3 1.5 1.7 1.9

gm1 (µS) (ISETgm1 (µA)) 113 (3.26) 133 (3.95) 145 (4.43) 175 (5.39) 207 (6.74)

gm2 (µS) (ISETgm2 (µA)) 361 (12.77) 375 (13.29) 374 (13.27) 409 (15.38) 408 (15.36)

gm3 (µS) (ISETgm3 (µA)) 1510 (96.69) 1170 (66.32) 928 (46.10) 914 (45.45) 959 (48.68)

B1 (–) (IsetB1 (µA)) 0.760 (31.46) 0.700 (28.28) 0.610 (23.72) 0.515 (19.18) 0.428 (15.27)

B2 (–) (IsetB1 (µA)) 0.170 (5.15) 0.117 (3.37) 0.070 (1.88) 0.033 (0.81) 0.008 (0.17)

Table 7. Comparison of obtained slopes of attenuation and pole frequencies when using coefficients a from (4) and (5)

Order of the filter (1+α) 1.1 1.3 1.5 1.7 1.9

Theoretical slope of attenuation (dB/dec) 22.0 26.0 30.0 34.0 38.0

Slope of attenuation when using coefficients a from (4) (dB/dec) 20.0 22.6 27.2 31.8 37.2

Slope of attenuation when using coefficients a from (5) (dB/dec) 21.1 25.4 29.8 34.1 37.3

Theoretical pole frequency for selected orders (kHz) 100 100 100 100 100

Pole frequency when using coefficients a from (4) (kHz) 107.5 101 99 103 101.8

Pole frequency when using coefficients a from (5) (kHz) 104.6 107 103 108 107.4
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Fig. 9. Illustration of possibility to electronically control the order of the filter from Fig. 7 for particular orders 1.1, 1.3, 1.5, 1.7 and
1.9 when f0 = 100 kHz. Measurements (solid colored lines) vs simulations (dashed black lines) with CMOS models:(a) – magnitude

responses, (b) – phase responses
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For above stated initial values of the pole frequency,

order and capacitors, the transconductances and current

gains in depending on used coefficients of approximation

were calculated. Obtained values of transconductances

and current gains are clearly summarized in Tab. 5 and

Tab. 6. The tables also contain particular values of the

control currents of the OTA and ACA CMOS models for

calculated values of the transconductances and gains.

Table 5 summarizes calculated values of transconduc-

tances and current gains for five values of parameter α

when using coefficients a0 , a1 , a2 from (4).

The calculated values of transconductances and cur-

rent gains for selected values of parameter α and coeffi-

cients a0 , a1 , a2 from (5) are stated in Table 6.

A comparison of the simulation results for selected val-

ues of order (1+α) (1.1, 1.3, 1.5, 1.7, 1.9) when analysing

suitability of approximation represented by coefficients

a0, a1, a2 from (4) and (5) can be seen in Fig. 8. Transfer

functions obtained when applying coefficients from (4) are

illustrated as black dashed lines when colored solid lines

express results obtained when using (5). The dotted lines

represent the theoretical boundaries of investigated area.

Table 7 compares the obtained results regarding value

of attenuation and pole frequency. It can be seen that

the pole frequency of simulated transfer functions, which

are using coefficients a from (4), is closer to theoretical

values. The values of the slope of attenuation are slightly

different from the theoretical results. Nevertheless, when

using coefficients a from (5), the values of the slope of

attenuation of the transfer functions are closer to the

theoretical values as can be seen from Table 7. However,

the values of the pole frequency are slightly less accurate

in comparison with results for coefficients a from (4).

From the viewpoint of accuracy of values of the slope

of attenuation, coefficients a1, a2, a3 from (5) have been

used for further simulations and measurements.

4.2 Comparison of simulation and measurement results

for selected approximation

This chapter provides comparison of PSpice simula-

tions with CMOS models (Figs. 1, 3, 5) and measure-

ment results for approximation represented by coeffi-

cients from (5). During the measurements, active ele-

ments (OTAs, MO-CF, ACAs) were behaviourally mod-

elled as described in Section 2.

The ability to electronically control the order of the

proposed filter is demonstrated by results shown in

Fig. 9(a), (b). The ability to change the filter order has

been tested for five values of the order (1.1, 1.3, 1.5, 1.7,

1.9) when the pole frequency was 100 kHz.

Table 8 summarizes used values of 1/gm selected from

E24 series and current gains for chosen values of order of

the filter (1 + α).

Table 8. Summarization of used parameters C , 1/gm and B for

five values of order when f0 = 100 kHz

Order of the filter (1+α) 1.1 1.3 1.5 1.7 1.9

1/gm1 (kΩ) 8.889 7.500 6.800 5.739 4.764

1/gm2 (kΩ) 2.798 2.700 2.700 2.400 2.400

1/gm3 (kΩ) 0.667 0.847 1.100 1.100 1.048

B1 (–) 0.760 0.700 0.610 0.515 0.428

B2 (–) 0.170 0.117 0.070 0.033 0.008

From Fig. 9(a), it can be seen that the biggest dif-
ferences between simulations (black dashed lines) and
experimental measurements (colored solid lines) are at
high frequencies, i.e. out of our scope of interest and out
of range of validity of particular approximation. This is
given mainly because of bandwidth limitations of the used
active elements and also V/I, I/V converters and because
of that the input/output impedances of used active ele-
ments have significant parasitic components. That applies
also for all results presented below.

Values of the slope of attenuation for chosen values of
order obtained from the simulations (black dashed lines)
and experimental measurements (colored solid lines) are
compared in Table 9. From the table it is obvious that all
obtained simulated and measured values of the slope of
attenuation are in good agreement with the theory.

Figure 9(b) illustrates the phase responses of the filter
for selected orders when f0 = 100 kHz as is also described
above.

Table 10 contains comparison of obtained values of
the phase shift. Values of the phase shift for adjusted
pole frequency are mathematically described by −45(n+
α) (degrees). From obtained simulation and measured
results is obvious that values of phase shift, for values
of the order from 1.1 to 1.5, are relatively close to the
theoretical results. The differences between theoretical,
simulated and measured results, for orders 1.7 and 1.9,
are given by very low current gain of the parameter B2

as can be seen in the Table 8. It causes significant gain
error in case of measurement, especially, and therefore
also influences whole transfer characteristics.

The ability to electronically control the pole frequency
of the proposed filter has been tested for five different
frequencies. The pole frequencies chosen to illustrate this
ability are 50, 75, 100, 150 and 200 kHz when the order
of the filter is kept constant. As an example, we choose
α = 0.5, ie order of the filter is 1.5. Obtained simula-
tion (black dashed lines) and measurement (colored solid
lines) results are shown in Fig. 10(a), (b). Calculated val-
ues of the passive parts and 1/gm for chosen values of f0
are stated in Table 11. Note that the current gains were
constant for all considered values of the pole frequency.

Table 12 compares the theoretical values of the pole
frequency with pole frequencies obtained from simula-
tions and experimental measurement. It can be seen that
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Fig. 10. Illustration of possibility to electronically control the pole frequency of the filter from Fig. 7 for five selected values of the
pole frequency when order of the filter was 1.5. Measurement (solid colored lines) vs CMOS simulation (dashed black lines) results:

(a) – Magnitude responses, (b) – Phase responses

Table 9. Summarization of theoretical, simulated and measured values of the slope of attenuation when changing the order of the filter

Order of the filter (1+α) 1.1 1.3 1.5 1.7 1.9

Theoretical slope of attenuation (dB/dec) 22.0 26.0 30.0 34.0 38.0

Simulated slope of attenuation (dB/dec) 21.0 25.4 29.8 34.1 36.2

Measured slope of attenuation (dB/dec) 21.9 26.0 30.4 34.7 37.5

Table 10. Comparison of obtained values of the phase shift for five values of the order

Order of the filter (1+α) 1.1 1.3 1.5 1.7 1.9

Theoretical values of phase shift (degrees) @ 100 kHz –49.5 –58.5 –67.5 –76.5 –85.5

Simulated values of phase shift (degrees) @ 100 kHz –47.2 –55.3 –65.7 –68.6 –75.5

Measured values of phase shift (degrees) @ 100 kHz –43.3 –52.4 –64.0 –62.0 –69.4

Table 11. Used values of parameters C , 1/gm and B for selected f0 when order of the filter was 1.5

Theoretical pole frequency (kHz) 50 75 100 150 200

1/gm1 (kΩ) 13.500 9.100 6.800 4.550 3.400

1/gm2 (kΩ) 5.500 3.600 2.700 1.800 1.300

1/gm3 (kΩ) 2.150 1.500 1.100 0.750 0.550

B1 (–) 0.610

B2 (–) 0.070

Table 12. Theoretical, simulated and measured values of the pole frequency when order of the filter was 1.5

Theoretical pole frequency (kHz) 50.0 75.0 100.0 150.0 200.0

Simulated pole frequency (kHz) 52.0 76.2 104.6 154.2 207.7

Measured pole frequency (kHz) 62.1 85.0 110.7 167.0 235.6

Table 13. Comparison of obtained values of the phase shift for five values of the pole frequency when the order of the filter was 1.5

Theoretical pole frequency (kHz) 50.0 75.0 100.0 150.0 200.0

Theoretical values of phase shift (degrees) – 67.5

Simulated values of phase shift (degrees) –69.2 –67.6 –65.7 –67.1 –63.5

Measured values of phase shift (degrees) –62.2 –60.3 –64.0 –60.4 –59.0
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the values of the pole frequency obtained from simula-
tions and measurements are slightly higher than the the-
oretical values, yet the results prove the actual ability to
electronically control the pole frequency when maintain-
ing the desired order of the filter. It is caused by parasitics
of used active elements and by inaccuracy of the values
of passive components.

The phase responses of the fractional-order filter are
presented in Fig. 10(b). The obtained values of the phase
shift from simulations and measurements, for particular
values of f0 , are compared in Table 13. Slight differences
between simulated and measured results are seen from
results in Table 13 and also from Figure 10(b).

5 Conclusion

The simulation and more importantly also experimen-
tal results confirm the design correctness and function-
ality of the proposed filter approximating (1 + α)-order
low-pass filter. Chosen simulation and experimental re-
sults are illustrated in the paper and a comparison is
made. The ability to electronically adjust the order and
pole frequency of the proposed filter has been proved and
discussed. Note that both this abilities are not available
frequently in case of already published papers. The ob-
tained values of order from simulations and experimental
measurements are close to the theory and also mutually
match very well. The obtained values of pole frequency
are slightly higher than the theoretical values, nonethe-
less they also prove the ability to electronically control
the pole frequency. Thanks to electronic control of both
discussed parameters, particular shape and also pole fre-
quency can be fine-tuned in final application of the filter.
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