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Abstract: This paper deals with quantitative analysis of prosodic impairment in idiopathic Parkin-
son’s disease (PD). Experimental dataset consisted of 97 PD patients and 55 healthy speakers. The
prosodic features expressing monopitch, monoloudness and speech rate deficits are extracted from
stress-modified reading task. Classification accuracies of 70.71% for females, 70.03% for males,
and 63.20% for a mixture of both gender were achieved. According to permutation test (1000 permu-
tations, α = 0.01), the models were shown statistically significant. Promising potential of prosodic
features to identify HD was confirmed.
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1 INTRODUCTION

Parkinson’s disease (PD) is a chronic neurodegenerative disorder [1] affecting approximately 1.5%
of people aged over 65 years [1]. It is associated with a substantial reduction of dopaminergic neu-
rons especially in substancia nigra pars compacta [2] resulting into variety of motor and non-motor
symptoms. According to the previous studies [3], approximately 60–90% of PD patients suffer from
perceptually distinctive motor speech disorder referred to as hypokinetic dysarthria (HD) [4].

HD affects many aspects of speech, namely the area of phonation, articulation, prosody, speech flu-
ency and faciokinesis [5, 6, 7, 8]. Detrimental impact of HD on human verbal communication and
daily social life has been observed [9]. Prosodic impairment (dysprosody) is a common speech flaw
in HD. It is mainly characterized by variable speech rate, reduced variations in pitch (monopitch) and
intensity (monoloudness) [10] leading to unnatural and unintelligible speech. Dysprosody has been
observed even in the early stages of PD [11].

At present, PD can not be definitely cured. Therefore, the current medicine is focused on treating
its cardinal motor symptoms. However, effectiveness of the treatment depends upon the stage of the
disease during which it is initiated [6]. Therefore, the accurate and early diagnosis is necessary for the
clinicians to efficiently treat the patients. Nevertheless, the early diagnosis of PD requires a complex
understanding of its manifestations on human body. Acoustic analysis of dysprosody is non-invasive,
paraclinical method that has a great potential to provide clinicians an objective assessment of motor
symptoms of PD.

The aim of this work is to evaluate methods of quantitative analysis of dysprosody that can identify
HD and indirectly presence of PD. For this purpose, a variety of prosodic speech features are calcu-
lated. These features assess monopitch, monoloudness and speech rate deficits in HD. The features
are extracted from the stress-modified reading task specially designed to capture dysprosody. Conse-
quently, the features are used to train the classification model capable of HD identification. The rest of
this paper is organized as follows. Section 2 presents the dataset and the methodology. Experimental
results are presented in section 3, and section 4 provides discussion and some conclusions.
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2 MATERIALS AND METHODS

2.1 DATA ACQUISITION

In this work, we investigated the speech recording acquired from 152 Czech native speakers. The
speakers comprised 97 PD patients (53 men/44 women; mean age 67.52 ± 8.29 years; mean disease
duration 7.80 ± 4.42 years) and 55 healthy speakers (29 men/22 women; mean age 63.96 ± 9.21
years). The participants were enrolled at the First Department of Neurology, St. Anne’s University
Hospital in Brno, Czech Republic. The healthy controls (HC) had no history or presence of speech
disorders, brain diseases, including neurological and psychiatric illnesses. All patients were examined
on their regular dopaminergic medication approximately 1 hour after the L-dopa dose. All patients
signed an informed consent form that had been approved by the Ethics Committee of St. Anne’s
University Hospital in Brno.

The speech task was composed of 3 sentences (indicative, imperative, and interrogative). It comprised
22 words (87 characters). Regarding speech prosody, the task requires the stress-control in order to
emphasize the emotions according to the sentences. The participants were asker to read the following
sentences: in Czech – Ted’ musíš být chvíli trpělivý, než to dokončíme. Už mě to nebaví, dej mi už
konečně pokoj! Tak co, jak to dopadlo?, English translation – Now, you have to be patient until we
finish it. I’m tired of it already, leave me alone! So, how did it go? The speech signals were sampled
with sampling frequency fs = 48kHz and subsequently downsampled to 16kHz.

2.2 SPEECH FEATURES

Following our recent research of parkinsonian dysprosody [10], we extracted prosodic speech fea-
tures that quantify: a) monopitch; b) monoloudness; c) speech rate abnormalities. Completely, we
computed Standard Deviation of fundamental frequency (F0S), Relative Standard Deviation of F0
(F0r. S), Variation Range of F0 (F0R), Relative Variation Range of F0 (F0r. R), Standard Devia-
tion of Squared Energy Operator/Teager-Kaiser Energy Operator (SEOS/TEOS), Relative Standard
Deviation of SEO/TEO (SEOr. S/TEOr. S), Variation Range of SEO/TEO (SEOR/TEOR), Relative
Variation Range of SEO/TEO (SEOr. R/TEOr. R), Total Speech Time (TST), Net Speech Time (NST),
Total Pause Time (TPT), Total Speech Rate (TSR), Net Speech Rate (NSR), Total Pause Time (pauses
longer than 50 ms) (TPT 50), Articulation Rate (AR) and SPeech Index of Rhytmicity (SPIR). These
features are conventional in the field of dysarthric speech analysis [13].

To extract F0 contour, Praat acoustic analysis software [14] was used. To extract the rest of speech
features, Neurological Disorder Analysis Tool (NDAT) [6, 12] written in MATLAB and developed at
the Brno University of Technology was used.

2.3 STATISTICAL ANALYSIS

The features were normalized before the analysis on a per-feature basis to have 0 mean and a standard
deviation of 1. Random Forests (RF) [15] classifier was used to investigate the power of prosodic fea-
tures to discriminate healthy and dysarthric speech. Forward selection approach (modified version of
Sequential Floating Forward Selection [16] algorithm) was employed to find a non-redundant combi-
nation of the features with the maximum clinical information about deterioration of speech prosody
in HD. Matthew’s correlation coefficient [17] (MCC = T P×T N +FP×FN/

√
N) was computed as

a criterion of the feature selection. N = (T P+FP)(T P+FN)(T N +FP)(T N +FN), T P (true posi-
tive) and FP (false positive) represents the number of correctly identified PD subjects and a number
of subjects identified as PD, but being healthy. Similarly, T N (true negative) and FN (false negative)
represent the total number of correctly identified HC, and PD patients identified as HC. Additionally,
classification accuracy (ACC), sensitivity (SEN) and specificity (SPE) were computed.
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Table 1: Statistical analysis of the prosodic features computed for the analysed speech task.

Feat. G MCC ACC [%] SEN [%] SPE [%] p No.

F1
F 0.3064 ± 0.3507 64.3810 ± 15.6312 67.5000 ± 25.8775 60.3333 ± 30.8405 0.0990 2
M 0.2129 ± 0.3776 61.7460 ± 17.7139 63.8000 ± 21.0281 57.6667 ± 31.2640 0.1280 2
A 0.1458 ± 0.2642 58.3714 ± 13.1348 61.6000 ± 17.2150 52.7333 ± 19.6071 0.1560 2

F2
F 0.3995 ± 0.2622 69.6667 ± 12.0142 72.0000 ± 21.2132 65.6667 ± 26.6007 0.0240 3
M 0.2412 ± 0.4092 63.3016 ± 18.2413 64.7333 ± 20.6810 59.6667 ± 33.5182 0.0360 4
A 0.2004 ± 0.2135 61.9512 ± 9.1573 66.3556 ± 13.5546 53.8667 ± 21.5747 0.1150 2

F3
F 0.1492 ± 0.3861 58.9048 ± 15.3989 63.5000 ± 19.6980 51.6667 ± 35.9910 0.4570 2
M 0.2430 ± 0.3193 64.4444 ± 14.1973 68.7333 ± 18.6493 55.6667 ± 30.4185 0.0650 1
A 0.1300 ± 0.2503 58.1595 ± 12.3655 62.0222 ± 17.1806 51.1333 ± 21.8800 0.6840 2

F4
F 0.4229 ± 0.3514 70.7143 ± 16.2431 71.0000 ± 19.1397 70.3333 ± 30.9139 0.0001 1
M 0.3708 ± 0.3446 70.0317 ± 16.0522 73.5333 ± 19.2891 63.0000 ± 29.4103 0.0120 5
A 0.2497 ± 0.2586 63.2024 ± 12.4402 65.0667 ± 14.9209 60.0000 ± 21.0711 0.0130 3

Table notation: G – gender ([F] females, [M] males, [A] combination of both genders); F1 – monopitch features; F2 – monoloudness
features; F3 – speech rate features; F4 – general prosodic features; MCC – Matthew’s correlation coefficient; ACC – classification accu-
racy; SEN – classification sensitivity; SPE – classification specificity; No. – Number of selected features; p – p-values of classification
calculated by permutation test (1000 permutations).

In this work, the classifier validation was conducted using 10-fold validation approach with 5 repeti-
tions. Furthermore, to determine if the classification results were obtained by chance or by the actual
relationship between the class labels and the data values, non-parametric statistical test referred to as
permutation test was used [18]. To achieve sufficient statistical relevancy, 1000 permutations was per-
formed. Significance level α was chosen equal to 0.01. Classification models with p values smaller
than α was considered statistically significant.

3 RESULTS

In this work, we analysed dysprosody in patients with idiopathic PD. For this purpose, a set of
prosodic speech features quantifying monopitch, monoloudness, and speech rate disturbances was
extracted [10]. Non-relevant features were excluded by forward selection algorithm. For determin-
ing the power of the features to distinguish between healthy and speech with prosodic impairment,
random forests classifier in a supervised learning setup (10-fold validation/5 repetitions) was used.
Additionally, 1000 permutations were performed during the evaluation of the models. The results of
classification process are summarized in Table 1.

As can be seen from the table, the best classification performance in terms of ACC was achieved
by F4 − ACC = 70.71% using a single feature (TEOr. R) extracted from the reading of female
participants. This model was also proven to be statistically relevant (p<α). Regarding male speakers,
almost identical classification performance was achieved F4 − ACC = 70.00%, however the model
was trained with 5 features (F0S, TPT, F0r. R, SEOS, SEOr. R) and also less statistically significant.
Combining both genders in one group resulted into classification model of the following performance
F4 − ACC = 63.20% (TEOR, TST, TSR). Of note is the fact that all prosodic submodels (F1 – F3)
did not achieve sufficient statistical significance (see Table 1 p>α). On the contrary, the model based
on general prosodic features (monopitch, monoloudness and speech rate) was shown to be statistically
significant.

The results of this paper show the promising potential of prosodic features for quantification of HD
in PD. However, subsequent research is warranted to fully understand HD and its manifestation on
human speech prosody. Moreover, despite relatively low classification accuracy of the prosodic sub-
models, further investigation of monopitch, monoloudness and speech rate deficits can lead to devel-
opment of more robust speech features and therefore more precise HD identification.
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4 CONCLUSION

In this paper, we performed a quantitative analysis of dysprosody in a set of 97 patients with id-
iopathic PD and 55 HC using the speech task based on the stress-modified reading of indicative,
interrogative and imperative sentences. The presence of prosodic impairment in patients with PD was
observed, which is in accordance with the previous research [19, 13, 20]. To emphasize the possible
gender-related discrepancies in prosodic deterioration in HD, the analysis was conducted for both
gender separately and also for a mixture of both. Based on the results of this study, we conclude that
dysprosody in PD is likely to be gender-differentiated. This observation was considered reasonable
taking into account the anatomic differences (e.g. length of the vocal tract, etc.) between the speech
production system of men and women.

We showed that acoustic analysis of dysprosody can discriminate healthy and dysarthric speech with
the classification accuracy over 70 %. Important thing to note is the simplicity and clinical inter-
pretability of selected speech features. In our opinion, these facts compensate the lack of classifi-
cation performance compared to more sophisticated methods of vocal pathology identification, such
as the non-linear features used to quantify dysphonia [21]. The future investigation in this field of
science should lead to a fusion of the two approaches to comprehensively describe the manifestation
of PD on human speech production.

In our future study we will focus on deeper statistical analysis of dysprosody in patients with PD.
We aim to estimate PD severity using the analysis of prosodic features. Furthermore, a longitudinal
study of prosodic impairment in HD is planned. Deeper understanding of dysprosody in PD may
lead to development of more robust features capable of assessing motor and non-motor aspects of
PD and consequently result into precise, early diagnosis, disease tracking and efficiency of treatment
monitoring.
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