
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF CONTROL AND INSTRUMENTATION
ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY

DEEP LEARNING ALGORITHMS ON EMBEDDED DEVICES
ALGORITMY HLUBOKÉHO UČENÍ NA EMBEDDED PLATFORMĚ

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Bc. Jaroslav Hadzima

SUPERVISOR
VEDOUCÍ PRÁCE

Ing. Karel Horák, Ph.D.

BRNO 2019

Abstract

This paper describes currently widely used Deep Learning architectures and methods for

object detection and classification in video, with intention of using them on embedded

systems. We will cover steps and reasoning when choosing the most appropriate

embedded hardware for our application. Our test application consists of vehicle detection

and free parking space detection using Deep learning methods, all wrapped under name

Smart car park. This application provides monitoring of vehicle presence in car park and

if they occupy parking spot or not. All this is expected to be done using embedded device.

Later, there will be covered configuration steps for our embedded device with emphasis

on hardware optimization for speed. We will provide comparison of available inference

models, which will be rated mostly in categories like speed or F1 score, which have the

biggest impact in our application. The best candidate will be selected and used for testing

of our application.

Keywords

Machine Learning, Deep Learning, Embedded systems, Raspberry Pi 3 Model B, Object

detection, Car detection, Smart car park

Abstrakt

Táto práca popisuje v súčastnosti široko používané architektúry a modely pre Hlboké

Učenie, riešiace úlohu detekcie a klasifikácie objektov vo videu. Dôraz tu bude kladený

na ich použiteľnosť na vstavaných zariadeniach. Postupne preberieme kroky

a odvôvodňovanie pri výbere najlepšieho vstavaného systému pre našu aplikáciu.

Ukážková aplikáci pozostáva hlavne z detekcie vozidiel a detekcie voľných parkovacích

miest s využitím algoritmov Hlbokého Učenia. Táto aplikácia umožňuje monitorovať

počet vozidiel, nachádzajúcich sa na parkovisku a zároveň rozhodnúť, či sa nachádzajú

na prakovacom mieste alebo nie. Následne tu budú prebrané kroky nutné ku konfigurácii

zariadenia s dôrazom na optimalizáciu hardvéru pre dosiahnutie čo najväčšej rýchlosti.

V ďaľšej časti bude poskytnuté porovnanie vybraných modelov, ktoré budú porovnávané

hlavne v kategóriách ako rýchlosť alebo F1 skóre. Najlepší kandidát bude použitý na

riešenie našej aplikácie a následné testovanie jej vlastností s názvom Inteligentné

parkovisko.

Kľúčové slová

Strojové učenie, Hlboké učenie, Vstavané systémy, Raspberry Pi 3 Model B, Detekcia

objektov, Detekcia vozidiel, Inteligentné parkovisko

Rozšírený abstrakt

Úvod
Systémy strojového učenia nachádzajú čoraz väčšie a väčšie uplatnenie v širokom

rozsahu odborov. Jedným z týchto odborov je práve aj spracovanie obrazu, ktoré bude

náplňou tejto práce. Algoritmy Hlbokého učenia sú špeciálnym typom Strojového učenia,

kde sú algoritmy inšpirované štruktúrou a funkciou mozgu. Sú charakteristické

schopnosťou učiť sa podobne ako človek.

V tejto práci využíváme práve algoritmy Hlbokého učenia pre riešenie problému

detekcie vozidiel na parkovisku, pojatou vytvorením aplikácie Inteligentného parkoviska.

Táto aplikácia musí dokázať správne lokalizovať vozidlá na parkovisku a mala by byť

schopná správne vyhodnotiť obsadenosti parkovacích miest.

Riešenie pri tom bude aplikované na vstavaný system. To predstavuje výzvu,

pretože vstavané systémy nevynikajú výpočetnou silou. Ani zďaleka sa nemôžu

porovnávať so systémami využívajúcimi počítač s výkonnou grafickou kartou alebo

dokonca komerčnými cloudovými riešeniami, využívajúcimi desiatky prepojených

zariadení. Vstavané zariadenia väčšinou nevynikajú parametrami ako je pamäť a hlavne

RAM. Modely pre Hlboké učenie môžu byť celkom rozsiahle. Môžu mať veľké množstvo

vrstiev a každá vrstva zvyšuje pamäťové nároky. Musíme teda vhodne voliť zariadenie,

na ktorom budeme našu aplikáciu testovať, aby bolo schopné nahrať celý model do RAM.

Popis riešenia
Ako bolo spomenuté vyššie, našou vybranou aplikáciou je práve Inteligentné parkovisko.

To znamená, že očakávame jednu alebo malé množstvo statických kamier umiestnených

vo vyšších častiach budovy, pozorujúcich plochu parkoviska. Prvý problém, ktorý sme

museli vyriešiť, bol výber vhodného embedded resp. vstavaného zariadenia. Na trhu sa v

súčastnosti nachádza veľké množstvo zariadení, no nie všetky sú vhodné na náš typ úlohy.

Niektoré sú zbytočne príliš výkonné a predstavovali by iba finančnú stratu. Iné nemajú

dostatočné parametre, ktoré by boli výrazne obmedzujúcim faktorom. V tejto práci sme

diskutovali použitie spolu 5 hlavných vstavaných systémov s rôznymi parametrami alebo

ich kombinácie. Vyberali sme hlavne riešenia formou CPU/GPU/TPU. Výsledným

vybraným kandidátom sa stalo Raspberry Pi 3 Model B, pretože obsahuje najlepší pomer

výkonu a ceny a má vhodné parametre pre našu aplikáciu.

V práci sme postupne demonštrovali konfiguráciu zariadenia. Následne sme ukázali

proces učenia vybraných modelov Hlbokého učenia. Trénovanie prebiehalo na počítači

s GPU, pretože trénovanie na vstavanom zariadení je zatiaľ príliš časovo náročné.

Následne sme vyhodnotili vlastnosti jednotlivých predom vybratých modelov. V našej

aplikácii sú dôležitými faktormi hlavne rýchlosť a kvalita spracovania. Model

s najlepšími vlastnosťami bol práve ssd_mobilenet_v1_coco, ktorý dosahuje

uspokojivých 1.58 FPS a má F1 skóre 0.72. Nejedná sa však o najrýchlejší alebo

najpresnejší model. Niektoré modely boli rýchlejšie, avšak ich presnosť nebola

dostatočná, nakoľko mali vysoké množstvo falošných detekcií. Na druhej strane, niektoré

modely mali veľmi vysokú presnosť, no ich rýchlosť bola veľmi malá.

Pred tým, ako sme začali riešiť samotnú aplikáciu, pozreli sme sa na možnosti

hardvérovej optimalizácie pre dosiahnutie čo najlepšieho výkonu. Úspešne sa nám

podarilo skrátiť dobu nahrávania modelu do pamäte RAM a zároveň aj čas inferencie.

S využitím vybraného modelu na optimalizovanom zariadení sme začali riešiť samotnú

aplikáciu. Táto aplikácia musí byť schopná čo najpresnejšie detekovať vozidlá na

parkovisku a vyhodnocovať štatistiky. Keďže sme pozorovali značné množstvo

falošných detekcií, zakomponovali sme korekciu maskou, vyhraničujúcou plochu

samotného parkoviska. Túto masku sme získali metódami počítačového videnia,

konkretnejšie rozdielovými snímkovými metódami v kombinácii so znalosťou o polohe

objektu z objektového detektoru. Následne sme museli nájsť konkrétne parkovacie

miesta, aby sme mohli vôbec vyhodnocovať ich obsadenosť. Dokázali sme to pomocou

štatistických metód, kde sme zaznamenávali najčastejšiu polohu detekovaných objektov

v čase vytvorením tzv. Heat mapy. Po dostatočne dlhom zázname sme našli najsilnejšie

oblasti a prehlásili ich za parkovacie miesta. Následne sme mohli prejsť k poslednej časti,

ktorá pozostávala z vyhodnocovania obsadenosti parkoviska. Riešili sme to

porovnávaním prekrytosti oblastí pre parkovacie miesta a aktuálne detekovanými

vozidlami.

Výsledky
Táto práca prezentuje porovnanie aktuálne používaných metód v oblasti Hlbokého

učenia. Taktiež sa zaoberá problematikou aplikácie týchto metód na vstavané systémy.

Porovnávame tu v súčasnosti často využívané hardvérové riešenia a následne

prezentujeme celý proces od učenia až po inferenciu na vybranom zariadení, ktoré bolo

optimalizované pre vykonávanie danej funkcie. Porovnávame tu viacero vybraných

modelov a vyhodnocujeme ich vlastnosti.

Hlavným výsledkom tejto práce je dokázanie, že aj vstavané zariadenia, ktoré

neovplývajú výkonom porovnateľným s komerčnými riešeniami sú vhodným kandidátom

na problematiku detekcie objektov pomocou metód Hlbokého učenia. Ukázalo sa že

existujú modely, ktoré sú schopné dosiahnuť viac ako 8 FPS. Pri zlepšení vlastností

samotného modelu pre znížšnie počtu falošných detekcií môže byť tento model

atraktívnym riešením napríklad v priemysle.

Reference

Printed version:

HADZIMA, Jaroslav. Algoritmy hlubokého učení na embedded platformě. Brno, 2019.
Dostupné také z: https://www.vutbr.cz/studenti/zav-prace/detail/119387. Diplomová práce.
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, Ústav
automatizace a měřicí techniky. Vedoucí práce Karel Horák.

Electronic version:

HADZIMA, Jaroslav. Algoritmy hlubokého učení na embedded platformě [online]. Brno,
2019 [cit. 2019-05-09]. Dostupné z: https://www.vutbr.cz/studenti/zav-prace/detail/119387.
Diplomová práce. Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních
technologií, Ústav automatizace a měřicí techniky. Vedoucí práce Karel Horák.

https://www.vutbr.cz/studenti/zav-prace/detail/119387
https://www.vutbr.cz/studenti/zav-prace/detail/119387

Declaration

Hereby I declare that I have written my thesis on Deep Learning Algorithms on

Embedded Devices independently, under the supervision of Ing. Karel Horák, Ph.D and

using literature and other information sources that are all properly cited and included in

the list of references.

 Furthermore, as author of this diploma thesis, I declare that in connection with the

creation of this thesis I did not infringe the copyrights of third parties, in particular I did

not interfere illegally in others copyrights and I am fully aware of the consequences of

violation of Section 11 and following of Copyright Act No. 121/2000 Coll., including

possible criminal-law consequences arising from the provisions of Part Two, Title VI.

Part 4 of the Criminal Law No. 40/2009 Coll.

In Brno on 10th May 2019 ……………………………………
 Bc. Jaroslav Hadzima

Acknowledgements

I would like to begin by expressing my sincerest gratitude to my thesis supervisor Ing.

Karel Horák, Ph.D for igniting my interest in Computer Vision and his assistance in the

completion of this thesis. Furthermore, I would like to thank my family, friends and my

beautiful girlfriend for their support and perstintant support.

In Brno on 10th May 2019 ……………………………………
 Bc. Jaroslav Hadzima

8

Contents

Introduction .. 12

1 Machine learning .. 13

1.1 Types of machine learning .. 14

1.1.1 Supervised learning ... 14

1.1.2 Unsupervised learning .. 15

1.1.3 Reinforcement learning .. 15

2 Deep Learning .. 16

2.1 Difference between Machine Learning and Deep Learning 16

2.2 Basics of Deep Learning ... 18

2.2.1 Common types of layers ... 20

2.2.2 Commonly used Neural network architectures .. 23

2.2.3 Training process and datasets ... 30

3 Embedded systems .. 32

3.1 Types of hardware for embedded devices .. 34

3.1.1 CPU - Central Processing unit ... 36

3.1.2 GPU - Graphics Processing Unit ... 36

3.1.3 FPGA - Field programmable Array ... 37

3.1.4 ASIC - Application Specific Integrated Circuits ... 37

3.2 Commonly used hardware for Deep Learning solutions 38

3.2.1 STM32F407VG MCU ... 39

3.2.2 Raspberry Pi 3 Model B .. 40

3.2.3 NVIDIA Jetson TX2 .. 42

3.2.4 Intel NCSM2450.DK1 Movidius USB Accelerator 43

3.2.5 Coral Google Edge TPU USB Accelerator and Dev Board 44

3.3 Choosing the best option for our application .. 46

4 Model application - Smart park... 47

4.1 Motivation ... 47

4.2 Specification of the problem... 47

5 Device configuration ... 49

5.1 Brief device setup ... 49

5.2 CPU overclocking .. 53

5.3 Increasing swap space .. 54

5.4 Increasing SD Card read/write speed... 56

5.5 Overheating problems .. 57

6 Model Training .. 61

6.1 Data gathering .. 62

6.2 Labelling process .. 62

9

6.3 Choosing models for training ... 63

6.4 Model performance comparison... 66

7 Application .. 71

7.1 Auto-configuration ... 71

7.1.1 Obtaining accessible vehicle space as a mask .. 72

7.1.2 Obtaining park spots locations .. 75

7.2 Parking places monitoring .. 79

7.3 Posible additional improvements .. 81

8 Conclusion and future work ... 82

9 List of abbreviations .. 89

List of attachments ... 90

List of tables

Table 1: Comparison of different Datasets 31

Table 2: Specifications for STM32F407VG MCU [49] 40

Table 3: Specifications for Raspberry Pi 3 Model B and camera module v2 [50] 41

Table 4: NVIDIA Jetson TX2 Specifications [51] 42

Table 5: Intel Movidius: requirements on host computer [52] 43

Table 6: Specifications for Google Edge TPU USB Accelerator [56] 44

Table 7: Specifications for Edge TPU Dev Board (Base board) [56] 45

Table 8: Specifications for Edge TPU Dev Board (EDGE TPU MODULE - SOM) [56] 45

Table 9: Model results before and after overclocking 54

Table 10: Model results for different swap locations 55

Table 11: SD card speed test before and after overclocking 56

Table 12: Effect of overclocking SD card speed on model loading time 56

Table 13: Stress test for RPi3 Stable temperatures 60

Table 14: Training process statistics 65

Table 15: DL models benchmark - our car park 67

Table 16: DL models benchmark - general object detector 69

10

List of pictures

Figure 1: Difference between AI, ML and DL [1] ... 13

Figure 2: Diagram showing the most well known subgroups of ML algorithms [3,4,5] 15

Figure 3: Difference between ML and DL [7] ... 17

Figure 4: Difference between best-fit, Underfit and Overfit [9] ... 18

Figure 5: Fully-connected feed forward layer [11] ... 20

Figure 6: Convolution and Cross-correlation [12] ... 20

Figure 7: Basic idea behind convolution layer [13] ... 21

Figure 8: Maxpooling function [15] .. 22

Figure 9: Dropout layer [16] .. 22

Figure 10: Validation accuracy for Inception and Batch normalized variants vs the number of steps [17]

 ... 23

Figure 11: Convolutional Neural Network architecture [18] .. 24

Figure 12: Sliding vindow in OverFeat [20] .. 24

Figure 13: RCNN - Regions with CNN [21] .. 25

Figure 14: Fast R-CNN architecture [22] .. 25

Figure 15: Faster R-CNN [21] .. 26

Figure 16: Feature maps of region-based Fully Convolutional Networks [25] 26

Figure 17: R-FCN architecture [25] .. 27

Figure 18: Mask R-CNN architecture [26] .. 27

Figure 19: Architecture of SSD [27] .. 28

Figure 20: Yolo architecture [27] ... 28

Figure 21: Yolo - predicted bounding boxes [28] ... 29

Figure 22: YOLO v3 architecture [27] .. 29

Figure 23: Visual representation of objects in goat detector example ... 30

Figure 24: ILSVRC'16[30] cars dataset preview ... 31

Figure 25: Examples of embedded devices ... 32

Figure 26: Comparison of matrix multiplication tasks (gemm) and other in neural networks

[38] .. 34

Figure 27: Trend in Deep Learning [39] .. 35

Figure 28: Comparison of different hardware options [42] .. 35

Figure 29: Comparisson of CPU and GPU structure [43] .. 36

Figure 30: Performance to watts consumed comparison compared to CPU/TPU [45] 37

Figure 31: Google TPU2 [48] ... 38

Figure 32: STM32F407VG MCU [49] ... 39

Figure 33: Raspberry Pi 3 Model B [50] ... 40

Figure 34: NVIDIA Jetson TX2 [51] ... 42

Figure 35: Intel NCSM2450.DK1 Movidius [52] .. 43

Figure 36: Google Edge TPU USB Accelerator [56] ... 44

Figure 37: Edge TPU Dev Board (Base board + SOC) [56] .. 45

Figure 38: Final outlook for our Raspberry Pi in case with no cooling .. 46

Figure 39: Car park in the morning (left) and later during peak hours (right) 48

Figure 40: RPI config main-menu [51] ... 50

Figure 41: Configuring interfaces [51] ... 50

file:///G:/10/Diplomka/DIPLOMKA/DP_v35.docx%23_Toc8376835

11

Figure 42: Testing ssdlite_mobilenet_v2_coco model using Tensorflow .. 52

Figure 43: Results from command sysbench before and after overclocking 53

Figure 44: Stress test - CPU usage ... 57

Figure 45: Stress testing without cooling .. 58

Figure 46: Official Raspberry Pi 3 Model B heatsink and our custom made 58

Figure 47: Stress testing with large passive aluminium heatsink .. 59

Figure 48: Stress testing with large passive aluminium heatsink and fan 60

Figure 49: Final appearance for our Raspberry Pi with heatsink and active cooler 60

Figure 50: Training process on CPU ... 61

Figure 51:Training process on GPU ... 62

Figure 52: Labelling process in program labelImg... 63

Figure 53: COCO - pretrained models [60] .. 63

Figure 54: Example of training statistics provided by Tensorboard for

embedded_ssd_mobilenet_v1_coco .. 65

Figure 55: Confussion matrix [65] .. 66

Figure 56: Model comparison - Our car park .. 68

Figure 57: Comparison of F1 score and FPS for different DL models - Our car park 68

Figure 58: Sample for embedded_ssd_v1_coco detection showing false detections 69

Figure 59: Model comparison - general car detector ... 70

Figure 60: Comparison of F1 score and FPS for different DL models - general car detections 70

Figure 61: Application: auto-configuration dataflow ... 71

Figure 62: False detections on billboards by car detector .. 72

Figure 63: Application: Accessible space finder dataflow .. 72

Figure 64: Visualisation for Accessible space mask finding .. 73

Figure 65: Car park with movement of both cars and people .. 74

Figure 66: Process of obtaining accessible space mask after 10s, 1m, 5m and 30m 75

Figure 67: Application: Line finder data flow ... 75

Figure 68: Grayscale image and found contours from canny detector ... 76

Figure 69: Proces of marking a)correct lines and b)noise points .. 76

Figure 70: Grayscale image and found parking lines .. 77

Figure 71: Wrong parking examples .. 77

Figure 72: Found vehicles in image by object detector and generated heat map 78

Figure 73: Thresholder heat map with found centre points ... 78

Figure 74: Application: Accessible space finder dataflow .. 79

Figure 75: Free park spaces monitoring with added legend ... 80

Figure 76: Average vehicle count during weekday on our car park .. 80

Figure 77: a) Grid of Lucas-kanade point trackers and b) monitored vehicles with assigned ID 81

12

INTRODUCTION

We live in time of great technical advances. New methods and systems are being

developed every year, which help make peoples life easier and more comfortable. We

have learned how to program a machine to do exactly what we wanted them to do. It

might be as complex, as programmer’s imagination allow. However, these machines are

mostly hard-coded. If situation changes only a little bit, these machines would probably

be no longer applicable. Need for an intelligent system capable of adapting to changing

situations resulted into algorithms, that can learn in similar way students learn from their

teacher. No direct programming would be necessary. We would only show what needs to

be done, not how and machine would create their own approach.

Deep learning algorithms are subset of Machine learning algorithms. First chapter

will briefly cover general information about types and use cases of machine learning

algorithms as a whole and acts as basic introduction to Deep learning methods, which are

covered in second chapter. There are dozens of different types and applications for Deep

learning algorithms so we will be going only over the most well-known.

Third chapter covers general information about embedded devices used for Deep

Learning applications. This chapter covers purpose, hardware and software needs for such

systems. Different types of Deep Learning algorithms require different hardware and

software configurations, but they are all very computationally demanding. Real time

computing generally requires more complex and more computationally efficient systems.

We will provide short comparison of popular embedded devices commonly used for Deep

learning applications.

Fourth chapter discusses reasons and motivation when choosing model application

for our tests. We will choose the best embedded device for our model application and

describe steps needed for device setup and additional hardware optimization later in fifth

chapter.

Sixth chapter describes entire training process of neural network. Second part of

this chapter provides benchmark done on our embedded device, evaluating applicable

models. Seventh chapter then uses winning model and demonstrates our chosen

application. Wi will try to achieve results, sufficient for use in real world applications.

Brief summary is included at the end reviewing achieved results and provides

opinions on current and possibly future character of this work.

13

1 MACHINE LEARNING

Terms like Artificial Intelligence (AI), Machine learning (ML) and Deep learning (DL)

are nowadays used interchangeably in most media. For example, when Google

DeepMind’s AlphaGo program defeated South Korean Master Lee Se-dol in the board

game Go in March 2016, all three terms were used to describe how AlphaGo won.[1]

They are not the same, although they all overlap in certain areas. The most basic

explanation for these terms could be as follows:

Artificial Intelligence - Technique used to create a program that mimics human

behaviour. Applied commonly to projects, where designed systems show ability to

reason, learn, generalize or find meaning. [2]

Machine Learning - Uses statistical methods which allow machines to improve with

experience - to learn. Machine Learning is a subset of Artificial intelligence. A great

definition was provided by Tom M. Mitchell in [3]:

“A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P, if its performance at tasks in T,

as measured by P, improves with experience E.”

Deep Learning - Is subset of Machine Learning. Deep Learning algorithms are perhaps

best exemplified by multi-layer neural networks, which try to make sense from imputed

unsorted data based on learnt traits. Uses basic concepts from biology of the brain. Deep

Learning is useful when there is quantity of data.

Figure 1: Difference between AI, ML and DL [1]

14

As we can see, Machine learning is only a small branch of Artificial Intelligence and its

purpose is to learn from data using statistical methods. Not everything is programmed.

Certain parts could use mechanisms like neural networks, k-Nearest neighbours, SVM or

one of many other. Great example, as shown in image above is a spam filter. Easy solution

using ML could look similar to this: We would take as many spam and normal messages,

as we could find and use them for training, flagging spam messages. Our system may for

example find certain words that are common in a spam messages and not in normal

conversations. These words will be thus given more weight when determining a spam and

non-spam message. Later when a new message comes, our system looks on word

composition and based on weights for elemental words computes average score. If

average score is over certain threshold, message is automatically deleted or sent to spam

folder. Many algorithms and principles could be used for implementation.

1.1 Types of machine learning

When talking about machine learning, we can differentiate between three fundamental

types, where each behaves differently, needs different data and could be used in different

situations.

1.1.1 Supervised learning

In supervised training an algorithm generates a function that maps inputs to desired

output. Dataset is required to contain examples of both inputs and outputs. Its name comes

from the fact that the whole process is controlled using provided labels from supervisor.

Supervised learning can be divided into two subgroups:

Classification - The most common type of supervised learning. Often, the goal is to get

a machine to learn a classification problem that we have created. Machine assigns

category to input data. For example, OCR Digit classification is fed with a picture of a

number and it classifies or “label” it as the right number. [4]

Regression - As name suggest, in this scenario we generalize input data and want to make

a statistical prediction estimating future input data. Example could be weather

temperature forecasting or stock values prediction. Because this type of model predicts

some form of a quantity, its skill has to be reported as error. A simple root mean squared

error is typical for this type of error calculation. [4]

15

1.1.2 Unsupervised learning

This type of learning models has knowledge of inputs but labelled output examples are

unavailable. These machines should be able to draw inference from non-labelled data

without reference or knowledge of output. By drawing a conclusion, we usually mean

discovering underlying structure in data. This is a harder problem, because we expect

machines to do something and we don’t tell them how.

Two main subcategories are:

Pattern recognition and data clustering - Process of dividing and grouping similar data

sample together, thus allowing us to find similarity in data. Can be used later for

supervised training.

Reducing data dimensionality - Means decreasing dimensions generated by number of

features provided. We may reduce computing constraints caused by lack of computing

power by reducing features map dimension count. Reduction of time required for

categorization for the next computational processes is an attractive factor.

1.1.3 Reinforcement learning

Presents us with an Agent, that learns how to behave in observed world. Every action

generates impact on the environment and environment provides feedback, either positive

or negative. Based on positiveness of the feedback, Agent learns rules of the observed

world and how to behave to generate maximally positive feedback. This type of learning

is not as common as other two types mentioned before. Typical applications are

automatized game playing or robot path navigation.

Figure 2: Diagram showing the most well known subgroups of ML algorithms [3,4,5]

16

2 DEEP LEARNING

Before we jump straight into Deep Learning methods, it is surely useful to define what

Deep Learning actually means. There are many high-level descriptions that can be found

online. Between them, we can clearly see two key-points that remains in probably every

definition [6]:

− Models consist of multiple layers or stages of nonlinear information

processing.

− Usage of methods for supervised or unsupervised learning from feature

representation at successively higher, more abstract layer.

When writing about Deep Learning, it is common for a literature to actually refer to

convolutional neural networks. Definitions don’t specify, that it has to be only

convolutional neural networks, but they are the most used ones. Similarly, for purposes

of this paper we will refer to convolutional neural networks as Deep Learning.

Deep Learnings popularity has been steadily increasing over the last two decades.

But why is that? Probably the most significant reasons for this are improvements in the

fields of machine learning and signal/images/information processing, increased

efficiency and speed of chips (using more capable CPUs and GPUs) but also human

curiosity. Process of training Neural network (NN) become undoubtedly many times

faster than it was in the past. Training sets could thus become accordingly larger which

resulted in increase in NNs precision. These advances allowed DL methods to employ

complex compositional nonlinear functions, learn distributed and hierarchical feature

representations and make effective use of both labelled and unlabelled data. It has not

been that long time ago, that for the first time a real image-based computing using NN

could be achieved. It is safe to predict, that with constant increases in technology levels,

the usage of DL will be employed in countless applications worldwide and used as an

attractive alternative to current common solutions. [6]

2.1 Difference between Machine Learning and Deep

Learning

Deep learning is specialized form of ML, subset if you want. With ML you start with

data, let’s say image of a car. We have to manually chose which features should be

extracted using any feature extractor and classifying them with some classifier. Features

to be extracted are known beforehand. Vector of given features is then given to the

classifier to classify an object. Just to be complete, as a classifier could be used also a

NN. The key idea in basic ML algorithms is a separation of steps in the whole procedure.

If we don’t like output from individual steps, we can tweak or correct parameters of

elemental parts.

17

On the other hand, in DL you feed whole raw data to the NN that does all steps that

machine learning system had to separate. Output from DL NN is an classified object. We

can’t tell, nor influence what features are being extracted and used or how classifier

operates when it comes to choosing important features. Networks learn to perform a

specific task automatically. One of their great advantage over other ML methods is that

they tend to increase their performance with increase of training data even when ML

methods already stagnates.

Figure 3: Difference between ML and DL [7]

Another aspect to consider is the speed, their complexity and requirements. If we have

small set of data and an easier problem, ML methods will most likely represent a better

fit than DL methods. They also require less computational power than DL. Also, if we

are able to wisely specify small set of important features, ML algorithms can be relatively

fast. If we really want to use DL methods, we have to be aware of burdens they present.

We need an extensive amount of data, possibly thousands of pictures, that have to be

manually annotated. Also, training a model may take weeks or months for older

computers with slow GPU/CPU. Generally having faster GPU/CPU means faster learning

so if we don’t have access to such devices, we are often left with ML algorithms or using

often pricey online cloud learning alternatives.

Examples of DL can be seen everywhere around us. Most of us even came into

contact with them in some form or another on everyday basis. Just think about every

bigger website like Facebook, YouTube, eBay or Amazon. They all use recommender

systems for relevant element propagation. These systems allow retailers to offer

personalized recommendations based on your previous purchases or browsing activity.

Ads can use them too. This is why if you merely think about something and in the very

next page reload it is in the ads, as they were reading your mind. Between other less

visible use cases belongs object tracking with applied object detection and classification,

prediction of a market trends or risk calculation. Google Maps uses data from network

connected smartphones to calculate traffic and suggests the fastest route. Also, Google

presents tools for speech recognition.

18

We will go with Deep Learning algorithms in more detail later in text so just to point out

some interesting examples of Deep Learning in image recognition could be seen on sites

like Facebook, where it recommends tagging your friend on your photos. Other examples

are third party programs with image classification or camera surveillance. Massive

corporation giants like Google use DL in their image search recognition. Additionally,

Google provides a way to restore or enhance image details using extrapolation and

knowledge from thousands similar images we post daily on the internet. Most of us are

thankful for those tools but rarely care enough to investigate how these tools work. In

practice, DL excels everywhere where identifying patterns in unstructured data is

required. Data could represent media such as video, images, sound or other signals, text

and sometimes even time series. According to [8], the top 10 use cases for revenue

generation incorporating DL are:

1. Static image recognition, classification, and tagging;

2. Machine/vehicular object detection/identification/avoidance;

3. Patient data processing;

4. Algorithmic trading strategy for performance improvement;

5. Converting paperwork into digital data;

6. Medical image analysis;

7. Localization and mapping;

8. Sentiment analysis;

9. Social media publishing and management;

10. Intelligent recruitment and HR systems.

11. As expected, image recognition and automotive use is in the first two places.

2.2 Basics of Deep Learning

When it comes to DL, in general, we are trying to increase probability of correct

estimation. If our model is trained on small dataset, so that objects are not recognized at

all or even objects of different classes are detected as class members, we are calling that

underfitting. On the other hand, if we train our model too much, it becomes overly

specific. We call that state overfitting. Somewhere between underfitting and overfitting

should be our desired sweet spot.

Figure 4: Difference between best-fit, Underfit and Overfit [9]

19

Testing NNs accuracy is crucial during learning phase. It is a time to stop the learning

phase or modify architecture if accuracy start to drop. Speed of the learning process and

overall accuracy is determined by many factors such as dataset, type of layers used and

activation functions, learning coefficient and many others. Utilizing right layers typically

means significant difference in accuracy.

In NN, we can find many different types of layers. It’s important to realize that

every layer has its own specific purpose. In this paragraph, NN layers and their basic

meaning will be discussed. There are three general types of layers in NN based on their

location in architecture.

Input layer has passive nodes that only shift input values to the output of its neurons. In

essence, acts as a distributor of data for our NN.

Output layer contains active nodes. We can modify, how output from our NN behaves,

depending on training outputs from NN. Commonly, they are done as classifiers. If we

want only binary classification, describing if an object is present within input data, we

have to use only one neuron acting as binary logical element. If we expect classifier to

recognize different types of objects, we commonly use amount of output neurons equal

to the number of recognizable objects.

Hidden layer is a common name for every layer that is between input and output layer.

Hidden layer is hidden from interface of the NN. We know what we put on the input and

what outputs mean, but we don’t have a deeper understanding why neurons learned to

behave certain way and what model it created, therefore these states of neurons are hidden

from us in technical sense.

We can see all three types of layers in figure 5, activation functions and their biases are

also shown. Next section covers the most common types of hidden layers with their

definitions.

20

2.2.1 Common types of layers

Fully-connected feed forward layer [10] - As name suggests, every neuron in this layer

is connected with every neuron from layer before and after. Used most commonly in the

last few layers of Convolutional Neural Network (CNN). This layer looks at output from

previous layer representing set of features (feature maps), then takes the most relevant

features and propagates them to the output. Size of output matrix from this layer is equal

to number of neurons in this layer.

Figure 5: Fully-connected feed forward layer [11]

Convolutional layer [10] - Inspired from vison nerves deep inside the brain which are

able to generalize far better than Fully-connected layers. Output from this layer is a

feature map. Operation for one-dimensional vector of input data is computed as:

 𝑥(𝑖) ∗ 𝑤(𝑖) = ∑ 𝑥(𝑚) ∙ 𝑤(𝑖 − 𝑚)

𝑚

 = ∑ 𝑥(𝑖 − 𝑚) ∙ 𝑤(𝑚) (1.)

𝑚

Where x is our data and w is a sliding kernel (or filter). We can see continuous version of

Convolution on the right side in the picture 6 and its equivalent in Cross-correlation.

Discrete version would look similar. And for two-dimensional data as:

 𝑆𝑐𝑣(𝑖, 𝑗) = 𝐼(𝑖, 𝑗) ∗ 𝐾(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑚, 𝑛) ∙ 𝐾(𝑖 − 𝑚, 𝑗 − 𝑛) (2.)

𝑛𝑚

Figure 6: Convolution and Cross-correlation [12]

21

Where S(i,j) is a picture after convolution with pixel in row i and column j. I is our original

image and K is kernel window with size 𝑀 × 𝑁. In neural networks, cross-correlation

replaces convolution with function:

 𝑆𝑐𝑐(𝑖, 𝑗) = 𝐼(𝑖, 𝑗) ∗ 𝐾(𝑖, 𝑗) = ∑ ∑ 𝐼∗(𝑚, 𝑛) ∙ 𝐾(𝑚 + 𝑖, 𝑛 + 𝑗) (3.)

𝑛𝑚

Figure 7: Basic idea behind convolution layer [13]

If we consider scenarios where our kernel peaks outside input matrix, we have two

possibilities. Either we zero pad around our original image with half the size of our kernel

and use normal convolution or we won’t use convolution on side pixels at all. If we choose

second option, we end up limited in detecting surface. Choosing a right option depend on

input image size and kernel size.

Pooling layer [14] - Pooling layer is used in NN to reduce data input amount. Sometimes

referred to as Down-sampling or Subsampling layer. This layer effectively reduces data

for following layers. It is favourable, because computational power needed for an

application is reduced for architectures with smaller neuron count and their corresponding

weights. Overfitting is also greatly reduced, because NN no longer learns on small

unimportant features in image. Function of convolutional layer could be summed up in

these steps:

1. Select submatrix of whole matrix of data, typically 2x2, 3x3.

2. Compute max value (maxpooling) or mean (meanpooling) or average

(averagepooling) or min (minpooling).

3. Computed value put into new grid with smaller size in the place of input

submatrix.

This selects only interesting features from input layer and effectively down-samples data

size. Principle of maxpooling layer is shown in the picture below and its position in the

whole NN architecture.

22

Figure 8: Maxpooling function [15]

Dropout layer [14] - Behaving more like an algorithm that ignores certain percentual

portion of input data (sets their activations to zero). Can be used to reduce overfitting,

because model is trained for each iteration with different set of data. With correct dropout

rate we can simulate bigger training data set.

Figure 9: Dropout layer [16]

Flatten layer [14]- Flatten layer is used for reshaping multidimensional data into most

commonly one-dimensional vector. As we can see from example, three-dimensional

matrix of size 2 × 2 × 2 is reshaped into one dimensional vector with size 8 × 1 × 1.

 𝐹𝑙𝑎𝑡𝑡𝑒𝑛 ([[
1 2
3 4

] , [
5 6
7 8

]]) = [1,2,3,4,5,6,7,8] (4.)

Batch normalization layer (BN) [13, 17] - This layer normalizes values in mini-batches

(all activation functions in all locations) so that we obey convolutional properties. During

the inference the BN transform applies the same linear transformation to each activation

map. BN Ensures that activations have average 0 and standard deviation 1. This means

that most of the values lies somewhere around zero.

We can look on training pass through one layer as transformation consisting of

affine transformation followed by element wise nonlinearity, where we add Batch

normalization right before the nonlinearity. We can see function below, where z is output

from our layer, W are weights, u is input data vector, b is bias and g is nonlinearity

(activation function).

 𝑧 = 𝑔(𝐵𝑁(𝑊 ∙ 𝑢 + 𝑏)) (5.)

23

Since we normalized 𝑊 ∙ 𝑢 + 𝑏, the bias can be ignored because its effect is cancelled by

subsequent mean subtraction, thus forming:

 𝑧 = 𝑔(𝐵𝑁(𝑊 ∙ 𝑢)) (6.)

 This layer most commonly sits between convolutional layer and activation layer.

Figure 10: Validation accuracy for Inception and Batch normalized variants vs the

number of steps [17]

Thanks to this layer, we can use bigger learning coefficient and care less about correct

weights initialization. Technically usable as replacement for a dropout layer as it adds

noise into normalization, thus promoting regularization. In practice it is best to use both.

Statistics show that this type of layer greatly increases NN success rate and training speed.

2.2.2 Commonly used Neural network architectures
At first, people were using methods like Viola-Jones framework (2001) or Histogram of

oriented gradients (2005), which did not use NN. Both were relatively complex with

simple reasoning behind them. As computer components got more and more powerful,

first techniques employing NN emerged. We went from learning for months for a simple

NN to learning in a matter of minutes or hours. With these improvements came stable

implementations of popular NN architectures. These architectures let us use model with

possibly years of research and apply them in with relatively few steps. This option is

incomparably faster than investing months and creating our own from scratch.

CNN - Convolutional Neural Network (2012) [18, 19]

CNN uses sliding window that scans entire picture and for every image window the

classifier computes probability that an object is present. There is enormous amount of

classifications but most of them has small confidence score. Confidence score represent

probability or in other words confidence, that object of that category is present. This

method works, but is slow due to high amount of comparisons. Thanks to high amount of

computations, CNN can be hardly used as real time classifier.

24

Algorithm:

1. Input image is cut into image cuts.

2. CNN classifier is applied on every image cut. This classifier computes confidence

score for every category that can be present in the picture.

3. Classified tags are stored only if confidence score is higher than predefined

threshold.

4. Rectangles around objects with the highest confidence scores are drawn.

OverFeat (2013) [19, 20]

We don’t know size of object in picture. Object could easily cover as much as whole

screen or as little as few pixels. OverFeat therefore modifies CNN to use many differently

sized sliding windows. That prolongates the whole process but increase accuracy. First

published version contained 6 differently sized sliding windows.

Figure 12: Sliding vindow in OverFeat [20]

R-CNN - Regions with CNN (2014) [21, 19]

More sophisticated method than CNN. Sliding windows are no longer used. Instead a

process called selective searching happens right after image input. This makes it longer

to train because we can’t just feed annotated images we want. We have to annotate every

extracted bounding box.

Figure 11: Convolutional Neural Network architecture [18]

25

Algorithm:

1. Find borders for all areas with similar context and create bounding boxes around

them.

2. For every bounding box, extract features with CNN.

3. Use CNN or SVM for classification.

Figure 13: RCNN - Regions with CNN [21]

Results were relatively satisfactory, but this algorithm had one critical flaw. To train you

first had to generate proposals for training dataset. That means possibly thousands of

smaller proposals in images. On top of this created proposal dataset was later used CNN.

Fast R-CNN (2015) [22, 19]

Consecutive R-CNN with better accuracy, also faster while training and testing. As it

turned out Fast R-CNNs biggest disadvantage is selective search that was its strength at

the very beginning. Selective search is relatively slow and this method uses selective

search for generating bounding boxes with objects but instead of sending them separately

for classification, Fast R-CNN uses CNN on a picture as a whole. Later uses both regions

of interest and feature map for CNN classification.

Figure 14: Fast R-CNN architecture [22]

26

Faster R-CNN (2015) [23, 24, 19]

Improved and much faster form of R-CNN. Removes selective search and instead uses

layers for region proposals - Region Proposal Network. Output from Region Proposal

Network are objects with their own confidence score. This confidence score characterizes

how confident NN is that an object is present in the region. On these objects is then

applied approach from Fast R-CNN. This architecture is completely end-to-end trainable.

Figure 15: Faster R-CNN [21]

R-FCN - Region-based Fully Convolutional Networks (2016) [25, 19]

Another improvement from Faster R-CN presents R-FCN. This type of NN uses only

convolutional network in all parts. Amount of work needed for every region of interest is

greatly reduced in this architecture. Feature map is sent to two parallel branches. One

branch is computing regions of interest and the other one contains score maps. We can

look on score map as matrix evaluating match of one of many classes object with input

image. In the next picture a principle of a score maps is shown. Bounding box region is

divided into a matrix with size 3 × 3. Every element from this matrix contain its feature

map and compares feature map from comparing classes matrix element feature map on

the same position.

Figure 16: Feature maps of region-based Fully Convolutional Networks [25]

27

If we use feature map as a whole, we may not get the best match success rate. If we divide

feature map into N subblocks and correlate them all with matrix feature maps for different

objects on the same positions, we get better understanding of image scene. Each subblock

has its own vote. Common number of subblocks N is 9.

Figure 17: R-FCN architecture [25]

R-FCN architecture is shown in the picture above, which ich very similar with Faster R-

CNN but use only convolutional layers.

Mask R-CNN (2017) [26, 19]

Uses similar two-way architecture like Faster R-CNN. Region Proposal Network (RPN)

part of the network is identical with Faster R-CNN (prediction of bounding boxes),

second parallel part with predicted class Mask R-CNN computes also its binary mask for

every Region of Interest. Mask is trained with fully connected NN. It helps in pixel

learning and searching pixel-oriented match of class based on similarity. Very satisfying

object segmentation was obtained. Its main disadvantage is speed degradation and way

harder and more time-consuming image labelling, as image mask has to be used.

Figure 18: Mask R-CNN architecture [26]

28

SSD - Single Shot Multi-Box Detector (2015) [27, 19]

All methods mentioned before share one crucial characteristic. They divide whole process

into two parts. First part proposes regions for Bounding boxes and second part uses

classifiers to classify object class. These methods are relatively simple and precise but

pay for this with undesirably slow computation speeds, resulting in small FPS (frames

per second). This makes them basically inapplicable on embedded devices. SSD keeps

this in mind and tries to overcome that problems. Only one NN is used for both tasks.

Instead of NN that creates Bounding boxes suggestions, predefined search-for boxes are

created. On these predefined boxes is then used second part of NN which uses feature

maps from convolutional layers, where small convolutional kernels are used. These

feature maps evaluate probability that an object is present. These predictions are used as

bounding boxes for classification. Many different activation layers and differently sized

kernels are used for feature map prediction.

Figure 19: Architecture of SSD [27]

YOLO- You Only Look Once (2016), YOLO v2 (2017), YOLO v3 (2018) [28, 19]

Probably the most publicly well-known type of neural network architecture is YOLO.

There are many variations including mobile version Tiny Yolo. Yolo uses only one

network for a whole input image. This was a new concept at the time of its introduction.

Till this time, almost every DL detector used some form of sliding window. Whole input

image is divided into regions and then bounding boxes for objects are predicted with their

respective probability for every bounding box. There may be hundreds of predictions but

most of them has very little predicted probability, therefore after using threshold of

around 0.5 or above only a few dominant remained.

Figure 20: Yolo architecture [27]

29

Yolo let image pass through CNN only once. This makes it possible for the first time to

accomplish real-time application. This version has high success rate on its own and with

every later version become even better.

Figure 21: Yolo - predicted bounding boxes [28]

Yolo V2 uses architecture of darknet with 19 layers for bounding box prediction and

another 11 layers for classification. Its biggest disadvantage was quality loss of

predictions for small objects. Yolo V2 combats this limitation by using feature maps from

earlier phases in later layers. [29]

Year after Yolo V2, a new version was revealed. Yolo V3 became the fastest NN

used with highest accuracy. But it didn’t last long and new versions of SSD and RetinaNet

surpassed Yolo V3 in success rate. Yolo V3 uses 53 layers from Darknet for features

extraction and another 53 for detection. Great advantage over first versions is increased

detection rate for smaller objects. [27]

Figure 22: YOLO v3 architecture [27]

30

2.2.3 Training process and datasets
As we have already mentioned, DL are part of supervised algorithms family. That means

we have to have training pictures in which we know if objects are present and their

location. Next image demonstrates what we would need, if were training binary classifier

that detects goats. We have to provide bounding boxes representing their locations and

annotate them with name of their class. In this example it is not really needed, since we

are only detecting if object is present or not in image, not its type.

Figure 23: Visual representation of objects in goat detector example

When choosing a dataset, we have to define strictly what we want to detect, so we can

pick best suitable option. If we use small dataset, accuracy may not be as good as

expected, so we have to have big enough and relatively specific dataset to our

detection/classification problem. In reality it may be challenging to create your own

dataset large enough to train NN. In that case we have several options, like asking people

that worked on a similar project to provide their datasets, taking our own images or using

online search engines and annotating every single picture manually or download a whole

annotated dataset from one of many online dataset stores. From mentioned, only first and

third possibility are really feasible when it comes to large models (thousands of data

elements needed). It should be enough to get just few hundred images and annotate them

manually for binary classification problem and not as complex architectures.

Right dataset might present noticeable increase in prediction correctness (high

positive predictive value and sensitivity, low error). That means using broad variation of

objects we want to recognize but with enough specificity. To better describe why, let’s

imagine that we are modelling classical problem, recognition of cars in Czech Republic.

We want to use pictures of different cars from all the different angles and under different

light conditions. If we forget to take into consideration factors like mentioned light

conditions, we might end up with object classifier that works great during the day, but

31

not at all during the night or when its foggy. Currently, there are these most commonly

used online datasets:

Table 1: Comparison of different Datasets

Dataset name No of pictures Main classes Last updated

ILSVRC'16 [30] 456K 200 2014

COCO [31] 200K 80 2017

Pascal Voc [32] 12K 20 2012

VGGFace2 [33] 3,3M Only faces -1 2012

KITTI Vision [34] 15K Only cars - 3 2012

Stanford Car dataset [35] 16K Only cars -196 2012

There are many more but these shows predominately in online search engines at the

moment and offer not only images but also their labels. Car and face/person detection are

common problems in computer vision field, that’s why they have a whole dataset

dedicated to them. Worth noticing in the table is ILSVRC'16 (Large Scale Visual

Recognition Challenge 2016). It is only a subset of whole Imagenets dataset. This smaller

dataset was used for competition in object detection and classification benchmark that

happens every year. Saying “smaller“ may induce feeling that this dataset was not big

enough but having millions of unlabelled images, thousands of labelled and hundreds of

classes is far more than plenty. For example, a few pictures from common class cars from

this dataset looks like this:

Figure 24: ILSVRC'16[30] cars dataset preview

After obtaining enough data, we usually split them in 9:1 or 8:2 ratio for training and

testing dataset. Testing dataset is used for model accuracy testing while training. We

should not use the same images for training and testing dataset.

32

3 EMBEDDED SYSTEMS

In our everyday life, we came into contact with many various electronical devices in one

form or other. Some of them are relatively simple devices used for single tasks like

calculators, refrigerators or elevators. Some of them are on the other hand as complex as

smartphones, computers or tablets that can be programmed with little to no effort to

execute many different tasks.

Because this chapter is dedicated to embedded systems, it is relevant to mention that

most of currently used electronic devices are embedded devices. But it is equally

important to recognize that not all devices are embedded. Embedded devices lie

somewhere in between plain “stupid” electronical devices that were built without any

complex logic like older washing machines with no display, processor or logical units

and on the other side complex machines like computers or smartphones. To understand

why some devices are called embedded and other are not, it’s useful to distinguish what

embedded devices actually are and what are their characteristics. Definitions for

embedded systems may differ a bit but the main characteristics remains the same. These

characteristics are:

− Contains its own processing unit

− Built to perform one specific task or very small number of tasks

− Has its own memory

This means that smartphones or computers are counted out from list of embedded devices

because of their multipurpose usage. Using computer-like systems in the place reserved

for embedded devices may mean increase in flexibility for the price of higher cost and

physical size. Generally, simpler solution with embedded devices are preferred by

manufacturers over usually redundant complex units. There are just too many redundant

parts that increase price of final solution. It is although often hard to categorize if a device

is still embedded or general-purpose computer.

Figure 25: Examples of embedded devices

33

Because there are many different HW configurations, we have to be extra cautious.

Picking first device that seems promising might not be the best, even with the best

intentions. Choosing equally good SW and HW is a must. If we pick a HW with not

enough memory and weak CPU, not even superiorly good SW will do much. The same

goes other way around too. We can’t expect miracles if we take unoptimized code that

wastefully uses resources.

 Embedded systems may typically use microprocessor or microcontroller.

Difference between them is that the microprocessor is contained on board of

microcontroller with additional components like RAM, ROM, flash, GPIO pins or other

peripheries. Microcontroller is like a miniature computer on its own. It does not require

any additional circuits as it has all components needed. Microcontrollers can be called a

heart of embedded devices. Microprocessor on its own contains only CPU, cache, dram

memory and sometimes GPU. They are dependent on other additional circuits to work,

as they lack all other peripheries. Depending whether we want to build our device on our

own or use one already pre-built, we can choose between microcontrollers or

microprocessors which need additional HW. [36]

It is useful to ask a few questions when deciding on choosing an embedded

device. These questions, taking both software and hardware into consideration, should

be asked before trying to find feasible solution:

− How much RAM/ROM/HDD/flash we need and should we use CPU, GPU, FPGA,

ASIC or TPU?

− Will this device be powered from battery or wall socket?

− Will our device offer direct connection with USB/ethernet/can… or wirelessly?

− What will be the maximum final price?

− Is there a prediction for devices interconnection for increase in performance?

− Are there any possibilities for remote control?

− Should our device have OS installed?

− What problem are we going to solve with ML methods and will this device be

sufficient?

− What algorithms/methods/framework/architecture for our project is required and

is there support for this device?

− How robust/big the final architecture will be?

− Should be training phase done on the same or different devices?

− What is the required speed of computation/FPS?

− How often are we going to change programmed model architecture?

Before looking for answers it is often helpful to do a web research and find compatible

solutions solving problems similar to ours. It is almost always considerably faster to

tweak well tested logic and utilizing it to our desired functionality than to create a new

one completely from scratch. [37]

34

3.1 Types of hardware for embedded devices

For common embedded devices, speed is a major problem as they are minimized versions

of their larger relatives. Computers can get up to a few dozen FPS in tasks like image

recognition and DL. A model designed to run on multi-GPU/TPU system will simply not

run effectively on embedded system that uses typically only simple processor. These

embedded devices lack hardware support for computing matrices multiplication, which

are the most common type of operation in neural networks.

Figure 26: Comparison of matrix multiplication tasks (gemm) and other in neural

networks [38]

However, that should not stop developers from trying to intercorporate techniques as NN

onto smaller embedded devices. In today’s technology advances, it’s possible to use

frameworks for neural networks on embedded boards like Raspberry Pi.

Using an NN on embedded device require a lot of RAM, because models are loaded

in memory. This may present problem for devices with low RAM. Another problem we

have in NNs is that we have to create smaller architectures to keep it as fast as possible.

If we make NN architecture smaller, it may lead to underfitting problem. Also, training

NN architecture on embedded device would take days or weeks. That’s why we can see

numerous times in literature that training is done on more powerful machines.

Data memory is also a huge problem as images with higher resolution takes more

memory. For example, picture with resolution 1280 × 720 (720𝑝) will have around

3.7Mb in uncompressed TIFF CMYK 4x8 bit/pixel. Now take into consideration video

stream with 25-30 FPS. We will definitely need additional memory device like SSD disk

if we plan to save recordings. Having 640 × 480 (480𝑝) could be considered luxury. We

may get few FPS when using DL methods on embedded device anyway.

Today’s trend in neural networks characterized as “Bigger is better“. Embedded

devices are not accommodated for this trend. Next picture demonstrates budget of device

with its expected recognition rate.

35

Figure 27: Trend in Deep Learning [39]

As this project possess limited resources, low cost is a preferable option. But before we

start with choosing the best fitting device, we have to make a clarification on different

HW types, that may be used. In general, we will be talking about a CPU/GPU/FPGA and

ASIC. Each type of processing unit has its own advantages and disadvantages,

characteristics, considerations and uses. For our designated purpose are needed

characteristics like computational capability, latency, cost and energy-efficiency.

Quantifying hardware performance is typically done using number of MAC operations

performed in given time unit - Millions of Connections Per Second (MCPS), weights

updating is quantified with Millions of Connections Updates Per Second (MCUPS).

These two measurements correspond to traditional Mega Floating-point Operations per

Second (MFLOPS) measured on conventional systems. [40, 41]

Figure 28: Comparison of different hardware options [42]

36

3.1.1 CPU - Central Processing unit
CPUs are referred to as brains of computers, smartphones, laptops or tablets. They are

vital component. Because of how many different use cases they should be doing, they

must be as flexible as possible. Increased flexibility causes decrease in the efficiency and

performance for specific task. CPU is supposed to handle big workloads. In their essence,

they contain mostly less than 10 cores, typically Dual Core, Quad Core, Hexa Core, Octa

Core. These cores have large cache memory and each core is capable of running few

threads at the time. CPU is a scalar machine, which means it processes instructions step

by step, in other worlds, optimized for serial computations. [43] Object detection may

require parallel computation for optimal performance. Computers may contain

combinations of CPUs ang GPUS for better performance.

Figure 29: Comparisson of CPU and GPU structure [43]

3.1.2 GPU - Graphics Processing Unit
These processing units are currently the most widely used HW for NN. GPUs are

designed for high level of parallelism and high memory bandwidth. With GPU we are

trading flexibility for efficiency and performance with processing graphics intense

workloads. Strength of GPUs lies in energy-efficient matrix multiplication and

convolutions. They offload CPUs from computationally intense work. Because ML and

DL requires tremendous amount of iterations of matrix multiplication and convolution

while learning, GPUs shows advantage over CPUs. GPUs are also good at fetching large

amounts of memory, contains hundreds of cores that can handle thousands of threads

simultaneously. In article [44] we can see comparison between GPU with 56 processors

that each has 32 cores (total sum of 1792 cores) running at 1.48 GHz versus 16 core CPU

running at 3.0 GHz. They both perform multiply-add instructions. GPU has peak

performance of 5300 GFLOPS and CPU only 96 GFLOPS. This superior floating-point

performance was achieved thanks to large number of cores. GPU generally provide an

order of magnitude over CPU in processing power with the same cost. [44] Problem with

typical applications using GPUs is a need to accompany them with CPU. CPU can run

without GPU, but GPU without CPU can’t, they are typically unable to run operating

37

system like Windows, Linux or Unix. This means more energy and physical space needed

and price will likely double.

Figure 30: Performance to watts consumed comparison compared to CPU/TPU [45]

3.1.3 FPGA - Field programmable Array
FPGA uses hardware descriptive language HDL and can be programmed or reconfigured

basically infinitely. As name suggests they contains matrix of configurable logic blocks

connected via programmable interconnections. Loading programs to FPGAs takes a lot

of time which could be perceived as time wasting but their strength is in lower power

consumption for the same performance as GPU, which can be important in certain

applications like self-driving cars or IoT. They are not as good at floating-point based

operations as GPUs but still can provide quick results for uploaded pre-trained models

stored in FPGA memory. As data could be directly received and processed inline, a lot of

resources are saved from what would normally consume running host application. FPGAs

are suitable for real time applications. FPGAs flexibility aids in delivering deterministic

low latency and high bandwidth. As they are reconfigurable and can be reconfigured

basically infinite times, they become viable option for algorithms using topology

adaptation mechanisms. FPGAs were designed for customizability when running

irregular parallelism and custom data types. If trend continues, FPGAs will become

applicable for running more NN applications. As of today, their price is many times

higher than common embedded devices using CPU/GPU for the same purpose. [46]

3.1.4 ASIC - Application Specific Integrated Circuits
ASIC are not as cheap as other candidates. Because of their task specificity and custom

design, their prices can climb really high. But we really pay for their performance of

magnitude higher than GPUS or FPGAs. They might be more energy efficient as they

lack redundant logic for their designated super-specific purpose. Some ASICs offers low-

latency, high-memory bandwidth chip built specifically for deep learning. [47]

38

3.1.4.1 TPU - Tensor Processing unit

Belong to ASIC device category and are currently developed by Google. These devices

are by far the fastest among other types mentioned before. TPUs are specialized in multi-

dimensional matrix computations. They are generally used for very large models. [43]

Problem with these devices is that they are currently not publicly available. Only way to

obtain their computational power is to rent them on Google cloud. Cloud TPU v2

currently costs $4.95 USD per TPU per hour. [48] Another option is to use USB TPU

accelerator, which requires host. However, performance is not as great.

Figure 31: Google TPU2 [48]

From all mentioned before, we can conclude that the best fit for specific application would

be ASIC or FPGA. However, because our implementation will be changing very often,

as we will be implementing everything beside object detection for our application from

scratch, using FPGA will be extremely time-consuming. Also, FPGA and ASIC are

significantly more expensive. In our case thus will be the best fit some microcontroller

with CPU and GPU integrated onto the same board or microcontroller with CPU and USB

accelerator.

3.2 Commonly used hardware for Deep Learning solutions

Most of high-performance solutions use high-end configurations with extremely powerful

computer utilizing GPU or TPU clusters. Prevalent example of TPU cluster is Google

cloud. These solutions are for commercial or serious research purposes. Embedded

enthusiast, student and most of DL users amongst general public use CPU+GPU

combination. This chapter provides a brief discussion on some of the most convenient

embedded devices for DL.

39

3.2.1 STM32F407VG MCU [49]
Arm based microcontrollers belong to a group of most well-known microcontroller units

(MCU) on the market. They are popular mainly thanks to their applicability in

applications, where a lot of data transfer from input/output connection points is required.

With reasonable price and relatively small size offer reliability. As progress advances in

machine learning, so does MCU. STM32F407VG and many other ARM Cortex-M core

microcontrollers offer collection of optimized neural network functions like convolution,

depth separable convolution, fully-connected, pooling and activation layers. With its

utility functions, it is also possible to construct more complex NN modules. While

Cortex-M series processors are capable of running OS like WinCE / Linux or Android,

they are aimed for different purpose. STM32 is a development board created for

developers as a tool for prototyping their concept and later on creating their own board.

Using their peripheries directly allows them to gain control over execution and resources.

Figure 32: STM32F407VG MCU [49]

All training takes place on PC. Its weights and biases are quantized to 8 bit or 16 bit

integers, then the model used for interference is moved to STM32F407VG. STM supports

popular frameworks like Tensorflow or Caffe.

40

Table 2: Specifications for STM32F407VG MCU [49]

Specifications for STM32F407VG MCU

CPU ARM®32-bit Cortex®-M4

Frequency Up to 168 MHz

Fastest Calculations <0.2 GFLOPS

Flash 1 Mbyte

SRAM/RAM 196 Kbytes/64Kbyte CCM

Power supply 5V

Operating system Raspbian/ Windows / Linux

Connection points USB 2.0/Ethernet / SDIO/ CAN/I2C/

UART,SPI

Storage space Support for Compact Flash/

SRAM/PSRAM/NOR/NAND

Display External (ILI9325, ILI9341, SSD2119,

SSD1963)

Sensor 8- to 14-bit parallel camera interface up to

54 Mbytes/s

Dimensions 74.8mm x 57.5mm

3.2.2 Raspberry Pi 3 Model B [51] [50]
Raspberry Pi 3 is a small and relatively cheap single-board minicomputer. At this time its

price is around 35€. Despite its low price and small size, RPI possesses greater computing

power and better specification than single-boards in the same price range. Its main

advantage is low price and large number of contributors on online forums in vast number

of applications.

Figure 33: Raspberry Pi 3 Model B [50]

41

Another advantage that increase attractiveness of RPIs is direct camera connection.

Camera modules are cheap, whole HW price could get as low as 60€.

Table 3: Specifications for Raspberry Pi 3 Model B and camera module v2 [50]

Specifications for Raspberry Pi 3 Model B

CPU 1.2GHz 64-bit quad-core ARMv8

Fastest calculations 192 MFLOPS (double precission) [66]

RAM 1GB (@900 MHz)

Power supply 5V 0,7A (up to 2.5A with peripheries)

Operating system Raspbian/Windows10/Linux/FreeBSD

Connection points 802.11n WLAN/ Ethernet/ Bluetooth/

40-pin GPIO/ 4x USB 2.0

Storage space Uses Micro SD (64GB tested)

Display HDMI/ composite video /DSI display

Dimensions 85mm x 49mm

Specifications for CAMERA MODULE V2

Image sensor Sony IMX219 (CMOS)

Resolution 8MP (3280x2464)

FPS Max 90

Image format PEG, JPEG + RAW, GIF, BMP, PNG,

YUV420, RGB888

Video format raw h.264 (accelerated)

Camera Module V2 is typically used for image capture, but other options with Infra-Red

sensor are available. Parameters for standard Camera Module V2 are shown above in

table. Easy code implemented libraries allows users to capture photos with just a few lines

of code.

42

3.2.3 NVIDIA Jetson TX2 [51]
One of the most popular and extremely powerful boards to develop and test deep learning.

Winner of Image Classification Efficiency Challenge in 2016 with cuDNN 4.0. Useful

for computer vision and deep learning. From all listed devices, Jetson TX2 and TX1

provide the best hardware systems specifications. That’s why they are widely used, but

its price is high in comparison with other devices listed in this chapter. They stand well

above maximum budget with price of around 450€. This solution also requires additional

HW.

Table 4: NVIDIA Jetson TX2 Specifications [51]

Specifications for NVIDIA Jetson TX2

CPU HMP Dual Denver 2/2 MB L2 + Quad

ARM® A57/2 MB L2 (2GHz)

GPU NVIDIA Pascal 256 CUDA cores

Fastest computation 46.8 GFLOPS (double precission)[53]

Flash 1 Mbyte

LPDDR4 8 GB

Power supply 5.5-19.6V

Operating system Linux/Ubuntu

Connection points USB 2.0 + 3.0/ Ethernet/ Bluetooth/ I2C/

802.11ac WLAN/ CAN /UART/ SPI/

GPIO

Storage space 32 GB eMMC, SDIO,SATA

Display 2x DSI, 2x DP 1.2/HDMI 2.0 / eDP 1.4

Sensor Up to 6 cameras (CSI2 D-PHY 1.2)

Dimensions 50mm x 87mm

Figure 34: NVIDIA Jetson TX2 [51]

43

3.2.4 Intel NCSM2450.DK1 Movidius USB Accelerator [52]
Intel Movidius is small USB connected fan-less deep learning accelerator designed for

AI programming. Uses Movidius Visual processing unit, that is built in many smart

security cameras, robotics or industrial machine vision equipment.

Table 5: Intel Movidius: requirements on host computer [52]

Requirements on host computer:

Operating system Ubuntu 16.04 x86_64

Fastest computations 100 GFLOPS (half-precision) [54]

Connection point USB 3.0 Type A plug

RAM 1GB

Free storage space 4GB

This device require computer or another embedded device as a host. Its huge benefit is

ease of portability from device to device. Requirement for host OS is only restriction.

Another benefit is that it is possible to connect to embedded devices with less processing

power. Inference model is trained on PC, then transferred to MOVIDIUS stick that is later

inserted to embedded device. All image computation happens on MOVIDIUS stick.

Because all image processing is done on MOVIDIUS, embedded devices have free

resources for other processes. We can run multiple devices on the same platform to scale

performance.

Figure 35: Intel NCSM2450.DK1 Movidius [52]

44

3.2.5 Coral Google Edge TPU USB Accelerator and Dev

Board
Coral TPU USB Accelerator (neural network co-processor) is ready to use device, that

has to be connected using USB cable. This device can connect to any Linux-based system

and perform accelerated ML inference. This USB accelerator is compatible with

Raspberry Pi boards at USB 2.0 speeds only. It can be even used on minimalistic devices

as Raspberry Pi zero. [55]

Table 6: Specifications for Google Edge TPU USB Accelerator [56]

Specifications for Coral Google Edge TPU USB Accelerator

CPU ARM Cortex M0 +

Connectivity USB type-C cable

Power supply 5 V (from host device using USB)

Supported Frameworks TensorFlow lite

Supported OS Debian, Linux

Data bus width 32 bit

Dimensions 65mm x 30mm x 8mm

Figure 36: Google Edge TPU USB Accelerator [56]

Edge TPU Dev Board is capable of high-speed machine learning inference for low-power

devices. TPU USB accelerator on itself could be connected to many various devices, but

Edge TPU Dev Board was designed solely for this purpose. This all-in-one prototyping

tool allows user to create systems that demands fast ML inference. Edge TPU Dev Board

is ASIC device with high performance, considering its low-power nature. According to

[56], it can execute vision models like MobileNet V2 at 100+ FPS. Edge TPU Module is

removable, can be integrated without base board to other embedded device.

45

Table 7: Specifications for Edge TPU Dev Board (Base board) [56]

Specifications for Edge TPU Dev Board (Base board)

Flash MicroSD slot

Connectivity Type-C OTG, Type-C power, Type-A 3.0

host, Micro-B serial console, Gigabit

Ethernet port, 40-pin expansion header,

Supported video output HDMI 2.0a (full size), 39-pin FFC

connector for MIPI-DSI display (4-lane)

Supported camera connection 24-pin FFC connector for MIPI-CSI2

camera (4-lane)

Power supply 5V DC (USB Type-C)

Dimensions 85mm x 56mm

Table 8: Specifications for Edge TPU Dev Board (EDGE TPU MODULE - SOM) [56]

Specifications for Edge TPU Dev Board (EDGE TPU MODULE - SOM)

CPU NXP i.MX 8M SOC (quad Cortex-A53,

Cortex-M4F)

GPU Integrated GC7000 Lite Graphics

RAM 1 GB LPDDR4

Flash 8 GB eMMC

Connectivity Wi-Fi 2x2 MIMO (802.11b/g/n/ac

2.4/5GHz), Bluetooth 4

Dimensions 40mm x 48mm

Problem with these devices is their availability. Their availability is limited and there are

currently no local vendors. Although this device could be bought from online sources,

their usage is still experimental.

Figure 37: Edge TPU Dev Board (Base board + SOC) [56]

46

3.3 Choosing the best option for our application

This paper covers development and application of DL principles on embedded device.

We are not going to create our own implementation of framework for DL inference, as

this could take possibly years for a team of dozen people. We will attempt to utilize

commonly used embedded device and apply DL into it with and later optimize it for the

best performance. We have chosen vehicle detection as our main task. Therefore, we will

be using static camera and detect vehicles moving around car park. Considering this, we

can have a closer look at mentioned HW.

STM32F407VG MCU might provide a limited amount of memory. This is a huge

disadvantage, as we plan on using slightly larger models (still very small in comparison

with their counterparts).

Probably the best performance should be expected from Jetson TX2board. This is

practically a small PC, which could be employed in very performance demanding

application. However, from all listed device is the most expensive with price of around

450€.

From listed devices, only Raspberry Pi 3 Model B could be considered as useful

at this stage of development. We will use Camera Module V2 with native support. Later

in the future, it is possible to incorporate MOVIDIUS USB stick or Coral TPU USB to

increase performance, possible with RPi like board supporting USB 3.0.

Because we have chosen RPI, we have to use one of many OS that are supported.

Raspbian Stretch is the official OS for RPi. Desktop version is preferred over lite for

visual debugging directly on device. When it comes to frameworks, Tensorflow v1.5will

be used. All other programming will be done using Python 3.6.2. Our device in simple

acrylic case is shown in image below.

Figure 38: Final outlook for our Raspberry Pi in case with no cooling

47

4 MODEL APPLICATION - SMART PARK

Two most prominent areas for object detection are person detection and vehicle detection,

thus have the most available information about them. Naturally, we will choose one of

these two for our test application. Vehicle detection is a little bit more difficult for vast

amount of variations in size, shape, colour and many more characteristics. This is ideal

as it presents more problems that embedded systems have to overcome.

4.1 Motivation

If car parks want to detect and monitor number of free parking spaces, they have to

employ one of many different systems solving this type of a problems. Simpl systems

typically use gates which count the number of vehicles entering and leaving from car

park, and show calculated number of free spaces. These systems are easily fooled and

over time could cumulate error. They have to be reset from time to time to correct actual

count of vehicles present. Other types of smart parking solutions use vehicle presence

sensor on every parking space, detecting presence using in most cases radio-wave,

magnetic induction or laser proximity sensors. In these cases, sensors alone are unreliable

and break often. Error will cumulate and calling service for single sensor is just not worth

it, so in most cases these are repaired or replaced in batches, meaning longer time for

vehicle count correction. However, these systems are probably the only reasonable

solution in under-ground car parks or parking lots that are obscured. As object detection

systems get more and more robust, another possibility present itself. Using only single or

small number of static cameras covering whole car park. They are much cheaper and

faster to assemble. Cameras will not be accessible for people in car park, as they will be

mounted in higher positions. The device count in most cases correlates with frequency of

reparations. This should lower error in prediction of correct free park spaces. Our

application will attempt to replace other systems with only a single camera monitoring

place. Testing will be done on our own car park and images from internet.

4.2 Specification of the problem

Our testing application will be used in a small local garden centre with car park problems.

Most of the time, there is only a few vehicles present. However, during the peak hours or

weekends, there are way too many cars and cooperating them is difficult. Images below

shows car park in the morning and during peak hours. People are parking chaotically and

are often blocking others from leaving during the peak hours. There even has to be

a supervising employee cooperating them (wearing green vest in image 38).

48

Figure 39: Car park in the morning (left) and later during peak hours (right)

Using gate barriers would be counterproductive, as there are 4 roads, from which cars

could get to this car park. Not all cars will stop there, some of them are only passing.

Because space is not specifically divided for parking spaces, vehicles are not parked

always on the same places. Using spot presence detectors would be thus pointless. We

will have to use camera or other similar system.

 This system should be able to correctly detect presence of vehicles in image and

show statistics about approximate park spaces. When car park is full, redirect incoming

people to second smaller car park from the other side of the building. Beside this, system

should be able to show basic statistics about daily traffic.

49

5 DEVICE CONFIGURATION

In this chapter, basic configuration of RPI will be briefly described in steps. We won’t go

into much detail, because it’s not as necessary. All steps were already described in other

materials. RPI setup was discussed in detail in our older paper [51] where RPI was used

for image processing. Details for installation of SW later in text will have references to

full step by step detailed guides.

5.1 Brief device setup

RPi is small pocket-size device with enough power for this application. This small

embedded has almost all contained on a board, we need only a few things for

configuration and a fraction of them for use in model application. For our model

application in everyday use, RPi requires:

− Power supply adapter 5V/2.5A

− Ethernet cable with internet connection

− SD card - at least 16Bg (32Gb was used)

− Camera Module v2

− Preferably board case or something similar

− While configuration, we will need additionally:

− Keyboard and mouse

− Monitor with HDMI connection

− at least 1x USB with min 2 GB space

For this paper, we will use SanDisk 32GB microSDHC Extreme 90MB/s, UHS-I card, as

this card excel in download/upload speed on official test site for RPI SD cards [57] with

specifications:

Reading: 22.8MB/s

Writing: 25.2MB/s

Before we start with configuration, we have to copy OS image from official Raspberry Pi

site onto microSD card. We can use one of many free software like Win32 Disk Imager.

Object detection expects visualization of results, so we have to choose OS with desktop

support. We have chosen OS Raspbian Stretch with Desktop as it has better support for

our platform. Once we have copied OS image to SD card, we can insert it into RPI. We

will also connect Camera Module v2, keyboard, mouse, HDMI connector from monitor

and ethernet cable. Internet connection is needed as we will be downloading a lot of data.

After we have all peripheries and connectors connected, we can connect power supply.

RPI will start instantly booting up and after a while, we should see initialization and later

the desktop. Then we have to configure connection options. We can do that by modifying

raspi-config file, which is used while booting up.

50

Figure 40: RPI config main-menu [51]

Figure 41: Configuring interfaces [51]

In Interface Options we will allow camera, SSH and VNC. Then we have to use Expand

Filesystem in Advanced options, because RPI won’t use whole SD card by default. After

all is done, we will reboot the RPI and wait for desktop again.When system boots up

again, we have to connect to WiFi or cable and update and upgrade RPI. This will take

some time. Then we will try to connect from remote PC using VNC. Because we will be

using a lot of GitHub source code, we have to download and install Github.

When it comes to software like Tensorflow, we have to install quite a few

prerequisites [58, 59]. Configuration and installation of Tensorflow might be problematic

mainly because we can’t simply install it on our device. We have to build it first using

Bazel, then build Tensorflow and after that, we can finally install it. Step by step tutorial

from [59] could be summed as:

1. Installing necessary packages that are needed for Tensorflow installation:

 wheel, gcc, c++, swig

2. Setting up USB disk as additional swap space.

Because RPI contains only 1GB RAM and 100MB swap space, it’s not enough

for Tensorflow installation. We have to manually set up swap space on USB. We

have to connect at least one 2GB+ USB.

51

3. Compilation and installation of Bazel

Bazel is free build system that is necessary for Tensorflow building from

source code. We have to keep in mind that not all versions are currently

supported and work correctly together. RPi should officially support

Tensorflow v1.9, but we were not able to successfully install it, we have to

settle with older version. We will be using latest Tensorflow v1.5 which is 2

version lower and around 6 months older than v1.9. At this time, latest

known compatible version of Bazel and Tensorflow v1.5 is Bazel v 0.8.0. If we

use any other combination, we might run into errors later in process.

4. Compilation and installation of Tensorflow

We have to use Bazel to compile and build Tensorflow. After we are done with

installation, we have to remove extra swap space from our system or we

might not be able to boot up after reboot, if USB is removed. After we are

done, we have to install few more dependency packages/tools/applications:

 libatlas-base-dev , cython, pillow, lxml,

 jupyter, matplotlib, python-tk

5. OpenCV installation:

Tensorflow typically uses matplotlib, but OpenCV seems to be less error

prone. It has greater support but configuring it with all other installations to

work correctly might be harder than expected. In this work we will use

OpenCV. First, we need to install dependencies required and then we can

install current latest version:

libjpeg-dev, libtiff5-dev, libjasper-dev, libpng12-dev,

libavcodec-dev, libavformat-dev, libswscale-dev, libv4l-dev,

gfortran, libxvidcore-dev, libx264-dev, qt4-dev-tools

One important note is to install OpenCV-contrib with the same version as our

OpenCV installation. OpenCV-contrib contains many algorithms, that were a

part of OpenCV in the past, but then they were split up.

6. Compilation and installation of Protobuf

Protobuf is a package that implements Google’s Protocol Buffer data format.

There is currently no direct installation available so we have to compile and

then install it from source. This process may take up to two hours. Then we

will have to wait for another two hours after using command make.

Additionally, some python path modifications are required. For detailed info,

please refer to [59].

52

7. Making working directory for Tensorflow and downloading models

Create a new file in your home directory called tensorflow1. Then we have to

download all models from Git and update PYTHONPATH variable [59].

8. Testing Tensorflow installation

We have quite extensive list of all available models used for inference from

Tensorflow detection model zoo [60]. Model zoo is Google’s collection of pre-

trained object-detection models with various levels of speed and accuracy. Current

categories are:

− COCO-trained models

− Kitti-trained models

− Open Images-trained models

− iNaturalist Species-trained models

− AVA v2.1-trained models

There are currently 34 trained models. But as we are using older version of

TensorFlow, we have to use one of older Github commits for version 1.5. For

testing purposes, we will use ssdlite_mobilenet_v2_coco from Tensorflow setup

guide.

Figure 42: Testing ssdlite_mobilenet_v2_coco model using Tensorflow

As we can see, object detector trained on 90 classes works. Detections are not the best,

but that’s trade of for a NN with such a small size. Second test image shows, that using

general detector in our specific application is insufficient as only a small fraction of cars

is detected.

53

5.2 CPU overclocking

In order to gain as much from this tiny device, we have to improve every small detail. For

our application, mainly CPU frequency is important. RPI has CPU frequency of only

1.2GHz, we will aim to get a little bit more. GPU is not as important in our case, as RPi

does not support controlled direct usage. Results before and after overclocking were

tested using sysbech:

 sysbench --test=cpu --cpu-max-prime=1000 --num-threads=4 run

Which basically computes all prime numbers up to number specified, in our case 1000.

Stability testing was done using all NN mentioned in later sections. Maximum stable

overclock configuration was found to be for our RPi:

arm_freq=1260

gpu_freq=500

sdram_freq=500

over_voltage=4

total_mem=1024

sdram_schmoo=0x02000020

sdram_over_voltage=2

force_turbo=1

boot_delay=1

Although lowest stable CPU frequency was reported to be 1300MHz and some users were

able to get as much as 1500MHz, 1260 was our maximum when using object detection

with consistent 100% CPU usage for around 2 hours acting as stability testing

(incorporating active cooling from next section). Everything more would freeze after

some time and require manual hard reset. Every device is different, same RPi models

from the same batch might easily have 200MHz difference in maximal overclock CPU

frequency.

Figure 43: Results from command sysbench before and after overclocking

54

From comparing statistics from before and after, we can conclude that the total time was

6.1% shorter. We will slightly leap into next chapter and show the difference before and

after overclocking on total pass-through duration for different models. We have gained

few percent decrease in pass-through duration. We have no data for models

ssdlite_mobilenet_v2_coco and embedded_ssd_mobilenet_v1_coco before overclocking,

as they were added later.

Table 9: Model results before and after overclocking

 No overclock Overclock Time

saved

[%]

 sec/

image [s]

 Total

time [s]

sec/ image

[s]

Total

time [s]

ssdlite_mobilenet_v2_coco (PM) 0.75 74.57 0.71 71.16 4.6

ssdlite_mobilenet_v2_coco N/A N/A 1.11 111.36 N/A

ssd_inception_v2_coco 1.74 173.53 1.58 158.54 8.6

ssd_mobilenet_v1_coco 0.77 76.96 0.65 65.87 14.4

embedded_ssd_mobilenet_v1_coco N/A N/A 0.13 13.24 N/A

faster_rcnn_inception_v2_coco 17.57 1757.35 16.79 1678.67 4.5

faster_rcnn_resnet50_coco 68.84 6884.05 67.43 6742.57 2.0

Notes: PM = Pretrained model. General object detector without additional training

 Total time consists of using object detector on series of 100 images

5.3 Increasing swap space

Loading NN models into RAM might take few hundred MB of memory. When testing

different models, we were able to run only a fraction of them. RPi has only 1 GB RAM

and 100 MB swap space by default, which is just not enough. We have to increase swap

space. There are 3 most common ways how to do that:

− using swap space on SD card

− using swap space on SSD/HDD or USB

− using ZRAM/ZSWAP

As we are going to use a lot of read/write operations, using swap space will certainly

decrease lifespan of media that holds it. This is why we should not use our SD card with

OS. Only a single data corruption could cause system crashes in the future.

On the other hand, using SSD or HDD is not optimal as we don’t need that much

space, because we are not going to store that much data. Also, using them connected to

RPI would mean either separate power supply or powering them from RPi, and that would

be counterproductive as it would dramatically increase total power consumption and size

of the system. On the other hand, using USB stick could be beneficial as it would shift

wear and tear from main SD card and increase lifespan of our device. USB sticks are

cheaper in comparison with SD cards and their replacement is easy. They are a lot slower

though. RPi has only USB2.0 ports which would make data transfer unnecessary slow.

55

ZRAM is a special compressing module for linux kernels, that uses compressed block

device in RAM, in which paging takes place until its necessary to use the swap. ZSWAP

is lightweight cache with applied compression for swap pages. Pages that are about to get

swapped are compressed and stored into dynamically allocated RAM-based memory

pool. [61]

While testing which option would be the best, only microSD card swap and USB

swap place were successful. ZRAM/ZSWAP kept freezing RPi when a lot of data had to

be stored there. Tensorflow models are on itself very large in size. Test confirmed our

expectations. MicroSD card is slightly faster and thus may allow us to obtain a small FPS

boost. For testing purposes, we will be using microSD Swap to get the most from this

application and later, when device will be in everyday use USB as we don’t want to

corrupt data on our microSD card. If we choose smaller model, we might not need to use

this swap space often anyway, just when initializing model or using other RAM expensive

application in the background.

Table 10: Model results for different swap locations

 USB Swap microSD swap Time

saved

with

microSD

Swap [s]

RAM

used

[MB]

sec/

image

[s]

Total

time

[s]

sec/

image

[s]

Total

time

[s]

ssdlite_mobilenet_v2_coco (PM) 0.71 71.16 0.67 66.90 5.98 31

ssdlite_mobilenet_v2_coco 1.13 112.69 1.11 111.36 1.18 314

ssd_inception_v2_coco 1.62 162.19 1.58 158.54 2.25 610

ssd_mobilenet_v1_coco 0.65 65.87 0.63 63.16 4.11 540

embedded_ssd_mobilenet_v1_coco 0.13 13.24 0.13 12.50 5.59 138

faster_rcnn_inception_v2_coco 17.08 1707.85 16.79 1678.67 1.70 594

faster_rcnn_resnet50_coco 67.43 6742.57 66.93 6692.79 0.73 743

Notes: PM = Pretrained model. General object detector without additional training

 Total time consists of using object detector on series of 100 images

RAM used represents average RAM used by a model (without inclusion of background

processes), not maximum RAM used. We have to take into consideration that average

RAM without running any application (IDLE mode) is around 120-150MB, with disabled

desktop around 50MB. Also, there is a significant peak while initializing session. If there

are other processes active, used RAM could easily get over 1 GB. Keeping USB or

microSD swap space activated at all times might save us from lagging and freezing and

allow us to even run certain model.

56

5.4 Increasing SD Card read/write speed

RPi uses 50 MHz as a SD card clock by default. This is to ensure compatibility with all

types of SD cards. However, we are using high-end type of SD card that is capable of 100

MHz. We can try to increase SD card clock speed. This should decrease time for reading

and writing images to memory but mainly decrease time needed to load model into

memory. Note that this process may reduce lifespan of SD card. Speed tests were

performed before and after overclocking of the SD card clock using copy commands

(where bs is block size and count represent number of blocks to be copied). Firstly, we

are writing on SD card data from /dev/zero folder, which exist only after booting and is

deleted at shutdown. Files in this file are loaded into RPi memory, not SD card. Second

part reads data stored in home directory that are stored in SD card and copy them to RPi

memory. Write speed could be tested issuing following command to terminal:

dd if=/dev/zero of=~/test.tmp bs=500K count=1024

Read speed likewise, with first clearing cache, as it might skew results:

dd if=~/test.tmp of=/dev/null bs=500K count=1024

We were able to gain around 55 % speed increase for write operations and 99 % for read

operations. This should come handy in cases where we will be recording to memory.

Table 11: SD card speed test before and after overclocking

 Default 50 MHz speed Overclocked 100 MHz Improvement

Write speed 23.8 MB/s 37.0 MB/s 55.46 %

Read speed 23.6 MB/s 46.1 MB/s 95.33 %

Testing duration time for a model loading into a memory showed up to around 12%

duration decrease. Model load time represent all time needed for a specified model to be

loaded from SD card into RAM. Image pass represents image being loaded from SD card,

passed through object detector and resulted image saved back to SD card.

Table 12: Effect of overclocking SD card speed on model loading time

 Default 50 MHz

speed

Overclocked 100

MHz speed
Model

loading time

Improvement

[%]

Model

load

time [s]

Single

image

pass [s]

Model

load

time [s]

Single

image

pass [s]

ssdlite_mobilenet_v2_coco (PM) 26 1.02 25 1.02 3.85

ssdlite_mobilenet_v2_coco 13 1.44 12 1.41 7.69

ssd_inception_v2_coco 16 2.09 14 2.07 12.50

ssd_mobilenet_v1_coco 13 0.92 12 0.90 7.69

embedded_ssd_mobilenet_v1_coco 10 0.41 9 0.41 10

faster_rcnn_inception_v2_coco 14 17.83 14 17.66 0

faster_rcnn_resnet50_coco 23 68.96 21 68.29 8.69

57

5.5 Overheating problems

Object detection is computationally demanding task. Efficiently implemented algorithms

will most likely use all available CPU. This creates problem for devices with poor

cooling, as temperature could potentially limit speed or even worse, permanently damage

device. We have to either increase cooling enough to keep CPU cool or lower amount of

computations, as device will have more time for cooling. Only the first solution makes

sense in terms of efficiency. According to official Raspberry Pi hardware specifications

[62], maximum stable temperature is around 60 °C (soft limit). If CPU reaches

temperatures between 80 °C to 85 °C a warning temperature thermometer icon should

show up. If the temperature reaches around 85 °C, device should start throttling down

heavily. According to documentation, devices chip frequency and current input will drop

as way of restricting CPU usage and therefore let RPi cool slightly, after cooling enough,

current and frequency will increase again. However, our device got to unresponsive state

every time the temperature limits were tested at temperature slightly above 80 °C, with

no other way to reset it other than powering it off and on (reset button is not soldered onto

the board by default).

When tested, TensorFlow shows CPU usage at approximately 100% all the time. This

means the RPi might get hot really quickly. For purposes of testing temperature stability,

our python script was created, which can be used from file containing this Python script

in command line:

$ python3 DP_CPU_core_test.py { No-of-cores }

where No-of-cores represent integer value of cores to use. RPi is Quad core which means

that 4 cores are available. Script creates requested number of processes which count up

counter infinitely, until aborted.

Figure 44: Stress test - CPU usage

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400

C
P

U
 u

sa
ge

[%
]

Time [s]

Stress test (RPi 3) with no cooling

1 core

2 cores

3 cores

4 cores

58

With no workload on CPU, average usage is somewhere in range from 1-3 %, this

represents IDLE mode with no user applications running and no peripheries connections,

only graphical display mode for display output. IDLE mode was not tested as temperature

stayed stable at 40-ish range. Picture above demonstrates CPU usage for all 4 tests with

different number of active cores. Occasional spikes represent other active processes.

Tests were done sequentially for 0, 1, 2 ,3 and finally all 4 cores. Stable temperatures

are shown in table 13. As could be seen from graph in picture 44, starting temperature for

all tests was around 41 °C. This represents average temperature of RPi with no cooling

attached and in IDLE mode. All tests were done at room temperature. Note that tests were

interrupted if temperature reached 77.5°C.

Figure 45: Stress testing without cooling

Topmost temperature for optimal performance is under 60 °C. TensorFlow uses all four

cores with CPU usage of 100% which will provide around 1.5min object detection

window, after which RPi freezes. RPi definitely needs additional cooling. Image showing

RPi without any cooler is in image 38.

Figure 46: Official Raspberry Pi 3 Model B heatsink and our custom made

40

45

50

55

60

65

70

75

80

0 50 100 150 200 250 300 350 400

Te
m

p
er

at
u

re
 [

°C
]

Time [s]

Stress test (RPi 3) with no cooling

1 core

2 cores

3 cores

4 cores

59

Official small copper heatsink for RPi (Figure 46 left) with dimensions 14x14x6 mm

shows only a small difference in temperature. We still get over 80°C in about 2 minutes.

Used thermo tape which came with copper heatsink did not work very well. Temperature

for 2 cores with 50% CPU usage stopped at around 66°C. That means we would gain only

around 5°C decrease in temperature.

After adding bigger aluminium passive heatsink (Figure 46 right) with dimensions

20x20x16 mm and thermal paste, another stress test series was performed. Next graph

shows how much of a difference different heatsinks could make. More than 10°C

difference for 50% CPU usage (measured at 250s). Maximal temperature for full 100%

CPU usage stabilises after approximately 10 minutes at around 70°C which is still a lot.

Figure 47: Stress testing with large passive aluminium heatsink

Significant improvement could be seen from graph in picture 47, which represents results

of stress test with added active 5V cooling. Temperature drop of 20°C in compare with

passive cooling and more than 30° in comparison with no cooling. Temperatures in 50-

ish range are ideal. We should not be able to get over 60 °C (soft limit), even in very hot

days. Settled temperatures for all combinations are in table 13.

40

45

50

55

60

65

70

75

80

0 50 100 150 200 250 300

Te
m

p
er

at
u

re
 [

°C
]

Time [s]

Stress test (RPi 3) with passive cooling

1 core

2 cores

3 cores

4 cores

60

Figure 48: Stress testing with large passive aluminium heatsink and fan

Table 13: Stress test for RPi3 Stable temperatures

Stress test for RPi 3 Model B - Stable temperatures

Number of cores used [-] IDLE 1 core 2 cores 3 cores 4 cores

CPU usage [%] 1 - 3 25 50 75 100

Stable

temperature

[°C]

No cooling 41 61 73 >77.9 >77.9

Passive cooling 41 52 57 64 70

Passive + active cooling 32 42 45 48 51

Final appearance of case with attached passive and active cooling is in picture 49. There

were later added plastic plates at sides of active fan to help with air flow regulation.

Figure 49: Final appearance for our Raspberry Pi with heatsink and active cooler

40

45

50

55

60

65

70

75

80

0 20 40 60 80 100 120 140 160

Te
m

p
er

at
u

re
 [

°C
]

Time [s]

Stress test (RPi 3) with active + passive cooling

1 core

2 cores

3 cores

4 cores

61

6 MODEL TRAINING

Since we are using Tensorflow v1.5.0 on RPi, we have to use the same version while

training. If we don’t, we may run into compatibility problems. According to CUDAs

website and documentation [63], there has to be installed pack of predefined SW with

specific versions for Tensorflow v1.5.0 using Windows 10. Compatible SW versions are

as follow:

− Visual Studio 2015 14.0 (RTW and updates 1, 2, and 3)

− CUDA 9.0.176

− cuDNN 7

− Python 3.5 or 3.6

Few different combinations were tried before with no luck, since it is remarkably difficult

to get right drivers installed after newer versions have been installed before. It is best to

start with clean install of Windows 10. In case of clean install of Windows 10, installation

for CUDA and other support drivers is straightforward. They all are available online and

downloadable in .exe format, installed with default settings. Detailed installation guide is

written in [63] by searching in directories for installation guide. At first, only CPU version

was successfully installed (Intel i5-323M CPU @2.60GHz/4Gb). However, it turned out

to be absolutely inapplicable, as single step took around 9 seconds and according to setup

installation, there is needed at least 50000 steps (batch size of 1 = 1 image per step) for

reasonable output, which would take around 5-6 days in total, with no other activity on

this computer. This process could take easily more than two weeks for satisfactory output.

Figure 50: Training process on CPU

After successfully installing all prerequisites and all dependencies on different PC,

including Tensorflow v1.5.0, in accordance with [63], we could start with second part of

the training process, which is image data gathering. Specifications for this PC are as

follow:

CPU:

 Intel i5-4570 CPU 3.2GHz / RAM - 8Gb

GPU:

 NVIDIA GeForce GTX 1050 Ti (Compute capability 6.1) / RAM - 8Gb

62

Using GPU is definitely preferable option. We were able to decrease time for a single

step approximately to 1/30.

Figure 51:Training process on GPU

6.1 Data gathering

Second part consist of gathering enough data for our training and testing dataset. In our

case, it will be slightly easier as we will be mostly using pretrained models. If we want to

train our pretrained object detector with reasonable precision, we have to gather at least

few hundred images, ideally thousands with objects in them. For this purpose, we have

mounted our RPI with Camera module v2 in place, where we expected it to be in future

and took pictures from RPi camera while monitoring car park. Pictures were taken every

few minutes on average for few days when a car park was opened. We were able to gather

720 pictures in total with different number of vehicles in them.

Half of gathered images pictures was horizontally mirrored, because we want to

preserve angles, distance and size of vehicles in images, but we don’t want our object

detector to be trained only on specific positions on our car park. We also used 200 car

pictures from google and ILSVRC'16 dataset, with view on vehicles from slightly above.

Ideally, we would want more images from other sources, but it is quite complicated to

find images of multiple vehicles in a place with similar conditions. There could be found

thousands of car images taken from sides but almost none from above. We were able to

gather 920 images in total.

6.2 Labelling process

Third part consist of hand labelling all obtained images using free program called

labelImg [64]. Labelling is significantly tedious process, which took around 22 hours in

total. We had to draw bounding boxes for every image in our dataset. There were between

1 to 30 cars per image, totalling in 9204 cars captured in them. Next image shows

labelling process. After all images are labelled, we divide them randomly in 8:2 ratio for

training and testing image set.

63

Figure 52: Labelling process in program labelImg

6.3 Choosing models for training

As we have already discussed in chapter 5.1, there are multiple available neural network

models with different inference mechanisms behind them and architectures. In order to

use the best neural network, we have to try multiple of them that seem reasonable for

given application. Picture below shows pretrained compatible neural network models for

Tensorflow 1.5 and version-compatible models from Tensorflow Model Zoo [60].

 We will be using mostly pretrained models (Transfer learning), as these are well

tested and are able to generalize and learn a lot of features in images. Worth noting is that

we will use NN pretrained on the same dataset - COCO. Different datasets have distinct

way to evaluate performance for models. This enables us to pick relatively the best model

for our application. All available pretrained models are listed below ([60]) :

Figure 53: COCO - pretrained models [60]

64

As we will be running our model on computationally weak device, we have to go for

smaller and faster architectures in exchange for precision. We have chosen from officially

supported NN models these:

− ssd_mobilenet_v1_coco

− ssd_inception_v2_coco

− faster_rcnn_inception_v2_coco

− faster_rcnn_resnet50_coco

After looking around in code samples for a while, we have noticed that there are also

sample configuration xml files for models not listed in table above, which will allow us

to train our models from scratch. From these we included:

− ssdlite_mobilenet_v2_coco

− embedded_ssd_mobilenet_v1_coco

These two architectures are either not included in Model ZOO at all or are included in

future commits, thus pretrained model is not fully compatible with our version of

Tensorflow. Embedded_ssd_mobilenet_v1_coco is much smaller than others, so ideal for

embedded devices, just like could be deduced from its name. Ssdlite_mobilenet_v2_coco

has available frozen inference graph in examples, and first tests were done using this

model. Average FPS was around 1.2, which is not bad for device like this. We will try to

obtain similar results.

After downloading and configuring pretrained models, the training process began.

Every model has slightly different configuration while training. We tried to use as big

batch size as possible. The batch size represents number of samples propagated through

the NN in single step, from which is calculated error. Lets’ say we have batch size of 5,

thus we are training our NN to 5 images at the time in a single step. This means we have

to allocate less memory than when using a whole dataset. When we detected any of ‘Out

of memory’ error, we decreased batch size. In most cases, batch size of 1 or 5 was used,

depending on memory requirements for used model. We can visualize training process

using TensorBoard. Different types of NN have slightly different graphs, but all of them

have classification, localization and total loss.

classification loss - represents goodness of classification of object

localization loss - represents goodness of localization in image

total loss - total loss computed from other losses

Next image shows mentioned losses for training of ssdlite_mobilenet_v2_coco.

65

Figure 54: Example of training statistics provided by Tensorboard for

embedded_ssd_mobilenet_v1_coco

Ideally, we would want to have shown accuracy score too, but this version of Tensorflow

and TensorBoard does not offer support for that. We have a slightly harder way of telling

when to stop training our NN with this version. In our case, all NN were stopped training

after they started to plateau or decrease in losses were insignificant. For

embedded_ssd_mobilenet_v1_coco we had to stop sooner, because the number of false

negatives started to dramatically increase (not shown in graphs). Training graphs for

every trained model are included in attachment 1.

Table 14: Training process statistics

Model name
Batch

size
steps

Time/

step

Time/

image
Total time

PM

(*1)

ssdlite_mobilenet_v2_coco 4 188k 0.265s 0.066s 23h15m55s No

embedded_ssd_mobilenet_v1_coco 5 173k 0.453s 0.091s 20h58m17s No

ssd_inception_v2_coco 5 43k 1.047s 0.209s 4h59m56s Yes

ssd_mobilenet_v1_coco 5 60k 2.970s 0.594s 10h23m53s Yes

faster_rcnn_inception_v2_coco 1 104k 0.498s 0.498s 4h15m27s Yes

faster_rcnn_resnet50_coco 1 45k 0.853s 0.853s 6h55m55s Yes

(*1) PM - Model was pretrained on COCO dataset, else trained from scratch

66

Note the discrepancy between number of total steps, time for single step and total time.

Apparently, Tensorflow Time/step (and Time/image) does count only time necessary for

pass through, not time needed for supporting functionality so it does not reflect entirely

Time total.

6.4 Model performance comparison

When evaluating performance of trained model, it is important to choose appropriate tests

to match application requirements. Table in figure 53 evaluates performance (tested on

Nvidia GeForce GTX TITAN X) using COCO mAP - MSCOCO evaluation protocol

[60]. This type of evaluation is not the best for our application, as it uses 12 types of

metrics and there are only a few interesting for us. Also, this process is computationally

expensive. For the most basic comparison we need only confusion matrix and time

duration/ frequency for single pass through NN. Confusion matrix also known as error

matrix belongs mostly to the field of machine learning and statistical classification.

Contains two dimensions for “real” and “predicted“ outputs.

Figure 55: Confussion matrix [65]

Information in next section are from [65].

Individual 4 values in confusion matrix are as follow:

True positive (TP) - Object was correctly identified. Correct state.

False positive (FP) - Object was found but there is no object in image.

False negative (FN) - Object was not found, but there is object in picture.

True negative (TN) - Object was not found and there is no object. Correct state.

Besides speed of NN, there are two more parameters we are interested in:

Positive predictive value PPV (Precision)- Describes how many of labelled objects in

images are really objects of given class.

 𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (7.)

True positive rate TPR (Recall or sensitivity)- Describes how many objects are

correctly labelled from total number of objects in image.

 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (8.)

67

From calculating Precision and Recall, we have to somehow pick the best model for our

application. Beside FPS, it’s still two variables that we have to evaluate. We will use F1

score for this purpose, as it will effectively reduce our evaluation to only two variables.

F-score is used in statistical analysis or binary classification as a measure of a test’s

accuracy. F-score represents harmonic mean of precision and recall.

 𝐹1 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (9.)

We have created NN benchmark script, that takes for every model 50 images from our

car park and 50 random car images from google and does object detection on them. Script

creates time statistics and few other parameters from every detection. Later we had to

manually check every picture and determine correct image labelling for every model.

Samples from object detection process are included in second part of Attachment 1,

not here as they would take too much space. For reference purposes, there is included

general ssdlite_mobilenet_v2_coco trained on 90 classes.

Table 15: DL models benchmark - our car park

Name:
TP FP(*1) FN PPV TPR F1 fps

[-] [%] [-] [%] [-] [%] [-] [-] [-] [img/s]

ssdlite_mobilenet

_v2_coco (PM)
28 4.21 0 0.00 637 95.79 1.00 0.04 0.08 1.51

ssdlite_mobilenet

_v2_coco
506 76.09 64 11.23 158 23.76 0.88 0.76 0.82 0.95

ssd_inception_v2

_coco
575 86.47 2 0.35 90 13.53 0.99 0.86 0.92 0.64

ssd_mobilenet_v

1 _coco
580 87.22 1 0.17 85 12.78 0.99 0.87 0.93 1.62

embedded_ssd_v

1 _coco
428 64.36 152 26.21 237 35.64 0.73 0.64 0.68 8.35

faster_rcnn_ince

ption _v2_coco
659 99.10 6 0.90 6 0.90 0.99 0.99 0.99 0.06

faster_rcnn_

resnet50_coco
654 98.35 17 2.53 11 1.65 0.97 0.98 0.97 0.02

(*1) Percentual false positives were taken as a proportion from all predicted positives

68

Figure 56: Model comparison - Our car park

Figure 57: Comparison of F1 score and FPS for different DL models - Our car park

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

TP

FP

FN

PPV

TPR

F1

Value [-]

Model comparison - Our car park

ssdlite_mobilenet
_v2_coco (PM)

ssdlite_mobilenet
_v2_coco

ssd_inception
_v2_coco

ssd_mobilenet
_v1_coco

embedded_ssd
_v1_coco

faster_rcnn_
inception_v2_coco

faster_rcnn_
resnet50_coco

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

0.00 0.20 0.40 0.60 0.80 1.00

FP
S

[i
m

g/
s]

F1 score [-]

Comparison of F1 score and FPS for different models
(Our car park)

ssdlite_mobilenet
_v2_coco (PM)

ssdlite_mobilenet
_v2_coco

ssd_inception
_v2_coco

ssd_mobilenet
_v1_coco

embedded_ssd
_v1_coco

faster_rcnn_
inception_v2_coco

faster_rcnn_
resnet50_coco

69

From graphs, we can conclude that the best Precision and Recall have for our specific

application faster_rcnn_inception_v2_coco and faster_rcnn_resnet50_coco. Too bad that

they are super slow. On the other hand, if we would look for the fastest model

embedded_ssd_v1_coco would seem like a fine pick, however this model does not have

the best Precision, nor Recall. This model dominates with 152 false detections for car

park and 348 for random pictures, which is not a good thing. Next image shows detections

using this model.

Figure 58: Sample for embedded_ssd_v1_coco detection showing false detections

Model ssdlite_mobilenet_v2_coco has a lot of false detections too. Besides these four,

other models seem applicable. Looking at F1 score and FPS, we will pick

ssd_mobilenet_v1 _coco, as it provides the best F1 score and FPS for our application.

Table 16: DL models benchmark - general object detector

Name:
TP FP(*1) FN PPV TPR F1 FPS

[-] [%] [-] [%] [-] [%] [-] [-] [-] [img/s]

ssdlite_mobilenet

_v2_coco(PM)
129 43.73 12 8.51 165 56.27 0.91 0.43 0.58 1.48

ssdlite_mobilenet

_v2_coco
156 52.88 160 50.63 139 47.12 0.49 0.52 0.50 0.93

ssd_inception_v2

_coco
192 65.08 28 12.73 103 34.92 0.87 0.65 0.74 0.64

ssd_mobilenet_v1

_coco
184 62.37 31 14.42 111 37.63 0.85 0.62 0.72 1.58

embedded_ssd_v1

_coco
151 51.19 348 69.74 144 48.81 0.30 0.51 0.38 7.52

faster_rcnn_incep

tion _v2_coco
265 89.83 70 20.90 30 10.17 0.79 0.89 0.84 0.06

faster_rcnn_resne

t50 _coco
271 91.86 90 24.93 24 8.14 0.75 0.91 0.82 0.02

(*1) Percentual false positives were taken as proportion from all predicted positives

70

Figure 59: Model comparison - general car detector

Figure 60: Comparison of F1 score and FPS for different DL models - general car

detections

For different applications than ours, ssd_mobilenet_v1 _coco and ssd_inception_v2_coco

seem like a reasonable choice. embedded_ssd_v1 _coco may be used in application,

which solves easier problem than vehicle detection. Using Faster RCNN on RPi is

currently unreasonable, as it takes forever for a single image to get processed.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

TP

FP

FN

PPV

TPR

F1

value [-]

Model comparison - general car detector

ssdlite_mobilenet
_v2_coco (PM)

ssdlite_mobilenet
_v2_coco

ssd_inception
_v2_coco

ssd_mobilenet
_v1_coco

embedded_ssd
_v1_coco

faster_rcnn_
inception_v2_coco

faster_rcnn_
resnet50_coco

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0.00 0.20 0.40 0.60 0.80 1.00

FP
S

[i
m

g/
s]

F1 score [-]

Comparison of F1 score and FPS for different models
(general car detector)

ssdlite_mobilenet_v2
_coco(PM)

ssdlite_mobilenet_v2
_coco

ssd_inception_v2_co
co

ssd_mobilenet_v1_c
oco

embedded_ssd_v1_c
oco

faster_rcnn_inceptio
n_v2_coco

faster_rcnn_resnet5
0_coco

71

7 APPLICATION

Our application should be able to be as autonomous, as possible. This is why we added

one step before actual monitoring, that allow us to gather enough information about car

park. No manual intervention should be required. All programs are written in Python, as

Tensorflow currently has primary support in this programming language. C++ is also

supported when using C API. However, it is still not fully rewritten. Other programming

languages are partially rewritten but still in experimental phase.

7.1 Auto-configuration

If we want to fully understand car park, we have to know just a few specific

characteristics. Firstly, we have to know the area, in which vehicles could be present.

Secondly, we have to obtain possibly very precise parking place location. Knowing these

two, we can always determine number of vehicles in car park and if they are parked in

parking spots. To obtain both information, we have divided process of autoconfiguration

into two parts - finding accessible space and parking locations. More about these two in

upcoming subchapters.

Figure 61: Application: auto-configuration dataflow

72

7.1.1 Obtaining accessible vehicle space as a mask

Object detection is a demanding task with considerable error rate. Minimizing error with

as little additional computations as possible is desired. In our case, for example, we can

tell with certainty that vehicles will not stand or ride over kerbstones or into plant fields.

Figure 62: False detections on billboards by car detector

We want to restrict area where cars could be present and area where they can’t. There are

several ways how to do this but every single one has certain limitations. If we only

recorded positions from object detector, we would not get good results as object detector

has many false positives on billboards or places near car park. On the other hand, if we

recorded only moving objects and map movement of bigger objects, we should obtain

map of all places, where vehicles could get. This kind of works too, but we will record

movement of other unwanted objects. Employing both techniques should be beneficial.

In theory, if we monitor moving objects in video and combine them with output of vehicle

detector and record their position over time, we can get all available space, where vehicles

can get. It might be helpful when finding parking lines in video too, as we won’t look for

lines outside car park. Our approach is described in picture 63.

Figure 63: Application: Accessible space finder dataflow

73

We have used our own implementation of ring buffer for faster and less memory

demanding container for our image data. This container does not shift images by one

index whenever a new image is added but rather only replaces image at specific

incrementing index. This container holds last 5 to 25 images of video capture (depending

on FPS) and computes absolute image difference over them.

Figure 64: Visualisation for Accessible space mask finding

Image 64 shows these steps in visually more comprehensive format. Images a) and b)

represent output from object detector and corresponding image mask. These two are not

included in area restricted with green colour, because they are not needed in applications

where there is no background movement causing noise. Including them will reduce false

74

mask writes from movement of different object than vehicles. Image c) represents images

holder by our implementation of ring buffer. Absolute pixel difference is computed over

all of them and resulting mask is in image d). This should show all places in image, where

any object moved in the last number of frames. We can see more white blobs but only

one of them represents a real car. Combination of detected movement mask and mask

from car detector produces image e) which shows only area of moving car. Adding this

information into existing movement map will produce Accessible space mask. Picture

below shows average peak hours. There is a lot of movement of both vehicles and people.

Figure 65: Car park with movement of both cars and people

In picture 66 we can see process of obtaining accessible space mask from moving objects.

Images represent obtained mask after 10 seconds, 1 minute, 5 minutes and 30 minutes,

respectively. Small particle noise filtering was used to eliminate small spots as could be

visible in upper right part of obtained accessible mask. Obtained park space mask shows

relatively correct area accessible with vehicle and thus, could be used as mask for line

finding and filtering of false detected image localizations.

In applications with no background noise movement, implementation could be

a little bit more straightforward. All we have to do is to record movement of all moving

objects with more than minimum threshold size and record all their occurrences in video

over time. In cases where there is a lot of movement around the car park, this

simplification should not be used.

75

Figure 66: Process of obtaining accessible space mask after 10s, 1m, 5m and 30m

7.1.2 Obtaining park spots locations
If we want to detect and monitor fullness of car park, we have to somehow tell, if park

spaces are full or not. This means we should identify all available park spaces and then

monitor if they are occupied. First tactics was to detect all line segments and from them

estimate parking spaces. Process could be characterized as:

Figure 67: Application: Line finder data flow

76

Next two images show original image converted to Grayscale and output from Canny

detector with all found contours on the right side. Note that in the first picture, there are

only 5 lines. Later were more added. Also note that for visualization no Accessible space

mask was used, to highlight possible error, when skipping this part.

Figure 68: Grayscale image and found contours from canny detector

Bounding box restricting pixels corresponding to every found contour are used as a mask

(picture 69 a) first image). Later for every pixel from contour an hough line is created.

We will get many hough lines overlapping, with slightly different trend. Dominant line is

picked from them and used as mask 2 (picture 69 a) second image). Combining them

together creates possible prediction of parking line (picture 69 a) third image). Not all

predictions are correct, though. Almost all false predictions are characterized as very short

lines so we can filter them out using Accessible space mask and later simple size

comparison to threshold value that was determined empirically. Picture 69 b) shows line

that was incorrectly determined and will be deleted.

Figure 69: Proces of marking a)correct lines and b)noise points

77

After filtering out all incorrect lines, we are left with lines from which we can estimate

park spaces. Obtained park lines are shown in picture 70.

Figure 70: Grayscale image and found parking lines

This approach is applicable for parking spaces with camera positioned higher or looking

directly down, with parking spaces strictly separated with small room for faulty human

parking. When testing this solution on car park shown in pictures above, we have noticed

a specific trend amongst people. If we gave them a lot of space, they almost always chosen

wrong and parked their vehicle incorrectly. Next picture 71 shows some instances that

will impair this car park solution quality. First two images show that people might park

however they like, even when there are unoccupied spaces. Last image shows that people

park in the middle of the car park when there is no space left. There is smaller car park in

the back that is rarely used. As there are no park lines, this makes it difficult to track them

as being occupied.

Figure 71: Wrong parking examples

Second possible way is to detect all vehicles in image over time and save their bounding

box location. After doing this for quite a long time, we should be able to create cumulative

heat map, showing the most occupied car park locations central points. This should be

done during peak hours as we want to have as much parking places occupied as possible.

Next picture shows average vehicle detection in image and corresponding heat map for

bounding boxes after 30 minutes in use.

78

Figure 72: Found vehicles in image by object detector and generated heat map

After obtaining heat map, we can easily threshold image and find central point of every

blob in image. In this step, we should have correct park spot central point locations. Now

we will make average bounding box position from detected bounding boxes with central

point close to our desired in image. Picture below shows found central points and their

corresponding parking space locations.

Figure 73: Thresholder heat map with found centre points

This whole process is explained using data flow diagram in picture 74. We can see that

this process is composed from 2 main steps and one sub-step. First step is heat map

generation, then comes sub-step which localizes parking spot centres. Last step tries to

estimate correct bounding box positions.

79

Figure 74: Application: Accessible space finder dataflow

7.2 Parking places monitoring

After the competition of auto-configuration, we can start monitor capacity of our car park.

This should be relatively simple. All we need to do is to mask captured image with

accessible space mask to decrease possible false detections. Then feed masked image to

object detector and get bounding box prediction. Compare predicted bounding boxes and

found car park places from auto-configuration by overlaying them and evaluating overlay

ratio. Evaluation if they belong to correct park spot will be done using simplified

pseudocode:

𝑖𝑓 (
𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑎𝑟𝑒𝑎

𝑤ℎ𝑜𝑙𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑏𝑜𝑡ℎ
> 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) ∶

 True

else:

 False

We have chosen threshold value of 0.6. Image showing real time parking spot monitoring

is in image 75. Legend describing bounding boxes meaning was added.

80

Figure 75: Free park spaces monitoring with added legend

There are few problems with this solution. Object detection does not provide reliable

enough data. Some cars might not get detected, like the car in the middle, then the parking

place they are occupying is flagged as free even though it is not. This means that evaluated

statistics will be always slightly off. Next image shows statistic describing number of

vehicles present during colder Monday.

Figure 76: Average vehicle count during weekday on our car park

0

1

2

3

4

5

6

7

8

9

10

6:14 7:26 8:38 9:50 11:02 12:14 13:26 14:38 15:50

N
u

m
b

er
 o

f
ca

rs
 p

re
se

n
t

[-
]

Time [H:M]

Average vehicle count during weekday

81

7.3 Posible additional improvements

Additionally, we have tested ways, how to improve value of our application. Specifically,

we have added means for vehicle ID labelling and vehicle tracking. As these are not

directly in focus of this paper, we will not go into details.

Different methods for vehicle tracking were tried and every single method has its

own limitation. The best results were achieved using grid of Lucas-Kanade point trackers

with correction after every frame to ensure grid parameters. Points tend to shift towards

locally strongest edge without corrections, which were most commonly passing by

people. This allows us to track movement of vehicles and create a better picture about

duration of stay.

Figure 77: a) Grid of Lucas-kanade point trackers and b) monitored vehicles with

assigned ID

However, this solution requires slight tweaking. All points tend to move towards centre,

thanks to statistical correction. This will not be a problem, when update rate for object

detection is frequent. We were able to obtain sufficient results for update every 20 frames.

82

8 CONCLUSION AND FUTURE WORK

As cities grow in size, so does number of cars. Automatized monitoring of free parking

places will surely be needed. This work demonstrates use of machine learning algorithms,

specifically Deep Learning algorithms for this purpose.

Fundamental goal of this paper is to present possibilities of incorporating different

embedded systems in demanding tasks like object detection and classification in places,

where high-end computers are typically used. We have used Raspberry Pi 3 Model B for

this purpose. Later we took six promising models, from which 4 were pretrained and

trained them on our own dataset. Then we tested the results. Considering its small size

and relatively low computational power in comparison with common commercial

solutions, this device is fast enough to provide real time inference. Surprisingly, after

series of hardware optimizations, we were able to achieve up to 8.35 frames per second

for inference with slightly worse precision for one of the tested Deep Learning models.

This might be ideal choice for simpler problems. However, our application required more

precise information, so we utilized slower model with better overall characteristics

besides speed.

Our model application consisted of creating a modern automatic system monitoring

free parking places. This was successful as demonstrated at the end of chapter 7. Our

solution is sufficient for statistical use. However, there are the two main areas, where our

solution could see some improvement there. There is still room for an improvement.

Currently, we have to either sacrifice speed or precision. Firstly, we would welcome

improvement in detection precision, which could be done by tweaking learning

parameters and increasing learning dataset. Secondly, developing a way to incorporate

Raspberry Pi 3 Model B GPU, as currently there is no direct support for GPU

computations. Another possibility is using USB accelerator for CPU offloading. Because

Raspberry Pi 3 Model B has only USB 2.0., this may be problematic.

Future work will consist of code optimization for faster support functionality. Also,

we will do another model training process with slightly different parameters for

embedded_ssd_mobilenet_v1_coco and ssd_mobilenet_v1_coco. We are expecting to see

increase in precision with increased size of our dataset.

Object detection has still a long road ahead and we are curious, what will bring next

decade. Demanding problems are still solved using preferably high-end machines, but

gap between them and embedded devices is constantly shrinking. With improvement in

embedded hardware, we should see better performance soon.

83

References

[1] COPELAND, MICHAEL. What’s the Difference Between Artificial Intelligence,

Machine Learning, and Deep Learning?. Blogs.nvidia.com [online]. 29.07.2016 [cit.

2018-10-14]. Available from: https://blogs.nvidia.com/blog/2016/07/29/ whats-

difference-artificial-intelligence-machine-learning-deep-learning-ai/

[2] MALOO, Jinesh. Artificial Intelligence ,Machine Learning & Deep

learning. Medium [online]. 16.08.2018 [cit. 2019-05-08]. Available from:

https://becominghuman.ai/artificial-intilligence-machine-learning-deep-learning-

df6dd0af500e

[3] TOM M., Mitchell. Machine Learning. 01.03.1997. New York, NY, USA:

McGraw-Hill, 1997. ISBN 0070428077 9780070428072.

[4] AYODELE, Taiwo. Types of Machine Learning Algorithms. New Advances in

Machine Learning. University of Portsmouth, 2010. DOI: 10.5772/9385.

[5] VISHAKHA, Jha. Machine Learning Algorithm - Backbone of emerging

technologies. In: TechLeer [online]. 17.07.2017 [cit. 2019-05-08]. Available from:

https://www.techleer.com/articles/203-machine-learning-algorithm-backbone-of-

emerging-technologies/

[6] DENG, Li a Dong YU. Deep Learning: Methods and Applications. Foundations and

Trends in Signal Processing. 2014, 2013(7), 197–387. DOI: 10.1561/2000000039.

[7] MAHAPATRA, SAMBIT. Why Deep Learning over Traditional Machine

Learning?. Towards Data Science [online]. 21.03.2018 [cit. 2018-10-14]. Available from:

https://towardsdatascience.com/why-deep-learning-is-needed-over-traditional-machine-

learning-1b6a99177063

[8] Deep Learning Has Been Commercialized into More than 100 Use Cases,

According to Tractica: oftware Revenue from Deep Learning Will Reach $35 Billion

Worldwide by 2025. BusinessWire [online]. 30.05.2017 [cit. 2019-05-08]. Available

from: https://www.businesswire.com/news/home/20170530005338/ en/Deep-Learning-

Commercialized-100-Cases-Tractica

[9] Deep Learning 12: Energy-Based Learning (2)–Regularization & Loss Functions

[online]. [cit. 2018-12-20]. Available from: https://ireneli.eu/2016/07/07/deep-learning-

12-energy-based-learning-2-regularization-loss-functions/

[10] BAŽÍK, Martin. Optimalizace hlubokých neuronových sítí. Brno, 2018. Bakalářská

práce. Vysoké učení technické v Brně, Fakulta informačních technologií. Vedoucí práce

Prof. Ing. Lukáš Sekanina, Ph.D.

[11] KOJOUHAROV, Stefan. Cheat Sheets for AI, Neural Networks, Machine

Learning, Deep Learning & Big Data: The Most Complete List of Best AI Cheat Sheets.

Becoming Human: Exploring Artificial Intelligence & What it Means to be Human

[online]. 09.07.2017 [cit. 2018-10-14]. Available from: https://becominghuman.ai/cheat-

sheets-for-ai-neural-networks-machine-learning-deep-learning-big-data-678c51b4b463

84

[12] Cross-correlation. In: Wikipedia: the free encyclopedia [online]. San Francisco

(CA): Wikimedia Foundation, 2001- [cit. 2018-10-19]. Available from:

https://en.wikipedia.org/wiki/Cross-correlation

[13] STRATIL, Jan. Hluboké neuronové sítě pro rozpoznání tváří ve videu. Brno, 2017.

Bakalářská práce. Vysoké učení technické v Brně, Fakulta informačních technologií.

Vedoucí práce Ing. Michal Hradiš, Ph.D.

[14] KOLARÍK, M.Hluboké uèení pro klasikaci textù. Brno: Vysoké učení technické v

Brne, Fakulta elektrotechniky a komunikačních technologií, 2017. 50 s. Vedoucí Ing.

Lukáš Povoda.

[15] SANTOS, Leonardo Araujo dos. Pooling Layer [online]. [cit. 2018-11-02].

Available from: https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/

content/pooling_layer.html

[16] BUDHIRAJA, Amar. Dropout in (Deep) Machine learning. Medium [online].

15.12.2016 [cit. 2018-11-10]. Available from: https://medium.com/

@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-

dropout-in-deep-machine-learning-74334da4bfc5

[17] IOFFE, Sergey a Christian SZEGEDY. Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift [online]. 1600 Amphitheatre

Pkwy, Mountain View, CA 94043, February 2015 [cit. 2018-11-22].

[18] ROHAN, Thomas. Convolutional Networks for everyone. Medium [online]. Jan 15,

2018 [cit. 2018-11-22]. Available from: https://medium.com/

@rohanthomas.me/convolutional-networks-for-everyone-1d0699de1a9d

[19] HADZIMA, Jaroslav, Sabó MAREK a Kratochvíla LUKÁŠ. Detekcia áut v obraze

pomocou Neurónových sietí. Brno, 2018. Semestral projekt. Vysoké Učení Technické v

Brne. Vedoucí práce Ligocki Adam, Ing.

[20] POIRSON, Ric, Justin JOHNSON, Fei-Fei LI a Andrej KARPATHY. Spatial

localization and detection.

[21] REY, Javier. Object Detection with Deep Learning: The Definitive Guide [online].

In: . Wed, Aug 30, 2017 [cit. 2018-11-28]. Available from:

https://tryolabs.com/blog/2017/08/30/object-detection-an-overview-in-the-age-of-deep-

learning/

[22] GIRSHICK, Ross. Fast R-CNN [online]. 27 Sep 2015 [cit. 2018-11-28]. Available

from: https://arxiv.org/pdf/1504.08083.pdf

[23] ERDOĞAN, Göksu. Faster R-CNN: Towards Real-Time Object Detection with

Region Proposal Networks [online]. In: . 1 Feb 2016 [cit. 2018-01-12]. Available from:

https://web.cs.hacettepe.edu.tr/~aykut/classes/spring2016/bil722/slides/w05-FasterR-

CNN.pdf

[24] REN, Shaoqing, Kaiming HE, Ross GIRSHICK a Jian SUN. Faster R-CNN:

Towards Real-Time Object Detection with Region Proposal Networks [online]. 6 Jan

2016 [cit. 2018-12-08]. Available from: https://arxiv.org/abs/1506.01497

85

[25] HUI, Jonathan. Understanding Region-based Fully Convolutional Networks (R-

FCN) for object detection. Medium [online]. [cit. 2018-08-12]. Dostupné z:

https://medium.com/@jonathan_hui/understanding-region-based-fully-convolutional-

networks-r-fcn-for-object-detection-828316f07c99

[26] HE, Kaiming, Georgia GKIOXARI, Piotr DOLLAR a Ross GIRSHICK. Mask R-

CNN: Facebook AI Research (FAIR) [online]. 24 Jan 2018 [cit. 2018-12-08]. Available

from: https://arxiv.org/pdf/1703.06870.pdf

[27] LIU, Wei, Dragomir ANGUELOV, Dumitru ERHAN, Christian SZEGEDY, Scott

REED, Cheng-Yang FU a Alexander C. BERG. SSD: Single Shot MultiBox Detector

[online]. 29 Dec 2016 [cit. 2018-12-08]. Available from:

https://arxiv.org/pdf/1512.02325.pdf

[28] REDMON, Joseph, Santosh DIVVALA, Ross GIRSHICK a Ali FARHADI. You

Only Look Once: Unified, Real-Time Object Detection [online]. 9 May 2016 [cit. 2018-

12-08]. Available from: https://arxiv.org/pdf/1506.02640.pdf

[29] REDMON, Joseph a Ali FARHADI. YOLO9000: Better, Faster, Stronger [online].

2017 [cit. 2018-12-10].

[30] ImageNet [online]. [cit. 2018-12-11]. Available from: http://image-net.org/index

[31] COCO dataset. COCO dataset [online]. [cit. 2018-12-11]. Available from:

http://cocodataset.org/#download

[32] Pascal VOC data sets [online]. [cit. 2018-12-11]. Available from:

http://host.robots.ox.ac.uk/pascal/VOC/

[33] VGG data sets (faces) [online]. [cit. 2018-12-11]. Available from:

http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/

[34] The KITTI Vision Benchmark Suite [online]. [cit. 2018-12-11]. Available from:

http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=2d

[35] Cars Dataset [online]. [cit. 2018-12-11]. Available from:

http://ai.stanford.edu/~jkrause/cars/car_dataset.html

[36] Difference Between Microprocessor and Microcontroller. ELECTRONICS HUB

[online]. MAY 29, 2015 [cit. 2018-12-13]. Available from:

https://www.electronicshub.org/difference-between-microprocessor-and-

microcontroller/

[37] NEKUŽA, Karel Odlehčená kryptografie pro embedded zařízení: bakalářská práce.

Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních

technologií, Ústav telekomunikací, 2016. 42 s. Vedoucí práce byl Ing. Zdeněk

Martinásek, Phd.

[38] EVANCZUK, Stephen. Applying machine learning in embedded systems.

Embedded [online]. JULY 11, 2018 [cit. 2018-12-15]. Available from:

https://www.embedded.com/design/prototyping-and-development/4460862/3/Applying-

machine-learning-in-embedded-systems

86

[39] HIJAZI, Samer. Neural Network Technology for Embedded Systems. Embedded

[online]. 2016 [cit. 2018-12-15]. Available from: http://nfic-

2016.ieeesiliconvalley.org/wp-content/uploads/sites/16/2016/05/NFIC-2016-Cadence-

Samer-Hijazi.pdf

[40] LIAO, Yihua. Neural Networks in Hardware: A Survey [online]. Department of

Computer Science, University of California, Davis One Shields Avenue, Davis, CA

95616 [cit. 2018-12-15]. DOI: 10.5121/ijaia.2018.9105. Available from:

https://bit.csc.lsu.edu/~jianhua/shiv2.pdf

[41] ROJAS, Raul. Neural Networks: A Systematic Introduction. Springer-Verlag,

Berlin, 1996.

[42] ROBINSON, Jamal. FPGAs, Deep Learning, Software Defined Networks and the

Cloud: A Love Story Part 1: Digging into FPGAs and how they are being utilized in the

cloud. Medium [online]. Nov 11, 2017 [cit. 2018-12-15]. Available from:

https://medium.com/@jamal.robinson/fpgas-deep-learning-software-defined-networks-

and-the-cloud-a-love-story-part-1-c685dc6b657b

[43] RAVAL, Siraj. TPU MachineLearning [online]. Sep 28, 2018 [cit. 2019-04-22].

Available from:

https://github.com/llSourcell/TPU_Machine_Learning/blob/master/TPU_MachineLearn

ing%20(2).ipynb

[44] WHY GPUS?: NVIDIA Tesla Pascal P100 GPU [online]. [cit. 2018-12-15].

Available from: http://www.fmslib.com/mkt/gpus.html

[45] SATO, Kaz, Cliff YOUNG a David PATTERSON. An in-depth look at Google’s

first Tensor Processing Unit (TPU)[online]. May 12, 2017 [cit. 2019-04-22]. Available

from: https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-

tensor-processing-unit-tpu

[46] NAKHARE, Gaurav. Hardware options for Machine/Deep Learning. Stanford

University [online]. July 31, 2017 [cit. 2018-12-15]. Available from:

https://mse238blog.stanford.edu/2017/07/gnakhare/hardware-options-for-machinedeep-

learning/

[47] JAWANDHIYA, Pooja. HARDWARE DESIGN FOR MACHINE

LEARNING [online]. School of Electrical and Electronic Engineering, Nanyang

Technological University, Singapore, 1, January 2018 [cit. 2018-12-14]. DOI:

10.5121/ijaia.2018.9105. Available from:

http://aircconline.com/ijaia/V9N1/9118ijaia05.pdf

[48] DEAN, Jeff a Urs HÖLZLE. Build and train machine learning models on our new

Google Cloud TPUs [online]. May 17, 2017 [cit. 2019-04-22]. Available from:

https://www.blog.google/products/google-cloud/google-cloud-offer-tpus-machine-

learning/

87

[49] Discovery kit with STM32F407VG Microcontroller Unit. Element 14 [online]. [cit.

2018-12-18]. Available from: https://www.element14.com/community/docs/DOC-

80768/l/discovery-kit-with-stm32f407vg-microcontroller-unit#overview

[50] Raspberry Pi 3 Model B. Raspberry Pi [online]. [cit. 2018-12-18]. Available from:

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

[51] HADZIMA, J. 3D skener se strukturovaným osvětlením. Brno: Vysoké učení

technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2017. 81 s.

Vedoucí bakalářské práce Ing. Aleš Jelínek.

[51] NVIDIA 900-83310-0001-000 | Jetson TX2. Arrow [online]. [cit. 2018-12-18].

Available from: https://www.arrow.com/en/products/900-83310-0001-000/nvidia

[52] Intel Movidius™ Neural Compute Stick. Mouser electronics [online]. [cit. 2018-

12-18]. Available from: https://eu.mouser.com/new/intel/intel-movidius-stick/

[53] Jetson TX2 Performance [online]. 10/07/2017 [cit. 2019-04-23]. Available from:

https://devtalk.nvidia.com/default/topic/1024825/cuda-programming-and-

performance/jetson-tx2-performance/

[54] BORN, Eric. Intel crams 100 GFLOPS of neural-net inferencing onto a USB

stick [online]. July 20, 2017 [cit. 2019-04-23]. Available from:

https://techreport.com/news/32272/intel-crams-100-gflops-of-neural-net-inferencing-

onto-a-usb-stick

[55] WILLIAMS, Alun. DevBoard Watch: Google’s AIY Edge TPU Boards are

Raspberry Pi friendly [online]. 13.09.2018 [cit. 2019-04-28]. Available from:

https://www.electronicsweekly.com/blogs/gadget-master/raspberry-pi-gadget-

master/devboard-watch-googles-aiy-edge-tpu-boards-raspberry-pi-friendly-2018-09/

[56] Edge TPU Devices: Now available from Coral! [online]. [cit. 2019-04-28].

Available from: https://aiyprojects.withgoogle.com/edge-tpu

[57] RPi SD cards. Embedded Linux Wiki [online]. [cit. 2018-12-20]. Available from:

https://elinux.org/RPi_SD_cards

[58] GODARD, Tuatini. Building TensorFlow 1.3.0-rc1 for Raspberry Pi/Ubuntu 16.04:

a Step-By-Step Guide [online]. [cit. 2018-12-20]. Available from:

https://gist.github.com/EKami/9869ae6347f68c592c5b5cd181a3b205

[59] GODARD, Tuatini. Tutorial to set up TensorFlow Object Detection API on the

Raspberry Pi [online]. 12-10-2018: [cit. 2018-12-20]. Available from:

https://github.com/EdjeElectronics/TensorFlow-Object-Detection-on-the-Raspberry-Pi

[60] Tensorflow detection model zoo [online]. 18.11.2017 [cit. 2019-04-11]. Available

from:

https://github.com/tensorflow/models/blob/079d67d9a0b3407e8d074a200780f38

35413ef99/research/object_detection/g3doc/detection_model_zoo.md

[61] Difference between ZRAM and ZSWAP [online]. 26.08.2013 [cit. 2019-04-29].

Available from: https://stackoverflow.com/questions/18437205/difference-

between-zram-and-zswap

88

[62] Raspberry Pi hardware [online]. 18.01.2019 [cit. 2019-04-28]. Available from:

https://www.raspberrypi.org/documentation/hardware/raspberrypi/

[63] JURAS, Evan. TensorFlow-Object-Detection-API-Tutorial-Train-Multiple-

Objects-Windows-10: How to train a TensorFlow Object Detection Classifier for multiple

object detection on Windows [online]. 10.04.2019 [cit. 2019-04-29]. Available from:

https://github.com/EdjeElectronics/TensorFlow-Object-Detection-API-Tutorial-Train-

Multiple-Objects-Windows-10/projects

[64] LIN, Tzu Ta. LabelImg [online]. 22.04.2019 [cit. 2019-04-29]. Available from:

https://github.com/tzutalin/labelImg

[65] F1 score. In: Wikipedia: the free encyclopedia [online]. San Francisco (CA):

Wikimedia Foundation, 16.12.2018 [cit. 2019-05-08]. Available from:

https://en.wikipedia.org/wiki/F1_score

[66] BENCHOFF, Brian. PI 3 BENCHMARKS: THE MARKETING HYPE IS

TRUE [online]. March 1, 2016 [cit. 2019-04-22]. Available from:

https://hackaday.com/2016/03/01/pi-3-benchmarks-the-marketing-hype-is-true/

89

9 LIST OF ABBREVIATIONS

AI - Artificial Intelligence

BN - Batch normalization

CCTV - Closed Circuit Television

CNN - Convolutional neural network

CPU - Central processing unit

DL - Deep Learning

FPGA - Field programmable gate array

FPS - Frames per second

GPU - Graphical processing unit

HW - Hardware

MCU - Micro-controller unit

ML - Machine learning

NN - Neural network

SW - Software

OCR - Optical Character Recognition

OS - Operating system

PRI - Raspberry Pi 3 model B

SVM - Support vector Machines

TPU - Tensor processing unit

90

List of attachments
Attachment 1. Models_Training_and_testing .pdf

Attachment 2. Program.zip

