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Abstract 

This paper describes currently widely used Deep Learning architectures and methods for 

object detection and classification in video, with intention of using them on embedded 

systems. We will cover steps and reasoning when choosing the most appropriate 

embedded hardware for our application. Our test application consists of vehicle detection 

and free parking space detection using Deep learning methods, all wrapped under name 

Smart car park. This application provides monitoring of vehicle presence in car park and 

if they occupy parking spot or not. All this is expected to be done using embedded device. 

Later, there will be covered configuration steps for our embedded device with emphasis 

on hardware optimization for speed. We will provide comparison of available inference 

models, which will be rated mostly in categories like speed or F1 score, which have the 

biggest impact in our application. The best candidate will be selected and used for testing 

of our application.  
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Abstrakt 

Táto práca popisuje v súčastnosti široko používané architektúry a modely pre Hlboké 

Učenie, riešiace úlohu detekcie a klasifikácie objektov vo videu. Dôraz tu bude kladený 

na ich použiteľnosť na vstavaných zariadeniach. Postupne preberieme kroky 

a odvôvodňovanie pri výbere najlepšieho vstavaného systému pre našu aplikáciu. 

Ukážková aplikáci pozostáva hlavne z detekcie vozidiel a detekcie voľných parkovacích 

miest s využitím algoritmov Hlbokého Učenia. Táto aplikácia umožňuje monitorovať 

počet vozidiel, nachádzajúcich sa na parkovisku a zároveň rozhodnúť, či sa nachádzajú 

na prakovacom mieste alebo nie. Následne tu budú prebrané kroky nutné ku konfigurácii 

zariadenia s dôrazom na optimalizáciu hardvéru pre dosiahnutie čo najväčšej rýchlosti. 

V ďaľšej časti bude poskytnuté porovnanie vybraných modelov, ktoré budú porovnávané 

hlavne v kategóriách ako rýchlosť alebo F1 skóre. Najlepší kandidát bude použitý na 

riešenie našej aplikácie a následné testovanie jej vlastností s názvom Inteligentné 

parkovisko. 
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Rozšírený abstrakt 

Úvod 
Systémy strojového učenia nachádzajú čoraz väčšie a väčšie uplatnenie v širokom 

rozsahu odborov. Jedným z týchto odborov je práve aj spracovanie obrazu, ktoré bude 

náplňou tejto práce. Algoritmy Hlbokého učenia sú špeciálnym typom Strojového učenia, 

kde sú algoritmy inšpirované štruktúrou a funkciou mozgu. Sú charakteristické 

schopnosťou učiť sa podobne ako človek.  

V tejto práci využíváme práve algoritmy Hlbokého učenia pre riešenie problému 

detekcie vozidiel na parkovisku, pojatou vytvorením aplikácie Inteligentného parkoviska. 

Táto aplikácia musí dokázať správne lokalizovať vozidlá na parkovisku a mala by byť 

schopná  správne vyhodnotiť obsadenosti parkovacích miest. 

Riešenie pri tom bude aplikované na vstavaný system. To predstavuje výzvu, 

pretože vstavané systémy nevynikajú výpočetnou silou. Ani zďaleka sa nemôžu 

porovnávať so systémami využívajúcimi počítač s výkonnou grafickou kartou alebo 

dokonca komerčnými cloudovými riešeniami, využívajúcimi desiatky prepojených 

zariadení. Vstavané zariadenia väčšinou nevynikajú parametrami ako je pamäť a hlavne 

RAM. Modely pre Hlboké učenie môžu byť celkom rozsiahle. Môžu mať veľké množstvo 

vrstiev a každá vrstva zvyšuje pamäťové nároky. Musíme teda vhodne voliť zariadenie, 

na ktorom budeme našu aplikáciu testovať, aby bolo schopné nahrať celý model do RAM. 

 
Popis riešenia 
Ako bolo spomenuté vyššie, našou vybranou aplikáciou je práve Inteligentné parkovisko. 

To znamená, že očakávame jednu alebo malé množstvo statických kamier umiestnených 

vo vyšších častiach budovy, pozorujúcich plochu parkoviska. Prvý problém, ktorý sme 

museli vyriešiť, bol výber vhodného embedded resp. vstavaného zariadenia. Na trhu sa v 

súčastnosti nachádza veľké množstvo zariadení, no nie všetky sú vhodné na náš typ úlohy. 

Niektoré sú zbytočne príliš výkonné a predstavovali by iba finančnú stratu. Iné nemajú 

dostatočné parametre, ktoré by boli výrazne obmedzujúcim faktorom. V tejto práci sme 

diskutovali použitie spolu 5 hlavných vstavaných systémov s rôznymi parametrami alebo 

ich kombinácie. Vyberali sme hlavne riešenia formou CPU/GPU/TPU. Výsledným 

vybraným kandidátom sa stalo Raspberry Pi 3 Model B, pretože obsahuje najlepší pomer 

výkonu a ceny a má vhodné parametre pre našu aplikáciu. 

V práci sme postupne demonštrovali konfiguráciu zariadenia. Následne sme ukázali 

proces učenia vybraných modelov Hlbokého učenia. Trénovanie prebiehalo na počítači 

s GPU, pretože trénovanie na vstavanom zariadení je zatiaľ príliš časovo náročné. 

Následne sme vyhodnotili vlastnosti jednotlivých predom vybratých modelov. V našej 

aplikácii sú dôležitými faktormi hlavne rýchlosť a kvalita spracovania. Model 

s najlepšími vlastnosťami bol práve ssd_mobilenet_v1_coco, ktorý dosahuje 

uspokojivých 1.58 FPS a má F1 skóre 0.72. Nejedná sa však o najrýchlejší alebo 

najpresnejší model. Niektoré modely boli rýchlejšie, avšak ich presnosť nebola 

dostatočná, nakoľko mali vysoké množstvo falošných detekcií. Na druhej strane, niektoré 

modely mali veľmi vysokú presnosť, no ich rýchlosť bola veľmi malá.  

 

 

 



 

 

Pred tým, ako sme začali riešiť samotnú aplikáciu, pozreli sme sa na možnosti 

hardvérovej optimalizácie pre dosiahnutie čo najlepšieho výkonu. Úspešne sa nám 

podarilo skrátiť dobu nahrávania modelu do pamäte RAM a zároveň aj čas inferencie. 

S využitím vybraného modelu na optimalizovanom zariadení sme začali riešiť samotnú 

aplikáciu. Táto aplikácia musí byť schopná čo najpresnejšie detekovať vozidlá na 

parkovisku a vyhodnocovať štatistiky. Keďže sme pozorovali značné množstvo 

falošných detekcií, zakomponovali sme korekciu maskou, vyhraničujúcou plochu 

samotného parkoviska. Túto masku sme získali metódami počítačového videnia, 

konkretnejšie rozdielovými snímkovými metódami v kombinácii so znalosťou o polohe 

objektu z objektového detektoru. Následne sme museli nájsť konkrétne parkovacie 

miesta, aby sme mohli vôbec vyhodnocovať ich obsadenosť. Dokázali sme to pomocou 

štatistických metód, kde sme zaznamenávali najčastejšiu polohu detekovaných objektov 

v čase vytvorením tzv. Heat mapy. Po dostatočne dlhom zázname sme našli najsilnejšie 

oblasti a prehlásili ich za parkovacie miesta. Následne sme mohli prejsť k poslednej časti, 

ktorá pozostávala z vyhodnocovania obsadenosti parkoviska. Riešili sme to 

porovnávaním prekrytosti oblastí pre parkovacie miesta a aktuálne detekovanými 

vozidlami. 

 
Výsledky 
Táto práca prezentuje porovnanie aktuálne používaných metód v oblasti Hlbokého 

učenia. Taktiež sa zaoberá problematikou aplikácie týchto metód na vstavané systémy. 

Porovnávame tu v súčasnosti často využívané hardvérové riešenia a následne 

prezentujeme celý proces od učenia až po inferenciu na vybranom zariadení, ktoré bolo 

optimalizované pre vykonávanie danej funkcie. Porovnávame tu viacero vybraných 

modelov a vyhodnocujeme ich vlastnosti.  

Hlavným výsledkom tejto práce je dokázanie, že aj vstavané zariadenia, ktoré 

neovplývajú výkonom porovnateľným s komerčnými riešeniami sú vhodným kandidátom 

na problematiku detekcie objektov pomocou metód Hlbokého učenia. Ukázalo sa že 

existujú modely, ktoré sú schopné dosiahnuť viac ako 8 FPS. Pri zlepšení vlastností 

samotného modelu pre znížšnie počtu falošných detekcií môže byť tento model 

atraktívnym riešením napríklad v priemysle.  
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INTRODUCTION 

We live in time of great technical advances. New methods and systems are being 

developed every year, which help make peoples life easier and more comfortable. We 

have learned how to program a machine to do exactly what we wanted them to do. It 

might be as complex, as programmer’s imagination allow. However, these machines are 

mostly hard-coded. If situation changes only a little bit, these machines would probably 

be no longer applicable. Need for an intelligent system capable of adapting to changing 

situations resulted into algorithms, that can learn in similar way students learn from their 

teacher. No direct programming would be necessary. We would only show what needs to 

be done, not how and machine would create their own approach.  

Deep learning algorithms are subset of Machine learning algorithms. First chapter 

will briefly cover general information about types and use cases of machine learning 

algorithms as a whole and acts as basic introduction to Deep learning methods, which are 

covered in second chapter. There are dozens of different types and applications for Deep 

learning algorithms so we will be going only over the most well-known. 

Third chapter covers general information about embedded devices used for Deep 

Learning applications. This chapter covers purpose, hardware and software needs for such 

systems. Different types of Deep Learning algorithms require different hardware and 

software configurations, but they are all very computationally demanding. Real time 

computing generally requires more complex and more computationally efficient systems. 

We will provide short comparison of popular embedded devices commonly used for Deep 

learning applications. 

Fourth chapter discusses reasons and motivation when choosing model application 

for our tests. We will choose the best embedded device for our model application and 

describe steps needed for device setup and additional hardware optimization later in fifth 

chapter.  

Sixth chapter describes entire training process of neural network. Second part of 

this chapter provides benchmark done on our embedded device, evaluating applicable 

models. Seventh chapter then uses winning model and demonstrates our chosen 

application. Wi will try to achieve results, sufficient for use in real world applications. 

Brief summary is included at the end reviewing achieved results and provides 

opinions on current and possibly future character of this work. 
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1 MACHINE LEARNING 

Terms like Artificial Intelligence (AI), Machine learning (ML) and Deep learning (DL) 

are nowadays used interchangeably in most media. For example, when Google 

DeepMind’s AlphaGo program defeated South Korean Master Lee Se-dol in the board 

game Go in March 2016, all three terms were used to describe how AlphaGo won.[1]   

They are not the same, although they all overlap in certain areas. The most basic 

explanation for these terms could be as follows: 

Artificial Intelligence - Technique used to create a program that mimics human 

behaviour. Applied commonly to projects, where designed systems show ability to 

reason, learn, generalize or find meaning. [2] 

Machine Learning - Uses statistical methods which allow machines to improve with 

experience - to learn. Machine Learning is a subset of Artificial intelligence. A great 

definition was provided by Tom M. Mitchell in [3]: 

“A computer program is said to learn from experience E with respect to some 

class of tasks T and performance measure P, if its performance at tasks in T, 

as measured by P, improves with experience E.” 

Deep Learning - Is subset of Machine Learning. Deep Learning algorithms are perhaps 

best exemplified by multi-layer neural networks, which try to make sense from imputed 

unsorted data based on learnt traits. Uses basic concepts from biology of the brain. Deep 

Learning is useful when there is quantity of data. 

 
Figure 1: Difference between AI, ML and DL [1] 
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As we can see, Machine learning is only a small branch of Artificial Intelligence and its 

purpose is to learn from data using statistical methods. Not everything is programmed. 

Certain parts could use mechanisms like neural networks, k-Nearest neighbours, SVM or 

one of many other. Great example, as shown in image above is a spam filter. Easy solution 

using ML could look similar to this: We would take as many spam and normal messages, 

as we could find and use them for training, flagging spam messages. Our system may for 

example find certain words that are common in a spam messages and not in normal 

conversations. These words will be thus given more weight when determining a spam and 

non-spam message. Later when a new message comes, our system looks on word 

composition and based on weights for elemental words computes average score. If 

average score is over certain threshold, message is automatically deleted or sent to spam 

folder. Many algorithms and principles could be used for implementation. 

1.1 Types of machine learning 

When talking about machine learning, we can differentiate between three fundamental 

types, where each behaves differently, needs different data and could be used in different 

situations. 

1.1.1 Supervised learning  

In supervised training an algorithm generates a function that maps inputs to desired 

output. Dataset is required to contain examples of both inputs and outputs. Its name comes 

from the fact that the whole process is controlled using provided labels from supervisor. 

Supervised learning can be divided into two subgroups: 

Classification - The most common type of supervised learning. Often, the goal is to get 

a machine to learn a classification problem that we have created. Machine assigns 

category to input data. For example, OCR Digit classification is fed with a picture of a 

number and it classifies or “label” it as the right number. [4] 

Regression - As name suggest, in this scenario we generalize input data and want to make 

a statistical prediction estimating future input data. Example could be weather 

temperature forecasting or stock values prediction. Because this type of model predicts 

some form of a quantity, its skill has to be reported as error. A simple root mean squared 

error is typical for this type of error calculation. [4] 
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1.1.2 Unsupervised learning  

This type of learning models has knowledge of inputs but labelled output examples are 

unavailable. These machines should be able to draw inference from non-labelled data 

without reference or knowledge of output. By drawing a conclusion, we usually mean 

discovering underlying structure in data. This is a harder problem, because we expect 

machines to do something and we don’t tell them how.  

 

Two main subcategories are: 

Pattern recognition and data clustering - Process of dividing and grouping similar data 

sample together, thus allowing us to find similarity in data. Can be used later for 

supervised training.  

Reducing data dimensionality - Means decreasing dimensions generated by number of 

features provided. We may reduce computing constraints caused by lack of computing 

power by reducing features map dimension count. Reduction of time required for 

categorization for the next computational processes is an attractive factor.  

1.1.3 Reinforcement learning  

Presents us with an Agent, that learns how to behave in observed world. Every action 

generates impact on the environment and environment provides feedback, either positive 

or negative. Based on positiveness of the feedback, Agent learns rules of the observed 

world and how to behave to generate maximally positive feedback. This type of learning 

is not as common as other two types mentioned before. Typical applications are 

automatized game playing or robot path navigation. 

 
Figure 2: Diagram showing the most well known subgroups of ML algorithms [3,4,5] 
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2 DEEP LEARNING 

Before we jump straight into Deep Learning methods, it is surely useful to define what 

Deep Learning actually means. There are many high-level descriptions that can be found 

online. Between them, we can clearly see two key-points that remains in probably every 

definition [6]: 

− Models consist of multiple layers or stages of nonlinear information 

processing.  

− Usage of methods for supervised or unsupervised learning from feature 

representation at successively higher, more abstract layer. 

When writing about Deep Learning, it is common for a literature to actually refer to 

convolutional neural networks. Definitions don’t specify, that it has to be only 

convolutional neural networks, but they are the most used ones. Similarly, for purposes 

of this paper we will refer to convolutional neural networks as Deep Learning. 

Deep Learnings popularity has been steadily increasing over the last two decades. 

But why is that? Probably the most significant reasons for this are improvements in the 

fields of machine learning and signal/images/information processing, increased 

efficiency and speed of chips (using more capable CPUs and GPUs) but also human 

curiosity. Process of training Neural network (NN) become undoubtedly many times 

faster than it was in the past. Training sets could thus become accordingly larger which 

resulted in increase in NNs precision. These advances allowed DL methods to employ 

complex compositional nonlinear functions, learn distributed and hierarchical feature 

representations and make effective use of both labelled and unlabelled data. It has not 

been that long time ago, that for the first time a real image-based computing using NN 

could be achieved. It is safe to predict, that with constant increases in technology levels, 

the usage of DL will be employed in countless applications worldwide and used as an 

attractive alternative to current common solutions. [6] 

2.1 Difference between Machine Learning and Deep 

Learning 

Deep learning is specialized form of ML, subset if you want. With ML you start with 

data, let’s say image of a car. We have to manually chose which features should be 

extracted using any feature extractor and classifying them with some classifier. Features 

to be extracted are known beforehand. Vector of given features is then given to the 

classifier to classify an object. Just to be complete, as a classifier could be used also a 

NN. The key idea in basic ML algorithms is a separation of steps in the whole procedure. 

If we don’t like output from individual steps, we can tweak or correct parameters of 

elemental parts. 
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On the other hand, in DL you feed whole raw data to the NN that does all steps that 

machine learning system had to separate. Output from DL NN is an classified object. We 

can’t tell, nor influence what features are being extracted and used or how classifier 

operates when it comes to choosing important features. Networks learn to perform a 

specific task automatically. One of their great advantage over other ML methods is that 

they tend to increase their performance with increase of training data even when ML 

methods already stagnates. 

 
Figure 3: Difference between ML and DL [7] 

Another aspect to consider is the speed, their complexity and requirements. If we have 

small set of data and an easier problem, ML methods will most likely represent a better 

fit than DL methods. They also require less computational power than DL. Also, if we 

are able to wisely specify small set of important features, ML algorithms can be relatively 

fast. If we really want to use DL methods, we have to be aware of burdens they present. 

We need an extensive amount of data, possibly thousands of pictures, that have to be 

manually annotated. Also, training a model may take weeks or months for older 

computers with slow GPU/CPU. Generally having faster GPU/CPU means faster learning 

so if we don’t have access to such devices, we are often left with ML algorithms or using 

often pricey online cloud learning alternatives. 

Examples of DL can be seen everywhere around us. Most of us even came into 

contact with them in some form or another on everyday basis. Just think about every 

bigger website like Facebook, YouTube, eBay or Amazon. They all use recommender 

systems for relevant element propagation. These systems allow retailers to offer 

personalized recommendations based on your previous purchases or browsing activity. 

Ads can use them too. This is why if you merely think about something and in the very 

next page reload it is in the ads, as they were reading your mind. Between other less 

visible use cases belongs object tracking with applied object detection and classification, 

prediction of a market trends or risk calculation. Google Maps uses data from network 

connected smartphones to calculate traffic and suggests the fastest route. Also, Google 

presents tools for speech recognition. 
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We will go with Deep Learning algorithms in more detail later in text so just to point out 

some interesting examples of Deep Learning in image recognition could be seen on sites 

like Facebook, where it recommends tagging your friend on your photos. Other examples 

are third party programs with image classification or camera surveillance. Massive 

corporation giants like Google use DL in their image search recognition. Additionally, 

Google provides a way to restore or enhance image details using extrapolation and 

knowledge from thousands similar images we post daily on the internet. Most of us are 

thankful for those tools but rarely care enough to investigate how these tools work. In 

practice, DL excels everywhere where identifying patterns in unstructured data is 

required. Data could represent media such as video, images, sound or other signals, text 

and sometimes even time series. According to [8], the top 10 use cases for revenue 

generation incorporating DL are: 

1. Static image recognition, classification, and tagging;  

2. Machine/vehicular object detection/identification/avoidance;  

3. Patient data processing;  

4. Algorithmic trading strategy for performance improvement; 

5. Converting paperwork into digital data;  

6. Medical image analysis;  

7. Localization and mapping;  

8. Sentiment analysis; 

9. Social media publishing and management;  

10. Intelligent recruitment and HR systems. 

11. As expected, image recognition and automotive use is in the first two places.  

2.2 Basics of Deep Learning 

When it comes to DL, in general, we are trying to increase probability of correct 

estimation. If our model is trained on small dataset, so that objects are not recognized at 

all or even objects of different classes are detected as class members, we are calling that 

underfitting. On the other hand, if we train our model too much, it becomes overly 

specific. We call that state overfitting. Somewhere between underfitting and overfitting 

should be our desired sweet spot. 

 
Figure 4: Difference between best-fit, Underfit and Overfit [9] 
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Testing NNs accuracy is crucial during learning phase. It is a time to stop the learning 

phase or modify architecture if accuracy start to drop. Speed of the learning process and 

overall accuracy is determined by many factors such as dataset, type of layers used and 

activation functions, learning coefficient and many others. Utilizing right layers typically 

means significant difference in accuracy.  

In NN, we can find many different types of layers. It’s important to realize that 

every layer has its own specific purpose. In this paragraph, NN layers and their basic 

meaning will be discussed. There are three general types of layers in NN based on their 

location in architecture. 

Input layer has passive nodes that only shift input values to the output of its neurons. In 

essence, acts as a distributor of data for our NN.  

Output layer contains active nodes. We can modify, how output from our NN behaves, 

depending on training outputs from NN. Commonly, they are done as classifiers. If we 

want only binary classification, describing if an object is present within input data, we 

have to use only one neuron acting as binary logical element. If we expect classifier to 

recognize different types of objects, we commonly use amount of output neurons equal 

to the number of recognizable objects.  

Hidden layer is a common name for every layer that is between input and output layer. 

Hidden layer is hidden from interface of the NN. We know what we put on the input and 

what outputs mean, but we don’t have a deeper understanding why neurons learned to 

behave certain way and what model it created, therefore these states of neurons are hidden 

from us in technical sense.  

We can see all three types of layers in figure 5, activation functions and their biases are 

also shown. Next section covers the most common types of hidden layers with their 

definitions. 
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2.2.1 Common types of layers  

Fully-connected feed forward layer [10] - As name suggests, every neuron in this layer 

is connected with every neuron from layer before and after. Used most commonly in the 

last few layers of Convolutional Neural Network (CNN). This layer looks at output from 

previous layer representing set of features (feature maps), then takes the most relevant 

features and propagates them to the output. Size of output matrix from this layer is equal 

to number of neurons in this layer.  

 

 
Figure 5: Fully-connected feed forward layer [11] 

 

Convolutional layer [10] - Inspired from vison nerves deep inside the brain which are 

able to generalize far better than Fully-connected layers. Output from this layer is a 

feature map. Operation for one-dimensional vector of input data is computed as: 

                   𝑥(𝑖) ∗ 𝑤(𝑖) =  ∑ 𝑥(𝑚) ∙ 𝑤(𝑖 − 𝑚)

𝑚

 =  ∑ 𝑥(𝑖 − 𝑚) ∙ 𝑤(𝑚)                     (1. )

𝑚

 

Where x is our data and w is a sliding kernel (or filter). We can see continuous version of 

Convolution on the right side in the picture 6 and its equivalent in Cross-correlation. 

Discrete version would look similar. And for two-dimensional data as: 

               𝑆𝑐𝑣(𝑖, 𝑗) = 𝐼(𝑖, 𝑗) ∗ 𝐾(𝑖, 𝑗) =  ∑ ∑ 𝐼(𝑚, 𝑛) ∙ 𝐾(𝑖 − 𝑚, 𝑗 − 𝑛)                       (2. )

𝑛𝑚

 

 
Figure 6: Convolution and Cross-correlation [12] 
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Where S(i,j) is a picture after convolution with pixel in row i and column j. I is our original 

image and K is kernel window with size 𝑀 × 𝑁. In neural networks, cross-correlation 

replaces convolution with function: 

          𝑆𝑐𝑐(𝑖, 𝑗) = 𝐼(𝑖, 𝑗) ∗ 𝐾(𝑖, 𝑗) =  ∑ ∑ 𝐼∗(𝑚, 𝑛) ∙ 𝐾(𝑚 + 𝑖, 𝑛 + 𝑗)                          (3. )

𝑛𝑚

 

 
Figure 7: Basic idea behind convolution layer [13] 

 

If we consider scenarios where our kernel peaks outside input matrix, we have two 

possibilities. Either we zero pad around our original image with half the size of our kernel 

and use normal convolution or we won’t use convolution on side pixels at all. If we choose 

second option, we end up limited in detecting surface. Choosing a right option depend on 

input image size and kernel size. 

Pooling layer [14] - Pooling layer is used in NN to reduce data input amount. Sometimes 

referred to as Down-sampling or Subsampling layer. This layer effectively reduces data 

for following layers. It is favourable, because computational power needed for an 

application is reduced for architectures with smaller neuron count and their corresponding 

weights. Overfitting is also greatly reduced, because NN no longer learns on small 

unimportant features in image. Function of convolutional layer could be summed up in 

these steps:  

1. Select submatrix of whole matrix of data, typically 2x2, 3x3. 

2. Compute max value (maxpooling) or mean (meanpooling) or average 

(averagepooling) or min (minpooling). 

3. Computed value put into new grid with smaller size in the place of input 

submatrix. 

This selects only interesting features from input layer and effectively down-samples data 

size. Principle of maxpooling layer is shown in the picture below and its position in the 

whole NN architecture. 
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Figure 8: Maxpooling function [15] 

Dropout layer [14] - Behaving more like an algorithm that ignores certain percentual 

portion of input data (sets their activations to zero). Can be used to reduce overfitting, 

because model is trained for each iteration with different set of data. With correct dropout 

rate we can simulate bigger training data set.  

 
Figure 9: Dropout layer [16] 

Flatten layer [14]- Flatten layer is used for reshaping multidimensional data into most 

commonly one-dimensional vector. As we can see from example, three-dimensional 

matrix of size 2 × 2 × 2 is reshaped into one dimensional vector with size 8 × 1 × 1.  

                               𝐹𝑙𝑎𝑡𝑡𝑒𝑛 ([[
1 2
3 4

] , [
5 6
7 8

]]) =  [1,2,3,4,5,6,7,8]                            (4. ) 

Batch normalization layer (BN) [13, 17] - This layer normalizes values in mini-batches 

(all activation functions in all locations) so that we obey convolutional properties. During 

the inference the BN transform applies the same linear transformation to each activation 

map. BN Ensures that activations have average 0 and standard deviation 1. This means 

that most of the values lies somewhere around zero. 

We can look on training pass through one layer as transformation consisting of 

affine transformation followed by element wise nonlinearity, where we add Batch 

normalization right before the nonlinearity. We can see function below, where z is output 

from our layer, W are weights, u is input data vector, b is bias and g is nonlinearity 

(activation function).  

                                                     𝑧 = 𝑔(𝐵𝑁(𝑊 ∙ 𝑢 + 𝑏))                                                    (5. ) 
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Since we normalized 𝑊 ∙ 𝑢 + 𝑏, the bias can be ignored because its effect is cancelled by 

subsequent mean subtraction, thus forming: 

                                                          𝑧 = 𝑔(𝐵𝑁(𝑊 ∙ 𝑢))                                                       (6. ) 

 This layer most commonly sits between convolutional layer and activation layer. 

 
Figure 10: Validation accuracy for Inception and Batch normalized variants vs the 

number of steps [17] 

Thanks to this layer, we can use bigger learning coefficient and care less about correct 

weights initialization. Technically usable as replacement for a dropout layer as it adds 

noise into normalization, thus promoting regularization. In practice it is best to use both. 

Statistics show that this type of layer greatly increases NN success rate and training speed.  

2.2.2 Commonly used Neural network architectures 
At first, people were using methods like Viola-Jones framework (2001) or Histogram of 

oriented gradients (2005), which did not use NN. Both were relatively complex with 

simple reasoning behind them. As computer components got more and more powerful, 

first techniques employing NN emerged. We went from learning for months for a simple 

NN to learning in a matter of minutes or hours. With these improvements came stable 

implementations of popular NN architectures. These architectures let us use model with 

possibly years of research and apply them in with relatively few steps. This option is 

incomparably faster than investing months and creating our own from scratch. 

 

CNN - Convolutional Neural Network (2012) [18, 19] 

CNN uses sliding window that scans entire picture and for every image window the 

classifier computes probability that an object is present. There is enormous amount of 

classifications but most of them has small confidence score. Confidence score represent 

probability or in other words confidence, that object of that category is present. This 

method works, but is slow due to high amount of comparisons. Thanks to high amount of 

computations, CNN can be hardly used as real time classifier. 



 

24 

 

 

Algorithm: 

1. Input image is cut into image cuts.  

2. CNN classifier is applied on every image cut. This classifier computes confidence 

score for every category that can be present in the picture. 

3. Classified tags are stored only if confidence score is higher than predefined 

threshold. 

4. Rectangles around objects with the highest confidence scores are drawn.  

 

OverFeat (2013) [19, 20] 

We don’t know size of object in picture. Object could easily cover as much as whole 

screen or as little as few pixels. OverFeat therefore modifies CNN to use many differently 

sized sliding windows. That prolongates the whole process but increase accuracy. First 

published version contained 6 differently sized sliding windows.  

 
Figure 12: Sliding vindow in OverFeat [20] 

R-CNN - Regions with CNN (2014) [21, 19] 

More sophisticated method than CNN. Sliding windows are no longer used. Instead a 

process called selective searching happens right after image input. This makes it longer 

to train because we can’t just feed annotated images we want. We have to annotate every 

extracted bounding box.  

 

Figure 11: Convolutional Neural Network architecture [18] 
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Algorithm: 

1. Find borders for all areas with similar context and create bounding boxes around 

them. 

2. For every bounding box, extract features with CNN. 

3. Use CNN or SVM for classification.  

 
Figure 13: RCNN - Regions with CNN [21] 

 

Results were relatively satisfactory, but this algorithm had one critical flaw. To train you 

first had to generate proposals for training dataset. That means possibly thousands of 

smaller proposals in images. On top of this created proposal dataset was later used CNN. 

Fast R-CNN (2015) [22, 19] 

Consecutive R-CNN with better accuracy, also faster while training and testing. As it 

turned out Fast R-CNNs biggest disadvantage is selective search that was its strength at 

the very beginning. Selective search is relatively slow and this method uses selective 

search for generating bounding boxes with objects but instead of sending them separately 

for classification, Fast R-CNN uses CNN on a picture as a whole. Later uses both regions 

of interest and feature map for CNN classification.  

 
Figure 14: Fast R-CNN architecture [22] 
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Faster R-CNN (2015) [23, 24, 19] 

Improved and much faster form of R-CNN. Removes selective search and instead uses 

layers for region proposals - Region Proposal Network. Output from Region Proposal 

Network are objects with their own confidence score. This confidence score characterizes 

how confident NN is that an object is present in the region. On these objects is then 

applied approach from Fast R-CNN. This architecture is completely end-to-end trainable.  

 
Figure 15: Faster R-CNN [21] 

 

R-FCN - Region-based Fully Convolutional Networks (2016) [25, 19] 

Another improvement from Faster R-CN presents R-FCN. This type of NN uses only 

convolutional network in all parts. Amount of work needed for every region of interest is 

greatly reduced in this architecture. Feature map is sent to two parallel branches. One 

branch is computing regions of interest and the other one contains score maps. We can 

look on score map as matrix evaluating match of one of many classes object with input 

image. In the next picture a principle of a score maps is shown. Bounding box region is 

divided into a matrix with size 3 × 3. Every element from this matrix contain its feature 

map and compares feature map from comparing classes matrix element feature map on 

the same position. 

 
Figure 16: Feature maps of region-based Fully Convolutional Networks [25] 
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If we use feature map as a whole, we may not get the best match success rate. If we divide 

feature map into N subblocks and correlate them all with matrix feature maps for different 

objects on the same positions, we get better understanding of image scene. Each subblock 

has its own vote. Common number of subblocks N is 9. 

 
Figure 17: R-FCN architecture [25] 

R-FCN architecture is shown in the picture above, which ich very similar with Faster R-

CNN but use only convolutional layers. 

 

Mask R-CNN (2017) [26, 19] 

Uses similar two-way architecture like Faster R-CNN. Region Proposal Network (RPN) 

part of the network is identical with Faster R-CNN (prediction of bounding boxes), 

second parallel part with predicted class Mask R-CNN computes also its binary mask for 

every Region of Interest. Mask is trained with fully connected NN. It helps in pixel 

learning and searching pixel-oriented match of class based on similarity. Very satisfying 

object segmentation was obtained. Its main disadvantage is speed degradation and way 

harder and more time-consuming image labelling, as image mask has to be used. 

 
Figure 18: Mask R-CNN architecture [26] 

 

 



 

28 

 

SSD - Single Shot Multi-Box Detector (2015) [27, 19]  

All methods mentioned before share one crucial characteristic. They divide whole process 

into two parts. First part proposes regions for Bounding boxes and second part uses 

classifiers to classify object class. These methods are relatively simple and precise but 

pay for this with undesirably slow computation speeds, resulting in small FPS (frames 

per second). This makes them basically inapplicable on embedded devices. SSD keeps 

this in mind and tries to overcome that problems. Only one NN is used for both tasks. 

Instead of NN that creates Bounding boxes suggestions, predefined search-for boxes are 

created. On these predefined boxes is then used second part of NN which uses feature 

maps from convolutional layers, where small convolutional kernels are used. These 

feature maps evaluate probability that an object is present. These predictions are used as 

bounding boxes for classification. Many different activation layers and differently sized 

kernels are used for feature map prediction. 

 
Figure 19: Architecture of SSD [27] 

YOLO- You Only Look Once (2016), YOLO v2 (2017), YOLO v3 (2018) [28, 19] 

Probably the most publicly well-known type of neural network architecture is YOLO. 

There are many variations including mobile version Tiny Yolo. Yolo uses only one 

network for a whole input image. This was a new concept at the time of its introduction. 

Till this time, almost every DL detector used some form of sliding window. Whole input 

image is divided into regions and then bounding boxes for objects are predicted with their 

respective probability for every bounding box. There may be hundreds of predictions but 

most of them has very little predicted probability, therefore after using threshold of 

around 0.5 or above only a few dominant remained. 

 
Figure 20: Yolo architecture [27] 
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Yolo let image pass through CNN only once. This makes it possible for the first time to 

accomplish real-time application. This version has high success rate on its own and with 

every later version become even better. 

 
Figure 21: Yolo - predicted bounding boxes [28] 

Yolo V2 uses architecture of darknet with 19 layers for bounding box prediction and 

another 11 layers for classification. Its biggest disadvantage was quality loss of 

predictions for small objects. Yolo V2 combats this limitation by using feature maps from 

earlier phases in later layers. [29] 

Year after Yolo V2, a new version was revealed. Yolo V3 became the fastest NN 

used with highest accuracy. But it didn’t last long and new versions of SSD and RetinaNet 

surpassed Yolo V3 in success rate. Yolo V3 uses 53 layers from Darknet for features 

extraction and another 53 for detection. Great advantage over first versions is increased 

detection rate for smaller objects. [27] 

 
Figure 22: YOLO v3 architecture [27] 
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2.2.3 Training process and datasets 
As we have already mentioned, DL are part of supervised algorithms family. That means 

we have to have training pictures in which we know if objects are present and their 

location. Next image demonstrates what we would need, if were training binary classifier 

that detects goats. We have to provide bounding boxes representing their locations and 

annotate them with name of their class. In this example it is not really needed, since we 

are only detecting if object is present or not in image, not its type.  

 
Figure 23: Visual representation of objects in goat detector example 

 

When choosing a dataset, we have to define strictly what we want to detect, so we can 

pick best suitable option. If we use small dataset, accuracy may not be as good as 

expected, so we have to have big enough and relatively specific dataset to our 

detection/classification problem. In reality it may be challenging to create your own 

dataset large enough to train NN. In that case we have several options, like asking people 

that worked on a similar project to provide their datasets, taking our own images or using 

online search engines and annotating every single picture manually or download a whole 

annotated dataset from one of many online dataset stores. From mentioned, only first and 

third possibility are really feasible when it comes to large models (thousands of data 

elements needed). It should be enough to get just few hundred images and annotate them 

manually for binary classification problem and not as complex architectures. 

Right dataset might present noticeable increase in prediction correctness (high 

positive predictive value and sensitivity, low error). That means using broad variation of 

objects we want to recognize but with enough specificity. To better describe why, let’s 

imagine that we are modelling classical problem, recognition of cars in Czech Republic. 

We want to use pictures of different cars from all the different angles and under different 

light conditions. If we forget to take into consideration factors like mentioned light 

conditions, we might end up with object classifier that works great during the day, but 
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not at all during the night or when its foggy. Currently, there are these most commonly 

used online datasets: 

Table 1: Comparison of different Datasets 

Dataset name No of pictures Main classes Last updated 

ILSVRC'16 [30] 456K 200 2014 

COCO [31] 200K 80 2017 

Pascal Voc [32] 12K 20 2012 

VGGFace2 [33] 3,3M Only faces -1 2012 

KITTI Vision [34] 15K Only cars - 3 2012 

Stanford Car dataset [35]  16K Only cars -196 2012 

 

There are many more but these shows predominately in online search engines at the 

moment and offer not only images but also their labels. Car and face/person detection are 

common problems in computer vision field, that’s why they have a whole dataset 

dedicated to them. Worth noticing in the table is ILSVRC'16 (Large Scale Visual 

Recognition Challenge 2016). It is only a subset of whole Imagenets dataset. This smaller 

dataset was used for competition in object detection and classification benchmark that 

happens every year. Saying “smaller“ may induce feeling that this dataset was not big 

enough but having millions of unlabelled images, thousands of labelled and hundreds of 

classes is far more than plenty. For example, a few pictures from common class cars from 

this dataset looks like this: 

 
Figure 24: ILSVRC'16[30] cars dataset preview 

After obtaining enough data, we usually split them in 9:1 or 8:2 ratio for training and 

testing dataset. Testing dataset is used for model accuracy testing while training. We 

should not use the same images for training and testing dataset. 
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3 EMBEDDED SYSTEMS 

In our everyday life, we came into contact with many various electronical devices in one 

form or other. Some of them are relatively simple devices used for single tasks like 

calculators, refrigerators or elevators. Some of them are on the other hand as complex as 

smartphones, computers or tablets that can be programmed with little to no effort to 

execute many different tasks.  

Because this chapter is dedicated to embedded systems, it is relevant to mention that 

most of currently used electronic devices are embedded devices. But it is equally 

important to recognize that not all devices are embedded. Embedded devices lie 

somewhere in between plain “stupid” electronical devices that were built without any 

complex logic like older washing machines with no display, processor or logical units 

and on the other side complex machines like computers or smartphones. To understand 

why some devices are called embedded and other are not, it’s useful to distinguish what 

embedded devices actually are and what are their characteristics. Definitions for 

embedded systems may differ a bit but the main characteristics remains the same. These 

characteristics are: 

− Contains its own processing unit 

− Built to perform one specific task or very small number of tasks 

− Has its own memory 

This means that smartphones or computers are counted out from list of embedded devices 

because of their multipurpose usage. Using computer-like systems in the place reserved 

for embedded devices may mean increase in flexibility for the price of higher cost and 

physical size. Generally, simpler solution with embedded devices are preferred by 

manufacturers over usually redundant complex units. There are just too many redundant 

parts that increase price of final solution. It is although often hard to categorize if a device 

is still embedded or general-purpose computer. 

 
Figure 25: Examples of embedded devices 
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Because there are many different HW configurations, we have to be extra cautious. 

Picking first device that seems promising might not be the best, even with the best 

intentions. Choosing equally good SW and HW is a must. If we pick a HW with not 

enough memory and weak CPU, not even superiorly good SW will do much. The same 

goes other way around too. We can’t expect miracles if we take unoptimized code that 

wastefully uses resources.  

 Embedded systems may typically use microprocessor or microcontroller. 

Difference between them is that the microprocessor is contained on board of 

microcontroller with additional components like RAM, ROM, flash, GPIO pins or other 

peripheries. Microcontroller is like a miniature computer on its own. It does not require 

any additional circuits as it has all components needed. Microcontrollers can be called a 

heart of embedded devices. Microprocessor on its own contains only CPU, cache, dram 

memory and sometimes GPU. They are dependent on other additional circuits to work, 

as they lack all other peripheries. Depending whether we want to build our device on our 

own or use one already pre-built, we can choose between microcontrollers or 

microprocessors which need additional HW. [36]  

It is useful to ask a few questions when deciding on choosing an embedded 

device. These questions, taking both software and hardware into consideration, should 

be asked before trying to find feasible solution:  

− How much RAM/ROM/HDD/flash we need and should we use CPU, GPU, FPGA, 

ASIC or TPU? 

− Will this device be powered from battery or wall socket?  

− Will our device offer direct connection with USB/ethernet/can… or wirelessly?  

− What will be the maximum final price? 

− Is there a prediction for devices interconnection for increase in performance?  

− Are there any possibilities for remote control? 

− Should our device have OS installed? 

− What problem are we going to solve with ML methods and will this device be 

sufficient? 

− What algorithms/methods/framework/architecture for our project is required and 

is there support for this device? 

− How robust/big the final architecture will be? 

− Should be training phase done on the same or different devices? 

− What is the required speed of computation/FPS? 

− How often are we going to change programmed model architecture? 

Before looking for answers it is often helpful to do a web research and find compatible 

solutions solving problems similar to ours. It is almost always considerably faster to 

tweak well tested logic and utilizing it to our desired functionality than to create a new 

one completely from scratch. [37]  
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3.1 Types of hardware for embedded devices 

For common embedded devices, speed is a major problem as they are minimized versions 

of their larger relatives. Computers can get up to a few dozen FPS in tasks like image 

recognition and DL. A model designed to run on multi-GPU/TPU system will simply not 

run effectively on embedded system that uses typically only simple processor. These 

embedded devices lack hardware support for computing matrices multiplication, which 

are the most common type of operation in neural networks.  

 
Figure 26: Comparison of matrix multiplication tasks (gemm) and other in neural 

networks [38] 

However, that should not stop developers from trying to intercorporate techniques as NN 

onto smaller embedded devices. In today’s technology advances, it’s possible to use 

frameworks for neural networks on embedded boards like Raspberry Pi.  

Using an NN on embedded device require a lot of RAM, because models are loaded 

in memory. This may present problem for devices with low RAM. Another problem we 

have in NNs is that we have to create smaller architectures to keep it as fast as possible. 

If we make NN architecture smaller, it may lead to underfitting problem. Also, training 

NN architecture on embedded device would take days or weeks. That’s why we can see 

numerous times in literature that training is done on more powerful machines.  

Data memory is also a huge problem as images with higher resolution takes more 

memory. For example, picture with resolution 1280 × 720 (720𝑝) will have around 

3.7Mb in uncompressed TIFF CMYK 4x8 bit/pixel. Now take into consideration video 

stream with 25-30 FPS. We will definitely need additional memory device like SSD disk 

if we plan to save recordings. Having 640 × 480 (480𝑝) could be considered luxury. We 

may get few FPS when using DL methods on embedded device anyway.  

Today’s trend in neural networks characterized as “Bigger is better“. Embedded 

devices are not accommodated for this trend. Next picture demonstrates budget of device 

with its expected recognition rate.  
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Figure 27: Trend in Deep Learning [39] 

 

As this project possess limited resources, low cost is a preferable option. But before we 

start with choosing the best fitting device, we have to make a clarification on different 

HW types, that may be used. In general, we will be talking about a CPU/GPU/FPGA and 

ASIC. Each type of processing unit has its own advantages and disadvantages, 

characteristics, considerations and uses. For our designated purpose are needed 

characteristics like computational capability, latency, cost and energy-efficiency. 

Quantifying hardware performance is typically done using number of MAC operations 

performed in given time unit - Millions of Connections Per Second (MCPS), weights 

updating is quantified with Millions of Connections Updates Per Second (MCUPS). 

These two measurements correspond to traditional Mega Floating-point Operations per 

Second (MFLOPS) measured on conventional systems. [40, 41] 

 

 
Figure 28: Comparison of different hardware options [42] 
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3.1.1 CPU - Central Processing unit 
CPUs are referred to as brains of computers, smartphones, laptops or tablets. They are 

vital component. Because of how many different use cases they should be doing, they 

must be as flexible as possible. Increased flexibility causes decrease in the efficiency and 

performance for specific task. CPU is supposed to handle big workloads. In their essence, 

they contain mostly less than 10 cores, typically Dual Core, Quad Core, Hexa Core, Octa 

Core. These cores have large cache memory and each core is capable of running few 

threads at the time. CPU is a scalar machine, which means it processes instructions step 

by step, in other worlds, optimized for serial computations. [43] Object detection may 

require parallel computation for optimal performance. Computers may contain 

combinations of CPUs ang GPUS for better performance.  

 
Figure 29: Comparisson of CPU and GPU structure [43] 

3.1.2 GPU - Graphics Processing Unit 
These processing units are currently the most widely used HW for NN. GPUs are 

designed for high level of parallelism and high memory bandwidth. With GPU we are 

trading flexibility for efficiency and performance with processing graphics intense 

workloads. Strength of GPUs lies in energy-efficient matrix multiplication and 

convolutions. They offload CPUs from computationally intense work. Because ML and 

DL requires tremendous amount of iterations of matrix multiplication and convolution 

while learning, GPUs shows advantage over CPUs. GPUs are also good at fetching large 

amounts of memory, contains hundreds of cores that can handle thousands of threads 

simultaneously. In article [44] we can see comparison between GPU with 56 processors 

that each has 32 cores (total sum of 1792 cores) running at 1.48 GHz versus 16 core CPU 

running at 3.0 GHz. They both perform multiply-add instructions. GPU has peak 

performance of 5300 GFLOPS and CPU only 96 GFLOPS. This superior floating-point 

performance was achieved thanks to large number of cores. GPU generally provide an 

order of magnitude over CPU in processing power with the same cost. [44] Problem with 

typical applications using GPUs is a need to accompany them with CPU. CPU can run 

without GPU, but GPU without CPU can’t, they are typically unable to run operating 
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system like Windows, Linux or Unix. This means more energy and physical space needed 

and price will likely double.  

 
Figure 30: Performance to watts consumed comparison compared to CPU/TPU [45] 

3.1.3 FPGA - Field programmable Array 
FPGA uses hardware descriptive language HDL and can be programmed or reconfigured 

basically infinitely. As name suggests they contains matrix of configurable logic blocks 

connected via programmable interconnections. Loading programs to FPGAs takes a lot 

of time which could be perceived as time wasting but their strength is in lower power 

consumption for the same performance as GPU, which can be important in certain 

applications like self-driving cars or IoT. They are not as good at floating-point based 

operations as GPUs but still can provide quick results for uploaded pre-trained models 

stored in FPGA memory. As data could be directly received and processed inline, a lot of 

resources are saved from what would normally consume running host application. FPGAs 

are suitable for real time applications. FPGAs flexibility aids in delivering deterministic 

low latency and high bandwidth. As they are reconfigurable and can be reconfigured 

basically infinite times, they become viable option for algorithms using topology 

adaptation mechanisms. FPGAs were designed for customizability when running 

irregular parallelism and custom data types. If trend continues, FPGAs will become 

applicable for running more NN applications. As of today, their price is many times 

higher than common embedded devices using CPU/GPU for the same purpose. [46] 

3.1.4 ASIC - Application Specific Integrated Circuits 
ASIC are not as cheap as other candidates. Because of their task specificity and custom 

design, their prices can climb really high. But we really pay for their performance of 

magnitude higher than GPUS or FPGAs. They might be more energy efficient as they 

lack redundant logic for their designated super-specific purpose. Some ASICs offers low-

latency, high-memory bandwidth chip built specifically for deep learning. [47] 
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3.1.4.1 TPU - Tensor Processing unit 

Belong to ASIC device category and are currently developed by Google. These devices 

are by far the fastest among other types mentioned before. TPUs are specialized in multi-

dimensional matrix computations. They are generally used for very large models. [43] 

Problem with these devices is that they are currently not publicly available. Only way to 

obtain their computational power is to rent them on Google cloud. Cloud TPU v2 

currently costs $4.95 USD per TPU per hour. [48] Another option is to use USB TPU 

accelerator, which requires host. However, performance is not as great. 

 

 
Figure 31: Google TPU2 [48] 

 

From all mentioned before, we can conclude that the best fit for specific application would 

be ASIC or FPGA. However, because our implementation will be changing very often, 

as we will be implementing everything beside object detection for our application from 

scratch, using FPGA will be extremely time-consuming. Also, FPGA and ASIC are 

significantly more expensive. In our case thus will be the best fit some microcontroller 

with CPU and GPU integrated onto the same board or microcontroller with CPU and USB 

accelerator. 

 

3.2 Commonly used hardware for Deep Learning solutions 

Most of high-performance solutions use high-end configurations with extremely powerful 

computer utilizing GPU or TPU clusters. Prevalent example of TPU cluster is Google 

cloud. These solutions are for commercial or serious research purposes. Embedded 

enthusiast, student and most of DL users amongst general public use CPU+GPU 

combination. This chapter provides a brief discussion on some of the most convenient 

embedded devices for DL. 
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3.2.1  STM32F407VG MCU [49] 
Arm based microcontrollers belong to a group of most well-known microcontroller units 

(MCU) on the market. They are popular mainly thanks to their applicability in 

applications, where a lot of data transfer from input/output connection points is required. 

With reasonable price and relatively small size offer reliability. As progress advances in 

machine learning, so does MCU. STM32F407VG and many other ARM Cortex-M core 

microcontrollers offer collection of optimized neural network functions like convolution, 

depth separable convolution, fully-connected, pooling and activation layers. With its 

utility functions, it is also possible to construct more complex NN modules. While 

Cortex-M series processors are capable of running OS like WinCE / Linux or Android, 

they are aimed for different purpose. STM32 is a development board created for 

developers as a tool for prototyping their concept and later on creating their own board. 

Using their peripheries directly allows them to gain control over execution and resources. 

 
Figure 32: STM32F407VG MCU [49] 

All training takes place on PC. Its weights and biases are quantized to 8 bit or 16 bit 

integers, then the model used for interference is moved to STM32F407VG. STM supports 

popular frameworks like Tensorflow or Caffe.  
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Table 2: Specifications for STM32F407VG MCU [49] 

Specifications for STM32F407VG MCU 

CPU ARM®32-bit Cortex®-M4 

Frequency Up to 168 MHz 

Fastest Calculations <0.2 GFLOPS 

Flash 1 Mbyte 

SRAM/RAM 196 Kbytes/64Kbyte CCM 

Power supply 5V 

Operating system Raspbian/ Windows / Linux 

Connection points USB 2.0/Ethernet / SDIO/ CAN/I2C/ 

UART,SPI 

Storage space Support for Compact Flash/ 

SRAM/PSRAM/NOR/NAND 

Display External (ILI9325, ILI9341, SSD2119, 

SSD1963) 

Sensor 8- to 14-bit parallel camera interface up to 

54 Mbytes/s 

Dimensions 74.8mm x 57.5mm 

 

3.2.2 Raspberry Pi 3 Model B [51] [50] 
Raspberry Pi 3 is a small and relatively cheap single-board minicomputer. At this time its 

price is around 35€. Despite its low price and small size, RPI possesses greater computing 

power and better specification than single-boards in the same price range. Its main 

advantage is low price and large number of contributors on online forums in vast number 

of applications.  

 
Figure 33: Raspberry Pi 3 Model B [50] 
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Another advantage that increase attractiveness of RPIs is direct camera connection. 

Camera modules are cheap, whole HW price could get as low as 60€. 

 

Table 3: Specifications for Raspberry Pi 3 Model B and camera module v2 [50] 

Specifications for Raspberry Pi 3 Model B 

CPU 1.2GHz 64-bit quad-core ARMv8 

Fastest calculations  192 MFLOPS (double precission) [66] 

RAM 1GB (@900 MHz) 

Power supply 5V 0,7A (up to 2.5A with peripheries) 

Operating system Raspbian/Windows10/Linux/FreeBSD 

Connection points 802.11n WLAN/ Ethernet/ Bluetooth/ 

40-pin GPIO/ 4x USB 2.0 

Storage space Uses Micro SD (64GB tested) 

Display HDMI/ composite video /DSI display 

Dimensions 85mm x 49mm 

Specifications for CAMERA MODULE V2 

Image sensor Sony IMX219 (CMOS)  

Resolution 8MP (3280x2464) 

FPS Max 90 

Image format PEG, JPEG + RAW, GIF, BMP, PNG, 

YUV420, RGB888 

Video format raw h.264 (accelerated) 

 

Camera Module V2 is typically used for image capture, but other options with Infra-Red 

sensor are available. Parameters for standard Camera Module V2 are shown above in 

table. Easy code implemented libraries allows users to capture photos with just a few lines 

of code.  
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3.2.3 NVIDIA Jetson TX2 [51] 
One of the most popular and extremely powerful boards to develop and test deep learning. 

Winner of Image Classification Efficiency Challenge in 2016 with cuDNN 4.0. Useful 

for computer vision and deep learning. From all listed devices, Jetson TX2 and TX1 

provide the best hardware systems specifications. That’s why they are widely used, but 

its price is high in comparison with other devices listed in this chapter. They stand well 

above maximum budget with price of around 450€. This solution also requires additional 

HW. 

Table 4: NVIDIA Jetson TX2 Specifications [51] 

Specifications for NVIDIA Jetson TX2 

CPU HMP Dual Denver 2/2 MB L2 + Quad 

ARM® A57/2 MB L2 (2GHz) 

GPU NVIDIA Pascal 256 CUDA cores 

Fastest computation 46.8 GFLOPS (double precission)[53] 

Flash 1 Mbyte 

LPDDR4 8 GB 

Power supply 5.5-19.6V 

Operating system Linux/Ubuntu 

Connection points USB 2.0 + 3.0/ Ethernet/ Bluetooth/ I2C/ 

802.11ac WLAN/ CAN /UART/ SPI/ 

GPIO 

Storage space 32 GB eMMC, SDIO,SATA 

Display 2x DSI, 2x DP 1.2/HDMI 2.0 / eDP 1.4 

Sensor Up to 6 cameras (CSI2 D-PHY 1.2) 

Dimensions 50mm x 87mm 

 

 
Figure 34: NVIDIA Jetson TX2 [51] 
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3.2.4 Intel NCSM2450.DK1 Movidius USB Accelerator [52] 
Intel Movidius is small USB connected fan-less deep learning accelerator designed for 

AI programming. Uses Movidius Visual processing unit, that is built in many smart 

security cameras, robotics or industrial machine vision equipment.  

 

Table 5: Intel Movidius: requirements on host computer [52] 

Requirements on host computer: 

Operating system Ubuntu 16.04 x86_64 

Fastest computations 100 GFLOPS (half-precision) [54] 

Connection point USB 3.0 Type A plug 

RAM 1GB 

Free storage space 4GB 

 

This device require computer or another embedded device as a host. Its huge benefit is 

ease of portability from device to device. Requirement for host OS is only restriction. 

Another benefit is that it is possible to connect to embedded devices with less processing 

power. Inference model is trained on PC, then transferred to MOVIDIUS stick that is later 

inserted to embedded device. All image computation happens on MOVIDIUS stick. 

Because all image processing is done on MOVIDIUS, embedded devices have free 

resources for other processes. We can run multiple devices on the same platform to scale 

performance. 

 
Figure 35: Intel NCSM2450.DK1 Movidius [52] 
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3.2.5 Coral Google Edge TPU USB Accelerator and Dev 

Board  
Coral TPU USB Accelerator (neural network co-processor) is ready to use device, that 

has to be connected using USB cable. This device can connect to any Linux-based system 

and perform accelerated ML inference. This USB accelerator is compatible with 

Raspberry Pi boards at USB 2.0 speeds only. It can be even used on minimalistic devices 

as Raspberry Pi zero. [55]  

Table 6: Specifications for Google Edge TPU USB Accelerator [56] 

Specifications for Coral Google Edge TPU USB Accelerator 

CPU ARM Cortex M0 + 

Connectivity USB type-C cable 

Power supply 5 V (from host device using USB) 

Supported Frameworks TensorFlow lite 

Supported OS Debian, Linux 

Data bus width 32 bit 

Dimensions 65mm x 30mm x 8mm 

 
Figure 36: Google Edge TPU USB Accelerator [56] 

 

Edge TPU Dev Board is capable of high-speed machine learning inference for low-power 

devices. TPU USB accelerator on itself could be connected to many various devices, but 

Edge TPU Dev Board was designed solely for this purpose. This all-in-one prototyping 

tool allows user to create systems that demands fast ML inference. Edge TPU Dev Board 

is ASIC device with high performance, considering its low-power nature. According to 

[56], it can execute vision models like MobileNet V2 at 100+ FPS. Edge TPU Module is 

removable, can be integrated without base board to other embedded device. 
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Table 7: Specifications for Edge TPU Dev Board (Base board) [56] 

Specifications for Edge TPU Dev Board (Base board) 

Flash MicroSD slot 

Connectivity Type-C OTG, Type-C power, Type-A 3.0 

host, Micro-B serial console, Gigabit 

Ethernet port, 40-pin expansion header, 

Supported video output HDMI 2.0a (full size), 39-pin FFC 

connector for MIPI-DSI display (4-lane) 

Supported camera connection 24-pin FFC connector for MIPI-CSI2 

camera (4-lane) 

Power supply 5V DC (USB Type-C) 

Dimensions 85mm x 56mm 

Table 8: Specifications for Edge TPU Dev Board (EDGE TPU MODULE - SOM) [56] 

Specifications for Edge TPU Dev Board (EDGE TPU MODULE - SOM) 

CPU NXP i.MX 8M SOC (quad Cortex-A53, 

Cortex-M4F) 

GPU Integrated GC7000 Lite Graphics 

RAM 1 GB LPDDR4 

Flash 8 GB eMMC 

Connectivity Wi-Fi 2x2 MIMO (802.11b/g/n/ac 

2.4/5GHz), Bluetooth 4 

Dimensions 40mm x 48mm 

 

Problem with these devices is their availability. Their availability is limited and there are 

currently no local vendors. Although this device could be bought from online sources, 

their usage is still experimental.  

 
Figure 37: Edge TPU Dev Board (Base board + SOC) [56] 
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3.3 Choosing the best option for our application 

This paper covers development and application of DL principles on embedded device. 

We are not going to create our own implementation of framework for DL inference, as 

this could take possibly years for a team of dozen people. We will attempt to utilize 

commonly used embedded device and apply DL into it with and later optimize it for the 

best performance. We have chosen vehicle detection as our main task. Therefore, we will 

be using static camera and detect vehicles moving around car park. Considering this, we 

can have a closer look at mentioned HW. 

STM32F407VG MCU might provide a limited amount of memory. This is a huge 

disadvantage, as we plan on using slightly larger models (still very small in comparison 

with their counterparts).  

Probably the best performance should be expected from Jetson TX2board. This is 

practically a small PC, which could be employed in very performance demanding 

application. However, from all listed device is the most expensive with price of around 

450€.  

From listed devices, only Raspberry Pi 3 Model B could be considered as useful 

at this stage of development. We will use Camera Module V2 with native support. Later 

in the future, it is possible to incorporate MOVIDIUS USB stick or Coral TPU USB to 

increase performance, possible with RPi like board supporting USB 3.0. 

Because we have chosen RPI, we have to use one of many OS that are supported. 

Raspbian Stretch is the official OS for RPi. Desktop version is preferred over lite for 

visual debugging directly on device. When it comes to frameworks, Tensorflow v1.5will 

be used. All other programming will be done using Python 3.6.2. Our device in simple 

acrylic case is shown in image below. 

 
Figure 38: Final outlook for our Raspberry Pi in case with no cooling 
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4 MODEL APPLICATION - SMART PARK 

Two most prominent areas for object detection are person detection and vehicle detection, 

thus have the most available information about them. Naturally, we will choose one of 

these two for our test application. Vehicle detection is a little bit more difficult for vast 

amount of variations in size, shape, colour and many more characteristics. This is ideal 

as it presents more problems that embedded systems have to overcome. 

4.1 Motivation 

If car parks want to detect and monitor number of free parking spaces, they have to 

employ one of many different systems solving this type of a problems. Simpl systems 

typically use gates which count the number of vehicles entering and leaving from car 

park, and show calculated number of free spaces. These systems are easily fooled and 

over time could cumulate error. They have to be reset from time to time to correct actual 

count of vehicles present. Other types of smart parking solutions use vehicle presence 

sensor on every parking space, detecting presence using in most cases radio-wave, 

magnetic induction or laser proximity sensors. In these cases, sensors alone are unreliable 

and break often. Error will cumulate and calling service for single sensor is just not worth 

it, so in most cases these are repaired or replaced in batches, meaning longer time for 

vehicle count correction. However, these systems are probably the only reasonable 

solution in under-ground car parks or parking lots that are obscured. As object detection 

systems get more and more robust, another possibility present itself. Using only single or 

small number of static cameras covering whole car park. They are much cheaper and 

faster to assemble. Cameras will not be accessible for people in car park, as they will be 

mounted in higher positions. The device count in most cases correlates with frequency of 

reparations. This should lower error in prediction of correct free park spaces. Our 

application will attempt to replace other systems with only a single camera monitoring 

place. Testing will be done on our own car park and images from internet.  

4.2 Specification of the problem 

Our testing application will be used in a small local garden centre with car park problems. 

Most of the time, there is only a few vehicles present. However, during the peak hours or 

weekends, there are way too many cars and cooperating them is difficult. Images below 

shows car park in the morning and during peak hours. People are parking chaotically and 

are often blocking others from leaving during the peak hours. There even has to be 

a supervising employee cooperating them (wearing green vest in image 38).  
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Figure 39: Car park in the morning (left) and later during peak hours (right) 

 

Using gate barriers would be counterproductive, as there are 4 roads, from which cars 

could get to this car park. Not all cars will stop there, some of them are only passing. 

Because space is not specifically divided for parking spaces, vehicles are not parked 

always on the same places. Using spot presence detectors would be thus pointless. We 

will have to use camera or other similar system. 

 This system should be able to correctly detect presence of vehicles in image and 

show statistics about approximate park spaces. When car park is full, redirect incoming 

people to second smaller car park from the other side of the building. Beside this, system 

should be able to show basic statistics about daily traffic. 
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5 DEVICE CONFIGURATION 

In this chapter, basic configuration of RPI will be briefly described in steps. We won’t go 

into much detail, because it’s not as necessary. All steps were already described in other 

materials. RPI setup was discussed in detail in our older paper [51] where RPI was used 

for image processing. Details for installation of SW later in text will have references to 

full step by step detailed guides. 

5.1 Brief device setup 

RPi is small pocket-size device with enough power for this application. This small 

embedded has almost all contained on a board, we need only a few things for 

configuration and a fraction of them for use in model application. For our model 

application in everyday use, RPi requires: 

− Power supply adapter 5V/2.5A 

− Ethernet cable with internet connection 

− SD card - at least 16Bg (32Gb was used) 

− Camera Module v2 

− Preferably board case or something similar 

− While configuration, we will need additionally: 

− Keyboard and mouse 

− Monitor with HDMI connection  

− at least 1x USB with min 2 GB space 

 

For this paper, we will use SanDisk 32GB microSDHC Extreme 90MB/s, UHS-I card, as 

this card excel in download/upload speed on official test site for RPI SD cards [57] with 

specifications: 

Reading: 22.8MB/s 

Writing: 25.2MB/s 

Before we start with configuration, we have to copy OS image from official Raspberry Pi 

site onto microSD card. We can use one of many free software like Win32 Disk Imager. 

Object detection expects visualization of results, so we have to choose OS with desktop 

support. We have chosen OS Raspbian Stretch with Desktop as it has better support for 

our platform. Once we have copied OS image to SD card, we can insert it into RPI. We 

will also connect Camera Module v2, keyboard, mouse, HDMI connector from monitor 

and ethernet cable. Internet connection is needed as we will be downloading a lot of data. 

After we have all peripheries and connectors connected, we can connect power supply. 

RPI will start instantly booting up and after a while, we should see initialization and later 

the desktop. Then we have to configure connection options. We can do that by modifying 

raspi-config file, which is used while booting up.  
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Figure 40: RPI config main-menu [51] 

 

 
Figure 41: Configuring interfaces [51] 

 

In Interface Options we will allow camera, SSH and VNC. Then we have to use Expand 

Filesystem in Advanced options, because RPI won’t use whole SD card by default. After 

all is done, we will reboot the RPI and wait for desktop again.When system boots up 

again, we have to connect to WiFi or cable and update and upgrade RPI. This will take 

some time. Then we will try to connect from remote PC using VNC. Because we will be 

using a lot of GitHub source code, we have to download and install Github.  

When it comes to software like Tensorflow, we have to install quite a few 

prerequisites [58, 59]. Configuration and installation of Tensorflow might be problematic 

mainly because we can’t simply install it on our device. We have to build it first using 

Bazel, then build Tensorflow and after that, we can finally install it. Step by step tutorial 

from [59] could be summed as: 

1. Installing necessary packages that are needed for Tensorflow installation: 

 wheel, gcc, c++, swig 

2. Setting up USB disk as additional swap space.  

Because RPI contains only 1GB RAM and 100MB swap space, it’s not enough 

for Tensorflow installation. We have to manually set up swap space on USB. We 

have to connect at least one 2GB+ USB. 
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3. Compilation and installation of Bazel 

Bazel is free build system that is necessary for Tensorflow building from 

source code. We have to keep in mind that not all versions are currently 

supported and work correctly together. RPi should officially support 

Tensorflow v1.9, but we were not able to successfully install it, we have to 

settle with older version. We will be using latest Tensorflow v1.5 which is 2 

version lower and around 6 months older than v1.9. At this time, latest 

known compatible version of Bazel and Tensorflow v1.5 is Bazel v 0.8.0. If we 

use any other combination, we might run into errors later in process.  

4. Compilation and installation of Tensorflow 

We have to use Bazel to compile and build Tensorflow. After we are done with 

installation, we have to remove extra swap space from our system or we 

might not be able to boot up after reboot, if USB is removed. After we are 

done, we have to install few more dependency packages/tools/applications: 

   libatlas-base-dev ,  cython,        pillow,  lxml, 

   jupyter,        matplotlib,  python-tk 

5. OpenCV installation: 

Tensorflow typically uses matplotlib, but OpenCV seems to be less error 

prone. It has greater support but configuring it with all other installations to 

work correctly might be harder than expected. In this work we will use 

OpenCV. First, we need to install dependencies required and then we can 

install current latest version: 

libjpeg-dev,  libtiff5-dev,  libjasper-dev, libpng12-dev, 

libavcodec-dev,  libavformat-dev, libswscale-dev, libv4l-dev, 

gfortran,   libxvidcore-dev,  libx264-dev,  qt4-dev-tools 

One important note is to install OpenCV-contrib with the same version as our 

OpenCV installation. OpenCV-contrib contains many algorithms, that were a 

part of OpenCV in the past, but then they were split up.  

6. Compilation and installation of Protobuf 

Protobuf is a package that implements Google’s Protocol Buffer data format. 

There is currently no direct installation available so we have to compile and 

then install it from source. This process may take up to two hours. Then we 

will have to wait for another two hours after using command make. 

Additionally, some python path modifications are required. For detailed info, 

please refer to [59]. 
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7. Making working directory for Tensorflow and downloading models  

Create a new file in your home directory called tensorflow1. Then we have to 

download all models from Git and update PYTHONPATH variable [59]. 

 

8. Testing Tensorflow installation 

We have quite extensive list of all available models used for inference from 

Tensorflow detection model zoo [60]. Model zoo is Google’s collection of pre-

trained object-detection models with various levels of speed and accuracy. Current 

categories are:  

− COCO-trained models 

− Kitti-trained models 

− Open Images-trained models 

− iNaturalist Species-trained models 

− AVA v2.1-trained models 

There are currently 34 trained models. But as we are using older version of 

TensorFlow, we have to use one of older Github commits for version 1.5. For 

testing purposes, we will use ssdlite_mobilenet_v2_coco from Tensorflow setup 

guide.  

 
Figure 42: Testing ssdlite_mobilenet_v2_coco model using Tensorflow 

 

As we can see, object detector trained on 90 classes works. Detections are not the best, 

but that’s trade of for a NN with such a small size. Second test image shows, that using 

general detector in our specific application is insufficient as only a small fraction of cars 

is detected. 
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5.2 CPU overclocking  

In order to gain as much from this tiny device, we have to improve every small detail. For 

our application, mainly CPU frequency is important. RPI has CPU frequency of only 

1.2GHz, we will aim to get a little bit more. GPU is not as important in our case, as RPi 

does not support controlled direct usage. Results before and after overclocking were 

tested using sysbech:  

 sysbench --test=cpu --cpu-max-prime=1000 --num-threads=4 run 

Which basically computes all prime numbers up to number specified, in our case 1000. 

Stability testing was done using all NN mentioned in later sections. Maximum stable 

overclock configuration was found to be for our RPi: 

arm_freq=1260 

gpu_freq=500 

sdram_freq=500 

over_voltage=4 

total_mem=1024 

sdram_schmoo=0x02000020 

sdram_over_voltage=2 

force_turbo=1 

boot_delay=1 

Although lowest stable CPU frequency was reported to be 1300MHz and some users were 

able to get as much as 1500MHz, 1260 was our maximum when using object detection 

with consistent 100% CPU usage for around 2 hours acting as stability testing 

(incorporating active cooling from next section). Everything more would freeze after 

some time and require manual hard reset. Every device is different, same RPi models 

from the same batch might easily have 200MHz difference in maximal overclock CPU 

frequency. 

 
Figure 43: Results from command sysbench before and after overclocking 
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From comparing statistics from before and after, we can conclude that the total time was 

6.1% shorter. We will slightly leap into next chapter and show the difference before and 

after overclocking on total pass-through duration for different models. We have gained 

few percent decrease in pass-through duration. We have no data for models 

ssdlite_mobilenet_v2_coco and embedded_ssd_mobilenet_v1_coco before overclocking, 

as they were added later.  

Table 9: Model results before and after overclocking  

   No overclock Overclock Time 

saved 

[%]    

 sec/ 

image [s] 

 Total 

time [s] 

sec/ image 

[s] 

Total 

time [s] 

ssdlite_mobilenet_v2_coco (PM)  0.75 74.57 0.71 71.16 4.6 

ssdlite_mobilenet_v2_coco N/A N/A 1.11 111.36 N/A 

ssd_inception_v2_coco 1.74 173.53 1.58 158.54 8.6 

ssd_mobilenet_v1_coco 0.77 76.96 0.65 65.87 14.4 

embedded_ssd_mobilenet_v1_coco N/A N/A 0.13 13.24 N/A 

faster_rcnn_inception_v2_coco 17.57 1757.35 16.79 1678.67 4.5 

faster_rcnn_resnet50_coco 68.84 6884.05 67.43 6742.57 2.0 

Notes: PM = Pretrained model. General object detector without additional training 

           Total time consists of using object detector on series of 100 images 

5.3 Increasing swap space 

Loading NN models into RAM might take few hundred MB of memory. When testing 

different models, we were able to run only a fraction of them. RPi has only 1 GB RAM 

and 100 MB swap space by default, which is just not enough. We have to increase swap 

space. There are 3 most common ways how to do that: 

− using swap space on SD card 

− using swap space on SSD/HDD or USB 

− using ZRAM/ZSWAP 

As we are going to use a lot of read/write operations, using swap space will certainly 

decrease lifespan of media that holds it. This is why we should not use our SD card with 

OS. Only a single data corruption could cause system crashes in the future.  

On the other hand, using SSD or HDD is not optimal as we don’t need that much 

space, because we are not going to store that much data. Also, using them connected to 

RPI would mean either separate power supply or powering them from RPi, and that would 

be counterproductive as it would dramatically increase total power consumption and size 

of the system. On the other hand, using USB stick could be beneficial as it would shift 

wear and tear from main SD card and increase lifespan of our device. USB sticks are 

cheaper in comparison with SD cards and their replacement is easy. They are a lot slower 

though. RPi has only USB2.0 ports which would make data transfer unnecessary slow.  



 

55 

 

ZRAM is a special compressing module for linux kernels, that uses compressed block 

device in RAM, in which paging takes place until its necessary to use the swap. ZSWAP 

is lightweight cache with applied compression for swap pages. Pages that are about to get 

swapped are compressed and stored into dynamically allocated RAM-based memory 

pool. [61]  

While testing which option would be the best, only microSD card swap and USB 

swap place were successful. ZRAM/ZSWAP kept freezing RPi when a lot of data had to 

be stored there. Tensorflow models are on itself very large in size. Test confirmed our 

expectations. MicroSD card is slightly faster and thus may allow us to obtain a small FPS 

boost. For testing purposes, we will be using microSD Swap to get the most from this 

application and later, when device will be in everyday use USB as we don’t want to 

corrupt data on our microSD card. If we choose smaller model, we might not need to use 

this swap space often anyway, just when initializing model or using other RAM expensive 

application in the background. 

Table 10: Model results for different swap locations 

 

 USB Swap microSD swap Time 

saved 

with 

microSD 

Swap [s] 

RAM 

used 

[MB] 
 

sec/ 

image 

[s] 

Total 

time  

[s] 

sec/ 

image 

[s] 

Total 

time  

[s] 

ssdlite_mobilenet_v2_coco (PM) 0.71 71.16 0.67 66.90 5.98 31 

ssdlite_mobilenet_v2_coco 1.13 112.69 1.11 111.36 1.18 314 

ssd_inception_v2_coco 1.62 162.19 1.58 158.54 2.25 610 

ssd_mobilenet_v1_coco 0.65 65.87 0.63 63.16 4.11 540 

embedded_ssd_mobilenet_v1_coco 0.13 13.24 0.13 12.50 5.59 138 

faster_rcnn_inception_v2_coco 17.08 1707.85 16.79 1678.67 1.70 594 

faster_rcnn_resnet50_coco 67.43 6742.57 66.93 6692.79 0.73 743 

Notes: PM = Pretrained model. General object detector without additional training 

                   Total time consists of using object detector on series of 100 images 

 

RAM used represents average RAM used by a model (without inclusion of background 

processes), not maximum RAM used. We have to take into consideration that average 

RAM without running any application (IDLE mode) is around 120-150MB, with disabled 

desktop around 50MB. Also, there is a significant peak while initializing session. If there 

are other processes active, used RAM could easily get over 1 GB. Keeping USB or 

microSD swap space activated at all times might save us from lagging and freezing and 

allow us to even run certain model. 
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5.4 Increasing SD Card read/write speed 

RPi uses 50 MHz as a SD card clock by default. This is to ensure compatibility with all 

types of SD cards. However, we are using high-end type of SD card that is capable of 100 

MHz. We can try to increase SD card clock speed. This should decrease time for reading 

and writing images to memory but mainly decrease time needed to load model into 

memory. Note that this process may reduce lifespan of SD card. Speed tests were 

performed before and after overclocking of the SD card clock using copy commands 

(where bs is block size and count represent number of blocks to be copied). Firstly, we 

are writing on SD card data from /dev/zero folder, which exist only after booting and is 

deleted at shutdown. Files in this file are loaded into RPi memory, not SD card. Second 

part reads data stored in home directory that are stored in SD card and copy them to RPi 

memory. Write speed could be tested issuing following command to terminal: 

dd if=/dev/zero of=~/test.tmp bs=500K count=1024 

Read speed likewise, with first clearing cache, as it might skew results: 

dd if=~/test.tmp of=/dev/null bs=500K count=1024 

We were able to gain around 55 % speed increase for write operations and 99 % for read 

operations. This should come handy in cases where we will be recording to memory. 

Table 11: SD card speed test before and after overclocking 

 Default 50 MHz speed Overclocked 100 MHz Improvement 

Write speed 23.8 MB/s 37.0 MB/s 55.46 % 

Read speed 23.6 MB/s 46.1 MB/s 95.33 % 

 

Testing duration time for a model loading into a memory showed up to around 12% 

duration decrease. Model load time represent all time needed for a specified model to be 

loaded from SD card into RAM. Image pass represents image being loaded from SD card, 

passed through object detector and resulted image saved back to SD card. 

 

Table 12: Effect of overclocking SD card speed on model loading time 

    Default 50 MHz 

speed 

Overclocked 100 

MHz speed 
Model 

loading time 

Improvement 

[%] 
    

Model 

load 

time [s] 

Single 

image 

pass [s] 

Model 

load 

time [s] 

Single 

image 

pass [s] 

ssdlite_mobilenet_v2_coco (PM) 26 1.02 25 1.02 3.85 

ssdlite_mobilenet_v2_coco 13 1.44 12 1.41 7.69 

ssd_inception_v2_coco 16 2.09 14 2.07 12.50 

ssd_mobilenet_v1_coco 13 0.92 12 0.90 7.69 

embedded_ssd_mobilenet_v1_coco 10 0.41 9 0.41 10 

faster_rcnn_inception_v2_coco 14 17.83 14 17.66 0 

faster_rcnn_resnet50_coco 23 68.96 21 68.29 8.69 
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5.5 Overheating problems 

Object detection is computationally demanding task. Efficiently implemented algorithms 

will most likely use all available CPU. This creates problem for devices with poor 

cooling, as temperature could potentially limit speed or even worse, permanently damage 

device. We have to either increase cooling enough to keep CPU cool or lower amount of 

computations, as device will have more time for cooling. Only the first solution makes 

sense in terms of efficiency. According to official Raspberry Pi hardware specifications 

[62], maximum stable temperature is around 60 °C (soft limit). If CPU reaches 

temperatures between 80 °C to 85 °C a warning temperature thermometer icon should 

show up. If the temperature reaches around 85 °C, device should start throttling down 

heavily. According to documentation, devices chip frequency and current input will drop 

as way of restricting CPU usage and therefore let RPi cool slightly, after cooling enough, 

current and frequency will increase again. However, our device got to unresponsive state 

every time the temperature limits were tested at temperature slightly above 80 °C, with 

no other way to reset it other than powering it off and on (reset button is not soldered onto 

the board by default).  

When tested, TensorFlow shows CPU usage at approximately 100% all the time. This 

means the RPi might get hot really quickly. For purposes of testing temperature stability, 

our python script was created, which can be used from file containing this Python script 

in command line: 

$ python3     DP_CPU_core_test.py    { No-of-cores } 

where No-of-cores represent integer value of cores to use. RPi is Quad core which means 

that 4 cores are available. Script creates requested number of processes which count up 

counter infinitely, until aborted.  

 
Figure 44: Stress test - CPU usage 
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With no workload on CPU, average usage is somewhere in range from 1-3 %, this 

represents IDLE mode with no user applications running and no peripheries connections, 

only graphical display mode for display output. IDLE mode was not tested as temperature 

stayed stable at 40-ish range. Picture above demonstrates CPU usage for all 4 tests with 

different number of active cores. Occasional spikes represent other active processes. 

Tests were done sequentially for 0, 1, 2 ,3 and finally all 4 cores. Stable temperatures 

are shown in table 13. As could be seen from graph in picture 44, starting temperature for 

all tests was around 41 °C. This represents average temperature of RPi with no cooling 

attached and in IDLE mode. All tests were done at room temperature. Note that tests were 

interrupted if temperature reached 77.5°C. 

 
Figure 45: Stress testing without cooling 

Topmost temperature for optimal performance is under 60 °C. TensorFlow uses all four 

cores with CPU usage of 100% which will provide around 1.5min object detection 

window, after which RPi freezes. RPi definitely needs additional cooling. Image showing 

RPi without any cooler is in image 38. 

 
Figure 46: Official Raspberry Pi 3 Model B heatsink and our custom made 
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Official small copper heatsink for RPi (Figure 46 left) with dimensions 14x14x6 mm 

shows only a small difference in temperature. We still get over 80°C in about 2 minutes. 

Used thermo tape which came with copper heatsink did not work very well. Temperature 

for 2 cores with 50% CPU usage stopped at around 66°C. That means we would gain only 

around 5°C decrease in temperature.  

After adding bigger aluminium passive heatsink (Figure 46 right) with dimensions 

20x20x16 mm and thermal paste, another stress test series was performed. Next graph 

shows how much of a difference different heatsinks could make. More than 10°C 

difference for 50% CPU usage (measured at 250s). Maximal temperature for full 100% 

CPU usage stabilises after approximately 10 minutes at around 70°C which is still a lot.  

 
Figure 47: Stress testing with large passive aluminium heatsink 

Significant improvement could be seen from graph in picture 47, which represents results 

of stress test with added active 5V cooling. Temperature drop of 20°C in compare with 

passive cooling and more than 30° in comparison with no cooling. Temperatures in 50-

ish range are ideal. We should not be able to get over 60 °C (soft limit), even in very hot 

days. Settled temperatures for all combinations are in table 13. 
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Figure 48: Stress testing with large passive aluminium heatsink and fan 

 

Table 13: Stress test for RPi3 Stable temperatures 

Stress test for RPi 3 Model B - Stable temperatures 

Number of cores used [-] IDLE 1 core 2 cores 3 cores 4 cores 

CPU usage [%]  1 - 3  25 50 75 100 

Stable 

temperature 

[°C] 

No cooling 41 61 73 >77.9 >77.9 

Passive cooling 41 52 57 64 70 

Passive + active cooling 32 42 45 48 51 

 

Final appearance of case with attached passive and active cooling is in picture 49. There 

were later added plastic plates at sides of active fan to help with air flow regulation. 

 

 
Figure 49: Final appearance for our Raspberry Pi with heatsink and active cooler 
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6 MODEL TRAINING 

Since we are using Tensorflow v1.5.0 on RPi, we have to use the same version while 

training. If we don’t, we may run into compatibility problems. According to CUDAs 

website and documentation [63], there has to be installed pack of predefined SW with 

specific versions for Tensorflow v1.5.0 using Windows 10. Compatible SW versions are 

as follow: 

− Visual Studio 2015 14.0 (RTW and updates 1, 2, and 3) 

− CUDA 9.0.176  

− cuDNN 7 

− Python 3.5 or 3.6 

Few different combinations were tried before with no luck, since it is remarkably difficult 

to get right drivers installed after newer versions have been installed before. It is best to 

start with clean install of Windows 10. In case of clean install of Windows 10, installation 

for CUDA and other support drivers is straightforward. They all are available online and 

downloadable in .exe format, installed with default settings. Detailed installation guide is 

written in [63] by searching in directories for installation guide. At first, only CPU version 

was successfully installed (Intel i5-323M CPU @2.60GHz/4Gb). However, it turned out 

to be absolutely inapplicable, as single step took around 9 seconds and according to setup 

installation, there is needed at least 50000 steps (batch size of 1 = 1 image per step) for 

reasonable output, which would take around 5-6 days in total, with no other activity on 

this computer. This process could take easily more than two weeks for satisfactory output. 

 
Figure 50: Training process on CPU 

After successfully installing all prerequisites and all dependencies on different PC, 

including Tensorflow v1.5.0, in accordance with [63], we could start with second part of 

the training process, which is image data gathering. Specifications for this PC are as 

follow: 

CPU: 

  Intel i5-4570 CPU 3.2GHz / RAM - 8Gb  

GPU:  

 NVIDIA GeForce GTX 1050 Ti (Compute capability 6.1) / RAM - 8Gb  
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Using GPU is definitely preferable option. We were able to decrease time for a single 

step approximately to 1/30. 

 
Figure 51:Training process on GPU 

6.1 Data gathering 

Second part consist of gathering enough data for our training and testing dataset. In our 

case, it will be slightly easier as we will be mostly using pretrained models. If we want to 

train our pretrained object detector with reasonable precision, we have to gather at least 

few hundred images, ideally thousands with objects in them. For this purpose, we have 

mounted our RPI with Camera module v2 in place, where we expected it to be in future 

and took pictures from RPi camera while monitoring car park. Pictures were taken every 

few minutes on average for few days when a car park was opened. We were able to gather 

720 pictures in total with different number of vehicles in them.  

Half of gathered images pictures was horizontally mirrored, because we want to 

preserve angles, distance and size of vehicles in images, but we don’t want our object 

detector to be trained only on specific positions on our car park. We also used 200 car 

pictures from google and ILSVRC'16 dataset, with view on vehicles from slightly above. 

Ideally, we would want more images from other sources, but it is quite complicated to 

find images of multiple vehicles in a place with similar conditions. There could be found 

thousands of car images taken from sides but almost none from above. We were able to 

gather 920 images in total. 

6.2 Labelling process 

Third part consist of hand labelling all obtained images using free program called 

labelImg [64]. Labelling is significantly tedious process, which took around 22 hours in 

total. We had to draw bounding boxes for every image in our dataset. There were between 

1 to 30 cars per image, totalling in 9204 cars captured in them. Next image shows 

labelling process. After all images are labelled, we divide them randomly in 8:2 ratio for 

training and testing image set. 
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Figure 52: Labelling process in program labelImg 

6.3 Choosing models for training 

As we have already discussed in chapter 5.1, there are multiple available neural network 

models with different inference mechanisms behind them and architectures. In order to 

use the best neural network, we have to try multiple of them that seem reasonable for 

given application. Picture below shows pretrained compatible neural network models for 

Tensorflow 1.5 and version-compatible models from Tensorflow Model Zoo [60].  

 We will be using mostly pretrained models (Transfer learning), as these are well 

tested and are able to generalize and learn a lot of features in images. Worth noting is that 

we will use NN pretrained on the same dataset - COCO. Different datasets have distinct 

way to evaluate performance for models. This enables us to pick relatively the best model 

for our application. All available pretrained models are listed below ([60]) : 

 
Figure 53: COCO - pretrained models [60] 
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As we will be running our model on computationally weak device, we have to go for 

smaller and faster architectures in exchange for precision. We have chosen from officially 

supported NN models these: 

− ssd_mobilenet_v1_coco 

− ssd_inception_v2_coco 

− faster_rcnn_inception_v2_coco 

− faster_rcnn_resnet50_coco 

After looking around in code samples for a while, we have noticed that there are also 

sample configuration xml files for models not listed in table above, which will allow us 

to train our models from scratch. From these we included:  

− ssdlite_mobilenet_v2_coco 

− embedded_ssd_mobilenet_v1_coco 

These two architectures are either not included in Model ZOO at all or are included in 

future commits, thus pretrained model is not fully compatible with our version of 

Tensorflow. Embedded_ssd_mobilenet_v1_coco is much smaller than others, so ideal for 

embedded devices, just like could be deduced from its name. Ssdlite_mobilenet_v2_coco 

has available frozen inference graph in examples, and first tests were done using this 

model. Average FPS was around 1.2, which is not bad for device like this. We will try to 

obtain similar results.  

After downloading and configuring pretrained models, the training process began. 

Every model has slightly different configuration while training. We tried to use as big 

batch size as possible. The batch size represents number of samples propagated through 

the NN in single step, from which is calculated error. Lets’ say we have batch size of 5, 

thus we are training our NN to 5 images at the time in a single step. This means we have 

to allocate less memory than when using a whole dataset. When we detected any of ‘Out 

of memory’ error, we decreased batch size. In most cases, batch size of 1 or 5 was used, 

depending on memory requirements for used model. We can visualize training process 

using TensorBoard. Different types of NN have slightly different graphs, but all of them 

have classification, localization and total loss.  

classification loss - represents goodness of classification of object 

localization loss - represents goodness of localization in image 

total loss - total loss computed from other losses 

 

Next image shows mentioned losses for training of ssdlite_mobilenet_v2_coco.  
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Figure 54: Example of training statistics provided by Tensorboard for 

embedded_ssd_mobilenet_v1_coco 

 

Ideally, we would want to have shown accuracy score too, but this version of Tensorflow 

and TensorBoard does not offer support for that. We have a slightly harder way of telling 

when to stop training our NN with this version. In our case, all NN were stopped training 

after they started to plateau or decrease in losses were insignificant. For 

embedded_ssd_mobilenet_v1_coco we had to stop sooner, because the number of false 

negatives started to dramatically increase (not shown in graphs). Training graphs for 

every trained model are included in attachment 1. 

 
Table 14: Training process statistics 

Model name 
Batch 

size 
steps 

Time/ 

step 

Time/ 

image 
Total time 

PM 

(*1) 

ssdlite_mobilenet_v2_coco 4 188k 0.265s 0.066s 23h15m55s No 

embedded_ssd_mobilenet_v1_coco 5 173k 0.453s 0.091s 20h58m17s No 

ssd_inception_v2_coco 5 43k 1.047s 0.209s 4h59m56s Yes 

ssd_mobilenet_v1_coco 5 60k 2.970s 0.594s 10h23m53s Yes 

faster_rcnn_inception_v2_coco 1 104k 0.498s 0.498s 4h15m27s Yes 

faster_rcnn_resnet50_coco 1 45k 0.853s 0.853s 6h55m55s Yes 

(*1) PM - Model was pretrained on COCO dataset, else trained from scratch 
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Note the discrepancy between number of total steps, time for single step and total time. 

Apparently, Tensorflow Time/step (and Time/image) does count only time necessary for 

pass through, not time needed for supporting functionality so it does not reflect entirely 

Time total. 

6.4 Model performance comparison 

When evaluating performance of trained model, it is important to choose appropriate tests 

to match application requirements. Table in figure 53 evaluates performance (tested on 

Nvidia GeForce GTX TITAN X) using COCO mAP - MSCOCO evaluation protocol 

[60]. This type of evaluation is not the best for our application, as it uses 12 types of 

metrics and there are only a few interesting for us. Also, this process is computationally 

expensive. For the most basic comparison we need only confusion matrix and time 

duration/ frequency for single pass through NN. Confusion matrix also known as error 

matrix belongs mostly to the field of machine learning and statistical classification. 

Contains two dimensions for “real” and “predicted“ outputs. 

 
Figure 55: Confussion matrix [65] 

Information in next section are from [65]. 

Individual 4 values in confusion matrix are as follow: 

True positive (TP)    - Object was correctly identified. Correct state. 

False positive (FP)   - Object was found but there is no object in image. 

False negative (FN)  - Object was not found, but there is object in picture. 

True negative (TN)  - Object was not found and there is no object. Correct state. 

 

Besides speed of NN, there are two more parameters we are interested in: 

Positive predictive value PPV (Precision)- Describes how many of labelled objects in 

images are really objects of given class. 

                                                             𝑃𝑃𝑉 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                        (7. ) 

True positive rate TPR (Recall or sensitivity)- Describes how many objects are 

correctly labelled from total number of objects in image. 

                                                               𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                        (8. ) 
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From calculating Precision and Recall, we have to somehow pick the best model for our 

application. Beside FPS, it’s still two variables that we have to evaluate. We will use F1 

score for this purpose, as it will effectively reduce our evaluation to only two variables. 

F-score is used in statistical analysis or binary classification as a measure of a test’s 

accuracy. F-score represents harmonic mean of precision and recall.  

                                                      𝐹1 = 2 ∙  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
                                        (9. ) 

 

We have created NN benchmark script, that takes for every model 50 images from our 

car park and 50 random car images from google and does object detection on them. Script 

creates time statistics and few other parameters from every detection. Later we had to 

manually check every picture and determine correct image labelling for every model. 

Samples from object detection process are included in second part of Attachment 1, 

not here as they would take too much space. For reference purposes, there is included 

general ssdlite_mobilenet_v2_coco trained on 90 classes. 

 

Table 15: DL models benchmark - our car park 

 

 

Name: 
TP FP(*1) FN PPV TPR F1 fps 

[-] [%] [-] [%] [-] [%] [-] [-] [-] [img/s] 

ssdlite_mobilenet 

_v2_coco (PM) 
28 4.21 0 0.00 637 95.79 1.00 0.04 0.08 1.51 

ssdlite_mobilenet 

_v2_coco 
506 76.09 64 11.23 158 23.76 0.88 0.76 0.82 0.95 

ssd_inception_v2 

_coco 
575 86.47 2 0.35 90 13.53 0.99 0.86 0.92 0.64 

ssd_mobilenet_v

1 _coco 
580 87.22 1 0.17 85 12.78 0.99 0.87 0.93 1.62 

embedded_ssd_v

1 _coco 
428 64.36 152 26.21 237 35.64 0.73 0.64 0.68 8.35 

faster_rcnn_ince

ption _v2_coco 
659 99.10 6 0.90 6 0.90 0.99 0.99 0.99 0.06 

faster_rcnn_ 

resnet50_coco 
654 98.35 17 2.53 11 1.65 0.97 0.98 0.97 0.02 

(*1) Percentual false positives were taken as a proportion from all predicted positives 
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Figure 56: Model comparison - Our car park 

 

 

 
Figure 57: Comparison of F1 score and FPS for different DL models - Our car park 
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From graphs, we can conclude that the best Precision and Recall have for our specific 

application faster_rcnn_inception_v2_coco and faster_rcnn_resnet50_coco. Too bad that 

they are super slow. On the other hand, if we would look for the fastest model 

embedded_ssd_v1_coco would seem like a fine pick, however this model does not have 

the best Precision, nor Recall. This model dominates with 152 false detections for car 

park and 348 for random pictures, which is not a good thing. Next image shows detections 

using this model.  

 
Figure 58: Sample for embedded_ssd_v1_coco detection showing false detections 

Model ssdlite_mobilenet_v2_coco has a lot of false detections too. Besides these four, 

other models seem applicable. Looking at F1 score and FPS, we will pick 

ssd_mobilenet_v1 _coco, as it provides the best F1 score and FPS for our application. 

Table 16: DL models benchmark - general object detector 

Name: 
TP FP(*1) FN PPV TPR F1 FPS 

[-] [%] [-] [%] [-] [%] [-] [-] [-] [img/s] 

ssdlite_mobilenet 

_v2_coco(PM) 
129 43.73 12 8.51 165 56.27 0.91 0.43 0.58 1.48 

ssdlite_mobilenet 

_v2_coco 
156 52.88 160 50.63 139 47.12 0.49 0.52 0.50 0.93 

ssd_inception_v2 

_coco 
192 65.08 28 12.73 103 34.92 0.87 0.65 0.74 0.64 

ssd_mobilenet_v1 

_coco 
184 62.37 31 14.42 111 37.63 0.85 0.62 0.72 1.58 

embedded_ssd_v1 

_coco 
151 51.19 348 69.74 144 48.81 0.30 0.51 0.38 7.52 

faster_rcnn_incep

tion _v2_coco 
265 89.83 70 20.90 30 10.17 0.79 0.89 0.84 0.06 

faster_rcnn_resne

t50 _coco 
271 91.86 90 24.93 24 8.14 0.75 0.91 0.82 0.02 

(*1) Percentual false positives were taken as proportion from all predicted positives 
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Figure 59: Model comparison - general car detector 

 

 
Figure 60: Comparison of F1 score and FPS for different DL models - general car 

detections 
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7 APPLICATION 

Our application should be able to be as autonomous, as possible. This is why we added 

one step before actual monitoring, that allow us to gather enough information about car 

park. No manual intervention should be required. All programs are written in Python, as 

Tensorflow currently has primary support in this programming language. C++ is also 

supported when using C API. However, it is still not fully rewritten. Other programming 

languages are partially rewritten but still in experimental phase. 

7.1 Auto-configuration 

If we want to fully understand car park, we have to know just a few specific 

characteristics. Firstly, we have to know the area, in which vehicles could be present. 

Secondly, we have to obtain possibly very precise parking place location. Knowing these 

two, we can always determine number of vehicles in car park and if they are parked in 

parking spots. To obtain both information, we have divided process of autoconfiguration 

into two parts - finding accessible space and parking locations. More about these two in 

upcoming subchapters. 

 
Figure 61: Application: auto-configuration dataflow 
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7.1.1 Obtaining accessible vehicle space as a mask 

Object detection is a demanding task with considerable error rate. Minimizing error with 

as little additional computations as possible is desired. In our case, for example, we can 

tell with certainty that vehicles will not stand or ride over kerbstones or into plant fields. 

 
Figure 62: False detections on billboards by car detector  

We want to restrict area where cars could be present and area where they can’t. There are 

several ways how to do this but every single one has certain limitations. If we only 

recorded positions from object detector, we would not get good results as object detector 

has many false positives on billboards or places near car park. On the other hand, if we 

recorded only moving objects and map movement of bigger objects, we should obtain 

map of all places, where vehicles could get. This kind of works too, but we will record 

movement of other unwanted objects. Employing both techniques should be beneficial. 

In theory, if we monitor moving objects in video and combine them with output of vehicle 

detector and record their position over time, we can get all available space, where vehicles 

can get. It might be helpful when finding parking lines in video too, as we won’t look for 

lines outside car park. Our approach is described in picture 63. 

 
Figure 63: Application: Accessible space finder dataflow 
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We have used our own implementation of ring buffer for faster and less memory 

demanding container for our image data. This container does not shift images by one 

index whenever a new image is added but rather only replaces image at specific 

incrementing index. This container holds last 5 to 25 images of video capture (depending 

on FPS) and computes absolute image difference over them. 

 
Figure 64: Visualisation for Accessible space mask finding 

 

Image 64 shows these steps in visually more comprehensive format. Images a) and b) 

represent output from object detector and corresponding image mask. These two are not 

included in area restricted with green colour, because they are not needed in applications 

where there is no background movement causing noise. Including them will reduce false 
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mask writes from movement of different object than vehicles. Image c) represents images 

holder by our implementation of ring buffer. Absolute pixel difference is computed over 

all of them and resulting mask is in image d). This should show all places in image, where 

any object moved in the last number of frames. We can see more white blobs but only 

one of them represents a real car. Combination of detected movement mask and mask 

from car detector produces image e) which shows only area of moving car. Adding this 

information into existing movement map will produce Accessible space mask. Picture 

below shows average peak hours. There is a lot of movement of both vehicles and people.  

 
Figure 65: Car park with movement of both cars and people 

 

In picture 66 we can see process of obtaining accessible space mask from moving objects. 

Images represent obtained mask after 10 seconds, 1 minute, 5 minutes and 30 minutes, 

respectively. Small particle noise filtering was used to eliminate small spots as could be 

visible in upper right part of obtained accessible mask. Obtained park space mask shows 

relatively correct area accessible with vehicle and thus, could be used as mask for line 

finding and filtering of false detected image localizations.  

In applications with no background noise movement, implementation could be 

a little bit more straightforward. All we have to do is to record movement of all moving 

objects with more than minimum threshold size and record all their occurrences in video 

over time. In cases where there is a lot of movement around the car park, this 

simplification should not be used.   
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Figure 66: Process of obtaining accessible space mask after 10s, 1m, 5m and 30m 

7.1.2 Obtaining park spots locations 
If we want to detect and monitor fullness of car park, we have to somehow tell, if park 

spaces are full or not. This means we should identify all available park spaces and then 

monitor if they are occupied. First tactics was to detect all line segments and from them 

estimate parking spaces. Process could be characterized as: 

 
Figure 67: Application: Line finder data flow 
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Next two images show original image converted to Grayscale and output from Canny 

detector with all found contours on the right side. Note that in the first picture, there are 

only 5 lines. Later were more added. Also note that for visualization no Accessible space 

mask was used, to highlight possible error, when skipping this part.  

 
Figure 68: Grayscale image and found contours from canny detector 

 

Bounding box restricting pixels corresponding to every found contour are used as a mask 

(picture 69 a) first image). Later for every pixel from contour an hough line is created. 

We will get many hough lines overlapping, with slightly different trend. Dominant line is 

picked from them and used as mask 2 (picture 69 a) second image). Combining them 

together creates possible prediction of parking line (picture 69 a) third image). Not all 

predictions are correct, though. Almost all false predictions are characterized as very short 

lines so we can filter them out using Accessible space mask and later simple size 

comparison to threshold value that was determined empirically. Picture 69 b) shows line 

that was incorrectly determined and will be deleted.  

 
Figure 69: Proces of marking a)correct lines and b)noise points 
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After filtering out all incorrect lines, we are left with lines from which we can estimate 

park spaces. Obtained park lines are shown in picture 70. 

 
Figure 70: Grayscale image and found parking lines 

This approach is applicable for parking spaces with camera positioned higher or looking 

directly down, with parking spaces strictly separated with small room for faulty human 

parking. When testing this solution on car park shown in pictures above, we have noticed 

a specific trend amongst people. If we gave them a lot of space, they almost always chosen 

wrong and parked their vehicle incorrectly. Next picture 71 shows some instances that 

will impair this car park solution quality. First two images show that people might park 

however they like, even when there are unoccupied spaces. Last image shows that people 

park in the middle of the car park when there is no space left. There is smaller car park in 

the back that is rarely used. As there are no park lines, this makes it difficult to track them 

as being occupied. 

 
Figure 71: Wrong parking examples 

  

Second possible way is to detect all vehicles in image over time and save their bounding 

box location. After doing this for quite a long time, we should be able to create cumulative 

heat map, showing the most occupied car park locations central points. This should be 

done during peak hours as we want to have as much parking places occupied as possible. 

Next picture shows average vehicle detection in image and corresponding heat map for 

bounding boxes after 30 minutes in use.  
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Figure 72: Found vehicles in image by object detector and generated heat map 

 

After obtaining heat map, we can easily threshold image and find central point of every 

blob in image. In this step, we should have correct park spot central point locations. Now 

we will make average bounding box position from detected bounding boxes with central 

point close to our desired in image. Picture below shows found central points and their 

corresponding parking space locations. 

 

 
Figure 73: Thresholder heat map with found centre points 

This whole process is explained using data flow diagram in picture 74. We can see that 

this process is composed from 2 main steps and one sub-step. First step is heat map 

generation, then comes sub-step which localizes parking spot centres. Last step tries to 

estimate correct bounding box positions.  
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Figure 74: Application: Accessible space finder dataflow 

 

7.2 Parking places monitoring 

After the competition of auto-configuration, we can start monitor capacity of our car park. 

This should be relatively simple. All we need to do is to mask captured image with 

accessible space mask to decrease possible false detections. Then feed masked image to 

object detector and get bounding box prediction. Compare predicted bounding boxes and 

found car park places from auto-configuration by overlaying them and evaluating overlay 

ratio. Evaluation if they belong to correct park spot will be done using simplified 

pseudocode: 

 

𝑖𝑓 (
𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑎𝑟𝑒𝑎

𝑤ℎ𝑜𝑙𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑏𝑜𝑡ℎ
> 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) ∶ 

             True  

else:  

             False 

 

We have chosen threshold value of 0.6. Image showing real time parking spot monitoring 

is in image 75. Legend describing bounding boxes meaning was added.  
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Figure 75: Free park spaces monitoring with added legend 

There are few problems with this solution. Object detection does not provide reliable 

enough data. Some cars might not get detected, like the car in the middle, then the parking 

place they are occupying is flagged as free even though it is not. This means that evaluated 

statistics will be always slightly off. Next image shows statistic describing number of 

vehicles present during colder Monday.  

 
Figure 76: Average vehicle count during weekday on our car park 
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7.3 Posible additional improvements 

Additionally, we have tested ways, how to improve value of our application. Specifically, 

we have added means for vehicle ID labelling and vehicle tracking. As these are not 

directly in focus of this paper, we will not go into details.  

Different methods for vehicle tracking were tried and every single method has its 

own limitation. The best results were achieved using grid of Lucas-Kanade point trackers 

with correction after every frame to ensure grid parameters. Points tend to shift towards 

locally strongest edge without corrections, which were most commonly passing by 

people. This allows us to track movement of vehicles and create a better picture about 

duration of stay. 

 

 
Figure 77: a) Grid of Lucas-kanade point trackers and b) monitored vehicles with 

assigned ID 

However, this solution requires slight tweaking. All points tend to move towards centre, 

thanks to statistical correction. This will not be a problem, when update rate for object 

detection is frequent. We were able to obtain sufficient results for update every 20 frames.   
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8 CONCLUSION AND FUTURE WORK 

As cities grow in size, so does number of cars. Automatized monitoring of free parking 

places will surely be needed. This work demonstrates use of machine learning algorithms, 

specifically Deep Learning algorithms for this purpose. 

Fundamental goal of this paper is to present possibilities of incorporating different 

embedded systems in demanding tasks like object detection and classification in places, 

where high-end computers are typically used. We have used Raspberry Pi 3 Model B for 

this purpose. Later we took six promising models, from which 4 were pretrained and 

trained them on our own dataset. Then we tested the results. Considering its small size 

and relatively low computational power in comparison with common commercial 

solutions, this device is fast enough to provide real time inference. Surprisingly, after 

series of hardware optimizations, we were able to achieve up to 8.35 frames per second 

for inference with slightly worse precision for one of the tested Deep Learning models. 

This might be ideal choice for simpler problems. However, our application required more 

precise information, so we utilized slower model with better overall characteristics 

besides speed. 

Our model application consisted of creating a modern automatic system monitoring 

free parking places. This was successful as demonstrated at the end of chapter 7. Our 

solution is sufficient for statistical use. However, there are the two main areas, where our 

solution could see some improvement there. There is still room for an improvement. 

Currently, we have to either sacrifice speed or precision. Firstly, we would welcome 

improvement in detection precision, which could be done by tweaking learning 

parameters and increasing learning dataset. Secondly, developing a way to incorporate 

Raspberry Pi 3 Model B GPU, as currently there is no direct support for GPU 

computations. Another possibility is using USB accelerator for CPU offloading. Because 

Raspberry Pi 3 Model B has only USB 2.0., this may be problematic.  

Future work will consist of code optimization for faster support functionality. Also, 

we will do another model training process with slightly different parameters for 

embedded_ssd_mobilenet_v1_coco and ssd_mobilenet_v1_coco. We are expecting to see 

increase in precision with increased size of our dataset. 

Object detection has still a long road ahead and we are curious, what will bring next 

decade. Demanding problems are still solved using preferably high-end machines, but 

gap between them and embedded devices is constantly shrinking. With improvement in 

embedded hardware, we should see better performance soon. 
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9 LIST OF ABBREVIATIONS 

AI   - Artificial Intelligence 

BN   - Batch normalization 

CCTV - Closed Circuit Television 

CNN  -  Convolutional neural network 

CPU   -  Central processing unit 

DL   -  Deep Learning 

FPGA  -  Field programmable gate array 

FPS   -  Frames per second   

GPU  - Graphical processing unit 

HW   -  Hardware 

MCU - Micro-controller unit 

ML   -  Machine learning 

NN   - Neural network 

SW   -  Software 

OCR  -  Optical Character Recognition  

OS   -  Operating system 

PRI  - Raspberry Pi 3 model B 

SVM  -  Support vector Machines 

TPU  - Tensor processing unit 
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