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Abstract: Stability of stochastic differential equations (SDEs) has become a very popular theme
of recent research in mathematics and its applications. The method of Lyapunov functions for the
analysis of qualitative behavior of SDEs provide some very powerful instruments in the study of
stability properties for concrete stochastic dynamical systems, conditions of existence the stationary
solutions of SDEs and related problems.
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1 INTRODUCTION

Stochastic modeling has an important role in many branches of science and industry. Stochastic mo-
del can be used to solve problem which evinces by accident, noise, etc. Definition of probability
spaces, Brownian motion, SDE and an existence and uniqueness of solution of these equations were
mentioned in Student EEICT 2014 [4]. It was taken from B. Øksendal [8]. The stability theory was
introduced by R. Z. Khasminskii [3]. The basic principles of various types of stochastic systems are
described by X.Mao [7]. In this paper we will follow up on previous proofs in Student EEICT 2015
[5] and we derived sufficient conditions for general system of the zero solution of the stochastic
differential system using Lyapunov function. The results are verified on examples.

2 MAIN RESULTS - SYSTEM WITH TWO-DIMENSIONAL BROWNIAN MOTION

We have a homogenous linear stochastic differential equation

dXt = AXtdt +GdBt , (1)

where Xt =

(
X1(t)
X2(t)

)
, A =

(
a1 a2
a3 a4

)
, G =

(
g1 g2
g3 g4

)
, Bt =

(
B1(t)
B2(t)

)
,

a1,a2,a3,a4,g1,g2,g3,g4 are constants.

Definition 2.1 Lyapunov quadratic function V is given

V (Xt) = XT
t Q Xt ,

where Q =

(
q1 q2
q2 q1

)
is a symmetric positive-definite matrix, i.e. q1 > 0,q2

1−q2
2 > 0.

Theorem 2.1 Zero solution of equation (1) is stochastically stable if holds LV < 0, where

LV = 2
[
a1X2

1 (t)+a4X2
2 (t)+(a2 +a3)X1(t)X2(t)+g2

1 +g2
2 +g2

3 +g2
4
]
.
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Proof: [6], pp. 12.

Now we can do a discussion under which conditions the system will be stable.
The Euclidean matrix norm on the space Rn can be define as

‖A‖E :=

√
n

∑
i=1

m

∑
j=1

a2
i j,

where ai j is a matrix element of the i-th line and of the j-th column of the matrix, n is number of
matrix raws, m is number of matrix columns. We denote g2

1 +g2
2 +g2

3 +g2
4 = ‖G‖

2 and give

LV = 2
[
a1X2

1 (t)+a4X2
2 (t)+(a2 +a3)X1(t)X2(t)+‖G‖2

]
. (2)

The Lyapunov function LV will be negative definite if and only if

a1X2
1 (t)+a4X2

2 (t)+(a2 +a3)X1(t)X2(t)+‖G‖2 ≤ 0,

because ‖G‖2 ≥ 0, therefore the matrix A must be sufficiently negative, to obtain a negative definite
function. We use the Sylvester’s criterion which is a necessary and sufficient criterion to determine
whether a matrix is positive-definite. [2] In the following consequences we construct solutions to
better imagine the stochastic stability.

Example 2.1 First, we consider a diagonal matrix A and G of equation (1) in the form

A =

(
a 0
0 a

)
,G =

( a
10 0
0 a

10

)
.

Solution: The matrix A will be negative definite under following conditions:

D1 = |a11|= a < 0,

D2 = a2 > 0

if holds D1 then the condition D2 is obvious.

Then from (2) follows

aX2
1 (t)+aX2

2 (t) ≤ −‖G‖2 ,

a‖Xt‖2 ≤ −‖G‖2 .

If the variable a is negative and also inequality a‖Xt‖2 ≤−‖G‖2 is valid, then the system is stochas-
tically stable.
We find a solution of the stochastic system based on eigenvalues. If a12 = a21 = 0, then λ1 = a11,
λ2 = a22⇒ λ1,2 = a. Because a is negative we make substitution a =−α,α > 0. We give a solution
of the system

X1(t) = C1e−αt ,

X2(t) = C2te−αt ,

when C1,C2 are constants.
Zero solution of equation (1) with a matrix A is stochastically stable if holds the inequality
a‖Xt‖2 ≤−‖G‖2 . We determine stability of solution for Q = E

dV (Xt) = 2
[

aX2
1 (t)+aX2

2 (t)+2
( a

10

)2
]

dt +
aX1(t)

5
dB1(t)+

aX2(t)
5

dB2(t),

E {dV (Xt)} = 2
[

aX2
1 (t)+aX2

2 (t)+2
( a

10

)2
]

dt = LV dt.
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There has to hold the inequality a‖Xt‖2 ≤−‖G‖2 , so

a2 +50a‖Xt‖2 < 0⇔ a < 0∨a <−50‖Xt‖2 .

For X1(t) =C1e−αt ,X2(t) =C2te−αt we get

a <−50
(
C2

1e−2αt +C2
2t2e−2αt) .

Stochastic differential system is stable for a < 0 or a <−50
(
C2

1e−2αt +C2
2t2e−2αt

)
.

Example 2.2 We consider a diagonal matrix A and G of equation (1) in the form

A =

(
a 0
0 b

)
,G =

( a
10 0
0 b

10

)
.

Solution: The matrix A will be negative definite under following conditions:

D1 = a < 0,

D2 = ab > 0⇒ b < 0.

Then from (2) follows

aX2
1 (t)+bX2

2 (t) ≤ −‖G‖2 .

We find a solution of the stochastic system based on eigenvalues. λ1 = a,λ2 = b. We substitute
a =−α,α > 0,b =−β,β > 0. We give a solution of the system

X1(t) = C1e−αt ,

X2(t) = C2te−βt ,

C1,C2 are constants.
Zero solution of equation (1) with a matrix A is stochastically stable if holds the inequality
aX2

1 (t)+bX2
2 (t)≤−‖G‖

2 .
We determine stability of solution for Q = E

dV (Xt) = 2

[
aX2

1 (t)+bX2
2 (t)+

( a
10

)2
+

(
b
10

)2
]

dt +
aX1(t)

5
dB1(t)+

bX2(t)
5

dB2(t),

E {dV (Xt)} = 2

[
aX2

1 (t)+bX2
2 (t)+

( a
10

)2
+

(
b
10

)2
]

dt = LV dt.

There has to hold the inequality aX2
1 (t)+bX2

2 (t)≤−‖G‖
2 , so if for X1(t) =C1e−αt ,X2(t) =C2te−βt

holds the inequality

aC2
1e−2αt +bC2

2t2e−2βt ≤−a2 +b2

100
,

then the system is stable.

Example 2.3 We consider a symmetric matrix A and G of equation (1) in the form

A =

(
a b
b a

)
,G =

( a
10

b
10

b
10

a
10

)
.
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Solution: The matrix A will be negative definite under following conditions:

D1 = a < 0,
D2 = a2−b2 > 0⇒ |a|> |b|

}
i.e. must be valid |a|> |b|> 0.

Then from (2) follows

aX2
1 (t)+aX2

2 (t)+2bX1(t)X2(t) ≤ −‖G‖2 .

The variable a must be sufficiently negative and also inequality

a‖X(t)‖2 +2bX1(t)X2(t)≤−‖G‖2

must be valid, then we can say that the system is stochastically stable.
We find eigenvalues of matrix A as the solution of the characteristic equation

det(A−λE) = 0,

where E is the unit matrix.

|A−λE|= (a−λ)2−b2 = 0,

(a−λ)2 = b2,

|a−λ| = |b| .

Eigenvalues are

−a+λ1 = |b| ⇒ λ1 = a+ |b| ,
a−λ2 = |b| ⇒ λ2 = a−|b| .

We substitute a =−α,α > 0, |b|> 0,α < |b| , i.e. λ1 =−α+ |b| ,λ2 =−α−|b| . For the eigenvalue
λ1 = −α+ |b| we find the eigenvector v1 = (v11,v12). There is any nonzero vector which fulfills a
following relation

(A−λ1E) v1 = 0,(
a− (a+ |b|) b

b a− (a+ |b|)

)
v1 = 0.

For b > 0 we choose an arbitrary vector v1 = (1,1)T , for b < 0 we choose v1 = (−1,1)T . Then

for b > 0 is X1(t) = (1,1)T e(−α+b)t ,

for b < 0 is X1(t) = (−1,1)T e(−α+b)t .

For the eigenvalue λ1 =−α−|b| we find an eigenvector v2 = (v21,v22)

(A−λ1E) v2 = 0,(
a− (a−|b|) b

b a− (a−|b|)

)
v2 = 0.

For b > 0 we choose an arbitrary vector v2 = (1,−1)T , for b < 0 we choose v2 = (1,1)T . Then

for b < 0 is X2(t) = (1,1)T e−(α+b)t ,

for b > 0 is X2(t) = (1,−1)T e−(α+b)t .
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The general solution is given by a linear combination Xt =C1X1(t)+C2X2(t), with arbitrary constants
C1,C2.
Zero solution of equation (1) with a matrix A is stochastically stable if holds the inequality
a‖X(t)‖2 +2bX1(t)X2(t)≤−‖G‖2 .
We determine stability of solution for Q = E

dV (Xt) = 2
[

a
(
X2

1 (t)+X2
2 (t)

)
+2bX1(t)X2(t)+

a2

50
+

b2

50

]
dt +

aX1(t)+bX2(t)
5

dB1(t)

+
bX1(t)+aX2(t)

5
dB2(t),

E {dV (Xt)} = 2
[

a
(
X2

1 (t)+X2
2 (t)

)
+2bX1(t)X2(t)+

a2 +b2

50

]
dt = LV dt.

There has to hold the inequality a‖X(t)‖2 +2bX1(t)X2(t)≤−‖G‖2 , so if holds the inequality

a‖X(t)‖2 +2bX1(t)X2(t)≤−
a2 +b2

50
,

for b > 0,X1(t) = (1,1)T e(−α+b)t ,X2(t) = (1,−1)T e−(α+b)t ; for b < 0,X1(t) = (−1,1)T e(−α+b)t ,
X2(t) = (1,1)T e−(α+b)t , then the system is stable.
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